FCC RF Test Report

APPLICANT : Lenovo(Shanghai) Electronics

Technology Co., Ltd.

EQUIPMENT: Portable Tablet Computer

BRAND NAME : Lenovo

MODEL NAME : TB305FU

FCC ID : O57TB305FU

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DSS) Spread Spectrum Transmitter

TEST DATE(S) : Nov. 12, 2024 ~ Dec. 07, 2024

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Report No.: FR4N0501A

Sporton International Inc. (Kunshan)

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 1 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Test Software	6
	1.8	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	TEST	RESULT	11
	3.1	Number of Channel Measurement	11
	3.2	Hopping Channel Separation Measurement	12
	3.3	Dwell Time Measurement	13
	3.4	20dB and 99% Bandwidth Measurement	14
	3.5	Output Power Measurement	15
	3.6	Conducted Band Edges Measurement	16
	3.7	Conducted Spurious Emission Measurement	17
	3.8	Radiated Band Edges and Spurious Emission Measurement	18
	3.9	AC Conducted Emission Measurement	22
	3.10	Antenna Requirements	24
4	LIST	OF MEASURING EQUIPMENT	25
5	MEAS	SUREMENT UNCERTAINTY	26
ΑP	PENDI	X A. CONDUCTED TEST RESULTS	
ΑP	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
ΑP	PENDI	X C. RADIATED SPURIOUS EMISSION	
ΑP	PENDI	X D. DUTY CYCLE PLOTS	
ΑP	PENDI	X E. SETUP PHOTOGRAPHS	

TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 2 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report No.: FR4N0501A

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR4N0501A	Rev. 01	Initial issue of report	Dec. 20, 2024

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 3 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report No.: FR4N0501A

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	-	Report only	-
3.4	-	99% Bandwidth	-	Report only	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 15.01 dB at 2483.600 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 8.10 dB at 0.194 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or
 in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of
 non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 4 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report No.: FR4N0501A

1 General Description

1.1 Applicant

Lenovo(Shanghai) Electronics Technology Co., Ltd.

Section 304-305, Building No. 4, # 222, Meiyue Road, China (Shanghai) Pilot Free Trade Zone

1.2 Manufacturer

Lenovo PC HK Limited

23/F, Lincoln House, Taikoo Place 979 King's Road, Quarry Bay, Hong Kong, China

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Portable Tablet Computer			
Brand Name	Lenovo			
Model Name	TB305FU			
FCC ID	O57TB305FU			
	Conducted: HA238GV1			
SN Code	Conduction: HA237BHJ			
	Radiation: HA2381XG			
HW Version	TB305FU			
SW Version	TB305FU_RF01_241207			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 10.76 dBm (0.0119 W) Bluetooth EDR (2Mbps) : 9.96 dBm (0.0099 W) Bluetooth EDR (3Mbps) : 10.03 dBm (0.0101 W)			
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.764MHz Bluetooth EDR (2Mbps) : 1.142MHz Bluetooth EDR (3Mbps) : 1.121MHz			
Antenna Type / Gain	PIFA Antenna type with gain -2.10 dBi			
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) :π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

 Sporton International Inc. (Kunshan)
 Page Number
 : 5 of 26

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 20, 2024

 FCC ID: O57TB305FU
 Report Version
 : Rev. 01

Report Template No.: BU5-FR15CBT Version 2.0

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)					
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone					
Test Site Location	Jiangsu Province 215300 People's Republic of China					
	TEL: +86-512-57900158					
	Sporton Site No.	ECC Designation No.	FCC Test Firm			
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.			
Test Site NO.	CO01-KS 03CH05-KS TH01-KS	CN1257	314309			

1.7 Test Software

Item	Site	Manufacturer	Name	Version
1.	TH01-KS	Tonscend	JS1120-3 test system China_210602	3.3.10
2.	03CH05-KS	AUDIX	E3	210616
3.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 6 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report No.: FR4N0501A

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 7 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 2.0

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

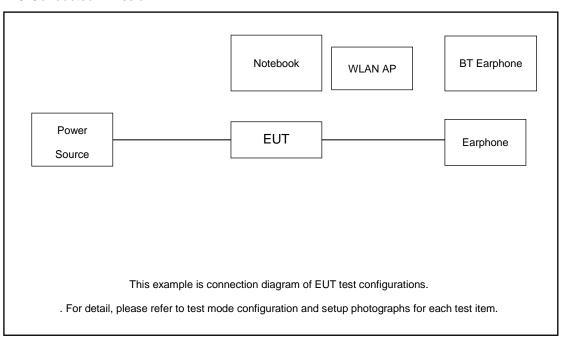
Summary table of Test Cases						
	Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
	GFSK	π/4-DQPSK	8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
	Bluetooth BR 1Mbps GFSK					
		Bidetootii Bit Twibps Of Sit				
Radiated		Mode 1: CH00_2402 MHz				
Radiated Test Cases		·				
		Mode 1: CH00_2402 MHz				
	Market Blackett III	Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz Mode 3: CH78_2480 MHz				
Test Cases		Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz				
Test Cases	Mode 1 : Bluetooth Link + V + Earphone1	Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz Mode 3: CH78_2480 MHz				

Remark:

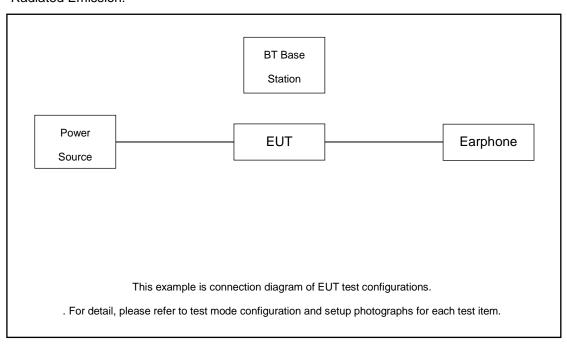
- 1. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 2. For Radiated Test Cases, The tests were performed with Adapter1, Earphone1 and USB Cable1.

Sporton International Inc. (Kunshan)
TEL: +86-512-57900158

TEL: +86-512-57900158 Report Issued Date: Dec. 20, 2024
FCC ID: O57TB305FU Report Version: Rev. 01


Report Template No.: BU5-FR15CBT Version 2.0

: 8 of 26


Page Number

2.3 Connection Diagram of Test System

AC Conducted Emission:

Radiated Emission:

TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 9 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report No.: FR4N0501A

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	BT Base Station	R&S	CBT	N/A	N/A	Unshielded, 1.8m
2.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
3.	Notebook	Lenovo	V130-15IKB005	N/A	N/A	shielded cable DC O/P 1.8m , Unshielded AC I/P cable 1.8m
4.	Bluetooth Earphone	Lenovo	thinkplus-BH3	N/A	N/A	N/A
5.	SD Card	Kingston	8GB	N/A	N/A	N/A
6.	Earphone1	Lenovo	HF170	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 11.86 dB and 10dB attenuator.

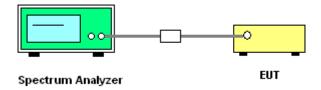
Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$11.86 + 10 = 21.86$$
 (dB)

3 **Test Result**

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

Report Template No.: BU5-FR15CBT Version 2.0

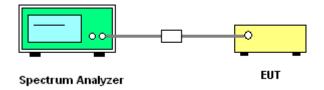
Report No.: FR4N0501A

FCC ID: O57TB305FU

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

 Sporton International Inc. (Kunshan)
 Page Number
 : 12 of 26

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 20, 2024

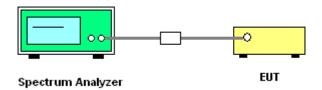
 FCC ID: O57TB305FU
 Report Version
 : Rev. 01

Report Template No.: BU5-FR15CBT Version 2.0

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 13 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report No.: FR4N0501A

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.

Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;

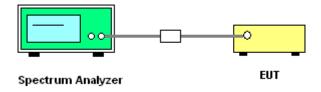
The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;

Sweep = auto; Detector function = peak;

Trace = max hold.

5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.

Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;


The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;

Sweep = auto; Detector function = peak;

Trace = max hold.

6. Measure and record the results in the test report.

3.4.4 Test Setup

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

Sporton International Inc. (Kunshan)

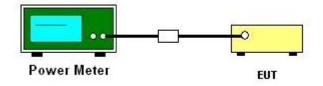
TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 14 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report No.: FR4N0501A

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

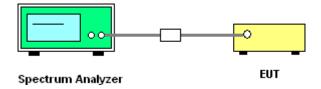
TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 15 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report No.: FR4N0501A

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

3.6.5 Test Result of Conducted Band Edges

Please refer to Appendix A.

3.6.6 Test Result of Conducted Hopping Mode Band Edges

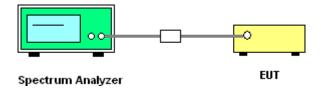
Please refer to Appendix A.

Report Template No.: BU5-FR15CBT Version 2.0

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

3.7.5 Test Result of Conducted Spurious Emission

Please refer to Appendix A.

Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 2.0

: 17 of 26

Report No.: FR4N0501A

FCC ID: O57TB305FU

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 18 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report No.: FR4N0501A

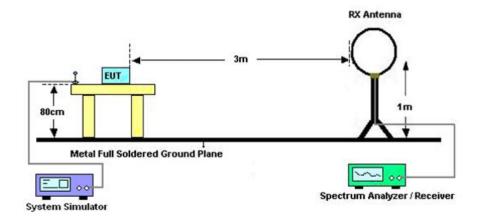
3.8.3 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

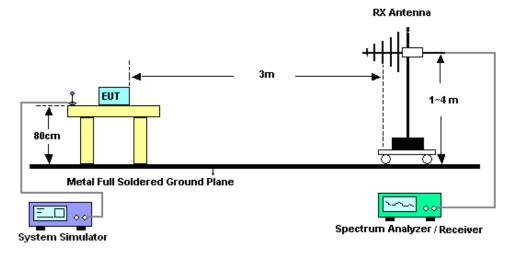
Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

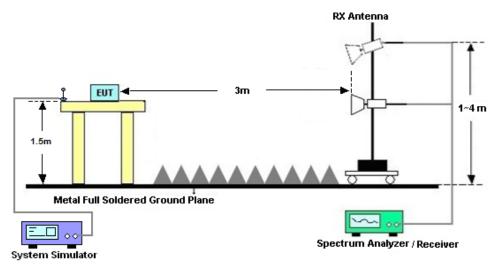
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.


Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 20 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report No.: FR4N0501A

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

Sporton International Inc. (Kunshan)
TEL: +86-512-57900158

FCC ID: O57TB305FU

Page Number : 21 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 2.0

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of emission (MHz)	Conducted limit (dBμV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

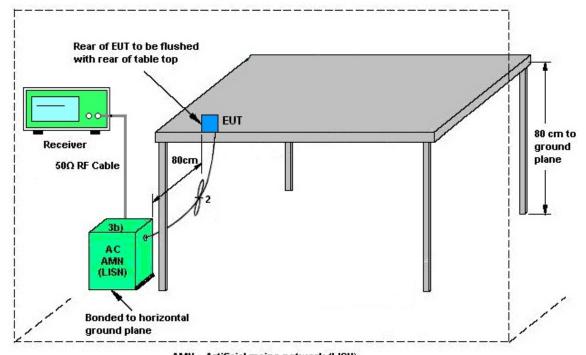
^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.


Sporton International Inc. (Kunshan)Page NumberTEL: +86-512-57900158Report Issued

TEL: +86-512-57900158 Report Issued Date: Dec. 20, 2024 FCC ID: O57TB305FU Report Version: Rev. 01

Report Template No.: BU5-FR15CBT Version 2.0

: 22 of 26

3.9.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 23 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report No.: FR4N0501A

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : 24 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 2.0

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 10, 2024	Nov. 12, 2024 ~Nov. 18, 2024	Oct. 09, 2025	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 02, 2024	Nov. 12, 2024 ~Nov. 18, 2024	Jan. 01, 2025	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 02, 2024	Nov. 12, 2024 ~Nov. 18, 2024	Jan. 01, 2025	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY572901 51	3Hz~8.5GHz;M ax 30dBm	Jul. 04, 2024	Nov. 16, 2024 ~Dec. 02, 2024	Jul. 03, 2025	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010B	MY602421 26	10Hz-44G,MAX 30dB	Oct. 10, 2024	Nov. 16, 2024 ~Dec. 02, 2024	Oct. 09, 2025	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2E	101125	9kHz~30MHz	Sep. 08, 2024	Nov. 16, 2024 ~Dec. 02, 2024	Sep. 07, 2025	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49921	30MHz-1GHz	Apr. 18, 2024	Nov. 16, 2024 ~Dec. 02, 2024	Apr. 17, 2025	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218642	1GHz~18GHz	Apr. 11, 2024	Nov. 16, 2024 ~Dec. 02, 2024	Apr. 10, 2025	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101093	18GHz~40GHz	Jan. 06, 2024	Nov. 16, 2024 ~Dec. 02, 2024	Jan. 05, 2025	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	381512	9KHz-1GHz	Jan. 02, 2024	Nov. 16, 2024 ~Dec. 02, 2024	Jan. 01, 2025	Radiation (03CH05-KS)
Amplifier	EM	EM18G40GA	060852	18~40GHz	Jan. 02, 2024	Nov. 16, 2024 ~Dec. 02, 2024	Jan. 01, 2025	Radiation (03CH05-KS)
high gain Amplifier	EM	EM01G18GA	060843	1Ghz-18Ghz	Jan. 03, 2024	Nov. 16, 2024 ~Dec. 02, 2024	Jan. 02, 2025	Radiation (03CH05-KS)
Amplifier	EM	EM01G18GA	060833	1Ghz-18Ghz	Jan. 03, 2024	Nov. 16, 2024 ~Dec. 02, 2024	Jan. 02, 2025	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Nov. 16, 2024 ~Dec. 02, 2024	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Nov. 16, 2024 ~Dec. 02, 2024	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Nov. 16, 2024 ~Dec. 02, 2024	NCR	Radiation (03CH05-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 18, 2024	Nov. 30, 2024 ~Dec. 07, 2024	Apr. 17, 2025	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Aug. 20, 2024	Nov. 30, 2024 ~Dec. 07, 2024	Aug. 19, 2025	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Apr. 18, 2024	Nov. 30, 2024 ~Dec. 07, 2024	Apr. 17, 2025	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 09, 2024	Nov. 30, 2024 ~Dec. 07, 2024	Oct. 08, 2025	Conduction (CO01-KS)

NCR: No Calibration Required

Sporton International Inc. (Kunshan) TEL: +86-512-57900158

FCC ID: O57TB305FU

Page Number : 25 of 26
Report Issued Date : Dec. 20, 2024
Report Version : Rev. 01

Report No.: FR4N0501A

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Conducted Spurious Emission & Bandedge	±2.26 dB
Occupied Channel Bandwidth	±0.1%
Conducted Power	±0.46 dB
Conducted Power Spectral Density	±0.88 dB
Frequency	±0.4 Hz

Uncertainty of AC Conducted Emission Measurement (0.15 MHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.84dB
of 95% (U = 2Uc(y))	2.04UB

Uncertainty of Radiated Emission Measurement (9 KHz ~ 30 MHz)

- 1		
	Measuring Uncertainty for a Level of Confidence	3.30dB
	of 95% (U = 2Uc(y))	3.30UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	6.02dB
0.0070 (0 =00(3))	

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence	5.22dB
of 95% (U = 2Uc(y))	3.22UB

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence	5.34dB
of 95% (U = 2Uc(y))	5.34UB

----- THE END -----

 Sporton International Inc. (Kunshan)
 Page Number
 : 26 of 26

 TEL: +86-512-57900158
 Report Issued Date
 : Dec. 20, 2024

 FCC ID: O57TB305FU
 Report Version
 : Rev. 01

Report Template No.: BU5-FR15CBT Version 2.0

Appendix A. Conducted Test Results

Sporton International Inc. (Kunshan) TEL: +86-512-57900158

FCC ID: O57TB305FU

Ambient Condition: <u>25</u> ℃, <u>45</u> %RH

Test Date: 2024.11.12~2024.11.18 Test Engineer: <u>Jiang Jun</u>

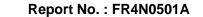
20dB Emission Bandwidth

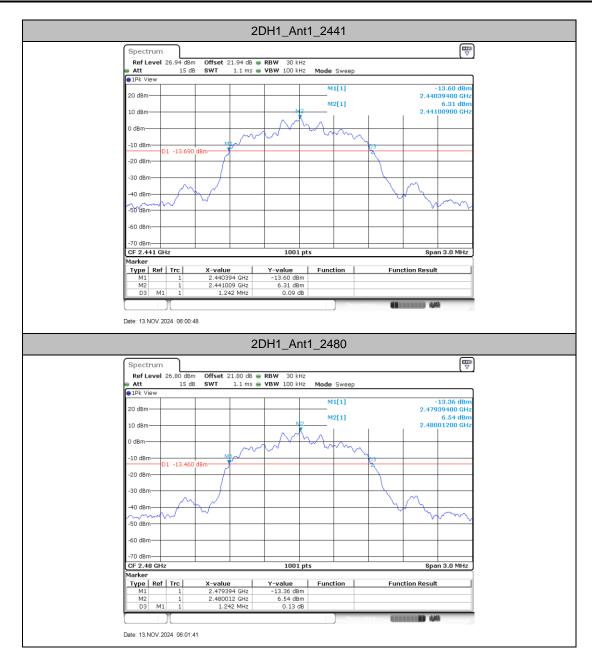

Test Result

TestMode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2402	0.86	2401.57	2402.43		
DH5		2441	0.86	2440.57	2441.43		
		2480	0.86	2479.57	2480.43		
2DH1	Ant1	2402	1.24	2401.39	2402.64		
		2441	1.24	2440.39	2441.64		
		2480	1.24	2479.39	2480.64		
3DH1	Ant1	2402	1.22	2401.42	2402.64		
		2441	1.22	2440.42	2441.64		
		2480	1.22	2479.42	2480.64		


