

FCC RADIO TEST REPORT

FCC ID	:	NM82QB9100
Equipment	:	Wrist Tracker
Brand Name	:	VIVE
Model Name	:	2QB9100
Applicant	:	HTC Corporation
		No.88, Sec. 3, Zhongxing Rd., Xindian Dist., New Taipei City 231, Taiwan (R.O.C.)
Manufacturer	:	HTC Corporation
		No.23, Xinghua Rd., Taoyuan District,
		Taoyuan City, Taiwan 330
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Sep. 24, 2021 and testing was started from Oct. 01, 2021 and completed on Oct. 16, 2021. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	/ of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	14
	3.3	Power Spectral Density Measurement	15
	3.4	Conducted Band Edges and Spurious Emission Measurement	18
	3.5	Radiated Band Edges and Spurious Emission Measurement	22
	3.6	AC Conducted Emission Measurement	26
	3.7	Antenna Requirements	28
4	List o	of Measuring Equipment	29
5	Unce	rtainty of Evaluation	31
Ар	pendix	A. Conducted Test Results	
Ар	pendix	B. AC Conducted Emission Test Result	
Ар	pendix	C. Radiated Spurious Emission	
Ар	oendix	CD. Radiated Spurious Emission Plots	

Appendix E. Duty Cycle Plots

History of this test report

Report No.	Version	Description	Issued Date
FR192413	01	Initial issue of report	Nov. 18, 2021
FR192413	02	 Revise Connection Diagram of Test System Add Support Unit used in test configuration and system 	Dec. 13, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density Pass		-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	Under limit 4.93 dB at 2483.640 MHz
3.6	15.207	AC Conducted Emission	Pass	Under limit 6.94 dB at 0.551 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Lewis Ho Report Producer: Vivian Hsu

1 General Description

1.1 Product Feature of Equipment Under Test

2.4GHz Proprietary Radio

Product Specification subjective to this standard					
Antenna Type 2.4GHz Proprietary Radio: PIFA Antenna					
	Antenna information				
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	4.0			

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory			
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978			
Test Site No.	Sporton Site No.			
Test Sile NO.	CO05-HY (TAF Code: 1190)			
Remark	The AC Conducted Emission test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory.			

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Sporton Site No. TH05-HY; 03CH11-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

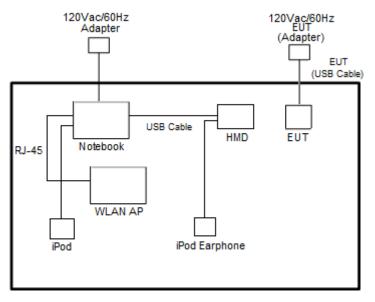
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2.4GHz Proprietary Radio	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Z plane as worst plane
- b. AC power line Conducted Emission was tested under maximum output power.


	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
	2.4GHz Proprietary Radio / GFSK					
Conducted	Mode 1: 2.4GHz Proprietary Radio Tx CH00_2402 MHz_1Mbps					
Test Cases	Mode 2: 2.4GHz Proprietary Radio Tx CH19_2440 MHz_1Mbps					
	Mode 3: 2.4GHz Proprietary Radio Tx CH39_2480 MHz_1Mbps					
Radiated	Mode 1: 2.4GHz Proprietary Radio Tx CH00_2402 MHz_1Mbps					
Test Cases	Mode 2: 2.4GHz Proprietary Radio Tx CH19_2440 MHz_1Mbps					
Test Cases	Mode 3: 2.4GHz Proprietary Radio Tx CH39_2480 MHz_1Mbps					
AC Conducted	Mode 1: 2.4GHz Proprietary Radio Link with HMD + USB Cable 1 (Charging From					
Emission	AC Adapter 2 (TC NE5W-US))					
Remark: For Rac	liated Test Cases, the tests were performed with AC Adapter 2 (TC NE5W-US) and					
USB Cable 1.	USB Cable 1.					

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

<2.4GHz Proprietary Radio Tx Mode>

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
2.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
3.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A
4.	Notebook	Dell	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m
5.	HMD	HTC	2QA4100	FCC DoC	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "USB Tool Ver.3.0.5.1" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

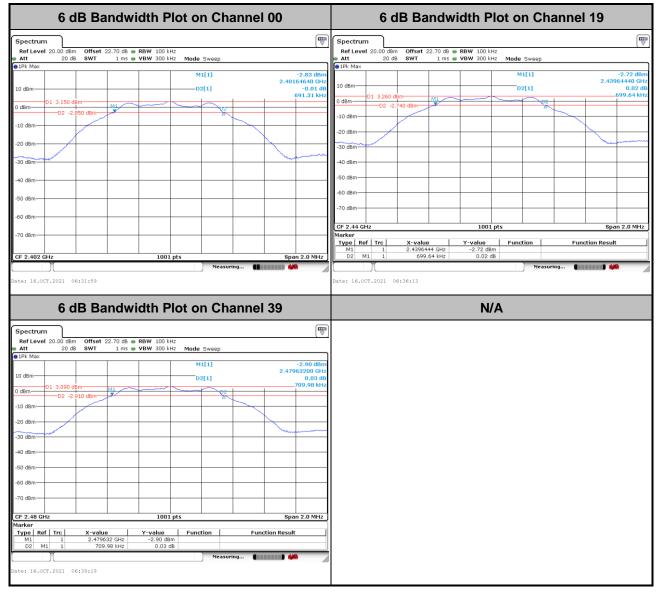
See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

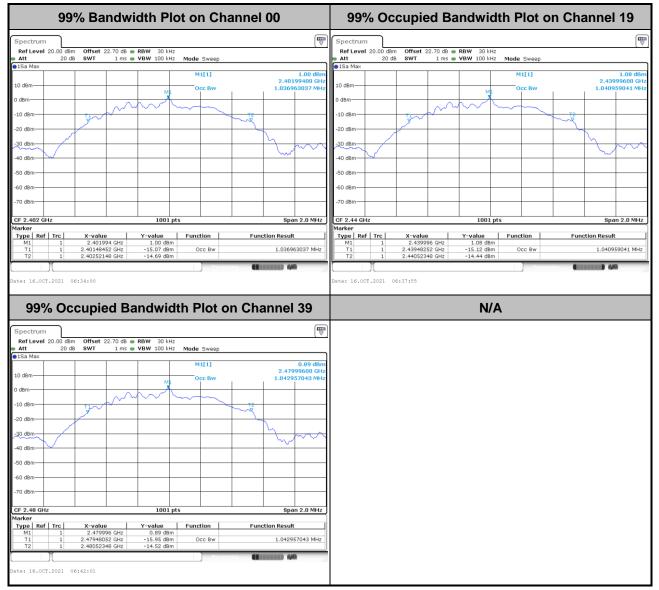
EUT


Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

<1Mbps>



3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

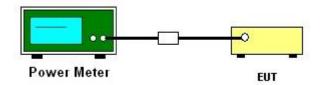
<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 3. The path loss was compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

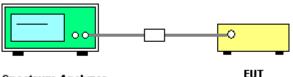
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

