

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Motorola Solutions Inc. EME Test Laboratory 8000 West Sunrise Blvd Fort Lauderdale, FL. 33322 Date of Report: 08/04/2014

Report Revision: A

Responsible Engineer: Deanna Zakharia (Plantation Lab Director EME Test Lab)

Report Author: Mac Elliott (Principal Staff Engineer)

Date/s Tested: 5/13/2014 - 5/17/2014; 5/19/2014; 6/19/2014 - 6/20/2014; 6/24/2014

Manufacturer/Location: Motorola, Penang

Sector/Group/Div.: AESS – Astro Engineering Subscriber Solutions

Date submitted for test: 4/25/2014

DUT Description: Handheld Portable – 450-520MHz, 5W rated power, 6.25kHz/12.5kHz/25kHz, Capable

of digital and analog FM transmission. Also capable of TDMA transmission.

Test TX mode(s): CW (PTT)
Max. Power output: 5.6W
Nominal Power: 5.0W

Tx Frequency Bands: 450-520 MHz Signaling type: FM, TDMA Model(s) Tested: H84SDD9PW5AN

Model(s) Certified: H84SDD9PW5AN; H84SDH9PW7AN

Serial Number(s): 837TQH0035 & 837TQH0024 **Classification:** Occupational/Controlled

FCC ID: AZ489FT4920; Part 90 UHF (450 – 512 MHz)

This report contains results that are immaterial for FCC equipment approval, which are

clearly identified.

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of OET Bulletin 65. The 10 grams result is not applicable to FCC filing. The test results clearly demonstrate compliance with ICNIRP (1998) Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Physics 74, 494-522 RF Exposure limits of 10 W/kg averaged over 10grams of contiguous tissue.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Dearray Zakharia

Deanna Zakharia EMS EME Lab Senior Resource Manager, Laboratory Director Approval Date: 8/6/2014 Certification Date: 8/6/2014

Certification No.: L1140802P & L1140803P

Part 1 of 2

1.0	Introdu	action	4
2.0		AR Summary	
3.0		viations / Definitions	
4.0	Refere	nced Standards and Guidelines	5
5.0		imits	
6.0		ption of Device Under Test (DUT)	
7.0	-	al Accessories and Test Criteria	
	7.1	Antennas	
	7.2	Batteries	7
	7.3	Body worn Accessories	
	7.4	Audio Accessories	8
8.0	Descri	ption of Test System	9
	8.1	Descriptions of Robotics/Probes/Readout Electronics	
	8.2	Description of Phantom(s)	.10
	8.3	Description of Simulated Tissue	.10
9.0	Additi	onal Test Equipment	.11
10.0	SAR N	Measurement System Validation and Verification	.12
	10.1	System Validation	.12
	10.2	System Verification	.12
	10.3	Equivalent Tissue Test Results	.12
11.0	Enviro	nmental Test Conditions	.13
12.0	DUT 7	Test Setup and Methodology	.14
	12.1	Measurements	.14
	12.2	DUT Configuration(s)	.15
	12.3	DUT Positioning Procedures	.15
		12.3.1 Body	.15
		12.3.2 Head	.15
		12.3.3 Face	
	12.4	DUT Test Channels	
	12.5	SAR Result Scaling Methodology	
	12.6	DUT Test Plan	
13.0		Test Data	
	13.1	LMR assessments at the Body for 450 – 512 MHz band	
	13.2	LMR assessments at the Face for 450 – 512 MHz band	
	13.3	Shortened Scan Assessment	
		s Summary	
		ility Assessment	
16.0	System	1 Uncertainty	.27

APP	PENDICES	
A	Measurement Uncertainty Budget	29
В	Probe Calibration Certificates	
C	Dipole Calibration Certificates	47
Part	2 of 2	
APP	PENDICES	
D	System Verification Check Scans	2
E	DUT Scans	
F	Shorten Scan of Highest SAR Configuration	17
G	DUT Power Slump	19
Н	Assessments Outside FCC Part 90.	21
I	DUT Test Position Photos	24
J	DUT, Body worn and audio accessories Photos	25

Report Revision History

Date	Revision	Comments
07/3/2014	О	Initial release
08/4/2014	A	Revise Nominal Power to 5.0W from 5.3W

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number H84SDD9PW5AN. This device is classified as Occupational/Controlled.

2.0 FCC SAR Summary

Table 1

Equipment Class	Frequency band	Max Calc at	Body (W/kg)	Max Calc at Face (W/kg)		
Equipment Class	(MHz)	1g-SAR	10g-SAR	1g-SAR	10g-SAR	
TNF	450 – 512 MHz	5.17	3.61	3.42	2.58	

3.0 Abbreviations / Definitions

CNR: Calibration Not Required

CQPSK: Compatible Differential Quadrature Phase-Shift Keying

CW: Continuous Wave

C4FM: Continuous 4 Level FM

DUT: Device Under Test

DSP: Digital Signal Processing EME: Electromagnetic Energy FM: Frequency Modulation

NA: Not Applicable PTT: Push to Talk

SAR: Specific Absorption Rate

TDMA: Time Division Multiple Access 4FSK: 4 Level Frequency Shift Keying

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1 (2005) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- IEEE 1528 (2003), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2009), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2003)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r01 (04/04/2011)
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r02 (12/05/2013)
 D02 RF Exposure Reporting v01r01 (05/28/2013)
- FCC KDB 447498 D01 General RF Exposure Guidance v05r01 (05/28/2013)

5.0 SAR Limits

Table 2

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population /	(Occupational /			
EAI OSURE LIVILIS	Uncontrolled Exposure	Controlled Exposure			
	Environment)	Environment)			
Spatial Average - ANSI -					
(averaged over the whole body)	0.08	0.4			
Spatial Peak - ANSI -					
(averaged over any 1-g of tissue)	1.6	8.0			
Spatial Peak – ICNIRP/ANSI -					
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0			
Spatial Peak - ICNIRP -					
(Head and Trunk 10-g)	2.0	10.0			

6.0 Description of Device Under Test (DUT)

This portable device operates using frequency modulation (FM) and TDMA signals incorporating traditional simplex two-way radio transmission protocol.

Time Division Multiple Access (TDMA) is used to allocate portions of the RF signal by dividing time into two slots. Time allocation enables each unit to transmit its voice information without interference from other transmitting units. Transmission from a unit or base station is accommodated during two time-slot lengths of 30 milliseconds with frame length of 60 milliseconds. C4FM CQPSK modulation is used at 12.5 kHz channel spacing. The TDMA technique requires sophisticated algorithms and a digital signal processor (DSP) to perform voice compressions/decompressions and RF modulation/demodulation. The maximum duty cycle for TDMA 1:2 is 50%.

This device operates in a half duplex system. A half duplex system only allows the user to transmit or receive. This device cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device.

The model represented under this filing utilizes optional antennas capable of transmitting in the 450 - 520 MHz bands respectively. The nominal output power is 5.0 W with maximum output power of 5.6 W as defined by upper limit of the production line final test station.

The intended operating positions are "at the face" with the DUT at least 2.5cm from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in "SAR Test Reduction Considerations for Occupational PTT Radios" FCC KDB 643646 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances.

7.1 Antennas

There are two removable antennas offered for this product. The table below lists their descriptions.

Table 3

Antenna Models	Description	Selected for test	Tested
	Antenna w/ GPS, 380-520 MHz & 1575MHz,		
PMAE4065A	1/2 wave, -1.0 dBi	Yes	Yes
	Stubby Antenna w/ GPS, 450-520 MHz &		
FAF5260A	1575MHz, 1/4 wave, 0 dBi	Yes	Yes

7.2 Batteries

There are three batteries offered for this product. The Table below lists their descriptions.