Sporton International Inc. (Kunshan)

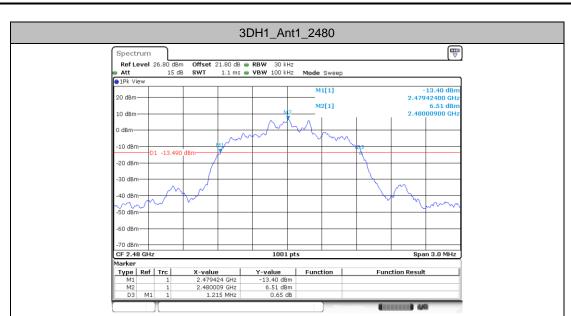
TEL: +86-512-57900158 FCC ID: O57TB305FU Page Number : A1 of A42


Test Graphs



TEL: +86-512-57900158 FCC ID: O57TB305FU

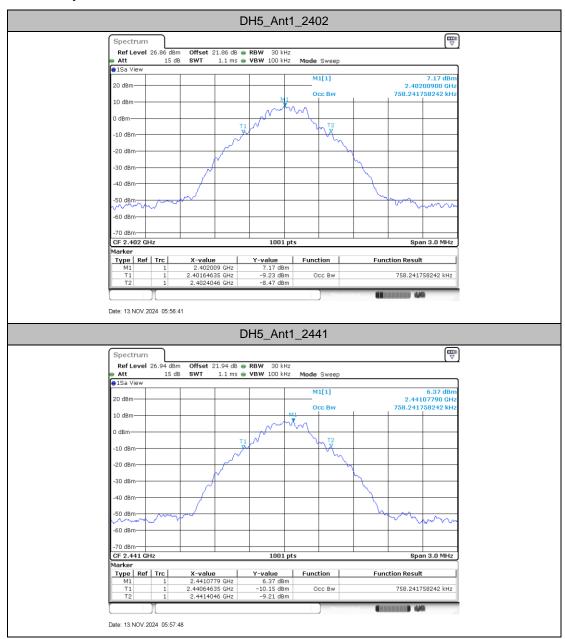

TEL: +86-512-57900158 FCC ID: O57TB305FU



TEL: +86-512-57900158 FCC ID: O57TB305FU

TEL: +86-512-57900158 FCC ID: O57TB305FU Date: 13.NOV.2024 06:04:52

TEL: +86-512-57900158 FCC ID: O57TB305FU


Occupied Channel Bandwidth

Test Result

TestMode	Antenna	Freq(MHz)	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.758	2401.6464	2402.4046		
DH5	Ant1	2441	0.758	2440.6464	2441.4046		
		2480	0.764	2479.6434	2480.4076		
2DH1	Ant1	2402	1.139	2401.4456	2402.5844		
		2441	1.139	2440.4456	2441.5844		
		2480	1.142	2479.4456	2480.5874		
3DH1	Ant1	2402	1.121	2401.4665	2402.5874		
		2441	1.121	2440.4665	2441.5874		
		2480	1.121	2479.4665	2480.5874		

TEL: +86-512-57900158 FCC ID: O57TB305FU

Test Graphs

TEL: +86-512-57900158 FCC ID: O57TB305FU

1001 pts

Function

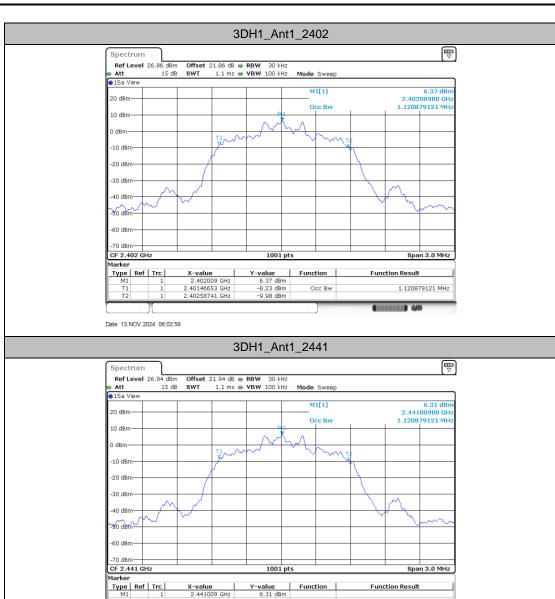
Occ Bw

X-value 2.402009 GHz 2.40144555 GHz 2.40258442 GHz

-60 dBm-

CF 2.402 GHz
Marker
Type Ref Trc

Date: 13.NOV.2024 05:59:50


TEL: +86-512-57900158 FCC ID: O57TB305FU Span 3.0 MHz

1.138861139 MHz

Function Result


1.120879121 MHz

Occ Bw

2.44046653 GHz 2.44158741 GHz

Date: 13.NOV.2024 06:04:07

Date: 13.NOV.2024 06:05:01

TEL: +86-512-57900158 FCC ID: O57TB305FU : A12 of A42

Maximum conducted output power

Test Result Peak

TestMode	Antenna	CH.	Peak Power (dBm)	Power Limit (dBm)	Pass/Fail
		0	10.53	20.97	Pass
DH5	Ant1	39	10.72	20.97	Pass
		78	10.76	20.97	Pass
		0	9.71	20.97	Pass
2DH1	Ant1	39	9.82	20.97	Pass
		78	9.96	20.97	Pass
		0	9.77	20.97	Pass
3DH1	Ant1	39	9.85	20.97	Pass
		78	10.03	20.97	Pass

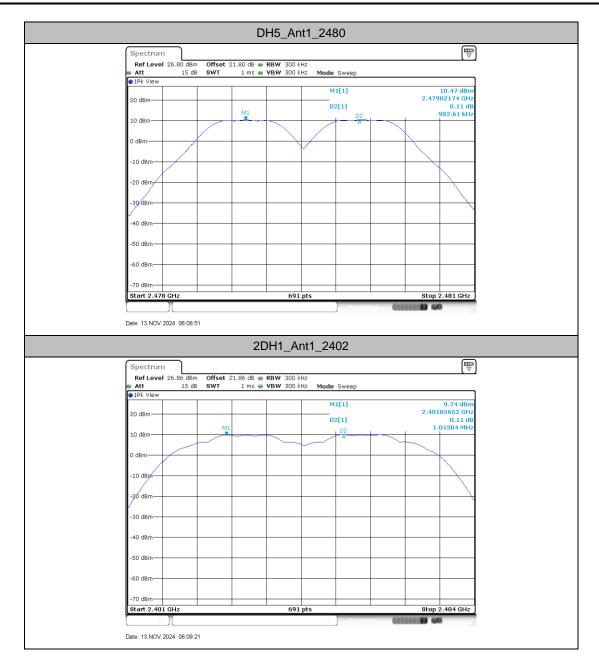
Note: power setting is the default

Carrier frequency separation

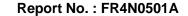
Test Result

TestMode	Antenna	Freq(MHz) Result[MHz]		Limit[MHz]	Verdict	
		2402	1	≥0.573	PASS	
DH5	Ant1	2441	0.996	≥0.573	PASS	
		2480	0.983	≥0.573	PASS	
	Ant1	2402	1.013	≥0.827	PASS	
2DH1		2441	1	≥0.827	PASS	
		2480	1	≥0.827	PASS	
	Ant1	2402	1.004	≥0.813	PASS	
3DH1		11 Ant1 244		1.009	≥0.813	PASS
		2480	1	≥0.813	PASS	