<1Mbps>

PSD 100		PSD 100kl	Hz Plot on	Chann	el 19			
Spectrum Ref Level 20.00 dBm Offset 22.70 Att 20 dB SWT 1 m	dB ● RBW 100 kHz ms ● VBW 300 kHz Mode Sweep		Spectrum Ref Level 20.00 d Att 20	Bm Offset 22.70 dB € dB SWT 1 ms €	• RBW 100 kHz • VBW 300 kHz Mo	de Sweep		
● 1Pk Max	M1[1]	3.11 dBm 2.40199795 GHz	1Pk Max 10 dBm			M1[1]	2.4400	3.24 dBm J0210 GHz
0 dBm	MI		0 dBm					
-10 dBm			-10 dBm					
-30 dBm			-30 dBm					
-40 dBm			-50 dBm					
-60 dBm			-70 dBm					
-70 dBm			CF 2.44 GHz Marker Type Ref Trc M1 1	X-value 2.4400021 GHz	1001 pts Y-value Fu 3.24 dBm	nction	Span Function Result	1.05 MHz
CF 2.402 GHz	1001 pts	Span 1.0365 MHz	Date: 16.0CT.2021		3.24 UBIN	Measuring.	() () () () () () () () () () () () () (
PSD 100	kHz Plot on Chan	nel 39			N/A			
Att 20 dB SWT 1 r	dB RBW 100 kHz ms VBW 300 kHz Mode Sweep							
1Pk Max 10 dBm	M1[1]	3.08 dBm 2.48000000 GHz						
0 dBm								
-20 dBm								
-30 dBm								
-50 dBm								
-70 dBm	1001 pts	Span 1.065 MHz						
Cr 2.46 GHz Marker Type Ref Trc X-value M1 1 2.48 GH	Y-value Function	Function Result						
]	Medsuri	((())) (4)						

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

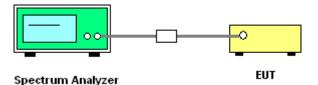
<1Mbps>

PSD 3kHz Plot on Channel 00	PSD 3kHz Plot on Channel 19
[Spectrum	Spectrum 🕅
Ref level 20.00 dBm Offset 22.70 dB RBW 3 kHz ● Att 20 dB SWT 11.6 ms ● VBW 10 kHz Mode Sweep ● JFJK Max ● ■	RefLevel 20.00 dBm Offset 22.70 dB RBW 3 kHz Att 20 dB SWT 11.7 ms VBW 10 kHz Mode Sweep IPk Max Image: Sweep Image: Sweep<
M1[1] -12.19 dBm 2.40197105 GHz	10 dBm
10 dBm	0 dBm
-10 dBm	-10 dem
20 dgm - A MA MAMAN MAN MAN MANANA MANANA ANA AN	-20 dBm - WWW HAV WWWW V VV · W · V · V · V · V · V · V
Amen when a second seco	400 dBm
-40 dBm	-50 dBm
-50 dBm	-60 dBm
-60 dBm	-70 d8m
-70 dBm	CF 2.44 GHz 1001 pts Span 1.05 MHz Marker
CF 2.402 GHz Span 1.0365 MHz	Type Ref Trc X-value Y-value Function Function Result M1 1 2.4399538 GHz -12.07 dBm -12.07 dBm -12.07 dBm
Date: 16.0CT.2021 06:32:19	Date: 16.00T.2021 06:36:57
PSD 3kHz Plot on Channel 39	N/A
Spectrum III	
Spectrum V Ref Level 20.00 dBm Offset 22.70 dB RBW 3 kHz Att 20 dB SWT 11.9 ms VBW 10 kHz	
10 dBm-	
-10 d8m	
20 dan Manahan Man	
North and a har and a har an h	
-40 dBm	
-50 d8m	
-00 dBill	
CF 2.48 GHz 1001 pts Span 1.065 MHz	
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.4799543 GHz -12.32 dBm Function Function Result	
Measurine (California)	
Date: 16.0CT.2021 06:40:19	

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

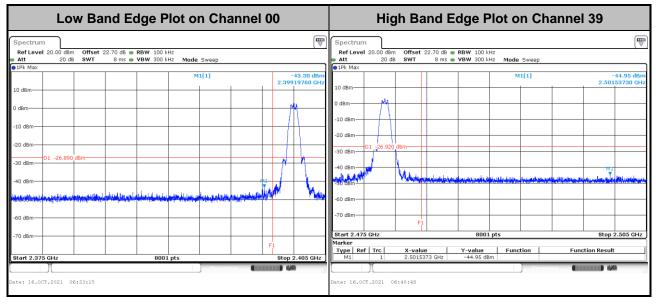
All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

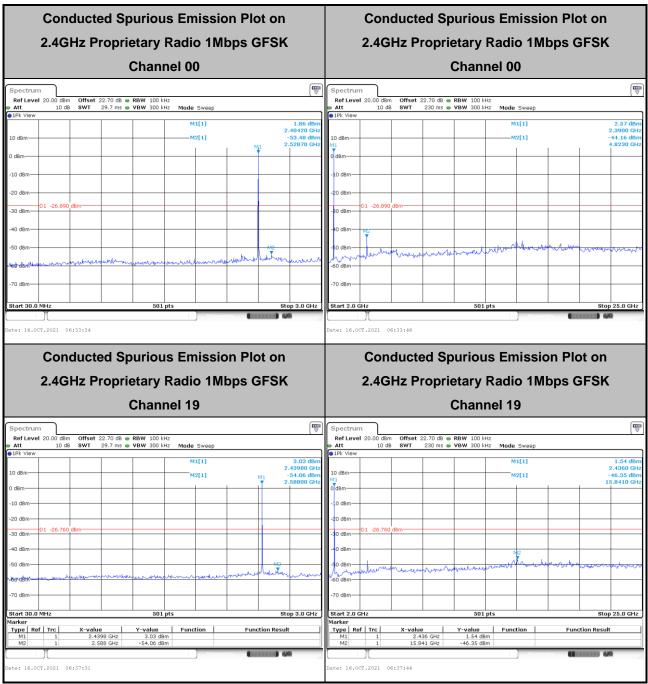
See list of measuring equipment of this test report.

