## Appendix C. Calibration Certificate for Probe and Dipole The SPEAG calibration certificates are shown as follows. Report Format Version 5.0.0 Issued Date : Nov. 17, 2014 Report No. : SA141016C21 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Accreditation No.: SCS 108 Certificate No: D835V2-4d120 Jun14 ## **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d120 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 16, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | US37292783 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | MY41092317 | 09-Oct-13 (No. 217-01828) | Oct-14 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 03-Apr-14 (No. 217-01918) | Apr-15 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 03-Apr-14 (No. 217-01921) | Apr-15 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-13 (No. ES3-3205_Dec13) | Dec-14 | | DAE4 | SN: 601 | 30-Apr-14 (No. DAE4-601_Apr14) | Apr-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Sef Them | | Approved by: | Katja Pokovic | Technical Manager | LEME. | | | | | | Issued: June 18, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d120\_Jun14 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, $dy$ , $dz = 5 mm$ | 100.0 | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.5 ± 6 % | 0.94 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | 11-1-12-2 | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.29 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.00 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.2 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.43 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.47 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.59 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.23 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d120\_Jun14 ## Appendix (Additional assessments outside the scope of SCS108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.0 Ω - 0.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 30.8 dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.6 Ω - 3.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 28.1 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.396 ns | |---------------------------------------|----------| | · · · · · · · · · · · · · · · · · · · | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | June 29, 2010 | Page 4 of 8 Certificate No: D835V2-4d120\_Jun14 ## **DASY5 Validation Report for Head TSL** Date: 16.06.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d120 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 41.5$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.22, 6.22, 6.22); Calibrated: 30.12.2013; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.04.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.38 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 2.81 W/kg 0 dB = 2.81 W/kg = 4.49 dBW/kg ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 12.06.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d120 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.005$ S/m; $\varepsilon_r = 55.2$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.04.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.04 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.84 W/kg 0 dB = 2.84 W/kg = 4.53 dBW/kg ## Impedance Measurement Plot for Body TSL ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Accreditation No.: SCS 108 Certificate No: D1900V2-5d142\_Jun14 ## **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d142 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 18, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | US37292783 | 09-Oct-13 (No. 217-01827) | Oct-14 | | Power sensor HP 8481A | MY41092317 | 09-Oct-13 (No. 217-01828) | Oct-14 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 03-Apr-14 (No. 217-01918) | Apr-15 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 03-Apr-14 (No. 217-01921) | Apr-15 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-13 (No. ES3-3205_Dec13) | Dec-14 | | DAE4 | SN: 601 | 30-Apr-14 (No. DAE4-601_Apr14) | Apr-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | Milleson | | | | | | Issued: June 18, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook ## **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d142\_Jun14 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, $dy$ , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.5 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.2 W/kg ± 16.5 % (k=2) | **Body TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6 % | 1.51 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.33 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.3 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d142\_Jun14 Page 3 of 8 ## Appendix (Additional assessments outside the scope of SCS108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $52.6 \Omega + 6.2 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 23.7 dB | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | $48.3 \Omega + 6.6 jΩ$ | | |--------------------------------------|------------------------|--| | Return Loss | - 23.3 dB | | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.197 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|----------------|--| | Manufactured on | March 11, 2011 | | Certificate No: D1900V2-5d142\_Jun14 ## **DASY5 Validation Report for Head TSL** Date: 18.06.2014 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d142 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$ ; $\varepsilon_r = 39.5$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2013; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.04.2014 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.64 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.29 W/kg Maximum value of SAR (measured) = 12.8 W/kg 0 dB = 12.8 W/kg = 11.07 dBW/kg ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 18.06.2014 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d142 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ S/m}$ ; $\varepsilon_r = 52.5$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.04.2014 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.03 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.33 W/kg Maximum value of SAR (measured) = 12.7 W/kg 0 dB = 12.7 W/kg = 11.04 dBW/kg ## Impedance Measurement Plot for Body TSL In Collaboration with Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.emcite.com Client **AUDEN** Tel: +86-10-62304633-2079 E-mail: Info@emcite.com Certificate No: Z14-97005 ## GATERATION DES Object D2450V2 - SN: 835 Calibration Procedure(s) TMC-OS-E-02-194 Calibration procedure for dipole validation kits Calibration date: March 14, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | iD# Cal Date | (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|--------------|----------------------------------|-----------------------| | | • | | | | Power Meter NRVD | 102083 | 11-Sep-13 (TMC, No.JZ13-443) | Sep-14 | | Power sensor NRV-Z5 | 100595 | 11-Sep-13 (TMC, No. JZ13-443) | Sep -14 | | Reference Probe ES3DV3 | SN 3149 | 5- Sep-13 (SPEAG, No.ES3-314) | 9_Sep13) Sep-14 | | DAE4 | SN 905 | 11-Jun-13 (SPEAG, DAE4-905_J | Jun13) Jun -14 | | Signal Generator E4438C | MY49070393 | 13-Nov-13 (TMC, No.JZ13-394) | Nov-14 | | Network Analyzer E8362B | MY43021135 | 19-Oct-13 (TMC, No.JZ13-278) | Oct-14 | Name Function Signature Deputy Director of the laboratory Calibrated by: SAR Test Engineer Zhao Jing Lu Bingsong Reviewed by: SAR Project Leader Qi Dianyuan Approved by: Issued: March 17, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z14-97005 Page 1 of 8 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ## Additional Documentation: d) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z14-97005 Page 2 of 8 In Collaboration with ## S P O A G Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.8.7.1137 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | · | | Phantom | Twin Phantom | *** | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.6 ± 6 % | 1.80 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.2 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.6 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.04 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 mW /g ± 20.4 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.9 ± 6 % | 1.97 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 $cm^3$ (1 g) of Body TSL | Condition | | |------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 51.6 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 $cm^3$ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.98 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.8 mW /g ± 20.4 % (k=2) | Certificate No: Z14-97005 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: Info@emcite.com Fax: +86-10-62304633-2504 Http://www.emcite.com ## **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.7Ω+ 2.44jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.4dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.6Ω+ 6.15jΩ | |--------------------------------------|---------------| | Return Loss | - 23.4dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.141 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|----------| | | <u> </u> | Certificate No: Z14-97005 Page 4 of 8 ## S P 6 A G Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com ## **DASY5 Validation Report for Head TSL** Test Laboratory: TMC, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 835 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.802 \text{ S/m}$ ; $\epsilon r = 38.63$ ; $\rho = 1000 \text{ kg/m}$ Date: 3.14.2014 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY5 Configuration: Probe: ES3DV3 - SN3149; ConvF(4.48,4.48,4.48); Calibrated: 2013/9/5 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn905; Calibrated: 11/6/2013 Phantom: SAM 1593; Type: QD000P40CC; DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164) ## Dipole Calibration for Head Tissue/Pin=250mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.666 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.04 W/kg Maximum value of SAR (measured) = 17.4 W/kg 0 dB = 17.4 W/kg = 12.41 dBW/kg Certificate No: Z14-97005 Page 5 of 8 In Collaboration with ## s p e a g Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com ## Impedance Measurement Plot for Head TSL in Collaboration with Tet: +86-10-62304633-2079 E-mail: Info@emcite.com Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.emcite.com ## DASY5 Validation Report for Body TSL Test Laboratory: TMC, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 835 Communication System: CW; Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.968 \text{ S/m}$ ; $\epsilon r = 51.92$ ; $\rho = 1000 \text{ kg/m}$ Date: 3.14.2014 Phantom section: Flat Phantom Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY5 Configuration: Probe: ES3DVS - SN3149; ConvF(4.21,4.21,4.21); Calibrated: 2013/9/5 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn905: Calibrated: 11/6/2013 Phantom: SAM1186; Type: QD000P40CC; DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164) ## Dipole Calibration for Body Tissue/Pin=250mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 75.798 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 5.98 W/kg Maximum value of SAR (measured) = 17.0 W/kg 0 dB = 17.0 W/kg = 12.30 dBW/kg Certificate No: Z14-97005 Page 7 of 8 in Collaboration with **CALIBRATION LABORATORY** Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com ## Impedance Measurement Plot for Body TSL ## Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to Support FCC Equipment Certification The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (Telecommunication Metrology Center of MITT in Beijing, China), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and TMC, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following. - 1) The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement. - 2) Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following. - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx. - i) Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification. - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics or other test signal based probe linearization methods not fully described in SAR standards are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements." - b) Calibration of SAR system validation dipoles, excluding HAC dipoles. - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx. - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document). - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC. Equivalent test equipment and measurement configurations may be considered only when agreed by both SPEAG and the FCC. - f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 systems or higher version systems that satisfy the requirements of this KDB. - 3) The SPEAG-TMC agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by TMC under this SPEAG-TMC Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. TMC shall apply the required protocols without modification and, upon request, provide copies of documentation to the FCC to substantiate program implementation. - a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA protocol shall be performed between SPEAG and TMC at least once every 12 months. The ILCE acceptance criteria defined in the TMC QA protocol shall be satisfied for the TMC, SPEAG and FCC agreements to remain valid. - b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by TMC. Written confirmation from SPEAG is required for TMC to issue calibration certificates under the SPEAG-TMC Dual-Logo calibration program. Quarterly reports for all calibrations performed by TMC under the program are also issued by SPEAG. - c) The calibration equipment and measurement system used by TMC shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the TMC QA protocol before each actual calibration can commence. TMC shall maintain records of the measurement and calibration system verification results for all calibrations. - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit TMC facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates. - 4) A copy of this document, to be updated annually, shall be provided to TMC clients that accept calibration services according to the SPEAG-TMC Dual-Logo calibration program, which should be presented to a TCB (*Telecommunication Certification Body*), to facilitate FCC equipment approval. - 5) TMC shall address any questions raised by its clients or TCBs relating to the SPEAG-TMC Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues. Note: It is expected that TMC (*Telecommunication Metrology Center*) may change its name in 2014. For this KDB to remain valid, it must be updated by TMC before the name change occurs. The SPEAG-TMC Dual-Logo calibration certificate shall also be updated accordingly to reflect the change. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Certificate No: EX3-3873\_Aug14 Accreditation No.: SCS 108 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3873 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: August 26, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | | 110111011111111111111111111111111111111 | | | | Calibrated by: Name Function Signature Laboratory Technician Signature Chrocecud Approved by: Katja Pokovic Technical Manager Issued: August 26, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters Polarization $\varphi$ $\varphi$ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3873\_Aug14 Page 2 of 11 EX3DV4 - SN:3873 August 26, 2014 # Probe EX3DV4 SN:3873 Manufactured: March 13, 2012 Calibrated: August 26, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) August 26, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873 **Basic Calibration Parameters** | Dasic Calibration Fara | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.37 | 0.46 | 0.49 | ± 10.1 % | | DCP (mV) <sup>B</sup> | 97.4 | 97.8 | 97.0 | | **Modulation Calibration Parameters** | UID | Communication System Name | | A<br>dB | B<br>dB√μV | С | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 133.2 | ±3.8 % | | | | Y | 0.0 | 0.0 | 1.0 | | 149.1 | | | | | Z | 0.0 | 0.0 | 1.0 | | 131.6 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-3873\_Aug14 <sup>&</sup>lt;sup>A</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6). <sup>B</sup> Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. August 26, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873 Calibration Parameter Determined in Head Tissue Simulating Media EX3DV4-SN:3873 | f (MHz) <sup>C</sup> | Parameter D<br>Relative<br>Permittivity <sup>F</sup> | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) | |----------------------|------------------------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.11 | 10.11 | 10.11 | 0.80 | 0.61 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.77 | 9.77 | 9.77 | 0.70 | 0.64 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.62 | 9.62 | 9.62 | 0.52 | 0.74 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.46 | 8.46 | 8.46 | 0.80 | 0.50 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.06 | 8.06 | 8.06 | 0.60 | 0.61 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.82 | 7.82 | 7.82 | 0.55 | 0.67 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.50 | 7.50 | 7.50 | 0.32 | 0.82 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.18 | 7.18 | 7.18 | 0.47 | 0.68 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.05 | 7.05 | 7.05 | 0.43 | 0.79 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.13 | 5.13 | 5.13 | 0.30 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.84 | 4.84 | 4.84 | 0.30 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.78 | 4.78 | 4.78 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.60 | 4.60 | 4.60 | 0.35 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.54 | 4.54 | 4.54 | 0.40 | 1.80 | ± 13.1 % | <sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of $\pm$ 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm$ 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm$ 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm$ 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) can be relaxed to $\pm$ 10% if liquid compensation formula is applied to At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) can be relaxed to $\pm$ 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) is restricted to $\pm$ 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Certificate No: EX3-3873\_Aug14 Page 5 of 11 <sup>&</sup>lt;sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:3873 August 26, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873 Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) <sup>C</sup> | Relative<br>Permittivity F | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.54 | 9.54 | 9.54 | 0.36 | 0.95 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.50 | 9.50 | 9.50 | 0.34 | 1.00 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.26 | 9.26 | 9.26 | 0.80 | 0.60 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.11 | 8.11 | 8.11 | 0.53 | 0.67 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.72 | 7.72 | 7.72 | 0.41 | 0.81 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.44 | 7.44 | 7.44 | 0.38 | 0.85 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.31 | 7.31 | 7.31 | 0.41 | 0.82 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.13 | 7.13 | 7.13 | 0.80 | 0.50 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.94 | 6.94 | 6.94 | 0.80 | 0.50 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.44 | 4.44 | 4.44 | 0.45 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.27 | 4.27 | 4.27 | 0.45 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.92 | 3.92 | 3.92 | 0.50 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.83 | 3.83 | 3.83 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.00 | 4.00 | 4.00 | 0.50 | 1.90 | ± 13.1 % | <sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. validity can be extended to $\pm$ 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) can be relaxed to $\pm$ 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) is restricted to $\pm$ 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. August 26, 2014 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) August 26, 2014 EX3DV4-SN:3873 ## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) August 26, 2014 # Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz) Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2) EX3DV4-SN:3873 EX3DV4- SN:3873 August 26, 2014 ## **Conversion Factor Assessment** ## **Deviation from Isotropy in Liquid** Error $(\phi, \vartheta)$ , f = 900 MHz EX3DV4- SN:3873 August 26, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873 ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |-----------------------------------------------|------------| | Connector Angle (°) | 20.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm |