

Report No.: DL-20220310017E

FCC Part 15C Test Report FCC ID: 2AYIT-T32

Applicant:	Topvision(Shenzhen)Technology Co., LTD
Address:	Room 601.No.213.Niucheng Road.Niucheng Village. Xili Street.Nanshan district Shenzhen City
Manufacturer:	Topvision(Shenzhen)Technology Co., LTD
Address:	Room 601.No.213.Niucheng Road.Niucheng Village. Xili Street.Nanshan district Shenzhen City
EUT:	RING-01 Doorbell
Trade Mark:	N/A Contraction of the contracti
Model Number:	T32 T31, T33, T34, T35, T10, T20, T30
Date of Receipt:	Mar. 02, 2022
Test Date:	Mar. 02, 2022 – Mar. 10, 2022
Date of Report:	Mar. 10, 2022
Prepared By:	Shenzhen DL Testing Technology Co., Ltd.
Address:	101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street, Longgang District, Shenzhen, Guangdong, China
Applicable Standards:	FCC PART 15 C 15.231 ANSI C63.10:2013
Test Result:	Pass
Report Number:	DL-20220310017E
x or ce	Desas Histor Hech

Prepared (Test Engineer):

Reviewer (Supervisor):

Pxing Huang

Jack Bu

Approved (Manager):

Jade Yang

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-20220310017E

Table of Contents

Page

1. SUMMARY OF TEST RESULTS	<u>6</u> 4
1.1 MEASUREMENT UNCERTAINTY	× 4
2. GENERAL INFORMATION	5
2.1 GENERAL DESCRIPTION OF EUT	5
2.2 DESCRIPTION OF TEST MODES	5
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	× 6
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	6
2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	6
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	7
3. EMC EMISSION TEST	8
3.1 CONDUCTED EMISSION MEASUREMENT	8
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	. 8
3.1.2 TEST PROCEDURE	6 8
3.1.3 DEVIATION FROM TEST STANDARD	8 %
3.1.4 TEST SETUP	9
3.1.5 EUT OPERATING CONDITIONS	9
3.1.6 TEST RESULTS	 ✓ 9
3.2 RADIATED EMISSION MEASUREMENT	12
3.2.1 RADIATED EMISSION LIMITS	<u>ہ</u> 12
3.2.2 TEST PROCEDURE	13
3.2.3 DEVIATION FROM TEST STANDARD	13
3.2.4 TEST SETUP	1 4
3.2.5 EUT OPERATING CONDITIONS	J 15
3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)	16
3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)	17
3.2.8 TEST RESULTS (1GHZ~25GHZ)	20
4. BANDWIDTH TEST	<u> </u>
4.1 APPLIED PROCEDURES / LIMIT	21
4.1.1 TEST PROCEDURE	21
4.1.2 DEVIATION FROM STANDARD	21
4.1.3 TEST SETUP	21
4.1.4 EUT OPERATION CONDITIONS	ح 21
4.1.5 TEST RESULTS	22
5 . CALCULATION OF AVERAGE FACTOR	23
5.1 APPLIED PROCEDURES / LIMIT	23
5.1.1 TEST PROCEDURE	23
5.1.2 TEST SETUP	23

Shenzhen DL Testing Technology Co., Ltd. Report No.: DL-20220310017E

Table of Contents	Page
5.1.3 EUT OPERATION CONDITIONS	23
5.1.4 TEST RESULTS	24
6. DWELL TIME	26
6.1 APPLIED PROCEDURES / LIMIT	26
6.1.1 TEST PROCEDURE	26
6.1.2 DEVIATION FROM STANDARD	26
6.1.3 TEST SETUP	26
6.1.4 EUT OPERATION CONDITIONS	26
6.1.5 TEST RESULTS	27
7. ANTENNA REQUIREMENT	28
7.1 STANDARD REQUIREMENT	28
7.2 EUT ANTENNA	28
8. TEST SEUUP PHOTO	χ 29 🤇
9.EUT PHOTO	ິ 31

Report No.: DL-20220310017E

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.231) , Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS	б ^л _{"Х}		
15.209,15.231b	Fundamental &Radiated Spurious Emission Measurement	PASS	N ST		
15.231a	Dwell time	PASS	oh.ce		
15.215	20dB Bandwidth	PASS			
15.203	Antenna Requirement	PASS	1. Alexandre		

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.56dB
2	RF power,conducted	±0.42dB
3 🔨	Spurious emissions, conducted	±2.76dB
4	All emissions,radiated(<1G)	±3.65dB
5 0	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7 🗸	Humidity	±2%

Report No.: DL-20220310017E

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name:	RING-01 Doorbell
Trademark	N/A
Model No.:	T32 T31, T33, T34, T35, T10, T20, T30
Model Difference	All samples are the same except the model name, so we prepare "T32" for test only.
Operation Frequency:	433.92MHz
Channel numbers:	1 Channels
Modulation technology:	FSK
Antenna Type:	Internal Antenna
Antenna gain:	3dBi
Power supply:	DC 7.4V from battery DC 5V from charger

Note:

1.For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. The EUT's all information provided by client.

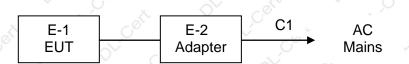
2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description				
Mode 1 TX Mode					
For Conducted & Radiated Emission					
Final Test Mode	Description				
Mode 1	TX Mode				

Note:

(1) New battery is used during the test


Report No.: DL-20220310017E

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Spurious Emission Test

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

5	Item	Equipment Model/Type No. Ser		Series No.	Note
	E-1	RING-01 Doorbell	T30	N/A	EUT 🗸
	E-2	Adapter	HW-0502000E	N/A	

		XV	6.9	
ltem	Shielded Type	Ferrite Core	Length	Note
C1	No	No	0.5m	Mini USB Line

Note:

(1) For detachable type I/O cable should be specified the length in cm in [®]Length ^{_} column.

2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

None.

Report No.: DL-20220310017E

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation test, Band-edge test and 20db bandwidth test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Jer	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4408B	MY50140780	Nov. 06, 2021	Nov. 05, 2022
2	Test Receiver (9kHz-7GHz)	R&S	ESRP7	101393	Nov. 06, 2021	Nov. 05, 2022
3	Bilog Antenna (30MHz-1GHz)	R&S	VULB9162	00306	Nov. 06, 2021	Nov. 05, 2022
4	Horn Antenna (1GHz-18GHz)	Schwarzbeck	BBHA9120D	02139	Nov. 06, 2021	Nov. 05, 2022
5	Horn Antenna (18GHz-40GHz)	A.H. Systems	SAS-574	588	Nov. 06, 2021	Nov. 05, 2022
60	Amplifier (9KHz-6GHz)	Schwarzbeck	BBV9743B	00153	Nov. 06, 2021	Nov. 05, 2022
7	Amplifier (1GHz-18GHz)	EMEC	EM01G8GA	00270	Nov. 06, 2021	Nov. 05, 2022
8	Amplifier (18GHz-40GHz)	Quanjuda	DLE-161	97	Nov. 06, 2021	Nov. 05, 2022
9	Loop Antenna (9KHz-30MHz)	Schwarzbeck	FMZB1519B	00014	Nov. 06, 2021	Nov. 05, 2022
10	RF cables1 (9kHz-1GHz)	ChengYu	966	004	Nov. 06, 2021	Nov. 05, 2022
11	RF cables2 (1GHz-40GHz)	ChengYu	966	003	Nov. 06, 2021	Nov. 05, 2022
12	Antenna connector	Florida RF Labs	N/A	RF 01#	Nov. 06, 2021	Nov. 05, 2022
13	Power probe	KEYSIGHT	U2021XA	MY55210018	Nov. 06, 2021	Nov. 05, 2022
14	Signal Analyzer 9kHz-26.5GHz	Agilent	N9020A	MY55370280	Nov. 06, 2021	Nov. 05, 2022
15	Test Receiver 20kHz-40GHz	R&S	ESU 40	100376	Nov. 06, 2021	Nov. 05, 2022
16	D.C. Power Supply	LongWei	PS-305D	010964729	Nov. 06, 2021	Nov. 05, 2022

Conduction Test equipment

	Cond	double rest equipment	. 0				
	Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
	्1	843 Shielded Room	ChengYu	843 Room	843	Nov. 25, 2019	Nov. 24, 2022
3	2	EMI Receiver	R&S	C ESR	101421	Nov. 06, 2021	Nov. 05, 2022
	3		R&S	ENV216	102417	Nov. 06, 2021	Nov. 05, 2022
	4	843 Cable 1#	ChengYu	CE Cable	001	Nov. 06, 2021	Nov. 05, 2022

Other

Item	Name	Manufacturer	Model	Software version
1	EMC Conduction Test System	FALA	EZ_EMC	EMC-CON 3A1.1
2	EMC radiation test system	FALA	EZ_EMC	FA-03A2
3	RF test system	MAIWEI	MTS8310	2.0.0.0
4	RF communication test system	MAIWEI	MTS8200	2.0.0.0

Report No.: DL-20220310017E

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits

(Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Limit (dE	Standard		
FREQUENCT (MIDZ)	Quasi-peak	Average	Stanuaru	
0.15 -0.5	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	56.00	46.00	FCC	
5.0 -30.0	60.00	50.00	FCC	

Note:

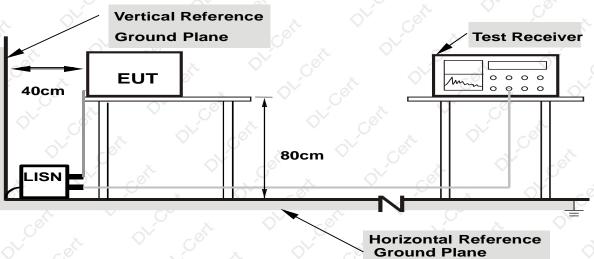
- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

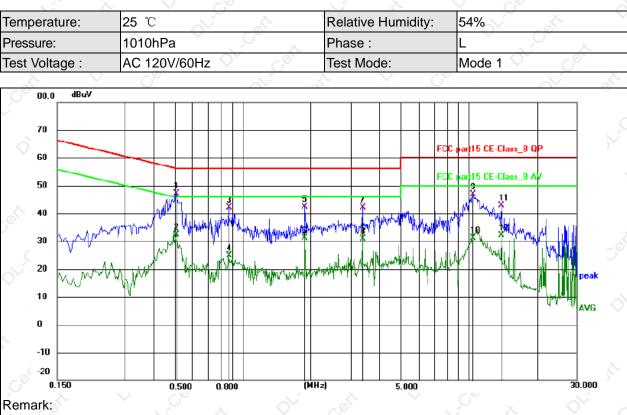
- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


3.1.3 DEVIATION FROM TEST STANDARD

No deviation

Report No.: DL-20220310017E

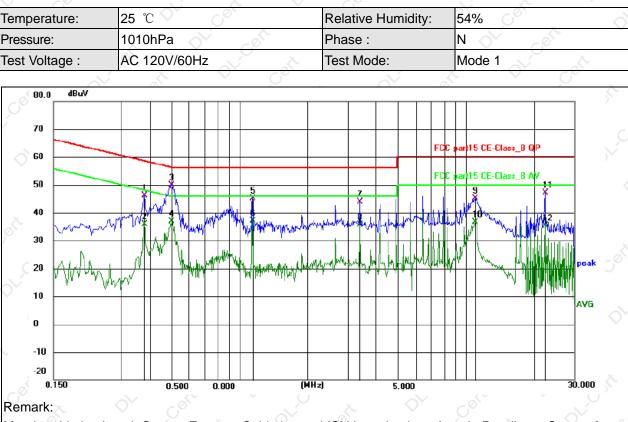
Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes


3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.6 TEST RESULTS

Report No.: DL-20220310017E



Margin = Limit – Level, Correct Factor = Cable lose + LISN insertion loss, Level= Reading + Correct factor

											- S	
2	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark		
	1 *	0.5053	37.87	9.19	47.06	56.00	8.94	QP	Р			1
0	2	0.5053	23.10	9.19	32.29	46.00	13.71	AVG	Р			1
	3	0.8652	32.71	9.32	42.03	56.00	13.97	QP	Р			1
	4	0.8652	15.60	9.32	24.92	46.00	21.08	AVG	Р			1
	5	1.8869	32.67	9.80	42.47	56.00	13.53	QP	Р			1
	6	1.8869	21.42	9.80	31.22	46.00	14.78	AVG	Р			1
	7	3.3944	33.26	8.98	42.24	56.00	13.76	QP	Р			1
	8	3.3944	21.82	8.98	30.80	46.00	15.20	AVG	Р			1
2	9	10.4954	37.06	9.90	46.96	60.00	13.04	QP	Р			12
°	10	10.4954	21.14	9.90	31.04	50.00	18.96	AVG	Р			12
	11	13.9875	32.76	10.08	42.84	60.00	17.16	QP	Р			1
	12	13.9875	22.06	10.08	32.14	50.00	17.86	AVG	Р			1
~		<	-	5.7				A				~

Report No.: DL-20220310017E

Margin = Limit – Level, Correct Factor = Cable lose + LISN insertion loss, Level= Reading + Correct factor

Frequency (MHz) 0.3795 0.3795 0.5010	Reading (dBuV) 37.04 26.68	Factor (dB) 9.19 9.19	Level (dBuV) 46.23	Limit (dBuV) 58,29	Margin (dB)	Detector	P/F	Remark
0.3795			46.23	58 29	40.00			
	26.68	9.19		00.20	12.06	QP	Р	
0.5010		0.10	35.87	48.29	12.42	AVG	Р	
	40.51	9.38	49.89	56.00	6.11	QP	Р	
0.5010	27.49	9.38	36.87	46.00	9.13	AVG	Р	
1.1352	35.74	9.47	45.21	56.00	10.79	QP	Р	
1.1352	27.67	9.47	37.14	46.00	8.86	AVG	Р	
3.4035	33.97	9.82	43.79	56.00	12.21	QP	Р	
3.4035	25.93	9.82	35.75	46.00	10.25	AVG	Р	
10.9679	34.99	10.11	45.10	60.00	14.90	QP	Р	
10.9679	26.54	10.11	36.65	50.00	13.35	AVG	Р	
22.3125	36.26	10.86	47.12	60.00	12.88	QP	Р	
22.3125	24.41	10.86	35.27	50.00	14.73	AVG	Р	
	1.1352 1.1352 3.4035 3.4035 10.9679 10.9679 22.3125	0.5010 27.49 1.1352 35.74 1.1352 27.67 3.4035 33.97 3.4035 25.93 10.9679 34.99 10.9679 26.54 22.3125 36.26	0.5010 27.49 9.38 1.1352 35.74 9.47 1.1352 27.67 9.47 3.4035 33.97 9.82 3.4035 25.93 9.82 10.9679 34.99 10.11 10.9679 26.54 10.11 22.3125 36.26 10.86	0.5010 27.49 9.38 36.87 1.1352 35.74 9.47 45.21 1.1352 27.67 9.47 37.14 3.4035 33.97 9.82 43.79 3.4035 25.93 9.82 35.75 10.9679 34.99 10.11 45.10 10.9679 26.54 10.11 36.65 22.3125 36.26 10.86 47.12	0.5010 27.49 9.38 36.87 46.00 1.1352 35.74 9.47 45.21 56.00 1.1352 27.67 9.47 37.14 46.00 3.4035 33.97 9.82 43.79 56.00 3.4035 25.93 9.82 35.75 46.00 10.9679 34.99 10.11 45.10 60.00 22.3125 36.26 10.86 47.12 60.00	0.501027.499.3836.8746.009.131.135235.749.4745.2156.0010.791.135227.679.4737.1446.008.863.403533.979.8243.7956.0012.213.403525.939.8235.7546.0010.2510.967934.9910.1145.1060.0014.9010.967926.5410.1136.6550.0013.3522.312536.2610.8647.1260.0012.88	0.5010 27.49 9.38 36.87 46.00 9.13 AVG 1.1352 35.74 9.47 45.21 56.00 10.79 QP 1.1352 27.67 9.47 37.14 46.00 8.86 AVG 3.4035 33.97 9.82 43.79 56.00 12.21 QP 3.4035 25.93 9.82 35.75 46.00 10.25 AVG 10.9679 34.99 10.11 45.10 60.00 14.90 QP 10.9679 26.54 10.11 36.65 50.00 13.35 AVG 22.3125 36.26 10.86 47.12 60.00 12.88 QP	0.5010 27.49 9.38 36.87 46.00 9.13 AVG P 1.1352 35.74 9.47 45.21 56.00 10.79 QP P 1.1352 27.67 9.47 37.14 46.00 8.86 AVG P 3.4035 33.97 9.82 43.79 56.00 12.21 QP P 3.4035 25.93 9.82 35.75 46.00 10.25 AVG P 10.9679 34.99 10.11 45.10 60.00 14.90 QP P 10.9679 26.54 10.11 36.65 50.00 13.35 AVG P 22.3125 36.26 10.86 47.12 60.00 12.88 QP P

3.2 RADIATED EMISSION MEASUREMENT 3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	× 3 of
88~216	150	3
216~960	200	3
Above 960	500	° 3 3

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

comply what the following.		
Fundamental	Field Strength of Fundamental	Field Strength of Harmonics
Frequency	(millivolts/meter)	(microvolts/meter)
40.66-40.70 MHz	2250	225
70-130 MHz	1250	125
130-174 MHz	1250-3750**	1250-375**
174-260 MHz	3750	375
260-470 MHz	3750-12500**	3750-1250**
Above 470 MHz	12500	1250

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV/m) (at 3M)					
FREQUENCY (MHz)	PEAK	AVERAGE				
Above 1000	× 74 V 0°	54				

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Report No.: DL-20220310017E

× ×	V G		
Detector	RBW	VBW	Value
Quasi-peak	200Hz	600Hz	Quasi-peak
Quasi-peak	9KHz	30KHz	Quasi-peak
Quasi-peak	100KHz	300KHz	Quasi-peak
Peak	1MHz	3MHz	Peak
Peak	1MHz	10Hz	Average
	Quasi-peak Quasi-peak Quasi-peak Peak	Quasi-peak200HzQuasi-peak9KHzQuasi-peak100KHzPeak1MHz	Quasi-peak200Hz600HzQuasi-peak9KHz30KHzQuasi-peak100KHz300KHzPeak1MHz3MHz

3.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

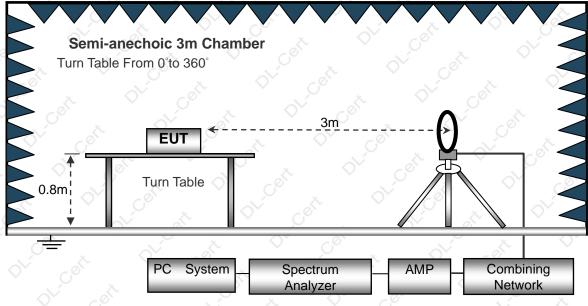
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

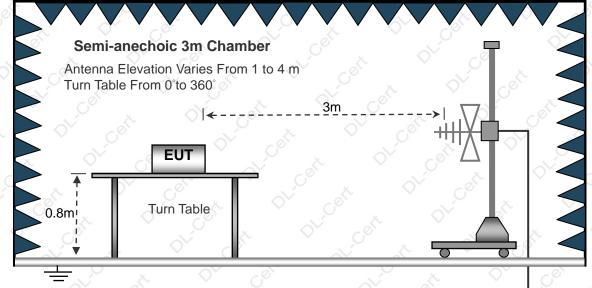
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD

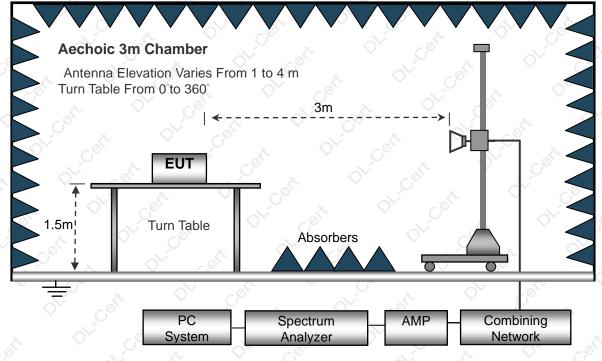

No deviation


Report No.: DL-20220310017E

3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



PC System	Spectrum Analyzer	AMP .	0	Combining Network	
Cystem	Andryzer				

Report No.: DL-20220310017E

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

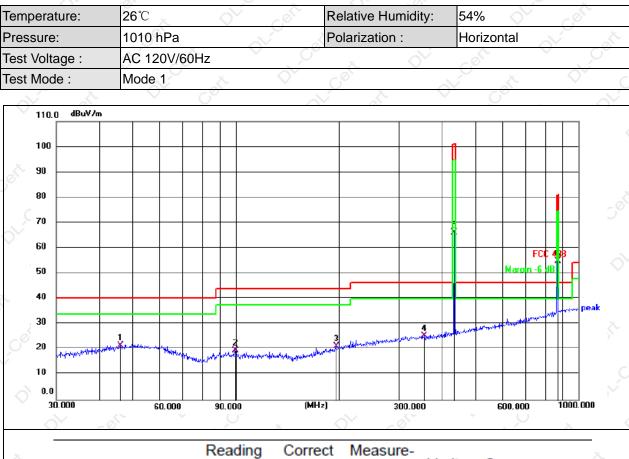
The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: DL-20220310017E

3.2.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)

		$\langle \rangle$ $\langle \rangle$ $\langle \rangle$	
Temperature:	20°C	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	Mode 1	Polarization :	

	Freq.	Reading	Limit	Margin	State	
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	
×.	e d	- 3		est and a second s	PASS	
	x - 0 ^V	- ²	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	or - cor	PASS	


NOTE:

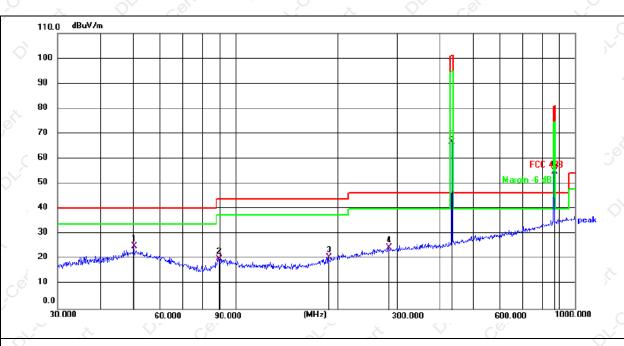
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Report No.: DL-20220310017E

3.2.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ)

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
5			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	1	*	46.1779	33.29	-11.73	21.56	40.00	18.44	QP 🗸
5	2		99.5281	34.65	-15.12	19.53	43.50	23.97	QP
	3		195.8219	34.90	-13.56	21.34	43.50	22.16	QP
	4		355.4272	35.39	-9.92	25.47	46.00	20.53	QP
	5		433.9343	74.45	-8.44	66.01	100.8	34.79	Peak _
с [.]	6		867.8437	56.25	-1.49	54.76	80.80	26.04	Peak

Remark:


Correct Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading Level + Correct Factor; Margin = Limit – Level;

Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-20220310017E

V CO		C	
Temperature:	26°C	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Vertical
Test Voltage :	AC 120V/60Hz	Or Cor	N. A
Test Mode :	Mode 4	x ON co	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	50.4089	36.20	-11.14	25.06	40.00	14.94	QP
2		89.2764	35.44	-15.10	20.34	43.50	23.16	QP
3		187.7530	34.79	-13.90	20.89	43.50	22.61	QP
4		281.9946	34.73	-10.09	24.64	46.00	21.36	QP
5		433.9439	74.22	-7.47	66.75	100.8	34.05	Peak
6		867.8457	55.20	-0.32	54.88	80.80	25.92	Peak
	1 2 3 4 5	1 * 2 3 4 5	MHz 1 * 50.4089 2 89.2764 3 187.7530 4 281.9946 5 433.9439	No. Mk. Freq. Level MHz dBuV 1 * 50.4089 36.20 2 89.2764 35.44 3 187.7530 34.79 4 281.9946 34.73 5 433.9439 74.22	No. Mk. Freq. Level Factor MHz dBuV dB 1 50.4089 36.20 -11.14 2 89.2764 35.44 -15.10 3 187.7530 34.79 -13.90 4 281.9946 34.73 -10.09 5 433.9439 74.22 -7.47	No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 1 * 50.4089 36.20 -11.14 25.06 2 89.2764 35.44 -15.10 20.34 3 187.7530 34.79 -13.90 20.89 4 281.9946 34.73 -10.09 24.64 5 433.9439 74.22 -7.47 66.75	No. Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dB/m 1 * 50.4089 36.20 -11.14 25.06 40.00 2 89.2764 35.44 -15.10 20.34 43.50 3 187.7530 34.79 -13.90 20.89 43.50 4 281.9946 34.73 -10.09 24.64 46.00 5 433.9439 74.22 -7.47 66.75 100.8	No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB/m dB dB 1 * 50.4089 36.20 -11.14 25.06 40.00 14.94 2 89.2764 35.44 -15.10 20.34 43.50 23.16 3 187.7530 34.79 -13.90 20.89 43.50 22.61 4 281.9946 34.73 -10.09 24.64 46.00 21.36 5 433.9439 74.22 -7.47 66.75 100.8 34.05

Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading Level + Correct Factor; Margin = Limit – Level;

Report No.: DL-20220310017E

For average Emission

Frequency MHz	Peak Level dBuV/m	Duty cycle factor	AverageLevel dBuV/m	Polarization	Limit AV	Margin
433.9439	66.75	-12.04	54.71	Vertical	80.8	-26.09
867.8457	54.88	-12.04	42.84	Vertical	60.8	-17.96

Notes: 1. Average emission Level = Peak Level + Duty cycle factor 2.Duty cycle level please see clause 5.

Frequency MHz	Peak Level dBuV/m	Duty cycle factor	AverageLevel dBuV/m	Polarization	Limit AV	Margin
433.9343	66.01	-12.04	53.97 🛇	Horizontal	80.8	-26.83
867.8437	54.76	-12.04	42.72	Horizontal	60.8	-18.08

Notes: 1. Average emission Level = Peak Level + Duty cycle factor 2.Duty cycle level please see clause 5.

Report No.: DL-20220310017E

3.2.8 TEST RESULTS (1GHZ TO 10TH HARMONICS)

Polar (H/V)	Frequency	Peak Reading Level	Correct Factor	Peak Level	Duty cycle factor	Average Level	Limits PK	Limits AV	Margin PK	Margin AV
. ,	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dB)	(dB)		
\checkmark	0	d'	op op	peration	frequenc	y:433.92	0 ^V	- 05	\sim	Ģ
V	1301.76	62.37	-21.97	40.4	-12.04	28.36	80.8	60.8	∼-40.4	-32.44
V	1735.68	 60.11 	-21.97	38.14	-12.04	26.1	80.8	60.8	-42.66	-34.7
V	2169.6	61.43	-17.41	44.02	-12.04	31.98	80.8	60.8	-36.78	-28.82
V	2603.52	59.25	-17.41	41.84	-12.04	29.8	80.8	60.8	-38.96	ى -31
CV.	3037.44	41.46	-2.63	38.83	[©] -12.04	26.79	74	54	-35.17	-27.21
V	3471.36	40.29	-2.63	37.66	-12.04	25.62	74	54	-36.34	-28.38
H,	1301.76	62.54	-21.97	40.57	-12.04	28.53	80.8	60.8	-40.23	-32.27
Ĥ	1735.68	61.33	-21.97	39.36	-12.04	27.32	80.8	60.8	-41.44	-33.48
H <	2169.6	59.25	-17.41	41.84	-12.04	29.8	80.8	60.8	-38.96	-31
Н	2603.52	62.41	-17.41	<u> </u>	-12.04	32.96	80.8	60.8	-35.8	-27.84
ŇН	3037.44	40.32	-2.63	37.69	-12.04	25.65	74	54	-36.31	-28.35
H x	3471.36	41.07	-2.63	38.44	-12.04	26.4	74	54	-35.56	-27.6

Remark:

1. PK Emission Level = Peak Reading Level + Correct Factor

2. Correct Factor= Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Notes: 1. Average emission Level = Peak Level + Duty cycle factor

2.Duty cycle level please see clause 5.

3. Pulse Desensitization Correction Factor Pulse Width (PW) = 85.50ms 2/PW = 2/85.50ms = 0.02kHz RBW (100 kHz) > 2/PW (0.02kHz) Therefore PDCF is not needed

Report No.: DL-20220310017E

4. BANDWIDTH TEST

4.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.249) , Subpart C
Section	Description
15.231C	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating between 70 MHz to 900 MHz. Those devices operating above 900 MHz, the emission spurious shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier. B.W (20dBc) Limit = 0.25% * f(MHz) = 0.25% * 433.92MHz = 1.0848MHz

4.1.1 TEST PROCEDURE

- 1. Set RBW = 30 kHz.
- 2. Set VBW = 100 kHz.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

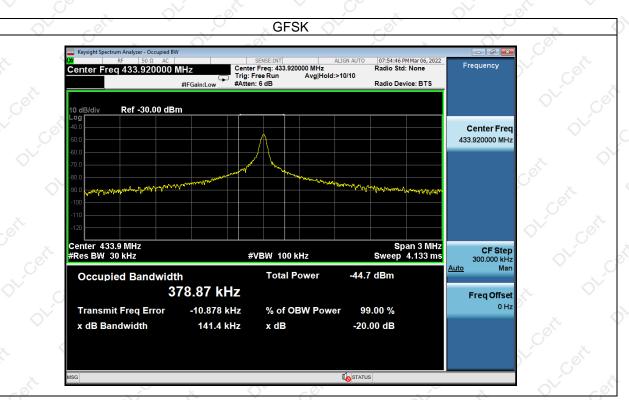
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

4.1.4 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: DL-20220310017E

4.1.5 TEST RESULTS

20dB Bandwidth (MHz)	Result
0.1414	Pass
	(MHz)

Report No.: DL-20220310017E

5. CALCULATION OF AVERAGE FACTOR

5.1 APPLIED PROCEDURES / LIMIT

The output field strengths of specification in accordance with the FCC rules specify measurements with an average detector. During the test, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The duty cycle is measured in 100 ms or the repetition cycle period, whichever is a shorter time frame. The duty cycle is measured by placing the spectrum analyzer to set zero span at 100kHz resolution bandwidth.