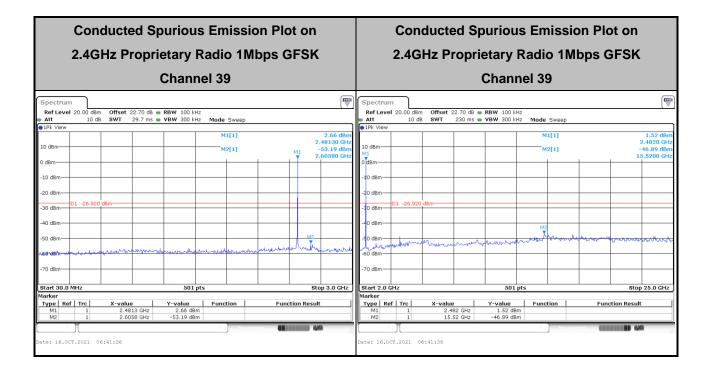
3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots


<1Mbps>



3.4.6 Test Result of Conducted Spurious Emission Plots

<1Mbps>

3.5 Radiated Band Edges and Spurious Emission Measurement

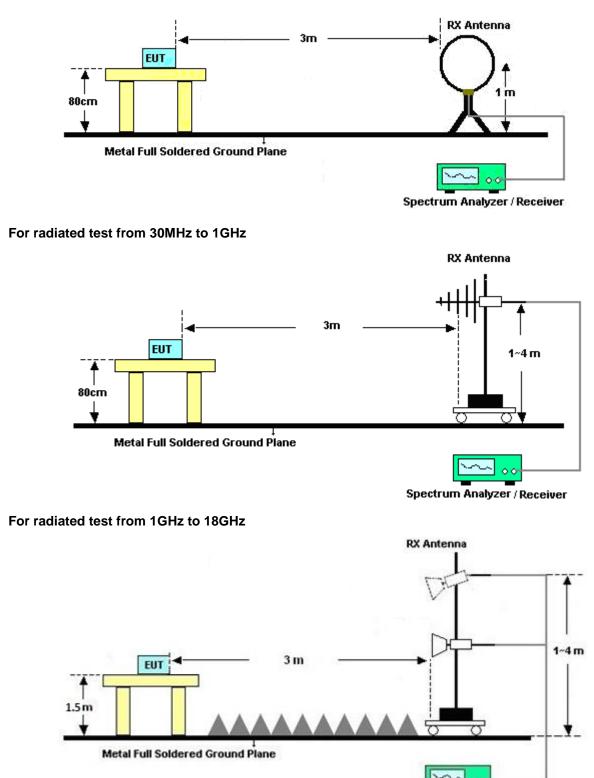
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

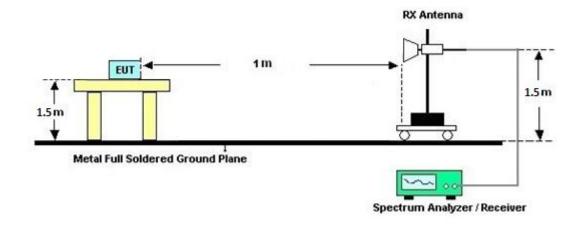
3.5.2 Measuring Instruments

See list of measuring equipment of this test report.


3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1GHz was performed by adjusting the antenna tower from 1m to 4m and by rotating the turn table from 0degree to 360 degree to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1GHz was performed by adjusting the antenna tower from 1m to 4m and by rotating the turn table from 0degree to 360 degree to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup


For radiated test below 30MHz

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

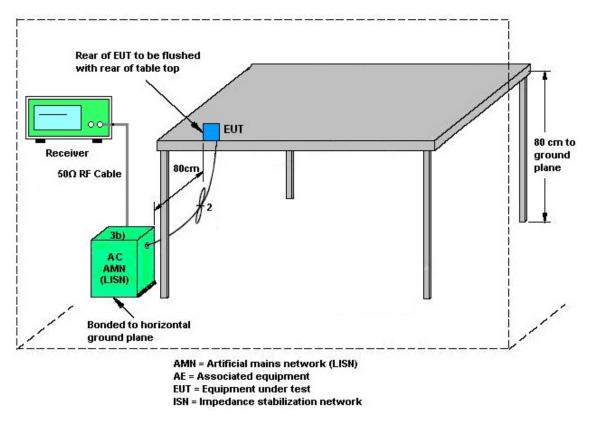
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of omission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~50 MHz	Sep. 07, 2021	Oct. 14, 2021~ Oct. 15, 2021	Sep. 06, 2022	Radiation (03CH11-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	41912 & 05	30MHz~1GHz	Feb. 08, 2021	Oct. 14, 2021~ Oct. 15, 2021	Feb. 07, 2022	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02114	1GHz ~ 18GHz	Aug. 04, 2021	Oct. 14, 2021~ Oct. 15, 2021	Aug. 03, 2022	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00993	18GHz~40GHz	Nov. 19, 2020	Oct. 14, 2021~ Oct. 15, 2021	Nov. 18, 2021	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Dec. 02, 2020	Oct. 14, 2021~ Oct. 15, 2021	Dec. 01, 2021	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY53270080	1GHz~26.5GHz	Nov. 12, 2020	Oct. 14, 2021~ Oct. 15, 2021	Nov. 11, 2021	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-30 3	17100018000 55007	1GHz~18GHz	Jun. 16, 2021	Oct. 14, 2021~ Oct. 15, 2021	Jun. 15, 2022	Radiation (03CH11-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 22, 2021	Oct. 14, 2021~ Oct. 15, 2021	Jun. 21, 2022	Radiation (03CH11-HY)
Signal Analyzer	Keysight	N9010B	MY60240520	NA	Dec. 02, 2020	Oct. 14, 2021~ Oct. 15, 2021	Dec. 01, 2021	Radiation (03CH11-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY55420170	20MHz~8.4GHz	Jul. 15, 2021	Oct. 14, 2021~ Oct. 15, 2021	Jul. 14, 2022	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Oct. 14, 2021~ Oct. 15, 2021	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Oct. 14, 2021~ Oct. 15, 2021	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Oct. 14, 2021~ Oct. 15, 2021	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	Oct. 14, 2021~ Oct. 15, 2021	N/A	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 11, 2021	Oct. 14, 2021~ Oct. 15, 2021	Mar. 10, 2022	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz-30MHz	Mar. 11, 2021	Oct. 14, 2021~ Oct. 15, 2021	Mar. 10, 2022	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	30M-18G	Mar. 11, 2021	Oct. 14, 2021~ Oct. 15, 2021	Mar. 10, 2022	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11681/4P E	30MHz-18GHz	Mar. 11, 2021	Oct. 14, 2021~ Oct. 15, 2021	Mar. 10, 2022	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN11	1.53G Low Pass	Sep. 13, 2021	Oct. 14, 2021~ Oct. 15, 2021	Sep. 12, 2022	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0SS	SN3	3GHz High Pass Filter	Sep. 13, 2021	Oct. 14, 2021~ Oct. 15, 2021	Sep. 12, 2022	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTM-303B	TP140325	N/A	Nov. 18, 2020	Oct. 14, 2021~ Oct. 15, 2021	Nov. 17, 2021	Radiation (03CH11-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Oct. 15, 2021	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 30, 2020	Oct. 15, 2021	Nov. 29, 2021	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 18, 2020	Oct. 15, 2021	Nov. 17, 2021	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 01, 2020	Oct. 15, 2021	Nov. 30, 2021	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 16, 2020	Oct. 15, 2021	Nov. 15, 2021	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Oct. 15, 2021	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Jul. 28, 2021	Oct. 15, 2021	Jul. 27, 2022	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 31, 2020	Oct. 15, 2021	Dec. 30, 2021	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 01, 2021	Oct. 01, 2021~ Oct. 16, 2021	Feb. 28, 2022	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 12	10MHz~6GHz	Dec. 16, 2020	Oct. 01, 2021~ Oct. 16, 2021	Dec. 15, 2021	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101565	10Hz ~ 40GHz	Nov. 13, 2020	Oct. 01, 2021~ Oct. 16, 2021	Nov. 12, 2021	Conducted (TH05-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2021	Oct. 01, 2021~ Oct. 16, 2021	Mar. 16, 2022	Conducted (TH05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.1 dB
of 95% (U = 2Uc(y))	3.1 dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.8 dB
of 95% (U = 2Uc(y))	5.0 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.4 dB
of 95% (U = 2Uc(y))	5.4 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.9 dB
--	--------