Table 4

Battery Models Description		Selected for test	Tested	Comments
				Default battery for
NNTN8128B	IMPRES Li Ion Battery Slim 1900mAh	Yes	Yes	body testing
	IMPRES Li Ion Battery High Cap 2300			
PMNN4424AR	mAh	Yes	Yes	
				Default battery for
PMNN4448AR	Li Ion Battery Ultra High Cap 2700mAh	Yes	Yes	face testing

7.3 Body worn Accessories

All body worn accessories were considered. The Table below lists the body worn accessories, and body worn accessory descriptions.

Table 5

Body worn Models	Description	Selected for test	Tested	Comments
PMLN7008A	Belt Clip 2.5 in.	Yes	Yes	
PMLN4651A	Belt Clip 2 in.	Yes	Yes	
	Metal Carry Holder w/2.5 in swivel belt			
PMLN6085A	loop	Yes	Yes	
				Tested with
NTN5243A	Carry Strap	Yes	Yes	PMLN6085A

7.4 Audio Accessories

All audio accessories were considered. The Table below lists the offered audio accessories and their descriptions. Exhibit 7B illustrates photos of the tested audio accessories.

Table 6

Audio Acc. Models	Description	Selected for test	Tested	Comments
PMLN6130A	Description Impress 2 wire W/ Translucent Tube - Biege	Yes	Yes	Comments Default Audio
ZMN6031A	3 wire kit - beige	Yes	Yes	Tested with NNTN7869A
ZMN6031A ZMN6032A	2 wire kit - beige	Yes	Yes	Tested with NNTN7869A Tested with NNTN7869A
ZMN6038A	2 wire kit - beige	No	No	
ZMN6038A ZMN6039A	Č	No	No	By Similarity with ZMN6032A
ZMINOU39A	3 wire kit - beige Receive-Only Earpiece with Standard Earphone (1-	NO	NO	By Similarity with ZMN6031A
BDN6664A	Wire), Beige	No	No	Receive Only
BDN6665A	Extra Loud Receive-Only Earpiece with Standard Earphone (1-Wire), Beige	No	No	Receive Only
BDN6667A	Earpiece with Microphone and Push-to-Talk Combined (2-Wire), Beige	No	No	By Similarity with BDN6729A
NNTN7869A	Hirose Surveillance Keyload Adaptor	Yes	Yes	Tested with ZMN6031A or ZMN6032A
	Earpiece with Microphone and Push-to-Talk			
BDN6668A	Separate (3-Wire), Beige	No	No	By Similarity with BDN6730A
	Extra Loud Earpiece with Microphone and Push-to-			
BDN6669A	Talk Combined (2-Wire), Beige	No	No	By Similarity with BDN6729A
DDNGTOCA	Receive-Only Earpiece with Standard Earphone (1-	N	NT	D : 0.1
BDN6726A	Wire), Black	No	No	Receive Only
BDN6727A	Extra Loud Receive-Only Earpiece with Standard Earphone (1-Wire), Black	No	No	Receive Only
DDN0/2/A	Earpiece with Microphone and Push-to-Talk	NO	NO	Receive Only
BDN6730A	Separate (3-Wire), Black	Yes	Yes	Tested with BDN6783A
BB11073011	Extra Loud Earpiece with Microphone and Push-to-	105	105	Tested Wild BB1(070511
BDN6731A	Talk Combined (2-Wire), Black	No	No	By Similarity with BDN6729A
	Earpiece with Microphone and Push-to-Talk			,
BDN6729A	Combined (2-Wire), Black	Yes	Yes	Tested with BDN6783A
PMLN6123A	Impress 3 Wire W/ Trans Tube - Black	No	No	By Similarity with PMLN5097A
PMLN6124A	Impress 3 Wire W/ Trans Tube - Biege	No	No	By Similarity with PMLN5097A
PMLN6127A	Impress 2 Wire Surveillance Kit - Black	No	No	By Similarity with PMLN6130A
PMLN6128A	Impress 2 Wire Surveillance Kit - Biege	No	No	By Similarity with PMLN6130A
PMLN6129A	Impress 2 wire W/ Translucent Tube - Black	No	No	By Similarity with PMLN6130A
RLN5886A	Low Noise Kit Tube	No	No	replacement parts
RLN5887A	High Noise Kit	No	No	replacement parts
PMLN6125A	1 Wire Surveillance Kit - Black	No	No	Receive Only
PMLN6126A	1 Wire Surveillance Kit - Beige	No	No	Receive Only
	IMPRES IP57 Submersible Remote Speaker			
PMMN4040A	Microphone	Yes	Yes	
PMMN4046A	IMPRES SPEAKER MIC W/VOL, IP57	Yes	Yes	
PMMN4050A	IMPRES REMOTE SPEAKER MIC, NC	Yes	Yes	
PMLN5102A	CORE ULTRA-LITE HEADSET	Yes	Yes	
PMLN5096B	CORE EARSET - D-SHELL	Yes	Yes	
PMLN5097A	IMPRES 3 WIRE SURVEILLANCE-BLACK	Yes	Yes	
PMLN5106A	IMPRES 3 WIRE SURVEILLANCE-BEIGE	No	No	By Similarity with PMLN5097A
PMLN5653A	IMPRES Ear Mic System	Yes	Yes	

Table 6 continued

Audio Acc.		Selected		
Models	Description	for test	Tested	Comments
HMN4101B	Display RSM w/o Display and w/o Channel Knob	No	No	By Similarity with HMN4104B
HMN4103B	Display RSM w/o Channel Knob	No	No	By Similarity with HMN4104B
	IMPRES Display Submersible RSM w/jack & Ch.			tested with and w/o RMN5116A
HMN4104B	Selector	Yes	Yes	
	Large Plus Noise cancelling RSM IP55 3.5MM jack			
PMMN4062A	RX only	Yes	Yes	
	Standard Large IP57 RSM (based on PMM4046 w/			
PMMN4065A	larger speaker)	Yes	Yes	
PMMN4024A	Core RSM	Yes	Yes	
PMMN4025A	Smart RSM	No	No	By Similarity with PMMN4062A
RLN6424A	Rx-Only Secondry Audio Accessory for DRSM	No	No	By Similarity with RMN5116A
PMMN4069A	APX Basic Smart RSM, IP55	No	No	By Similarity with PMMN4062A
PMLN5101A	Impress Temple Transducer	Yes	Yes	
PMLN5275B	Core H/D Headset	Yes	Yes	
RMN5058A	Core L/W Headset	Yes	Yes	
RMN5116A	Temple Transducer Headset	Yes	Yes	Tested w/ HMN4104B
	3.5mm RX ONLY EARBUD FOR REM SPK MIC			Receive Only
AARLN4885B	short coiled cbl	No	No	
	3.5mm RX ONLY EARPIECE W/TRANSLUCENT			Receive Only
RLN4941A	TUBE-Short coiled cbl	No	No	
WADN4190B	3.5mm EAR RCVR W/COIL CBL-Short cbl	No	No	Receive Only
				Tested with BDN6729A or
BDN6783A	3.5 mm Audio Adapter	Yes	Yes	BDN6730A
PMLN4620B	Rx only earpiece	No	No	Receive Only

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 7

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY 5	52.8.2.969	DAE3	ES3DV3 (E-Field)

The DASY5™ system is operated per the instructions in the DASY5™ Users Manual. The complete manual is available directly from SPEAG™. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

Table 8

Phantom Type	Phantom(s) Used	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
Oval Flat	V	300MHz -6GHz; Er = 4+/- 1, Loss Tangent = ≤0.05	600x400x190			

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 9. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (percent by mass)

Table 9

	450MHz				
Ingredients	Head	Body			
Sugar	56.0	46.5			
Diacetin	0	0			
De ionized –					
Water	39.1	50.53			
Salt	3.8	1.87			
HEC	1.0	1.0			
Bact.	0.1	0.1			

9.0 Additional Test Equipment

The Table below lists additional test equipment used during the SAR assessment.

