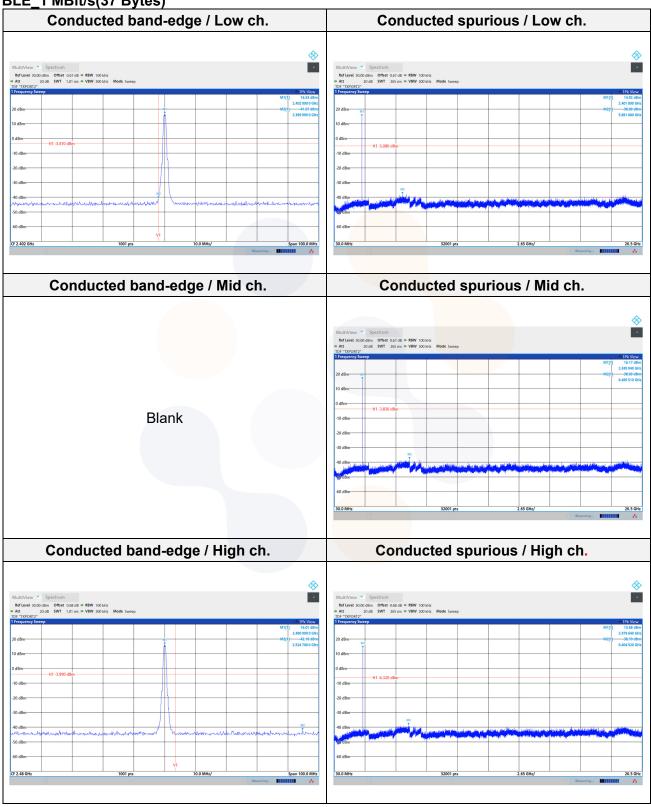

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR25-SRF0039 Page (59) of (64)

BLE_2 MBit/s(37 Bytes)

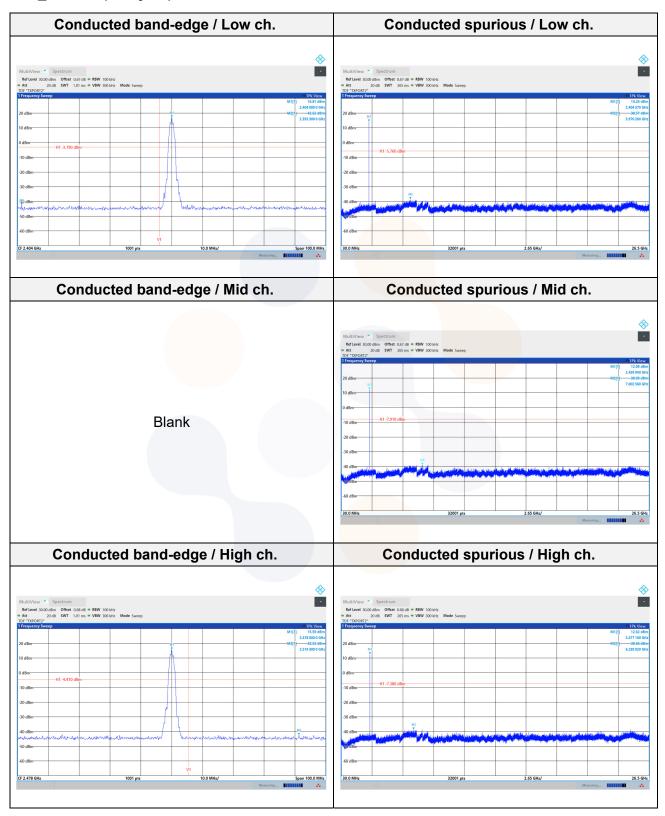
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311


www.kctl.co.kr

Report No.: KR25-SRF0039 Page (60) of (64)

ANT2

BLE_1 MBit/s(37 Bytes)

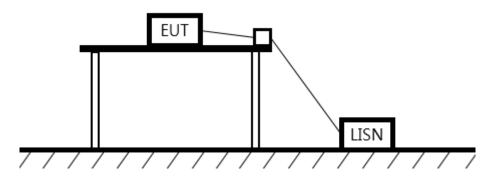

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR25-SRF0039 Page (61) of (64)

BLE_2 MBit/s(37 Bytes)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311


www.kctl.co.kr

Report No.: KR25-SRF0039 Page (62) of (64)

7.6. AC Conducted emission

Test setup

Limit

According to 15.207(a),

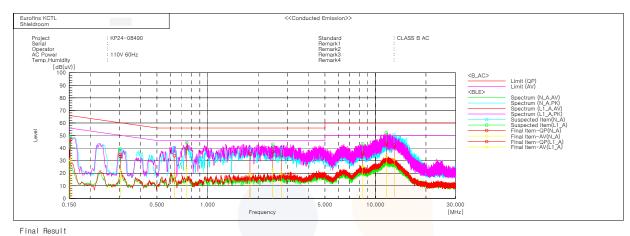
for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 \(\frac{110}{100}\) to 30 \(\frac{110}{100}\), shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Fraguency of Emission (Mk)	Conducted limit (dBµV/m)			
Frequency of Emission (咃)	Quasi-peak	Average		
0.15 – 0.50	66 - 56*	56 - 46*		
0.50 – 5.00	56	46		
5.00 – 30.0	60	50		