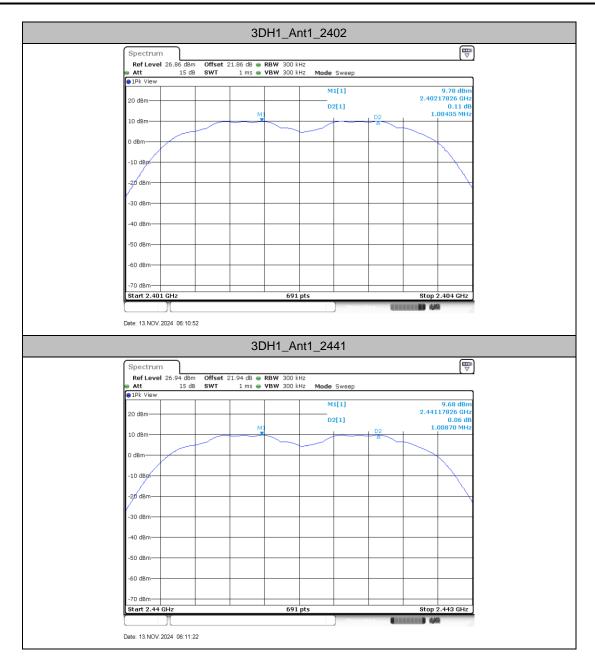
Sporton International Inc. (Kunshan) TEL: +86-512-57900158


FCC ID: O57TB305FU

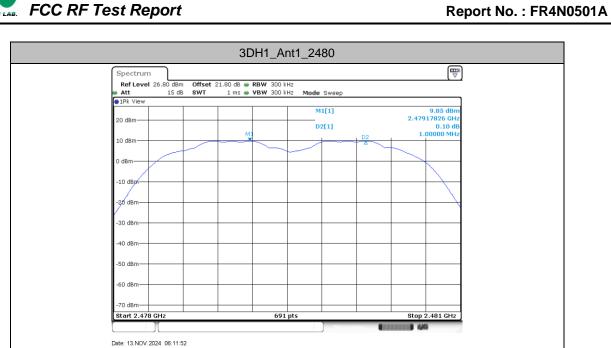
Test Graphs



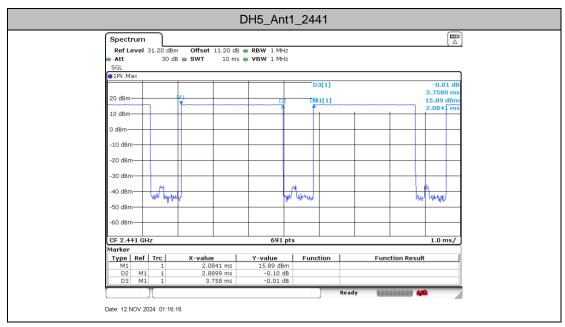
TEL: +86-512-57900158 FCC ID: O57TB305FU



: A15 of A42



: A17 of A42

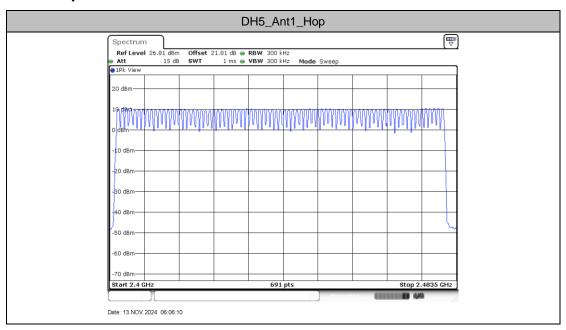


Time of occupancy

Test Result

TestMode	Antenna	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec) (MHz)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Normal	Ant1	79	106.67	2.8899	0.31	0.4	Pass
AFH	Ant1	20	53.33	2.8899	0.15	0.4	Pass

Test Graphs


TEL: +86-512-57900158 FCC ID: O57TB305FU

Number of hopping channels

Test Result

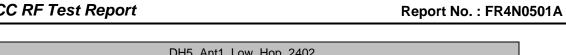
TestMode	Antenna	Freq(MHz)	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS

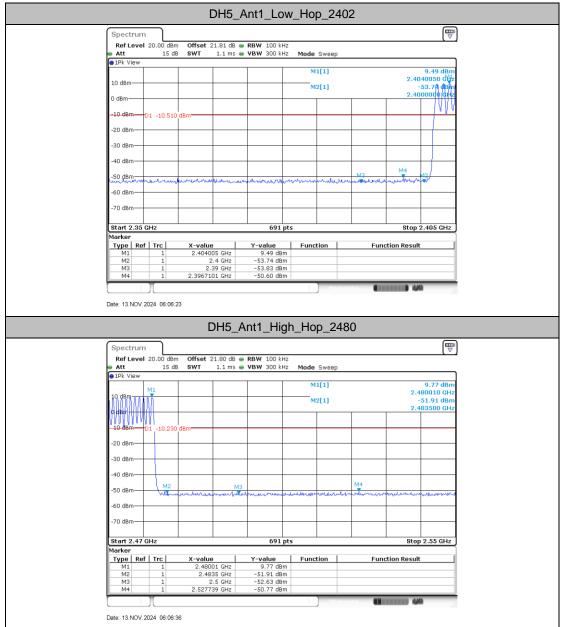
Test Graphs

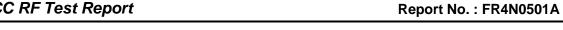
TEL: +86-512-57900158 FCC ID: O57TB305FU : A20 of A42

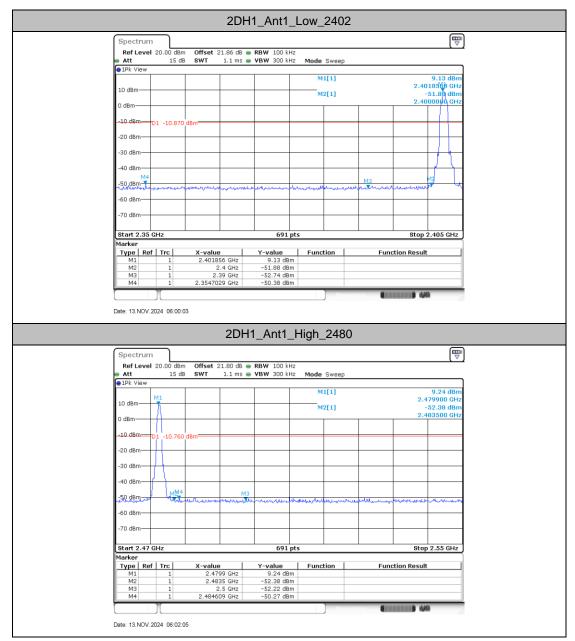
Band edge measurements

Test Result

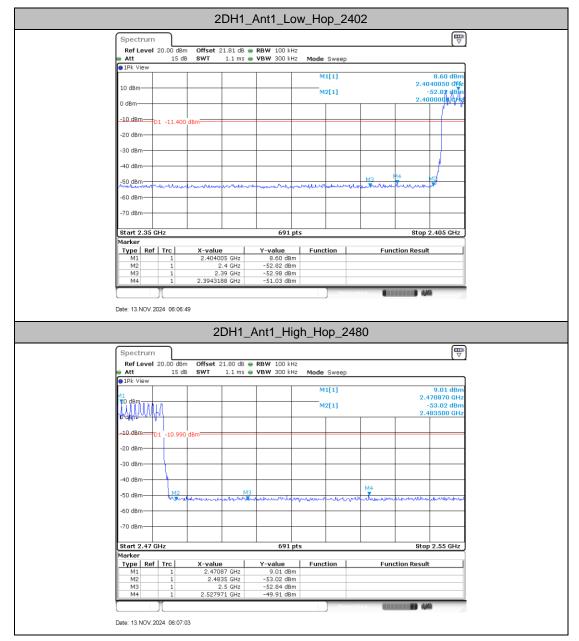

TestMode	Antenna	ChName	Freq(MHz)	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	9.67	-50.74	≤-10.33	PASS
DUE	A = 44	High	2480	9.78	-50.55	≤-10.22	PASS
DH5	Ant1	Low	Hop_2402	9.49	-50.6	≤-10.51	PASS
		High	Hop_2480	9.77	-50.77	≤-10.23	PASS
	A = 44	Low	2402	9.13	-50.38	≤-10.87	PASS
2DH1		High	2480	9.24	-50.27	≤-10.76	PASS
2001	Ant1	Low	Hop_2402	8.60	-51.03	≤-11.4	PASS
		High	Hop_2480	9.01	-49.91	≤-10.99	PASS
		Low	2402	9.23	-50.29	≤-10.77	PASS
2014	A n+1	High	2480	9.38	-50.39	≤-10.62	PASS
3DH1	Ant1	Low	Hop_2402	8.78	-50.97	≤-11.22	PASS
		High	Hop_2480	9.21	-50.44	≤-10.79	PASS

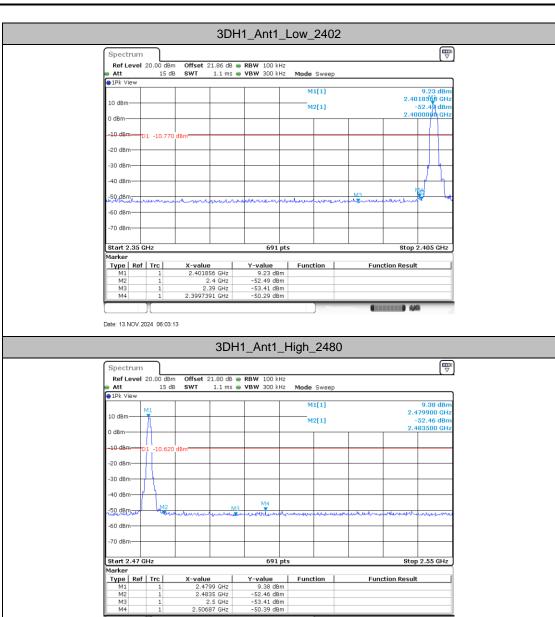

TEL: +86-512-57900158 FCC ID: O57TB305FU


Test Graphs



TEL: +86-512-57900158 FCC ID: O57TB305FU





: A24 of A42



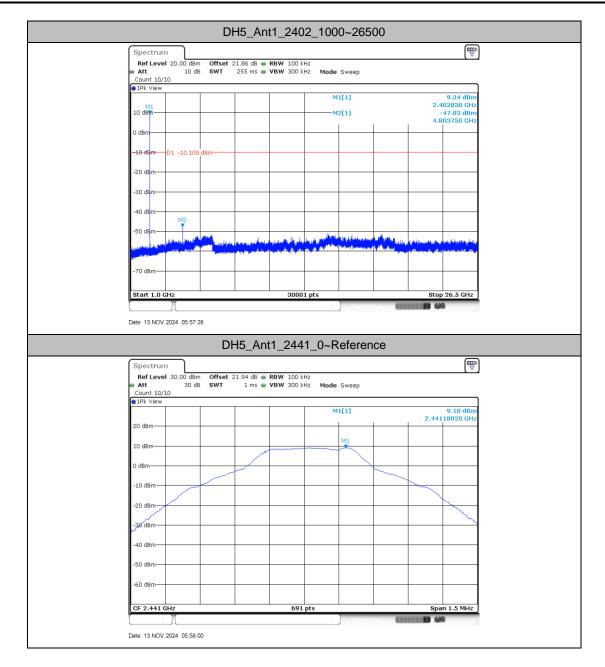
Date: 13.NOV.2024 06:05:15

TEL: +86-512-57900158 FCC ID: O57TB305FU

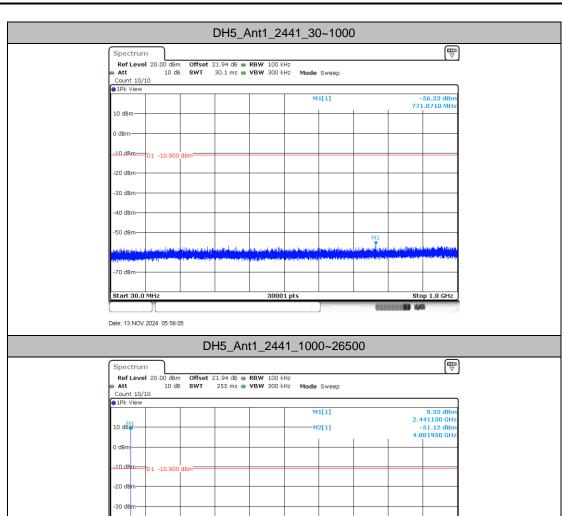
Conducted Spurious Emission

Test Result

		5 (841.)	FreqRange	RefLevel	Result	Limit	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
TestMode	Antenna	Freq(MHz)	[MHz]	[dBm]	[dBm]	[dBm]	Verdict		
			Reference	9.90	9.90		PASS		
		2402	30~1000	9.90	-55.61	≤-10.1	PASS		
			1000~26500	9.90	-47.83	≤-10.1	PASS		
			Reference	9.10	9.10		PASS		
DH5	Ant1	2441	30~1000	9.10	-56.23	≤-10.9	PASS		
			1000~26500	9.10	-51.12	≤-10.9	PASS		
			Reference	9.85	9.85		PASS		
		2480	30~1000	9.85	-56.1	≤-10.15	PASS		
			1000~26500	9.85	-50.65	≤-10.15	PASS		
			Reference	9.25	9.25		PASS		
		2402	30~1000	9.25	-56.33	≤-10.75	PASS		
			1000~26500	9.25	-50.79	≤-10.75	PASS		
		2441	Reference	9.14	9.14		PASS		
2DH1	Ant1		30~1000	9.14	-56.02	≤-10.86	PASS		
			1000~26500	9.14	-49.26	≤-10.86	PASS		
			Reference	9.34	9.34		PASS		
		2480	30~1000	9.34	-56.25	≤-10.66	PASS		
						1000~26500	9.34	-51.96	≤-10.66
				Reference	9.42	9.42		PASS	
		2402	30~1000	9.42	-56.28	≤-10.58	PASS		
			1000~26500	9.42	-50.91	≤-10.58	PASS		
			Reference	9.29	9.29		PASS		
3DH1	Ant1	2441	30~1000	9.29	-55.58	≤-10.71	PASS		
			1000~26500	9.29	-48.96	≤-10.71	PASS		
			Reference	9.50	9.50		PASS		
		2480	30~1000	9.50	-56.37	≤-10.5	PASS		
			1000~26500	9.50	-51.21	≤-10.5	PASS		

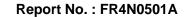

TEL: +86-512-57900158 FCC ID: O57TB305FU

Test Graphs



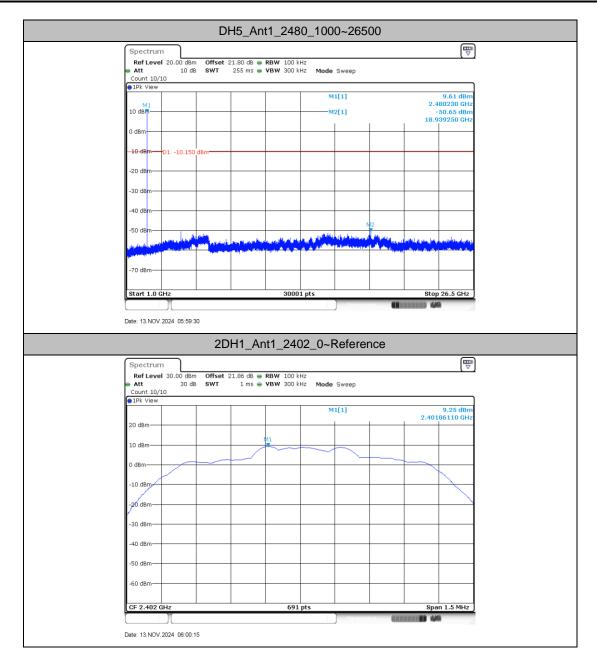
TEL: +86-512-57900158 FCC ID: O57TB305FU

: A30 of A42

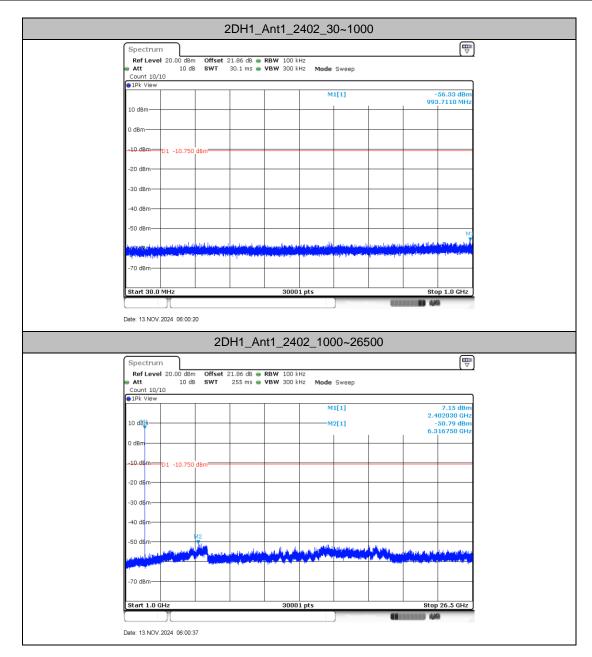

30001 pts

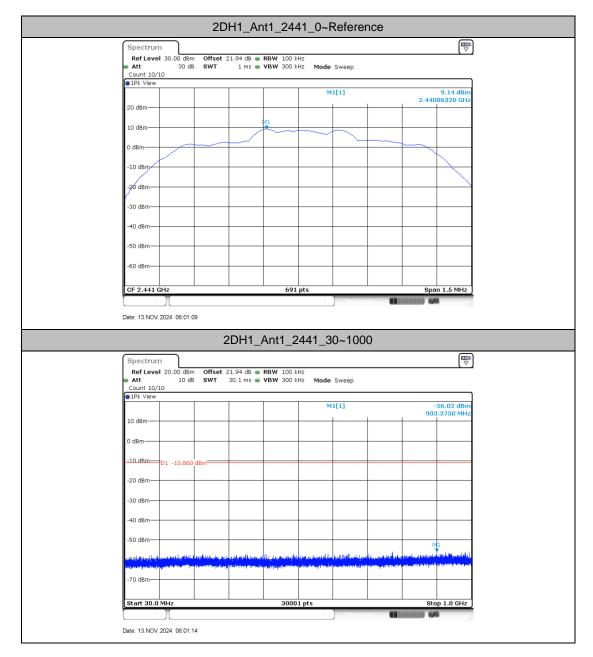

-40 dB -50 dB

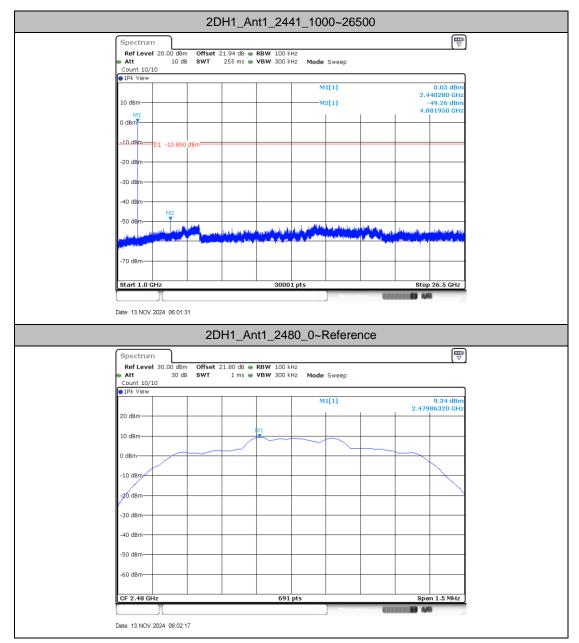
Start 1.0 GHz

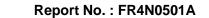

Date: 13.NOV.2024 05:58:22

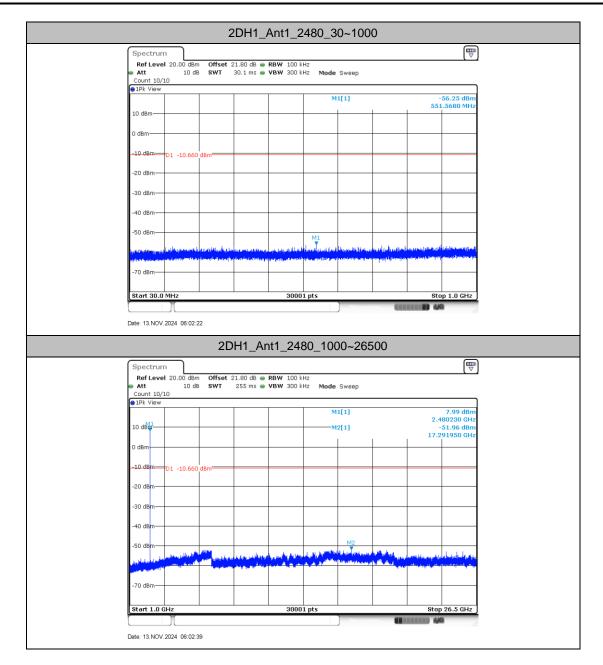
TEL: +86-512-57900158 FCC ID: O57TB305FU Stop 26.5 GHz

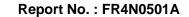


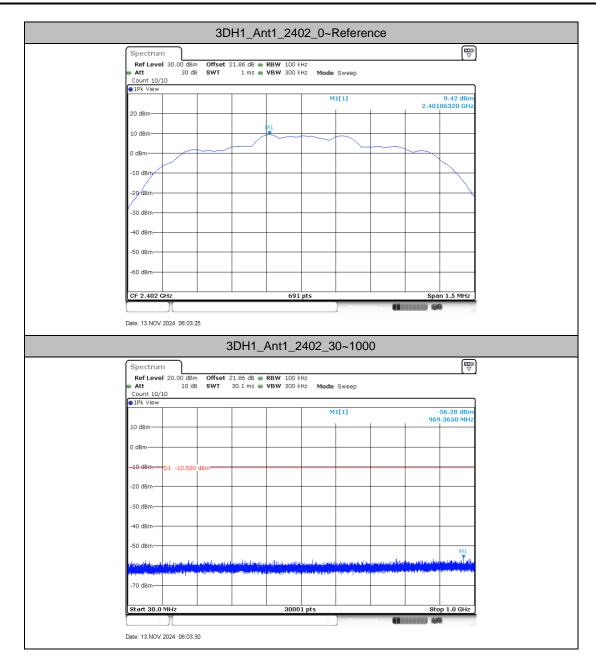


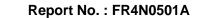


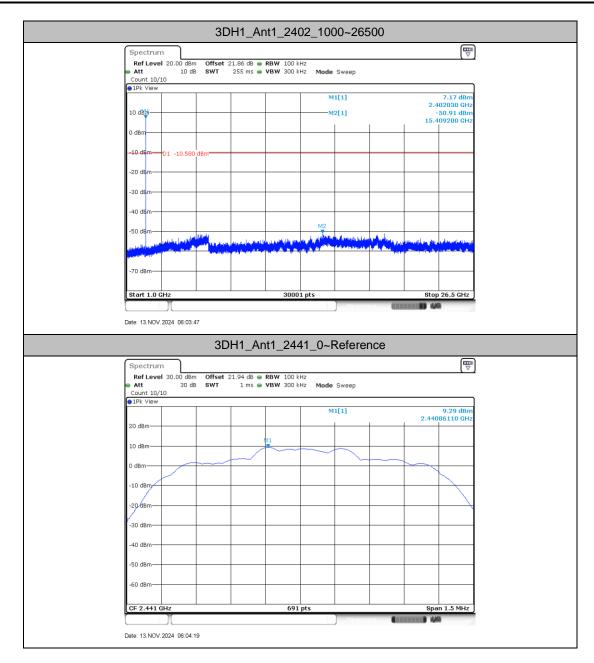


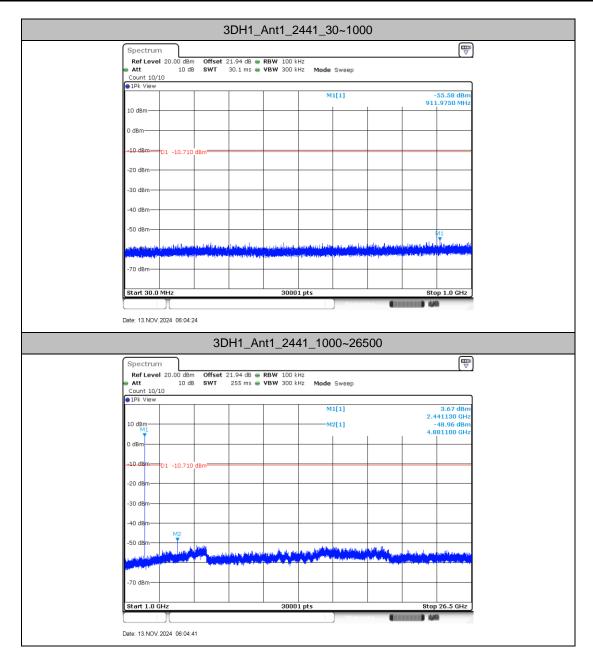


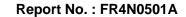


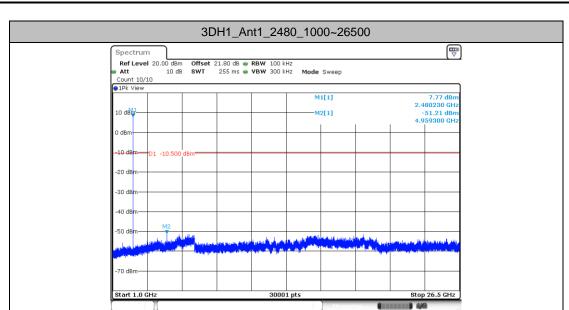


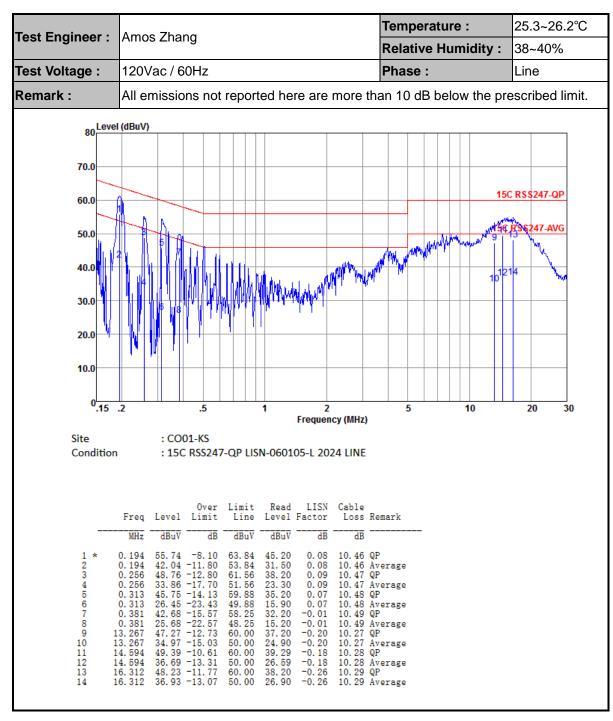

: A36 of A42











Date: 13.NOV.2024 06:05:49

TEL: +86-512-57900158 FCC ID: O57TB305FU

Appendix B. AC Conducted Emission Test Results

TEL: +86-512-57900158 FCC ID: O57TB305FU

Toot Engineer	Amos Zhong	Temperature :	25.3~26.2°C							
Test Engineer :	Amos Zhang	Relative Humidity :	38~40%							
Test Voltage :	120Vac / 60Hz	Phase :	Neutral							
Remark :	All emissions not reported here are more that	an 10 dB below the pre	escribed limit.							
80 Level	ıv)									
70.0										
60.0		150	RSS247-QP							
		+ Mec	RSS247-AVG							
50.0		AND THE PROPERTY OF THE PROPER	13 \							
40.0		M/8/YFF/1/1 ' ' ' ' ' 1/01	214							
30.0		8	M							
30.0	HADA HAN #YANANA KANANA KANANA KANANA KANANA	6								
20.0										
10.0	*N									
0.15	.2 .5 1 2 Frequency (MHz)	5 10	20 30							
Site	: CO01-KS									
Condition	: 15C RSS247-QP LISN-060105-N 2024 NEUTR	RAL								
	Over Limit Read LISN Cable Freq Level Limit Line Level Factor Loss Re	⊵mark								
	MHz dBuV dB dBuV dBuV dB dB									
2	0.195 49.39 -14.41 63.80 38.80 0.13 10.46 QP 0.195 36.19 -17.61 53.80 25.60 0.13 10.46 Av	verage								
4	0.337 40.16 -19.11 59.27 29.81 -0.13 10.48 QF 0.337 25.16 -24.11 49.27 14.81 -0.13 10.48 Av 4.092 41.20 -14.80 56.00 31.20 -0.21 10.21 QF	verage								
6 7	4.092 25.50 -20.50 46.00 15.50 -0.21 10.21 Av 7.935 46.19 -13.81 60.00 36.19 -0.21 10.21 QP	verage O								
8 9 * 1	7. 935 32. 29 -17. 71 50. 00 22. 29 -0. 21 10. 21 Av 4. 364 49. 28 -10. 72 60. 00 39. 19 -0. 19 10. 28 QF	verage								
11 1	4.364 36.98 -13.02 50.00 26.89 -0.19 10.28 Av 5.718 48.98 -11.02 60.00 38.90 -0.20 10.28 QF 5.718 37.28 -12.72 50.00 27.20 -0.20 10.28 Av									
13 1	7. 475 46. 62 -13. 38 60. 00 36. 60 -0. 27 10. 29 QP 7. 475 35. 62 -14. 38 50. 00 25. 60 -0. 27 10. 29 Av									

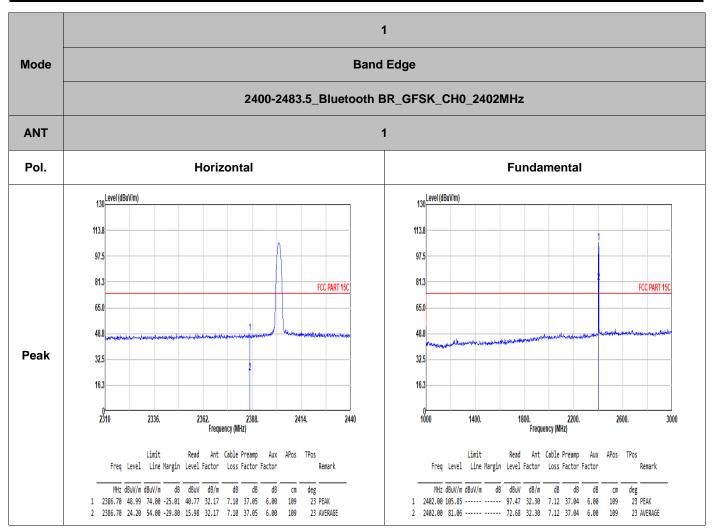
Note:

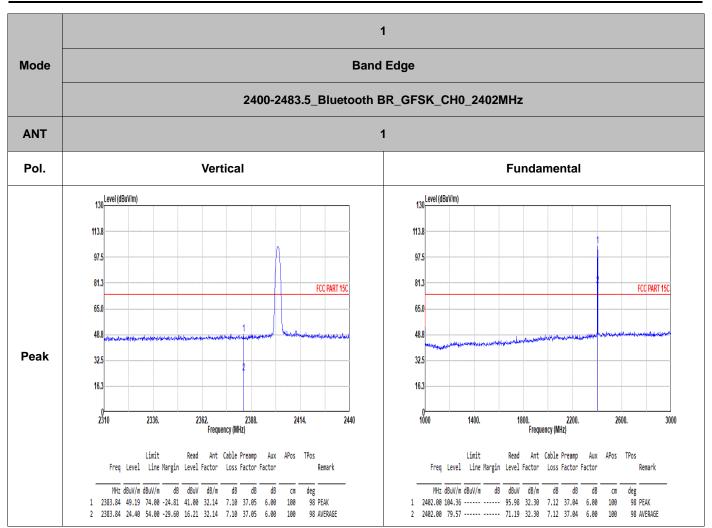
- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

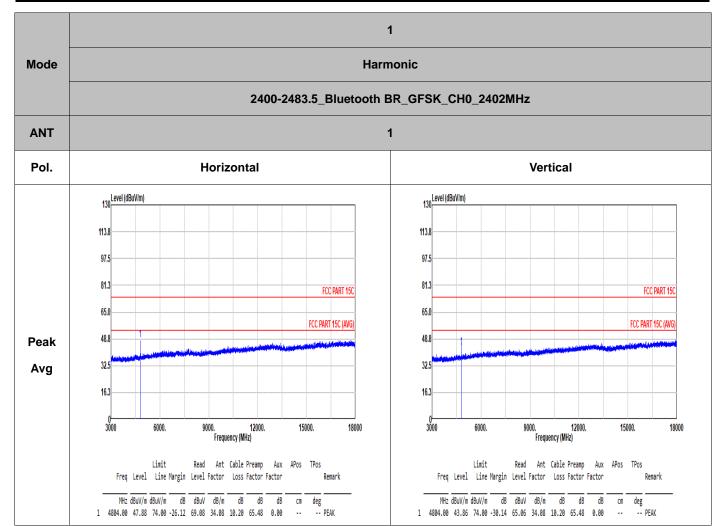
TEL: +86-512-57900158 FCC ID: O57TB305FU

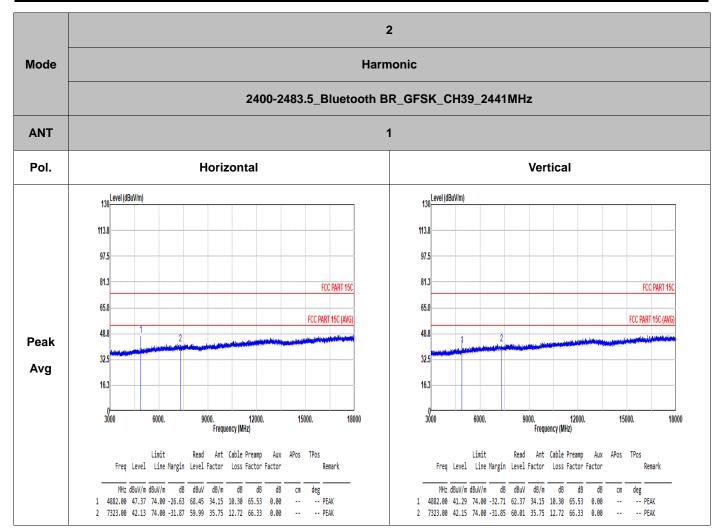
Appendix C. Radiated Spurious Emission Test Data

Test Engineer :	Bernie Liu	Relative Humidity :	40 ~ 42 %	
	Deffile Liu	Temperature :	22 ~ 26 °C	

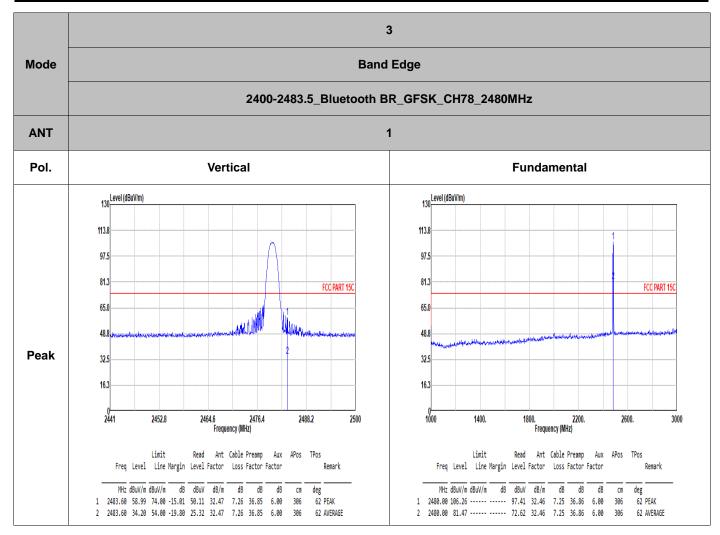

Radiated Spurious Emission Test Modes

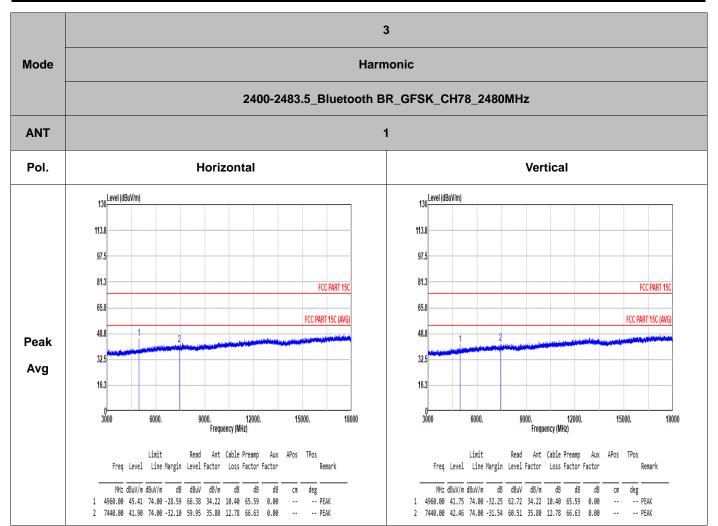

Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	1	Bluetooth BR_GFSK	0	2402	-	-	-
Mode 2	2400-2483.5	1	Bluetooth BR_GFSK	39	2441	-	-	-
Mode 3	2400-2483.5	1	Bluetooth BR_GFSK	78	2480	-	-	-


Summary of each worse mode


Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
1	Bluetooth BR_GFSK	0	2383.84	49.19	74.00	-24.81	V	PEAK	Pass	Band Edge
1	Bluetooth BR_GFSK	0	4804.00	47.88	74.00	-26.12	Н	PEAK	Pass	Harmonic
2	Bluetooth BR_GFSK	39	-	-	-	-	-	-	-	Band Edge
2	Bluetooth BR_GFSK	39	4882.00	47.37	74.00	-26.63	Н	PEAK	Pass	Harmonic
3	Bluetooth BR_GFSK	78	2483.60	58.99	74.00	-15.01	V	PEAK	Pass	Band Edge
3	Bluetooth BR_GFSK	78	4960.00	45.41	74.00	-28.59	Н	PEAK	Pass	Harmonic

Sporton International Inc. (Kunshan)
TEL: +86-512-57900158
FCC ID: O57TB305FU





3 Mode **Band Edge** 2400-2483.5_Bluetooth BR_GFSK_CH78_2480MHz **ANT** 1 Pol. Horizontal **Fundamental** 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 FCC PART 15C 65.0 65.0 48.8 **Peak** 32.5 32.5 16.3 16.3 0<u>—</u> 1000 2452.8 2500 2600. 3000 Frequency (MHz) Frequency (MHz) Limit Read Ant Cable Preamp Aux APos TPos Limit Read Ant Cable Preamp Aux APos TPos Remark Freq Level Line Margin Level Factor Loss Factor Factor Freq Level Line Margin Level Factor Loss Factor Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB MHz dBuV/m dBuV/m dB dBuV dB/m dB dB 1 2487.96 50.00 74.00 -24.00 41.10 32.48 7.26 36.84 6.00 125 126 PEAK 1 2480.00 105.93 ----- 97.08 32.46 7.25 36.86 6.00 125 126 PEAK 2 2487.96 25.21 54.00 -28.79 16.31 32.48 7.26 36.84 6.00 2 2480.00 81.14 ----- 72.29 32.46 7.25 36.86 6.00

TEL: +86-512-57900158 FCC ID: O57TB305FU

3 Mode 18G-25G 2400-2483.5_Bluetooth BR_GFSK_CH78_2480MHz ANT 1 Pol. Vertical Horizontal 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 FCC PART 15C FCC PART 15C Peak 65.0 65.0 FCC PART 15C (AVG Avg 48.8 48.8 32.5 32.5 16.3 18000 18000 19400. 20800. 22200. 23600. 25000 19400. 20800. 22200. 23600. 25000 Frequency (MHz) Frequency (MHz)

3 30-1G Mode 2400-2483.5_Bluetooth BR_GFSK_CH78_2480MHz **ANT** 1 Pol. Horizontal Vertical 70.0 70.0 60.0 FCC PART 150 FCC PART 15C 40.0 40.0 30.0 Peak -2030 100. -2030 100. 500. 60 Frequency (MHz) 200. 800. 900. Frequency (MHz) Aux A/Pos T/Pos Remark Aux A/Pos T/Pos Remark Limit Over ReadAntenna Cable Preamp Aux Freq Level Line Limit Level Factor Loss Factor Factor Limit Over ReadAntenna Cable Preamp Aux Freq Level Line Limit Level Factor Loss Factor Factor MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB dBuV dB/m dB deg
 36.79
 22.63
 40.00 -17.37
 33.79
 20.92
 0.83
 32.91
 0.00

 144.46
 21.84
 43.50 -21.66
 36.37
 16.49
 1.81
 32.83
 0.00

 182.29
 21.97
 43.50 -21.53
 36.99
 15.77
 2.04
 32.83
 0.00

 251.83
 18.52
 46.60 -27.48
 30.20
 18.63
 2.47
 32.78
 0.00

 462.02
 22.48
 46.00 -27.52
 28.88
 23.22
 3.55
 32.97
 0.00

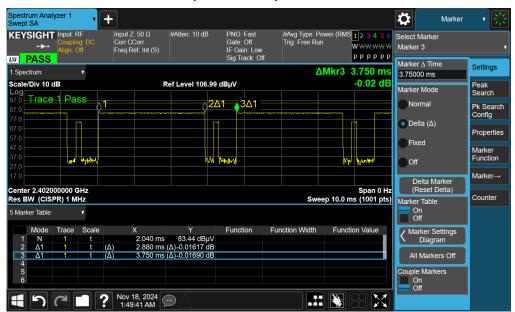
 811.82
 28.84
 46.00 -17.16
 30.81
 26.34
 4.35
 32.66
 0.00

 36.79
 29.54
 40.00 - 10.46
 40.70
 20.92
 0.83
 32.91
 0.00

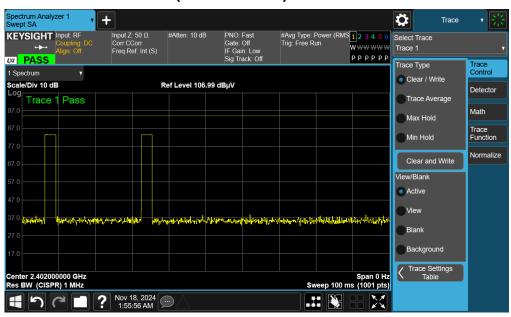
 91.11
 17.51
 43.50 - 25.99
 33.58
 15.35
 1.43
 32.65
 0.00

 141.55
 19.04
 43.50 - 24.46
 33.55
 16.53
 1.79
 32.33
 0.00

 17.16
 17.20
 43.50 - 26.30
 32.07
 15.94
 1.88
 32.83
 0.00


 268.62
 17.10
 46.00 - 28.90
 28.63
 12.76
 2.50
 32.79
 0.00

 607.15
 25.48
 46.00 - 28.92
 29.80
 24.98
 3.76
 33.06
 0.00
 --- Peak
--- Peak
--- Peak
--- Peak
--- Peak
--- Peak --- Peak --- Peak --- Peak --- Peak --- Peak


TEL: +86-512-57900158 FCC ID: O57TB305FU

Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.