Table 10

	Table 10		
Model Number	Serial Number	Calibration Date	Calibration Due Date
ES3DV3	3301	8/27/2013	8/27/2014
DAE3	363	1/13/2014	1/13/2015
E4418B	US39251152	2/19/2014	2/19/2015
8482B	3318A07393	2/4/2014	2/4/2015
E4418B	US39251150	2/19/2014	2/19/2015
E9301B	MY50290001	9/4/2013	9/4/2014
E4418B	US39251267	1/27/2014	1/27/2015
8481B	3318A10982	4/9/2014	4/9/2015
3020A	31744	9/17/2013	9/17/2015
E4438C	MY42081753	1/17/2014	1/17/2016
AR2729- 10/5506	M2K2A00-001	NCR	NCR
TM320	7081356	9/6/2013	9/6/2014
HH200A	20857	10/23/2013	10/23/2014
HH202A	18800	3/3/2014	3/3/2015
HH202A	18812	6/10/2013	6/10/2014
N5230C	MY49002155	8/1/2013	8/1/2014
DAK-3.5	1088	10/22/2013	10/22/2014
DAK-12	1040	10/22/2013	10/22/2014
D450V3	1075	7/23/2013	7/23/2015
	Number ES3DV3 DAE3 E4418B 8482B E4418B E9301B E4418B 8481B 3020A E4438C AR2729- 10/5506 TM320 HH200A HH202A HH202A N5230C DAK-3.5 DAK-12	Model Number Serial Number ES3DV3 3301 DAE3 363 E4418B US39251152 8482B 3318A07393 E4418B US39251150 E9301B MY50290001 E4418B US39251267 8481B 3318A10982 3020A 31744 E4438C MY42081753 AR2729- 10/5506 M2K2A00-001 TM320 7081356 HH200A 20857 HH202A 18800 HH202A 18812 N5230C MY49002155 DAK-3.5 1088 DAK-12 1040	Model NumberSerial NumberCalibration DateES3DV333018/27/2013DAE33631/13/2014E4418BUS392511522/19/20148482B3318A073932/4/2014E4418BUS392511502/19/2014E9301BMY502900019/4/2013E4418BUS392512671/27/20148481B3318A109824/9/20143020A317449/17/2013E4438CMY420817531/17/2014AR2729- 10/5506M2K2A00-001NCRTM32070813569/6/2013HH200A2085710/23/2013HH202A188003/3/2014HH202A188126/10/2013N5230CMY490021558/1/2013DAK-3.5108810/22/2013DAK-3.5108810/22/2013DAK-12104010/22/2013

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Table 11

Dates	Probe Ca Poi		Probe SN		red Tissue ameters	Validation for CW		W	
	Fol	1111	SIN	σ	$\epsilon_{ m r}$	Sensitivity	Linearity	Isotropy	
09/30/2013	Body	450	3301	0.94	56.8	Dogg	Dogg	Dana	
10/07/2013	Body	450	3301	0.92	56.5	Pass	Pass	Pass	
09/27/2013	Head	450	3301	0.83	42.2	Dogg	Dogg	D	
10/07/2013	Head	450	3301	0.85	43.5	Pass	Pass	Pass	

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment.

Table 12

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date
	FCC Body	CDE A C DASOV2 /	4.51 +/- 10%	1.08	4.32	5/14/2014
				1.08	4.32	5/15/2014
	rec Body			1.08	4.32	5/16/2014
3301		SPEAG D450V3 / 1075		1.08	4.32	5/17/2014
		1073	4.73 +/- 10%	1.08	4.32	6/19/2014
	IEEE/IEC Head			1.08	4.32	6/20/2014
				1.10	4.36	6/24/2014

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Table 13

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
				0.94	57.3	5/14/2014
450	FCC Body	0.94	56.7	0.92	56.9	5/15/2014
430	FCC Body	(0.89 - 0.99)	(53.9-59.5)	0.92	56.9	5/16/2014
				0.92	56.7	5/17/2014
	MEER/			0.84	43.2	6/19/2014
450	IEEE/ IEC Head	0.87 (0.83-0.91)	43.5 (41.3-45.7)	0.84	42.0	6/20/2014
	ILC Head	(0.03 0.71)	(41.5 45.7)	0.86	43.1	6/24/2014
466	IEEE/ IEC Head	0.05	42.4	0.87	43.4	6/19/2014
		0.87 (0.83-0.91)	43.4 (41.2-45.6)	0.85	41.7	6/20/2014
	ILC Head	(0.03 0.71)	(41.2 43.0)	0.88	42.8	6/24/2014
481	ECC Pody	0.94	56.6	0.97	56.9	5/14/2014
461	FCC Body	(0.90-0.99)	(53.8-59.4)	0.95	56.5	5/15/2014
512	FCC Body	0.94	56.5	0.98	56.4	5/14/2014
312	FCC Body	(0.90-0.99)	(53.6-59.3)	0.97	56.1	5/15/2014
516	FCC Body	0.95 (0.90-0.99)	56.4 (53.6-59.3)	0.97	55.8	5/17/2014
516	IEEE/ IEC Head	0.87 (0.83-0.92)	43.1 (41.0-45.3)	0.91	41.6	6/24/2014
520	FCC Body	0.95 (0.90-0.99)	56.4 (53.6-59.2)	0.97	55.8	5/17/2014
520	IEEE/ IEC Head	0.87 (0.83-0.92)	43.1 (41.0-45.3)	0.91	41.5	6/24/2014

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

Table 14

	Target	Measured
		Range: 21.7 – 22.8°C
Ambient Temperature	18 − 25 °C	Avg. 22.1 °C
		Range: 46.3 – 58.5 %
Relative Humidity	30 – 70 %	Avg. 52.3 %
		Range: 20.9-22.3°C
Tissue Temperature	NA	Avg. 21.7°C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Table 15

Table .	10					
Description	≤3 GHz	> 3 GHz				
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$				
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°				
	≤ 2 GHz: ≤ 15 mm	$3-4 \text{ GHz:} \leq 12 \text{ mm}$				
	$2 - 3 \text{ GHz: } \le 12 \text{ mm}$	$4-6 \text{ GHz:} \leq 10 \text{ mm}$				
	When the x or y dimensi	When the x or y dimension of the test device, in				
Maximum area saan spatial resolution: Av Area Av Area	the measurement plane o	the measurement plane orientation, is smaller				
Maximum area scan spatial resolution: ΔxArea, ΔyArea	than the above, the meas	than the above, the measurement resolution must				
	be \leq the corresponding x	or y dimension of the				
	test device with at least of	one measurement point				
	on the test device.					
Maximum zoom scan spatial resolution: ΔxZoom, ΔyZoom	≤ 2 GHz: ≤ 8 mm	$3-4 \text{ GHz:} \leq 5 \text{ mm*}$				
	$2-3 \text{ GHz:} \leq 5 \text{ mm*}$	$4-6 \text{ GHz:} \leq 4 \text{ mm*}$				
Maximum zoom scan spatial uniform grid: ΔzZoom(n)		$3-4$ GHz: ≤ 4 mm				
resolution, normal to	≤ 5 mm	$4-5 \text{ GHz:} \leq 3 \text{ mm}$				
phantom surface		$5-6$ GHz: ≤ 2 mm				

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.2 **DUT** Configuration(s)

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646.