Report Number : FR192413

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Jacob Yu	Temperature:	23.4~25.5	°C
Test Date:	2021/10/1-2021/10/16	Relative Humidity:	53.4~56.1	%

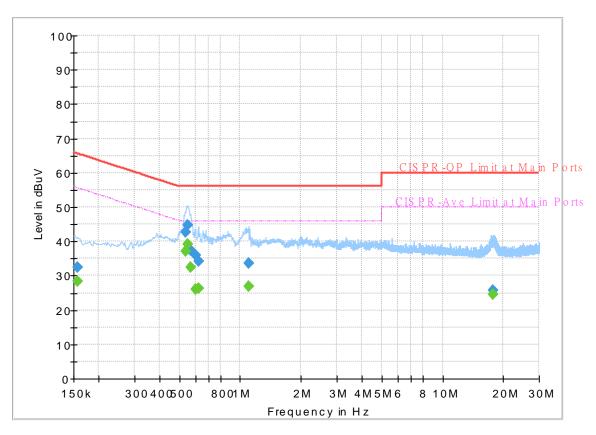
	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail			
2.4GH	z 1Mbps	1	0	2402	1.037	0.691	0.50	Pass			
2.4GH	z 1Mbps	1	19	2440	1.041	0.700	0.50	Pass			
2.4GH	z 1Mbps	1	39	2480	1.043	0.710	0.50	Pass			

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
2.4GHz	1Mbps	1	0	2402	3.90	30.00	4.00	7.90	36.00	Pass
2.4GHz	1Mbps	1	19	2440	4.00	30.00	4.00	8.00	36.00	Pass
2.4GHz	1Mbps	1	39	2480	3.90	30.00	4.00	7.90	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
2.4GHz	1Mbps	1	0	2402	3.11	-12.19	4.00	8.00	Pass
2.4GHz	1Mbps	1	19	2440	3.24	-12.07	4.00	8.00	Pass
2.4GHz	1Mbps	1	39	2480	3.08	-12.32	4.00	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

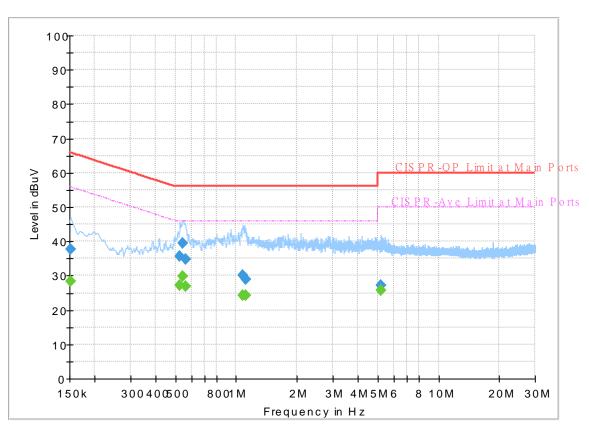


Appendix B. AC Conducted Emission Test Results

Test Engineer :	Calvin Wang	Temperature :	23~26 ℃	
	Calvin wang		Relative Humidity :	45~55%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 192413 Mode 1 120Vac/60Hz Line


FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.156750	(4241)	28.39	55.63	27.24	L1	OFF	19.7
0.156750	32.48		65.63	33.15	L1	OFF	19.7
0.534750	-	37.26	46.00	8.74	L1	OFF	19.8
0.534750	42.58		56.00	13.42	L1	OFF	19.8
0.550500		39.06	46.00	6.94	L1	OFF	19.9
0.550500	44.83		56.00	11.17	L1	OFF	19.9
0.566250	1	32.47	46.00	13.53	L1	OFF	19.9
0.566250	37.57		56.00	18.43	L1	OFF	19.9
0.600000		25.91	46.00	20.09	L1	OFF	19.9
0.600000	36.04		56.00	19.96	L1	OFF	19.9
0.620250		26.21	46.00	19.79	L1	OFF	19.9
0.620250	34.09	-	56.00	21.91	L1	OFF	19.9
1.099500	1	26.94	46.00	19.06	L1	OFF	20.2
1.099500	33.50	-	56.00	22.50	L1	OFF	20.2
17.799000		24.45	50.00	25.55	L1	OFF	20.5
17.799000	25.82		60.00	34.18	L1	OFF	20.5

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 192413 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.152250		28.41	55.88	27.47	Ν	OFF	19.7
0.152250	37.59		65.88	28.29	Ν	OFF	19.7
0.528000		27.33	46.00	18.67	Ν	OFF	19.8
0.528000	35.73		56.00	20.27	Ν	OFF	19.8
0.543750		29.74	46.00	16.26	Ν	OFF	19.9
0.543750	39.45		56.00	16.55	Ν	OFF	19.9
0.559500		26.76	46.00	19.24	Ν	OFF	19.9
0.559500	34.67		56.00	21.33	Ν	OFF	19.9
1.079250		24.39	46.00	21.61	Ν	OFF	20.2
1.079250	30.01		56.00	25.99	Ν	OFF	20.2
1.110750		24.25	46.00	21.75	Ν	OFF	20.2
1.110750	29.07		56.00	26.93	Ν	OFF	20.2
5.185500		25.60	50.00	24.40	Ν	OFF	20.0
5.185500	27.20		60.00	32.80	Ν	OFF	20.0

Appendix C. Radiated Spurious Emission

Test Engineer :	Harvey Guo and Fu Chen	Temperature :	22.1~24.8°C	
		Relative Humidity :	64.2~67.1%	

2.4GHz 2400~2483.5MHz

2.4GHz Proprietary (Band Edge @ 3m)