Measurement procedure

- 1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu H$ LISN, which is an input transducer to a spectrum analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.
- 5. The measurements were made with the detector set to peak amplitude within a bandwidth of 10 kHz or to quasi-peak and average within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311


<u>www.kctl.co.kr</u>

Report No.: KR25-SRF0039 Page (63) of (64)

Test results

Worst case: ANT1_2 MBits/s(37 Bytes) 2 440 Mb

1 1110										
No.	N_A Phase - Frequency	 Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin
	[MHz]	QP [dB(uV)]	CAV [dB(uV)]	[dB]	QP [dB(uV)]	CAV [dB(uV)]	QP [dB(uV)]	AV [dB(uV)]	QP [dB]	CAV [dB]
1	0.15292	36.7	20.0	10.1	46.8	30.1	65.8	55.8	19.0	25.7
2	0.30205 0.63448	23.5 23.9	6.3 7.8	9.9	33.4 33.9	16.2 17.8	60.2 56.0	50.2 46.0	26.8 22.1	34.0 28.2
4 5	1.7891 2.74833	25.5 24.3	9.2 10.1	10.0 10.1	35.5 34.4	19.2 20.2	56.0 56.0	46.0 46.0	20.5 21.6	26.8 25.8
6	12.9075	32.0	20.4	10.5	42.5	30.9	60.0	50.0	17.5	19.1
	L1_A Phase									
No.	Frequency	Reading QP	Reading CAV	c.f	Result QP	Result CAV	Limit QP	Limit AV	Margin OP	Margin CAV
	[MHz]	[dB(uV)]	[dB(uV)]	[dB]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB(uV)]	[dB]	[dB]
2	0.15105 0.3018	35.9 24.9	21.0 12.5	10.0 9.9	45.9 34.8	31.0 22.4	65.9 60.2	55.9 50.2	20.0 25.4	24.9 27.8
3 4	0.74749 2.44916	29.9 26.9	13.6 12.7	10.0 10.1	39.9 37.0	23.6 22.8	56.0 56.0	46.0 46.0	16.1 19.0	22.4 23.2
5	8.39779 11.5878	25.5 32.9	15.0 22.9	10.3	35.8	25.3 33.3	60.0	50.0	24.2 16.7	24.7 16.7
0	11.3678	32.9	22.9	10.4	43.3	33.3	60.0	50.0	10.7	10.7

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR25-SRF0039 Page (64) of (64)

KCTL

8. Measurement equipment

	ent equipment		1		
Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date	
Controller	INNCO SYSTEMS	CO3000	1441/54370322/P	-	
Antenna Mast	INNCO SYSTEMS	MA4640-XP-ET	AM003	-	
Turn Device	INNCO SYSTEMS	DS1200-S-1t	0003	-	
Antenna Mast	Innco Systems	MA4640-XP-ET	MA4000/396/3081 0213/L	-	
Controller	Innco Systems	CO3000	1175/45850319/P	-	
Spectrum Analyzer	R&S	FSV40	100988	25.05.27	
Amplifier	SONOMA INSTRUMENT	310N	421910	25.10.11	
Bilog Antenna	Teseq GmbH	CBL 6112D	61521	26.12.11	
Loop Antenna	R&S	HFH <mark>2-Z2</mark>	100355	26.06.25	
Vector Signal Generator	R&S	SMB <mark>V100A</mark>	257566	25.07.01	
Spectrum Analyzer	R&S	FSVA40	101575	25.04.24	
Broadband PreAmplifier	SCHWARZBECK	BBV9718D	57	26.01.16	
Low Noise Amplifier	TESTEK	TK-PA18H	220124-L	25.10.11	
Low Noise Amplifier	TESTEK	TK-PA1840H	220133-L	25.10.14	
Horn Antenna	SCHWARZBECK	BBHA9120D	2763	25.10.24	
Horn Antenna	SCHWARZBECK	BBHA9170	1267	25.10.15	
High Pass Filter	QOTANA TECHNOLOGIES	DBHF0508004000A	23041800061	25.06.24	
High Pass Filter	dainwright Instruments WHKX12-2805-3000-GmbH SN58		SN58	25.10.15	
TWO-LINE V - NETWORK	R&S	ENV216	101358	25.10.13	
EMI TEST RECEIVER	R&S	ESCI3	101428	25.08.12	
Spectrum Analyzer	R&S	FSV40	100989	25.10.10	
Horn antenna	ETS.lindgren	3117	00251528	26.01.21	
AMPLIFIER	B&Z Technologies	BZR-0050400- 551028-252525	27736	25.06.24	
Attenuator	API Inmet	40AH2W-10	12	25.04.30	
Signal Generator	R&S	SMB100A	176206	26.01.17	
Signal & Spectrum Analyzer	R&S	FSV3030	1330.5000K30- 101710-Wt	25.07.02	
Attenuator	API Inmet	40AH2W-10	14	25.04.30	
DC Power Supply	ower Supply AGILENT		KR94907664	25.04.24	
Power Sensor R&S		NRP-Z81	1137.9009.02- 106225-JM	25.04.24	
Attenuator	HP	8491A	18591	26.01.17	
*This squipment was salil		oried and was used off	P1 C		

^{*}This equipment was calibrated during the test period, and was used after calibration.

End of test report