12.3 **DUT Positioning Procedures**

The positioning of the device for each body location is described below and illustrated in Appendix I.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with and without the offered audio accessories as applicable.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front and back sides separated 2.5cm from the phantom.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

 N_c = Number of channels

 $F_{high} = Upper channel$

 $F_{low} = Lower channel$

 F_c = Center channel

12.5 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and power slump. A Table and graph of output power versus time is provided in Appendix G. For this device the "Max Calc. 1g-SAR" and "Max Calc.10g-SAR" are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

P_max = Maximum Power (W)
P_int = Initial Power (W)
Drift = DASY drift results (dB)
SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)
DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied: If P_int > P_max, then P_max/P_int = 1. Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.6 DUT Test Plan

The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW and 50% duty cycle was applied to PTT configurations in the final results.

13.0 DUT Test Data

13.1 LMR assessments at the Body for 450 – 512 MHz band

Battery NNTN8128B was selected as the default battery for assessments at the Body because it is the thinnest battery (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within Part 90 frequency range (450 – 512 MHz) which are listed in Table 16. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios). SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 16

Test Freq (MHz)	Power (W)
450.0000	5.26
465.5000	5.34
481.0000	5.43
496.5000	5.42
512.0000	5.26

Assessments at the Body with Body worn PMLN7008A

DUT assessment with offered antennas, default battery and audio accessory per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 16 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 17

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
				450.0							
				465.0							
PMAE4065 A				481.0	5.37	0.32	4.83	3.40	2.52	1.77	HvH-Ab-140514- 02
				496.5	3.57	0.32	1.05	3.10	2.32	1.77	02
			PMLN6130A	512.0							
FAF5260A	NNTN8128B	PMLN7008A		450.0	5.18	-0.36	8.42	5.90	4.94	3.46	HvH-Ab-140514- 04
				465.0							TT TT A1 140514
				481.0	5.34	0.02	7.39	5.15	3.87	2.70	HvH-Ab-140514- 03
				496.5							
				512.0	5.11	-0.68	5.90	4.16	3.78	2.67	HvH-Ab-140514- 05
			Assessm	ent of A	dditiona	ıl Batter	ies				
				450.0	5.26	-0.37	5.76	4.08	3.34	2.37	HvH-Ab-140514- 06
				465.0							
	PMNN4424AR			481.0							
				496.5							
EAE5260A		DMI N/7000 A	DMI NG120A	512.0							
FAF5260A		PMLN7008A	PMLN6130A	450.0	5.46	-0.33	6.37	4.52	3.52	2.50	HvH-Ab-140514- 07
				465.0							
	PMNN4448AR			481.0							
				496.5							
				512.0							

Assessments at the Body with Body worn PMLN4651A

DUT assessment with offered antennas, default battery and audio accessory per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 16 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 18

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
				450.0							
				465.0							
PMAE4065 A				481.0	5.48	-0.06	4.87	3.43	2.52	1.78	HvH-Ab- 140514-08
				496.5							
				512.0							
FAF5260A	NNTN8128B	PMLN4651A	PMLN6130A	450.0	5.14	-0.34	8.39	5.91	4.94	3.48	HvH-Ab- 140514-10
				465.0							
				481.0	5.35	0.07	7.49	5.25	3.92	2.75	HvH-Ab- 140514-09
				496.5							
				512.0	5.12	-0.65	6.46	4.55	4.10	2.89	HvH-Ab- 140515-02
			Assessme	ent of Ad	lditiona	l Batteri	es				
				450.0	5.29	-0.41	5.87	4.16	3.41	2.42	HvH-Ab- 140515-03
				465.0							
	PMNN4424AR			481.0							
				496.5							
FAF5260A		PMLN4651A	PMLN6130A	512.0							
1 A1 3200A		I WILM4031A	1 WILMUI 30A	450.0	5.12	-0.34	6.32	4.50	3.74	2.66	HvH-Ab- 140515-04
	D 0 D 1 1 1 1 0 : 5			465.0							
	PMNN4448AR			481.0							
				496.5							
				512.0							

Assessments at the Body with Body worn PMLN6085A

DUT assessment with offered antennas, default battery and audio accessory per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 16 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 19

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
				450.0							
				465.0							
PMAE4065 A				481.0	5.35	0.37	1.01	0.76	0.53	0.40	HvH-Ab-140515- 05
				496.5							
	NINTEN 10100D	DMI MCOOCA	DM NG1204	512.0							
	NNTN8128B	PMLN6085A	PMLN6130A	450.0							
				465.0							
FAF5260A				481.0	5.33	0.11	1.55	1.17	0.81	0.61	HvH-Ab-140515- 06
				496.5							
				512.0							
	1	•	Assessme		ditiona	ıl Batter	ries		I.		
				450.0							
				465.0							
	PMNN4424AR			481.0	5.30	-0.12	1.25	0.94	0.68	0.51	HvH-Ab-140515- 07
				496.5							
FAF5260A		PMLN6085A	PMLN6130A	512.0							
TAI 3200A		TWILINGOSA	TWILINGTSOA	450.0							
				465.0							
	PMNN4448AR			481.0	5.28	-0.11	1.24	0.94	0.67	0.51	HvH-Ab-140515- 08
				496.5							
				512.0							

Assessments at the Body with Body worn PMLN6085A w/ NNTN5243A w/no loop

DUT assessment with offered antennas, default battery and audio accessory per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 16 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 20

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)		Max Calc. 1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
				450.0							
PMAE4065 A				465.0							
				481.0	5.33	0.39	3.94	2.86	2.07	1.50	HvH-Ab-140515- 10
				496.5							
		PMLN6085A	D. C	512.0							
NN'.	NNTN8128B	w/NNTN5243A w/no loop	PMLN6130A	450.0							
		, p		465.0							
FAF5260A				481.0	5.32	0.03	5.56	4.04	2.93	2.13	HvH-Ab-140515- 09
				496.5						· · ·	
				512.0							
			Assessme		litiona	l Batter	ies		I		
				450.0							
				465.0							
	PMNN4424AR			481.0	5.26	-0.14	4.10	2.96	2.25	1.63	HvH-Ab-140515- 11
				496.5							
FAF5260A		PMLN6085A w/NNTN5243A	DMI N6120A	512.0							
TAI 3200A		w/no loop	I WILNOISUA	450.0							
				465.0							
	PMNN4448AR			481.0	5.26	-0.14	4.29	3.09	2.36	1.70	HvH-Ab-140515- 12
				496.5							
				512.0							

Assessment at the Body with other audio accessories

Assessment of applicable additional offered audio accessories per KDB 643646 D01 SAR Test for PTT Radios v01r01. Tests were performed on frequency of highest SAR from body tests above.

Table 21

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
111101111	2 uccery	1100055013									HvH-Ab-
				450.00	5.14	-0.32	8.82	6.16	5.17	3.61	140516-02
FAF5260A	NNTN8128B	PMI N7008 A	PMMN4040A	465.50							
1711 320071	14141140120D	I WILLY OOOLY	1 1/11/11/4040/1	481.00							
				496.50							
				512.00							TT TT A1
				450.00	5.13	-0.36	8.35	5.82	4.95	3.45	HvH-Ab- 140516-03
				465.50	5.15	0.50	0.33	3.02	1.75	3.13	110310 03
FAF5260A	NNTN8128B	PMLN7008A	PMMN4046A	481.00							
				496.50							
				512.00							
				450.00	5.14	-0.34	8.52	5.96	5.02	3.51	HvH-Ab- 140516-04
				465.50	3.14	-0.54	0.32	3.70	3.02	3.31	140310-04
FAF5260A	NNTN8128B	PMLN7008A	PMMN4050A	481.00							
				496.50							
				512.00							
				312.00							HvH-Ab-
				450.00	5.12	-0.32	7.83	5.46	4.61	3.21	140516-05
E4E50604	NINENIO 1 20 D	DM NEODO A	DMI N5100 A	465.50							
FAF5260A	NNTN8128B	PMLN/008A	PMLN5102A	481.00							
				496.50							
				512.00							
				450.00	5.14	-0.34	7.47	5.20	4.40	3.06	HvH-Ab- 140516-06
				465.50							
FAF5260A	NNTN8128B	PMLN7008A	PMLN5096B	481.00							
				496.50							
				512.00							
				450.00	5.14	-0.31	8.00	5.59	4.68	3.27	HvH-Ab- 140516-07
				465.50							
FAF5260A	NNTN8128B	PMLN7008A	PMLN5097A	481.00							
				496.50							
				512.00							
				450.00	5.10	-0.47	7.91	5.53	4.84	3.38	HvH-Ab- 140516-08
				465.50							
FAF5260A	NNTN8128B	PMLN7008A	PMLN5653A	481.00							
				496.50							
				512.00							

Table 21 Continued

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
					(11)	(****)	(=== / / 8/	(=== \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(=== \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(=== : : : : : : : : : : : : : : : : : :	HvH-Ab-
				450.00	5.10	-0.33	8.56	5.96	5.07	3.53	140516-09
EAE5260A	NNTN8128B	DMI N7009 A	HMN4104B	465.50							
rars200A	ININTINO120D	PMLN/008A	HWIN4104B	481.00							
				496.50							
				512.00							
				450.00	5.12	-0.33	8.75	6.12	5.16	3.61	HvH-Ab- 140516-10
E. E. 200 A	ND 100 100 D	D) (I) IZ000 4	HMN4104B	465.50							
FAF5260A	NNTN8128B	PMLN7008A	w/RMN5116A	481.00							
				496.50							
				512.00							
				450.00	5.12	-0.32	8.48	5.93	4.99	3.49	HvH-Ab- 140516-11
E4E52604	NINTENIO 1 2 O D	DM NZOOO A	D) O O 140/24	465.50							
FAF5260A	NNTN8128B	PMLN/008A	PMMN4062A	481.00							
				496.50							
				512.00							
				450.00	5.14	-0.28	8.31	5.80	4.83	3.37	HvH-Ab- 140516-12
E. E. C. C. A.	ND 100 100 D	D) (I) IZ000 4	D) B B 140 < 5 4	465.50							
FAF5260A	NNTN8128B	PMLN7008A	PMMN4065A	481.00							
				496.50							
				512.00							
				450.00	5.11	-0.33	8.44	5.92	4.99	3.50	HvH-Ab- 140516-13
EAE5260A	NINITNIO 1 20 D	DMI NGOOOA	DM (D) (400 4 A	465.50							
FAF5260A	NNTN8128B	PMLN/008A	PMMN4024A	481.00							
				496.50							
				512.00							
				450.00	5.10	-0.32	7.51	5.23	4.44	3.09	HvH-Ab- 140517-02
E4E52604	NINTENIO 1 2 O D	DM NZOOO A	DMING101A	465.50							
FAF5260A	NNTN8128B	PMLN7008A	PMLN5101A	481.00							
				496.50							
				512.00							HvH-Ab-
				450.00	5.11	-0.31	8.16	5.71	4.80	3.36	140517-03
				465.50							
FAF5260A	NNTN8128B	PMLN7008A	PMLN5275B	481.00							
				496.50							
				512.00							

Table 21 Continued

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
	•	·		450.00	7.10	0.21	7.00	5.04	1.26	2.07	HvH-Ab-
				450.00	5.10	-0.31	7.23	5.04	4.26	2.97	140517-04
FAF5260A	NNTN8128B	PMLN7008A	RMN5058A	465.50							
				481.00 496.50							
				512.00							
				450.00	5.10	-0.27	7.97	5.56	4.66	3.25	HvH-Ab- 140517-05
				465.50	0.10	0.27	7.57	5.55		0.20	110017 00
FAF5260A	NNTN8128B	PMLN7008A	NNTN7869A w/ZMN6031A	481.00							
			,	496.50							
				512.00							
				450.00	5.10	-0.38	7.52	5.25	4.51	3.15	HvH-Ab- 140517-06
			NNTN7869A	465.50							
FAF5260A	NNTN8128B	PMLN7008A	w/ZMN6032A	481.00							
				496.50							
				512.00							
				450.00	5.14	-0.32	8.21	5.74	4.81	3.37	HvH-Ab- 140517-07
			BDN6783B	465.50							
FAF5260A	NNTN8128B	PMLN7008A	w_BDN6730A	481.00							
				496.50							
				512.00							
				450.00	5.12	-0.30	8.24	5.76	4.83	3.38	HvH-Ab- 140517-08
			BDN6783B	465.50							
FAF5260A	NNTN8128B	PMLN7008A	w/BDN6729A	481.00							
				496.50							
				512.00							

Assessment outside FCC Part 90 at the body

Assessment outside FCC Part 90 with each of the offered antennas using the highest SAR test configuration from Part 90 assessments above. SAR plots of the highest results per table (bolded) are presented in APPENDIX H.

Table 22

										Max	
								Meas.	Max	Calc.	
					Init	SAR	Meas.	10g-	Calc.	10g-	
		Carry		Test Freq	Pwr	Drift	1g-SAR	SAR	1g-SAR	SAR	
Antenna	Battery	Accessory	Cable Accessory	(MHz)	(W)	(dB)	(mW/g)	(mW/g)	(mW/g)	(mW/g)	Run#
											HvH-Ab-140517-
EAE5260A	NINITNIO120D	PMLN7008A	PMMN4040A	516.0000	5.26	-0.65	6.01	4.26	3.72	2.63	09
FAF3200A	ININ IINOI 20D	FWILN/000A	FIMININ4U4UA								HvH-Ab-140517-
				520.0000	4.96	-0.56	6.12	4.32	3.93	2.77	10

13.2 LMR assessments at the Face for 450 – 512 MHz band

Battery PMNN4448AR was selected as the default battery for assessments at the Face because it has the highest capacity (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within Part 90 frequency range (450 – 512 MHz) which are listed in Table 19. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios). SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 23

Test Freq (MHz)	Power (W)
450.0000	5.45
465.5000	5.59
481.0000	5.47
496.5000	5.47
512.0000	5.41

DUT assessment with offered antennas, default battery with front of DUT positioned 2.5cm facing phantom per KDB 643646. Optional batteries were tested per the requirements of KDB 643646. Refer to Table 23 for highest output power channel. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 24

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (mW/g)	Meas. 10g- SAR (mW/g)	Max Calc. 1g-SAR (mW/g)	Max Calc. 10g- SAR (mW/g)	Run#
				450.0							
				465.5	5.60	-0.20	3.76	2.84	1.97	1.49	HvH-Face- 140619-02
PMAE406 5A			None	481.0	3.00	0.20	3.70	2.04	1.57	1.47	140017 02
				496.5							
	DMANINI 4 4 4 9 A D	N		512.0							
	PMNN4448AR	None		450.0							
				465.5	5.60	-0.36	5.81	4.38	3.16	2.38	HvH-Face- 140619-03
FAF5260A			None	481.0							
				496.0							
				512.0							
				450.0							
				465.5	5.50	-0.34	5.48	4.13	3.02	2.27	HvH-Face- 140620-02
FAF5260A	PMNN4424AR	None	None	481.0							
				495.5							
				512.0							
				450.0							
				465.5	5.22	-0.19	6.10	4.60	3.42	2.58	HvH-Face- 140624-02
FAF5260A	NNTN8128B	None	None	481.0							
				495.0							
				512.0							

Assessment outside FCC Part 90 at the face

Assessment outside FCC Part 90 with each of the offered antennas using the highest SAR test configuration from Part 90 assessments above. SAR plots of the highest results per table (bolded) are presented in APPENDIX H.