2.4GHz	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Proprietary													
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos	Pos	Avg. (P/A)	/⊔//
		2389.17	<u>(абрулп)</u> 59.72	(ав) -14.28	<u>(авµv/m)</u> 74	(авру) 48.76	27.36	(ав) 17.06	(db) 33.46	(cm) 100	(deg) 325	(P/A) P	<u>(п/v)</u> Н
-					54	34.02		17.06		100	325		н
-	*	2389.38	44.98	-9.02			27.36		33.46			A	
-		2402	104.58	-	-	93.55	27.41	17.07	33.45	100	325	Р	Н
-	*	2402	103.91	-	-	92.88	27.41	17.07	33.45	100	325	A	Н
2.4GHz													Н
Proprietary													Н
CH 00		2389.905	56.45	-17.55	74	45.49	27.36	17.06	33.46	302	293	Ρ	V
2402MHz		2389.59	43.84	-10.16	54	32.88	27.36	17.06	33.46	302	293	А	V
	*	2402	99.87	-	-	88.84	27.41	17.07	33.45	302	293	Ρ	V
-	*	2402	99.3	-	-	88.27	27.41	17.07	33.45	302	293	А	V
-													V
-													V
		2312.08	54.24	-19.76	74	43.62	27.12	16.99	33.49	120	325	Р	н
		2311.92	48.63	-5.37	54	38.01	27.12	16.99	33.49	120	325	А	Н
-	*	2440	104.43	-	-	93.17	27.56	17.13	33.43	120	325	Р	Н
-	*	2440	103.93	-	-	92.67	27.56	17.13	33.43	120	325	А	Н
2.4GHz		2499.76	53.4	-20.6	74	41.68	27.9	17.22	33.4	120	325	Ρ	Н
Proprietary		2485.76	44.66	-9.34	54	33.06	27.81	17.2	33.41	120	325	А	Н
CH 19		2388.72	52.99	-21.01	74	42.04	27.35	17.06	33.46	294	292	Р	V
2440MHz		2311.92	44.95	-9.05	54	34.33	27.12	16.99	33.49	294	292	А	V
	*	2440	99.46	-	-	88.2	27.56	17.13	33.43	294	292	Р	V
	*	2440	98.94	-	-	87.68	27.56	17.13	33.43	294	292	А	V
-		2497.36	53.34	-20.66	74	41.64	27.88	17.22	33.4	294	292	Ρ	V
		2495.12	44.33	-9.67	54	32.64	27.87	17.22	33.4	294	292	А	V

	*	2480	103.42	-	-	91.86	27.78	17.19	33.41	144	331	Р	Н
	*	2480	102.88	_		91.32	27.78	17.19	33.41	144	331	A	н
		2483.68	65.48	-8.52	74	53.89	27.8	17.2	33.41	144	331	P	н
r												-	
-		2483.64	49.07	-4.93	54	37.48	27.8	17.2	33.41	144	331	A	Н
2.4GHz													Н
Proprietary													Н
CH 39	*	2480	98.98	-	-	87.42	27.78	17.19	33.41	248	289	Р	V
2480MHz	*	2480	98.24	-	-	86.68	27.78	17.19	33.41	248	289	А	V
		2483.52	61.74	-12.26	74	50.15	27.8	17.2	33.41	248	289	Ρ	V
		2483.72	46.31	-7.69	54	34.72	27.8	17.2	33.41	248	289	А	V
													V
-													V

2.4GHz Proprietary	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
		4804	44.36	-29.64	74	59.34	32.41	11.07	58.46	273	48	Р	н
		11085	48.01	-25.99	74	53.23	38.9	17.48	61.6	-	-	Р	Н
		11085	37.08	-16.92	54	42.3	38.9	17.48	61.6	-	-	А	Н
		14490	48.57	-25.43	74	49.89	40.4	21.29	63.01	-	-	Р	Н
		14490	39.77	-14.23	54	41.09	40.4	21.29	63.01	-	-	Α	Н
		18000	52.22	-21.78	74	41.81	43	24.01	56.6	-	-	Ρ	Н
		18000	43.31	-10.69	54	32.9	43	24.01	56.6	-	-	А	Н
													Н
													Н
													Н
2.4GHz													Н
Proprietary													Н
CH 00		4804	38.84	-35.16	74	53.82	32.41	11.07	58.46	-	-	Р	V
2402MHz		11250	48.29	-25.71	74	53.35	39.1	17.64	61.8	-	-	Р	V
		11250	32.16	-21.84	54	37.22	39.1	17.64	61.8	-	-	А	V
		14475	48.52	-25.48	74	49.89	40.4	21.26	63.03	-	-	Р	V
		14475	39.72	-14.28	54	41.09	40.4	21.26	63.03	-	-	А	V
		17985	52.76	-21.24	74	42.52	42.88	24	56.64	-	-	Р	V
		17985	43.44	-10.56	54	33.2	42.88	24	56.64	-	-	А	V
													V
													V
													V
													V
													V

2.4GHz 2400~2483.5MHz 2.4GHz Proprietary (Harmonic @ 3m)

2.4GHz Proprietary	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	44.65	-29.35	74	59.27	32.62	11.24	58.48	272	48	Р	Н
		7440	42.8	-31.2	74	51.89	36.22	13.81	59.12	-	-	Р	Н
		12105	48.1	-25.9	74	53.81	38.99	18.45	63.15	-	-	Р	Н
		12105	36.96	-17.04	54	42.67	38.99	18.45	63.15	-	-	А	Н
		14500	48.56	-25.44	74	49.85	40.4	21.31	63	-	-	Р	Н
		14500	39.74	-14.26	54	41.03	40.4	21.31	63	-	-	А	Н
		17985	52.02	-21.98	74	41.78	42.88	24	56.64	-	-	Р	Н
		17985	43.28	-10.72	54	33.04	42.88	24	56.64	-	-	А	Н
													Н
													Н
2.4GHz													Н
Proprietary													Η
CH 19		4880	38.55	-35.45	74	53.17	32.62	11.24	58.48	-	-	Р	V
2440MHz		7440	42.19	-31.81	74	51.28	36.22	13.81	59.12	-	-	Р	V
		11145	48.28	-25.72	74	53.47	38.94	17.54	61.67	-	-	Р	V
		11145	37.19	-16.81	54	42.38	38.94	17.54	61.67	-	-	А	V
		14500	49.38	-24.62	74	50.67	40.4	21.31	63	-	-	Р	V
		14500	39.84	-14.16	54	41.13	40.4	21.31	63	-	-	А	V
		18000	53.23	-20.77	74	42.82	43	24.01	56.6	-	-	Р	V
		18000	43.54	-10.46	54	33.13	43	24.01	56.6	-	-	А	V
													V
													V
													V
													V

2.4GHz	Nete	F		0	1	Deed	A	Dath	D	A 4	Table	Deels	Del
Proprietary	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Реак	POI.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
		4960	47.22	-26.78	74	61.28	33.02	11.41	58.49	275	48	P	H H
		7440	43.06	-30.94	74	52.15	36.22	13.81	59.12	-	-	Р	н
		12195	47.42	-26.58	74	53.25	38.91	18.53	63.27	-	-	Р	Н
		12195	36.49	-17.51	54	42.32	38.91	18.53	63.27	-	-	Α	н
		14500	48.83	-25.17	74	50.12	40.4	21.31	63	-	-	Р	Н
		14500	39.83	-14.17	54	41.12	40.4	21.31	63	-	-	Α	Н
		17985	52.28	-21.72	74	42.04	42.88	24	56.64	-	-	Р	Н
		17985	43.12	-10.88	54	32.88	42.88	24	56.64	-	-	А	Н
													н
													Н
2.4GHz													Н
Proprietary													н
CH 39		4960	48.86	-25.14	74	62.92	33.02	11.41	58.49	100	87	Р	V
2480MHz		7440	43.49	-30.51	74	52.58	36.22	13.81	59.12	-	-	Р	V
		12240	48.06	-25.94	74	53.98	38.86	18.56	63.34	-	-	Р	V
		12240	36.19	-17.81	54	42.11	38.86	18.56	63.34	-	-	А	V
		14500	48	-26	74	49.29	40.4	21.31	63	-	-	Р	V
		14500	39.74	-14.26	54	41.03	40.4	21.31	63	-	-	А	V
		17910	52.52	-21.48	74	43.14	42.28	23.92	56.82	-	-	Р	V
		17910	42.6	-11.4	54	33.22	42.28	23.92	56.82	-	-	А	V
													V
													V
													V
													V
		o other spuriou											
		l results are PA	-		-								
Remark		e emission pos	sition marked	as "-" m	eans no sus	pected em	ission found	d with suff	ficient mar	gin agai	inst limit	line or	noise
		or only.				4							
	4. Th	e emission lev	el close to 18	BGHz is a	checked that	the avera	ge emissior	i level is r	noise floor	only.			