5.1.1 TEST PROCEDURE

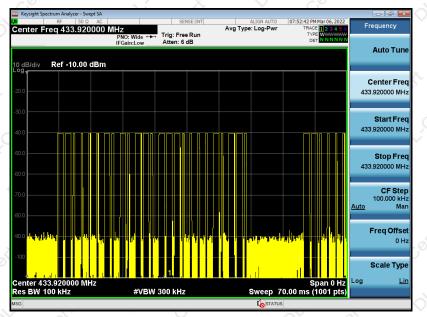
- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Detector = Peak.
- 4. Sweep = auto couple.
- 5. Allow the trace to stabilize.

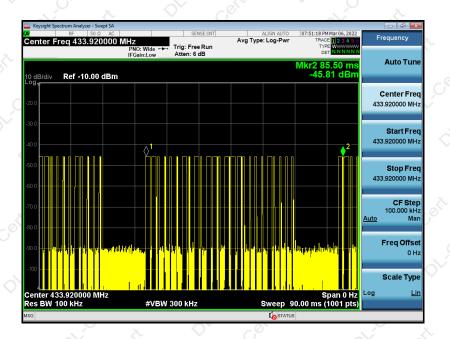
5.1.2 TEST SETUP

SPECTRUM ANALYZER

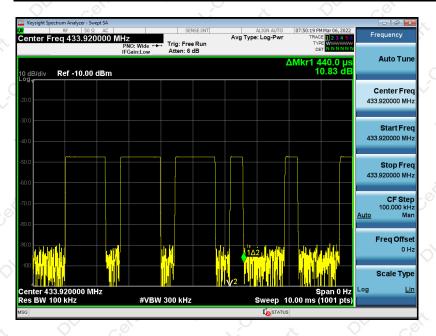
5.1.3 EUT OPERATION CONDITIONS

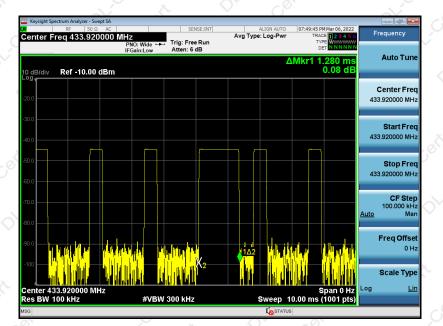
The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.


Report No.: DL-20220310017E


5.1.4 TEST RESULTS

Duty Cycle= Effective time one cycle/ Total time one cycle Averaging factor in dB =20log (duty cycle)


Duty Cycle = (1.28ms*12+0.44ms*13)/85.50


Therefore, the averaging factor is found by 20log0.25=-12.04dB Test plot as follows:

Report No.: DL-20220310017E

6. DWELL TIME

6.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.249) , Subpart C
Section	Description
15.231a	A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
	deactivate the transmitter within hot more than 5 seconds of being released.

6.1.1 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Allow the trace to stabilize.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: DL-20220310017E

Cert

6.1.5 TEST RESULTS

	- 6 V	- 176		A. A.	()		17	
×.			Dwell time (se	cond)	Limit (sec	ond)	Resul	t
eet	Normal	, C	0.280	Cor	<5s		Pass	Cer
, Ohr	ot	0. <	ol. Cott	DL.C	ot s	01-0	or Cost	OL-OL

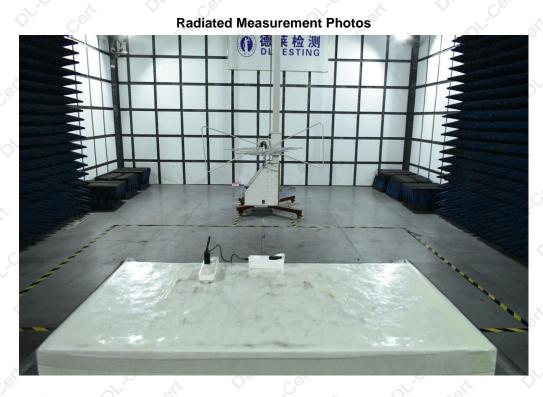
Senterr	req 433.920000 N	PNO: Wide Trig: Free Run IFGain:Low Atten: 6 dB	Avg Type: Log-Pwr Avg Hold: 2/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N		\mathcal{O}
10 dB/div	Ref -10.00 dBm	Poant.Low Attent of ab	Δ	Mkr1 280.0 ms -0.007 dB	Auto Tune	
-20.0					Center Freq 433.920000 MHz	$\bigcirc \lor$
-30.0					Start Freq 433.920000 MHz	N.
-50.0					Stop Freq 433.920000 MHz	, ce
-70.0					CF Step 100.000 kHz <u>Auto</u> Man	2 2
-90.0	2 ¹¹ 22	harly last and a star and a second	uniompathornakopponsitions. Language and the second	nonlandanueuuuunta	Freq Offset 0 Hz	
Center 4	33.920000 MHz			Span 0 Hz	Scale Type	- of
Res BW		#VBW 300 kHz	Sweep	10.00 s (1001 pts)		Ģ
\diamond	Cor		. 5	Dr Cel	X	04