Table 25

								Meas.	Max	Max Calc.	
						SAR	Meas.	10g-	Calc.	10g-	
		Carry		Test Freq	Pwr	Drift	1g-SAR	SAR	1g-SAR	SAR	
Antenna	Battery	Accessory	Cable Accessory	(MHz)	(W)	(dB)	(mW/g)	(mW/g)	(mW/g)	(mW/g)	Run#
											HvH-Face-
EAE5260A	NNTN8128B	None	None	516.0000	5.00	-0.75	4.25	3.18	2.83	2.12	140624-05
FAF3200A	ININ IINOI 20D	None	None								HvH-Face-
				520.0000	5.16	-0.50	4.06	3.03	2.47	1.84	140624-06

13.3 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

Table 26

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)	Meas. 10g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Max Calc. 10g- SAR (W/kg)	Run#
FAF5260	NNTN8128B		PMLN7008A	, ,			8.81	6.15	5.01	3.50	HvH-Ab- 140517-13

14.0 Results Summary

Based on the test guidelines from section 4.0 and satisfying frequencies within FCC bands, the highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing:

Table 27

Designator	Frequency band		lc at Body //kg)		c at Face /kg)
o o	(MHz)	1g-SAR	10g-SAR	1g-SAR	10g-SAR
FCC	450 – 512	5.17	3.61	3.42	2.58
Overall	450 – 520	5.17	3.61	3.42	2.58

All results are scaled to the maximum output power.

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of OET Bulletin 65. The 10 grams result is not applicable to FCC filing.

15.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is required because SAR results are above 4.0W/kg (Occupational) or 0.8W/kg (General population) Choose applicable condition.

The Table below includes test results of the original measurement(s), the repeated measurement(s), and the ratio (SAR_{high}/SAR_{low}) for the applicable test configuration(s).

Table 28

Run#	Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq. (MHz)	Adj Calc. 1g-SAR (W/kg)	Ratio	Comments
HvH-Ab-140516-02	FAF5260A	NINITNIO 1 20D	DMI NIZOOOA	PMMN4040A	450,0000	4.75	1.04	No additional repeated scans is required due to the
HvH-Ab-140517-13	FAF3200A	NN1N0120D	PWLN/008A	PMIMIN4040A	430.0000	4.56	1.04	$\begin{array}{c} \text{Ratio} \\ (\text{SAR}_{\text{high}}/\text{SAR}_{\text{low}}) < \\ 1.20 \end{array}$

16.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value for Occupational exposure is less than 7.5W/kg.

Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

Appendix A Measurement Uncertainty Budget

Uncertainty Budget for Device Under Test, for 450 MHz

Uncertainty Budget for De	VICC	Chuc	1 10	t, IUI To	0 1411	1L			
							<i>h</i> =	<i>i</i> =	
а	b IEEE	c	d	e = f(d,k)	f	g	cxf/e	c x g / e	k
		Tol.	Prob		c_{i}	c_{i}	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	section			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	8
Combined Standard Uncertainty			RSS				12	11	482
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=2				23	23	

Notes for uncertainty budget Tables:

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) *ui* SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Appendix B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Motorola EME

Certificate No: ES3-3301_Aug13

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3301

Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v8, QA CAL-14.v4, QA CAL-23.v5,

QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: August 27, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: August 28, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
S Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3301_Aug13 Page 2 of 13

ES3DV3 - SN:3301

August 27, 2013

Probe ES3DV3

SN:3301

Manufactured: Calibrated:

August 27, 2010 August 27, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3301_Aug13

Page 3 of 13

ES3DV3- SN:3301 August 27, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3301

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m)²) ^A	1.48	1.02	1.24	± 10.1 %
DCP (mV) ^B	100.0	103.1	101.7	

Modula	tion	Calibration	Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^t (k=2)
0	cw	×	0.0	0.0	1.0	0.00	172.9	±3.0 %
		Y	0.0	0.0	1.0		142.1	
		Z	0.0	0.0	1.0		157.6	
10108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	×	6.10	66.1	19.2	5.80	108.6	±1.2 %
		Υ	6.21	66.9	19.7		123.8	
		Z	6.51	67.8	20.2		137.5	
10109- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	×	7.12	66.8	19.8	6.43	116.7	±1.4 %
		Υ	7.21	67.6	20.3		130.3	
		Z	7.50	68.3	20.6		146.1	
10110- CAB	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	×	5.86	65.8	19.1	5.75	107.0	±1.2 %
		Υ	5.90	66.4	19.5		120.2	
		Z	6.15	67.1	19.8		134.4	
10111- CAB	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	×	6.84	66.4	19.7	6.44	111.7	±1.2 %
		Y	6.89	67.1	20.1		126.3	
		Z	7.26	68.0	20.5		142.9	
10112- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	×	7.36	67.0	20.0	6.59	116.8	±1.7 %
		Y	7.47	67.9	20.5		133.1	
		Z	7.80	68.6	20.8		149.5	
10113- CAB	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	х	7.08	66.6	19.9	6.62	113.1	±1.4 %
		Υ	7.16	67.5	20.3		128.9	
		Z	7.51	68.2	20.7		144.8	
10142- CAB	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	6.17	67.5	20.1	5.73	148.0	±1.2 %
		Y	5.75	66.4	19.5		119.5	
		Z	5.99	67.0	19.8		132.7	
10143- CAB	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	x	6.60	66.4	19.6	6.35	109.0	±1.4 %
		Υ	6.66	67.2	20.1		124.9	
		Z	6.97	67.7	20.3		139.8	
10145- CAB	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	×	5.85	67.1	19.9	5.76	142.6	±1.2 %
		Υ	5.50	66.3	19.5		115.9	
		Z	5.74	66.6	19.6		129.0	
10146- CAB	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	×	6.80	68.1	20.6	6.41	147.0	±1.4 %
		Υ	6.32	67.1	20.1		119.0	
		Z	6.69	67.7	20.4		133.0	

