SAR evaluation

FCC ID: 2AACS-INF321

MPE Calculation Method $E \ (V/m) = (30*P*G)^{-0.5}/d$ Power Density: Pd $(W/m2) = E^2/377$ $E = Electric Field \ (V/m)$ P = Peak RF output Power (W) G = EUT Antenna numeric gain (numeric) $d = Separation \ distance \ between \ radiator \ and \ human \ body \ (m)$ The formula can be changed to $Pd = (30*P*G) \ / \ (377*d^2)$ From the peak EUT RF output power, the minimum mobile separation distance, $d=0.2m, \ as \ well$ as the gain of the used antenna, the RF power density can be obtained.

Calculated WIFI Result and Limit (WORSE CASE IS AS BELOW)

Antenna	Peak Output	Power Density	Limit of Power	Test
Gain	Power (mW)	(S) (mW/cm2)	Density (S)	Result
(Numeric)			(mW/cm2)	
4.40	87.90	0.0482	1	Compiles
(2.754dBi)	(19.44dBm)			

Note:

Antenna Gain: 1.39dBi (2.4G Band) Assembly Antenna Gain: 4.40dBi

Assembly Antenna Gain (Numeric): 2.754dBi

ERP=19.44+4.40-2.15=21.69dBm(147.57mW)

WIFI 2.4G band and 5G band cannot transmit Simultaneously

Calculated Bluetooth Result and Limit (WORSE CASE IS AS BELOW)

```
eirp = pt x gt = (EXd)^2/30 where:

pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

E = electric field strength in V/m, --- 10^{((dBuV/m)/20)}/10^6

d = measurement distance in meters (m)---3m

So pt = (EXd)^2/(30 \text{ x gt})
```

Ant gain =1.39dBi so Ant numeric gain= 1.377

Field strength =93.87dB μ V/m @3m@2440MHz

So $Pt=\{[10^{(93.87/20)}/10^6 x3]^2/(30x1.377)\}x1000 mW = 0.5311mW$

Antenna Gain	Peak Output	Power Density	Limit of Power	Test
(Numeric)	Power (mW)	(S) (mW/cm2)	Density (S)	Result
			(mW/cm2)	
1.39 (1.377dBi)	0.5311	0.00015	1	Compiles
	(-2.75dBm)			

Note:

Antenna Gain: 1.39dBi (2.4G Band)

Assembly Antenna Gain (Numeric): 1.377dBi

ERP=-2.75-2.15=-4.90 dBm(0.32mW)

BT BDR/EDR and BLE cannot transmit Simultaneously

$$\sum_{i=1}^{a} \frac{P_i}{P_{\text{th},i}} = 87.90/3060 + 0.5311/3060 = 0.02887$$

$$\sum_{j=1}^{b} \frac{ERP_{j}}{ERP_{\text{th},j}}$$
= (147.57+0.32)/3060 = 0.04833

$$\sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} = (0.0482 + 0.00015) / 1 = 0.04835$$

$$\sum_{i=1}^{a} \frac{P_i}{P_{\text{th},i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{\text{th},j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \leq 1$$

0.02887+0.04833+0.04835=0.12555<1