Emission above 18GHz

2.4GHz Proprietary (SHF)

Proprietary		(MHz)											Pol.
		(MHz)		l imit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
			(dBµV/m)	Limit (dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	(H/V)
		24321	39.89	-34.11	74	57.32	38.96	-2.85	53.54	-	-	Ρ	н
													н
													н
													н
													Н
													Н
													н
													н
													н
													Н
2.4GHz													Н
Proprietary													Н
SHF		24265	38.75	-35.25	74	56.28	38.91	-2.85	53.59	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
1.	No	other spurious	s found.				·						
2.	All	results are PA	SS against li	mit line.									
Remark 3.	Th	e emission pos	ition marked	as "-" m	eans no susp	pected em	ission found	d with suff	icient mar	gin agai	nst limit	line or	noise
	floo	or only.											

Emission below 1GHz

2.4GHz	Proprietary	(LF)
--------	-------------	------

2.4GHz	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Proprietary	/			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	-	(H/V)
		100.81	21.97	-21.53	43.5	36.9	16.04	1.53	32.5	-	-	Р	Н
		178.41	31.81	-11.69	43.5	47.27	15.05	2.02	32.53	-	-	Р	Н
		268.62	32.26	-13.74	46	42.71	19.33	2.48	32.26	-	-	Р	Н
		769.14	30.85	-15.15	46	30.41	28.12	4.16	31.84	-	-	Ρ	Н
		861.29	31.96	-14.04	46	29.84	29.04	4.43	31.35	-	-	Ρ	н
		950.53	33.81	-12.19	46	29.28	30.73	4.67	30.87	-	-	Ρ	н
													н
													н
													н
													н
													н
2.4GHz													н
Proprietary LF		45.52	24.83	-15.17	40	39.73	16.6	1.03	32.53	-	-	Ρ	V
		111.48	26.18	-17.32	43.5	40.13	16.95	1.6	32.5	-	-	Ρ	V
		172.59	25.93	-17.57	43.5	41.08	15.39	1.99	32.53	-	-	Ρ	V
		773.99	30.65	-15.35	46	30.19	28.1	4.17	31.81	-	-	Ρ	V
		846.74	32.11	-13.89	46	30.23	28.9	4.39	31.41	-	-	Ρ	V
		955.38	33.89	-12.11	46	29.17	30.88	4.68	30.84	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
	1. No	o other spuriou	s found.										
Remark		I results are PA	-										
		e emission po	sition marked	as "-" m	eans no sus	pected em	ission found	d with suff	icient mar	gin agai	nst limit	line or	noise
	flo	or only.											

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

2.4GHz Proprietary	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
2.4GHz		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
Proprietary													
CH 00		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	н
2402MHz													

- 1. Path Loss(dB) = Ca2.4GHz proprietary loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)

= 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) - 35.86 (dB)

- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)

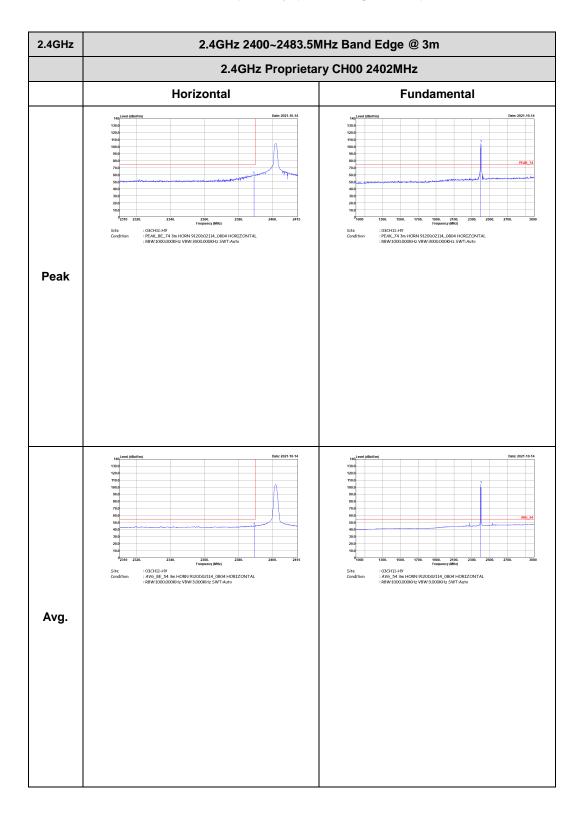
```
= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) - 35.86 (dB)
```

- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

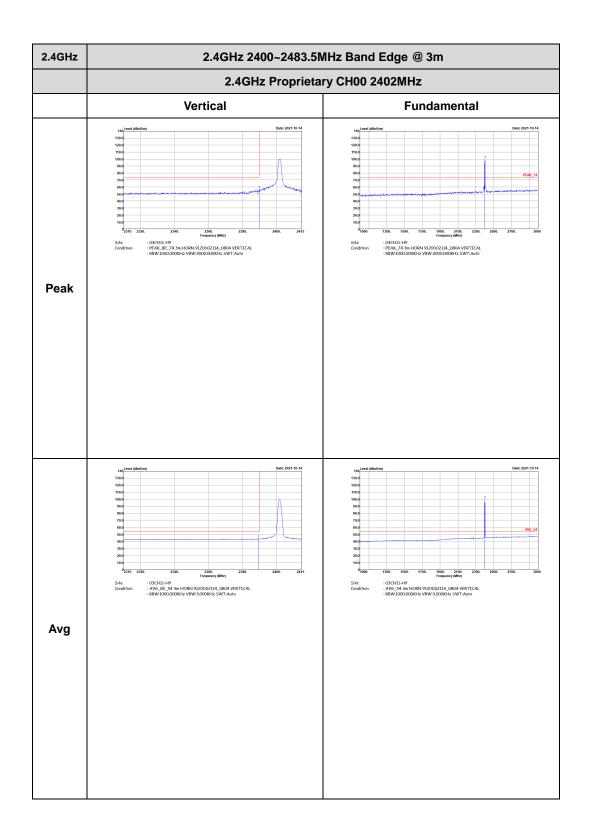
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