Certificate No: ES3-3301_Aug13

ES3DV3- SN:3301 August 27, 2013

10154- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	6.31	67.6	20.2	5.75	149.1	±1.2 %
		Y	5.93	66.6	19.6		122.0	
		z	6.18	67.2	19.9		135.0	
10155- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	х	6.84	66.4	19.7	6.43	110.9	±1.2 %
		Y	6.88	67.1	20.0		129.0	
		Z	7.24	68.0	20.5		143.3	
10156- CAB	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	×	6.09	67.3	20.1	5.79	145.5	±1.2 %
		Υ	5.68	66.2	19.5		119.4	
		Z	5.97	66.9	19.8		132.3	
10157- CAB	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	х	6.58	66.3	19.7	6.49	106.7	±1.2 %
		Υ	6.59	66.9	20.0		123.8	
		Z	7.00	67.9	20.5		138.6	
10158- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	7.04	66.5	19.7	6.62	111.3	±1.4 %
		Υ	7.09	67.2	20.1		130.3	
		Z	7.54	68.3	20.8		145.1	
10159- CAB	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	×	6.67	66.3	19.7	6.56	107.7	±1.2 %
		Y	6.69	67.0	20.1		124.5	
		Z	7.14	68.0	20.6		139.8	
10166- CAB	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	х	5.22	66.6	19.6	5.46	134.3	±0.9 %
		Y	4.89	65.9	19.2		112.2	
		Z	5.15	66.4	19.5		124.6	
10167- CAB	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	×	6.12	67.5	20.3	6.21	135.5	±1.2 %
		Y	5.71	66.9	20.0		112.6	
		z	6.11	67.5	20.3		126.3	
10175- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	5.04	66.7	19.9	5.72	128.1	±0.9 %
		Υ	4.99	67.3	20.3		146.6	
10170		Z	5.01	66.6	19.8		118.6	
10176- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	х	5.82	67.8	20.8	6.52	127.4	±1.2 %
		Υ	5.74	68.6	21.4		144.6	
40477	LTC CDD (OO FOLK)	Z	5.76	67.6	20.6		118.3	
10177- CAC	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	х	5.06	66.8	19.9	5.73	128.2	±0.9 %
		Y	5.09	67.9	20.7		146.2	
40470	1 TE EDD (00 ED) (4 DD 6 (1))	Z	5.02	66.7	19.8		118.5	
10178- CAB	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	×	5.83	67.8	20.8	6.52	127.4	±1.2 %
		Y	5.80	68.9	21.6		146.0	
40470	1 TE FDD /00 FD144 4 FD 40 ****	Z	5.78	67.7	20.7		118.4	
10179- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	×	5.81	67.8	20.7	6.50	127.6	±1.2 %
		Y	5.76	68.8	21.4		144.7	
10100		Z	5.75	67.6	20.6		118.2	
10180- CAB	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	×	5.82	67.9	20.8	6.50	127.5	±1.2 %
		Υ	5.74	68.7	21.4		144.5	
		Z	5.79	67.8	20.7		118.8	

Certificate No: ES3-3301_Aug13

ES3DV3-- SN:3301 August 27, 2013

10184- CAB	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	Х	5.03	66.6	19.8	5.73	127.1	±0.9 %
		Υ	5.05	67.7	20.5		145.7	
		z	5.02	66.6	19.8		119.3	
10185- CAB	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	×	5.79	67.6	20.7	6.51	127.2	±1.2 %
		Υ	5.74	68.6	21.4		144.0	
		Z	5.81	67.8	20.7		118.5	
10187- CAB	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	x	5.05	66.7	19.9	5.73	128.0	±0.9 %
		Υ	5.08	67.8	20.6		145.3	
		Z	5.02	66.6	19.8		119.3	
10188- CAB	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	х	5.81	67.7	20.7	6.52	127.6	±0.9 %
		Υ	5.71	68.4	21.2		142.0	
		Z	5.80	67.7	20.7		119.2	
10298- AAA	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	х	5.93	67.2	19.9	5.72	142.2	±1.2 %
		Υ	5.54	66.3	19.5		115.7	
		Z	5.85	66.9	19.8		132.3	
10299- AAA	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	х	6.95	68.3	20.7	6.39	149.5	±1.4 %
		Υ	6.47	67.3	20.2		119.7	
		z	6.86	68.0	20.5		137.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 7 and 8).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3-SN:3301 August 27, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3301

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	45.3	0.87	7.40	7.40	7.40	0.27	1.18	± 13.4 %
450	43.5	0.87	6.85	6.85	6.85	0.20	2.30	± 13.4 %
750	41.9	0.89	6.39	6.39	6.39	0.29	1.93	± 12.0 %
900	41.5	0.97	6.06	6.06	6.06	0.34	1.77	± 12.0 %
1810	40.0	1.40	5.17	5.17	5.17	0.67	1.27	± 12.0 %
1950	40.0	1.40	5.00	5.00	5.00	0.49	1.54	± 12.0 %
2300	39.5	1.67	4.83	4.83	4.83	0.67	1.33	± 12.0 %
2450	39.2	1.80	4.55	4.55	4.55	0.66	1.43	± 12.0 %
2600	39.0	1.96	4.38	4.38	4.38	0.80	1.32	± 12.0 %
3500	37.9	2.91	4.22	4.22	4.22	1.00	1.18	± 13.1 %
3700	37.7	3.12	3.98	3.98	3.98	1.00	1.12	± 13.1 %

 $^{^{}c}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the CornF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the CornF uncertainty for indicated target tissue parameters.

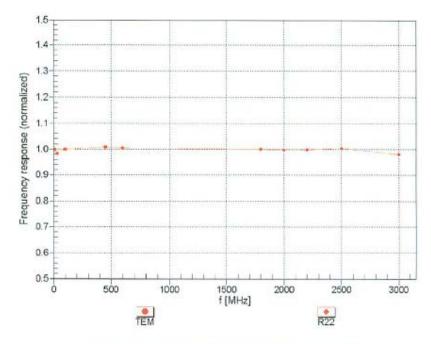
ES3DV3-SN:3301

August 27, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3301

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	58.2	0.92	7.07	7.07	7.07	0.22	1.61	± 13.4 %
450	56.7	0.94	7.11	7.11	7.11	0.09	1.20	± 13.4 %
750	55.5	0.96	6.01	6.01	6.01	0.38	1.77	± 12.0 %
900	55.0	1.05	5.89	5.89	5.89	0.51	1.49	± 12.0 %
1810	53.3	1.52	4.80	4.80	4.80	0.68	1.32	± 12.0 %
1950	53.3	1.52	4.76	4.76	4.76	0.58	1.56	± 12.0 %
2300	52.9	1.81	4.40	4.40	4.40	0.80	1.22	± 12.0 %
2450	52.7	1.95	4.23	4.23	4.23	0.80	1.04	± 12.0 %
2600	52.5	2.16	4.04	4.04	4.04	0.80	1.01	± 12.0 %
3500	51.3	3.31	3.81	3.81	3.81	1.00	1.01	± 13.1 %
3700	51.0	3.55	3.58	3.58	3.58	1.00	1.22	± 13.1 %

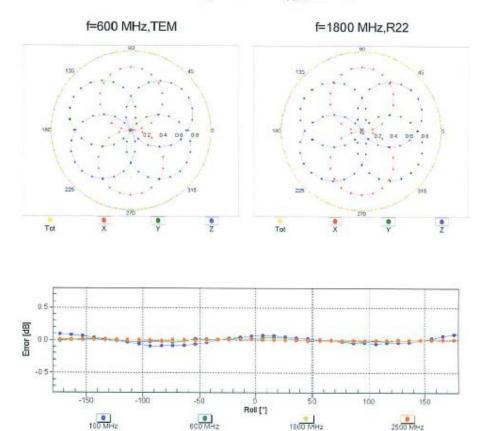

 $^{^{}c}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ES3DV3-SN:3301

August 27, 2013

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

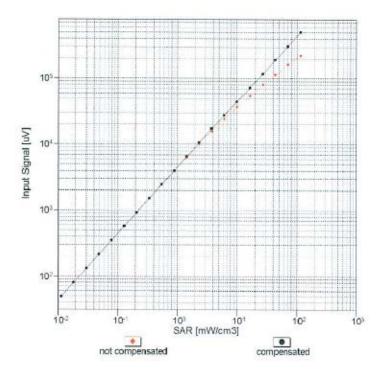

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

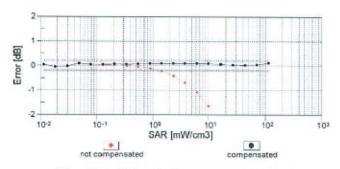
Certificate No: ES3-3301_Aug13

Page 9 of 13

ES3DV3- SN:3301 August 27, 2013

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

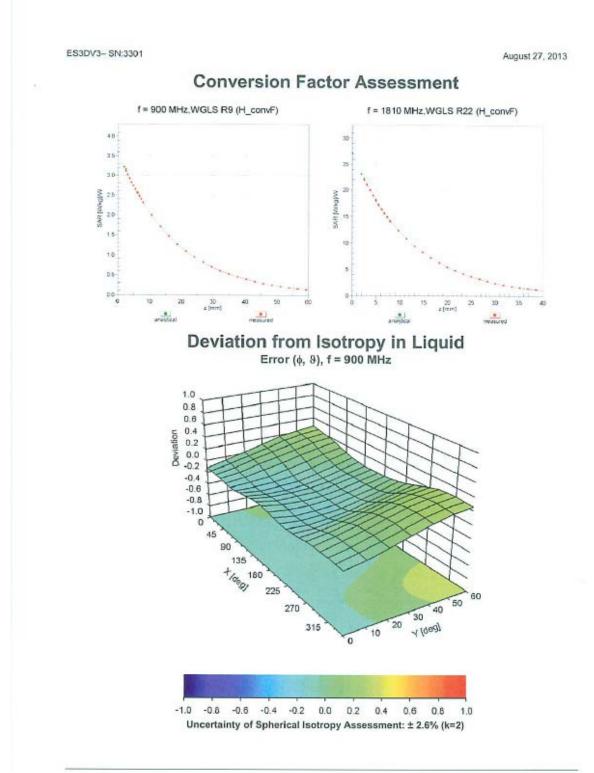



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

ES3DV3-SN:3301

August 27, 2013

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3301_Aug13

Page 11 of 13

Page 12 of 13

ES3DV3- SN:3301 August 27, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3301

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-73.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Туре:	ES3DV3
Serial Number:	3301
Place of Assessment:	Zurich
Date of Assessment:	August 29, 2013
Probe Calibration Date:	August 27, 2013

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 450, 900 or at 1810 MHz.

Assessed by:

ES3DV3-SN:3301 Page 1 of 2 August 29, 2013

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV3 SN:3291

Conversion factor (± standard deviation)

 $\varepsilon_r = 52.3 \pm 5\%$ 150 ± 50 MHz 8.24 ± 10% ConvF $\sigma = 0.76 \pm 5\% \text{ mho/m}$ (head tissue) $250 \pm 50 \text{ MHz}$ $7.67 \pm 10\%$ $\varepsilon_r = 47.6 \pm 5\%$ ConvF $\sigma = 0.83 \pm 5\%$ mho/m (head tissue) $150 \pm 50 \; \mathrm{MHz}$ $\varepsilon_r\!=61.9\pm5\%$ ConvF $7.85 \pm 10\%$ $\sigma = 0.80 \pm 5\% \text{ mho/m}$ (body tissue) $250 \pm 50 \text{ MHz}$ ConvF 7.57 ± 10% $\varepsilon_r = 59.4 \pm 5\%$ $\sigma = 0.88 \pm 5\% \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY Manual.

ES3DV3-SN:3301

Page 2 of 2

August 29, 2013

Appendix C Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Motorola EME

Certificate No: D450V3-1075_Jul13

Accreditation No.: SCS 108

S

C

S

CALIBRATION CERTIFICATE

Object D450V3 - SN: 1075

Calibration procedure(s) QA CAL-15.v7

Calibration procedure for dipole validation kits below 700 MHz

Calibration date: July 23, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ET3DV6	SN: 1507	28-Dec-12 (No. ET3-1507_Dec12)	Dec-13
DAE4	SN: 654	18-Jul-13 (No. DAE4-654_Jul13)	Jul-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1 12
Approved by:	Katja Pokovic	Technical Manager	Mu.

Certificate No: D450V3-1075_Jul13

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: July 23, 2013

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the sign

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1075_Jul13

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.0 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.73 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.794 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.13 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.1 ± 6 %	0.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.51 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	0.754 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	2.99 W/kg ± 17.6 % (k=2)

Certificate No: D450V3-1075_Jul13

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.8 Ω - 2.2 jΩ
Return Loss	- 22.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	56.5 Ω - 4.4 jΩ
Return Loss	- 22.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 24, 2010

Certificate No: D450V3-1075_Jul13

DASY5 Validation Report for Head TSL

Date: 23.07.2013

Test Laboratory: The name of your organization

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1075

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_r = 44$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ET3DV6 - SN1507; ConvF(6.59, 6.59, 6.59); Calibrated: 28.12.2012;

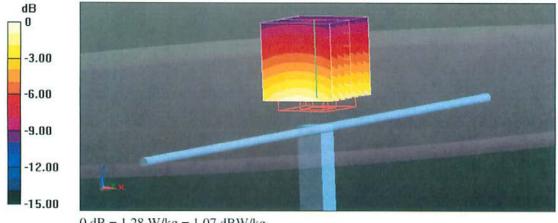
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 18.07.2013

Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003

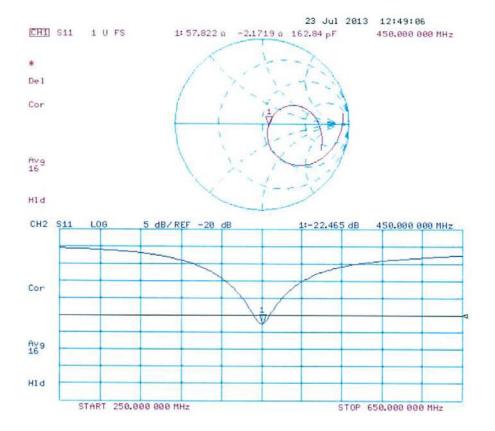
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.426 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.84 W/kg


SAR(1 g) = 1.2 W/kg; SAR(10 g) = 0.794 W/kg

Maximum value of SAR (measured) = 1.28 W/kg

0 dB = 1.28 W/kg = 1.07 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.07.2013

Test Laboratory: The name of your organization

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1075

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.95$ S/m; $\varepsilon_r = 56.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ET3DV6 - SN1507; ConvF(7.03, 7.03, 7.03); Calibrated: 28.12.2012;

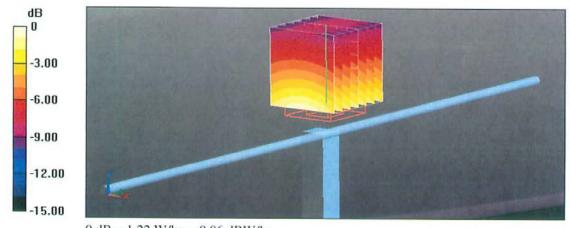
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 18.07.2013

Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003

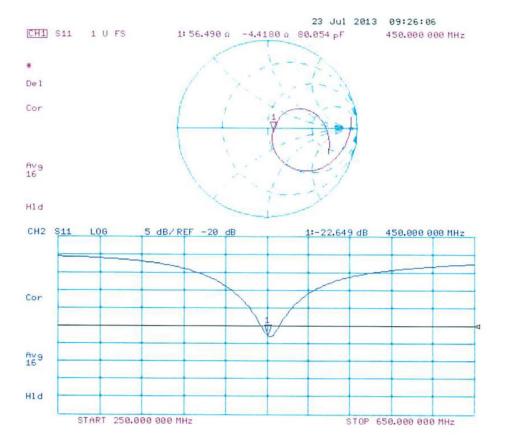
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.426 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.78 W/kg


SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.754 W/kg

Maximum value of SAR (measured) = 1.22 W/kg

0 dB = 1.22 W/kg = 0.86 dBW/kg

Impedance Measurement Plot for Body TSL