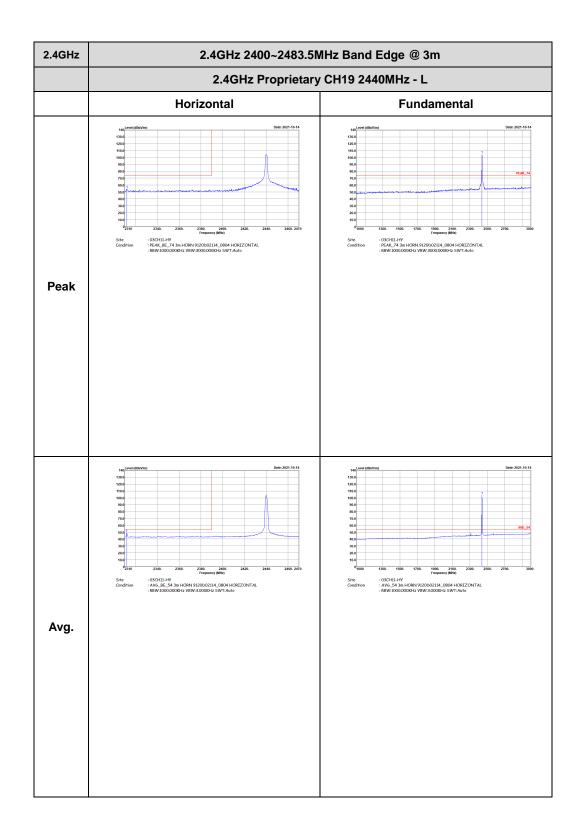
Test Engineer :	Harvey Guo and Fu Chen	Temperature :	22.1~24.8°C
Test Engineer .		Relative Humidity :	64.2~67.1%

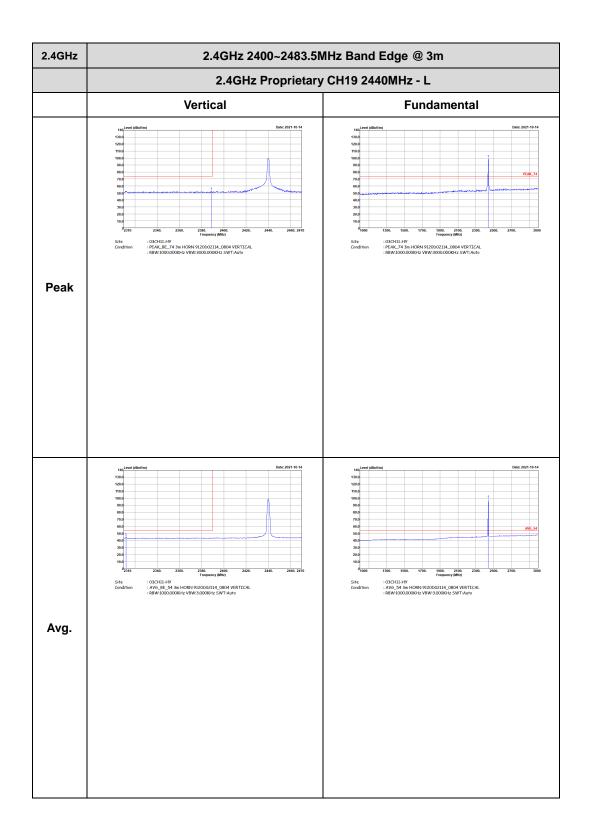

Note symbol

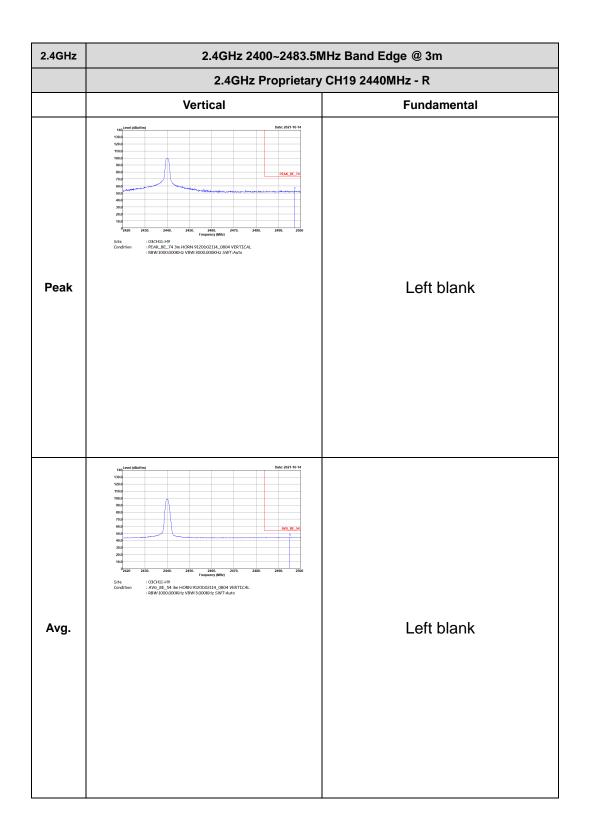
-L	Low channel location
-R	High channel location



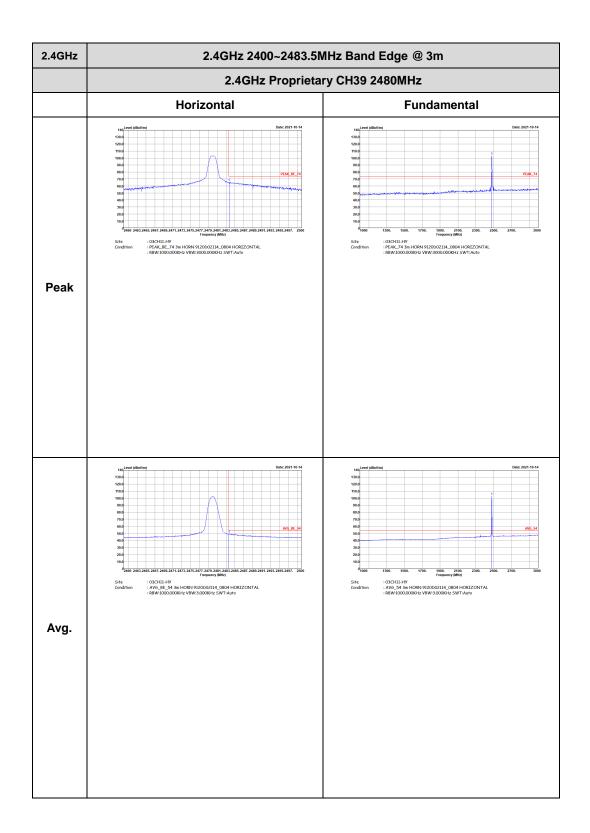
2.4GHz 2400~2483.5MHz

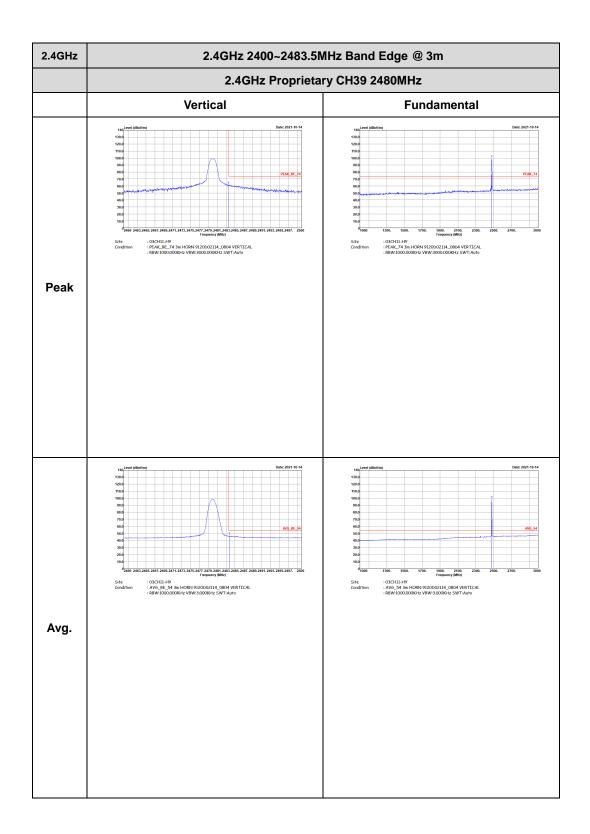

2.4GHz Proprietary (Band Edge @ 3m)

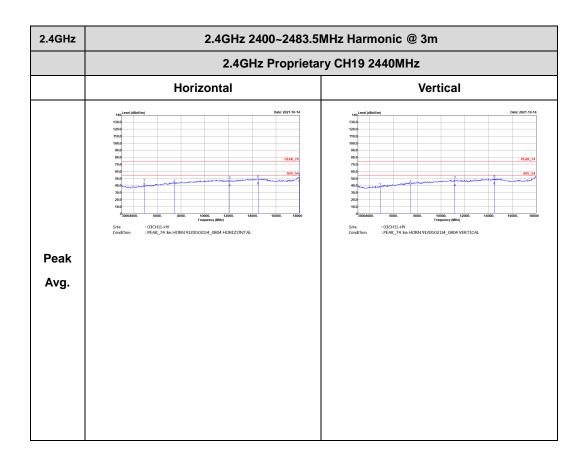




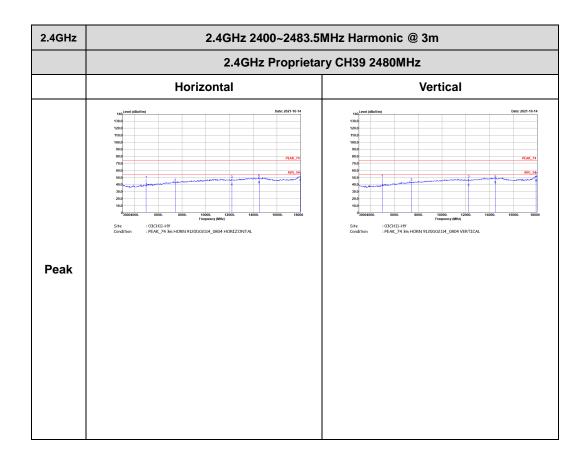
2.4GHz	2.4GHz 2400~2483.5MHz	Band Edge @ 3m
	2.4GHz Proprietary CH	19 2440MHz - R
	Horizontal	Fundamental
Peak	Herein Der Schutzer der	Left blank
Avg.	Image: With Control of the second	Left blank

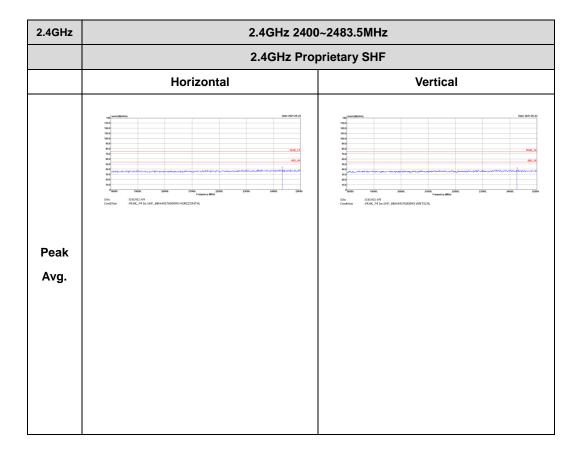


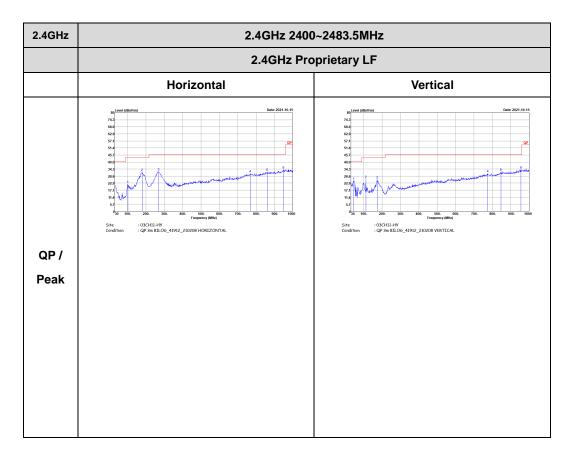




2.4GHz 2400~2483.5MHz


2.4GHz Proprietary (Harmonic @ 3m)




Emission above 18GHz

2.4GHz Proprietary (SHF @ 1m)

Emission below 1GHz

2.4GHz Proprietary (LF)

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
2.4GHz Proprietary Radio	62.72	392	2.55	3kHz

pectrum Analy wept SA	zer 1	+					Marker	
KEYSIGHT ∟ +→ ⊠	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)	#Atten: 10 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Power Trig: Free Run	(RMS 1 2 3 4 5 6 WW##W# PPPPPP	Select Marker Marker 4	
1 Spectrum Scale/Div 10 dB Ref Level 106.99 dBuV			dBµV	Μ	kr4 241.6 µs 79.98 dBµV	Marker Time 241.600 µs	Settings Peak	
.0g 7.0 7.0 7.0 7.0	<u>_</u> 4		102	_\ 3∆4			Marker Mode Normal Delta (Δ)	Search Pk Search Config
7.0 7.0 7.0 7.0	4984-111		herendet versete			nyanyi Halgu	Fixed Off	Properties Marker Function
17 0 Center 2.480000000 GHz \$Video BW 8.0 MHz Span 0 Hz Res BW 8 MHz Sweep 1.60 ms (1001 pts)							Delta Marker (Reset Delta) Marker Table On	Marker→ Counter
	Trace Scale 1 t 1 t 1 t	241.6 µs	Υ (Δ.0.005880 dB 79.98 dBµV (Δ.0.005878 dB 79.98 dBµV	Function F	Function Width	Function Value	Off Marker Settings Diagram All Markers Off	
5 6		241.0 µs	78.86 UBµV				Couple Markers On Off	