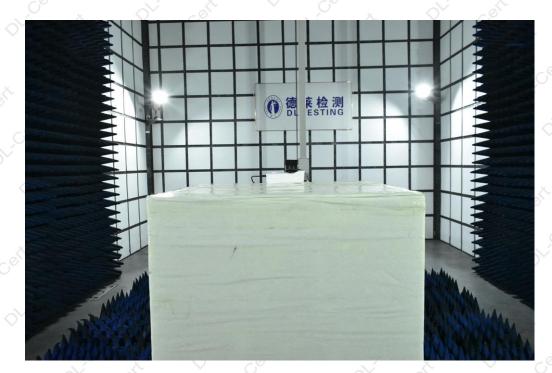
Report No.: DL-20220310017E

7. ANTENNA REQUIREMENT

7.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.


7.2 EUT ANTENNA

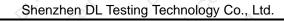

The EUT antenna is internal antenna, It comply with the standard requirement.

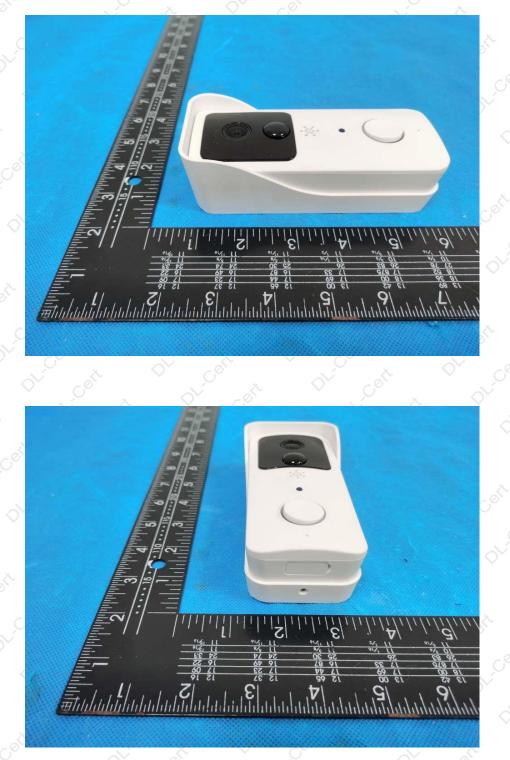
Report No.: DL-20220310017E

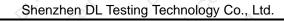
8. TEST SEUUP PHOTO

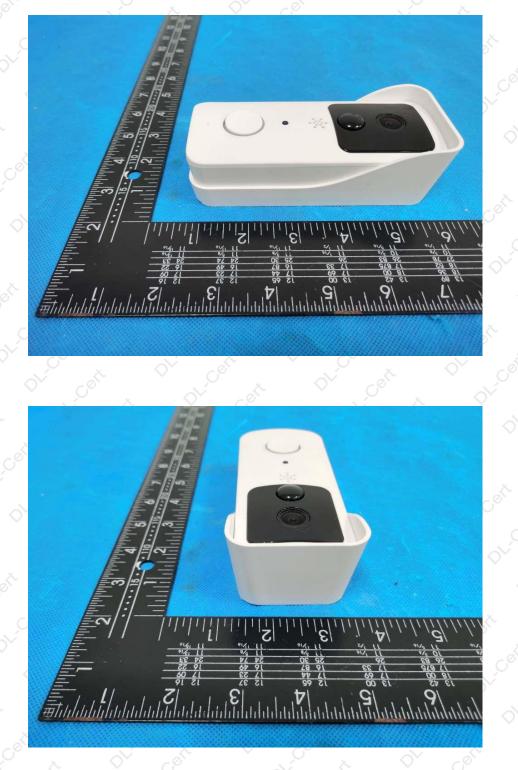
Report No.: DL-20220310017E

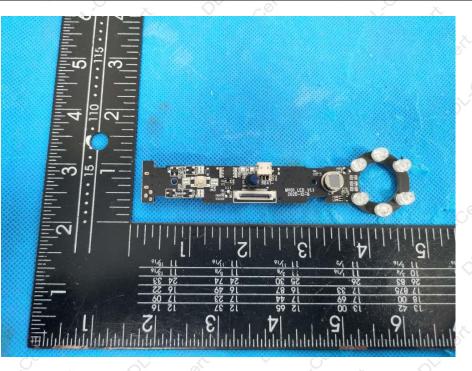
Conducted Measurement Photos

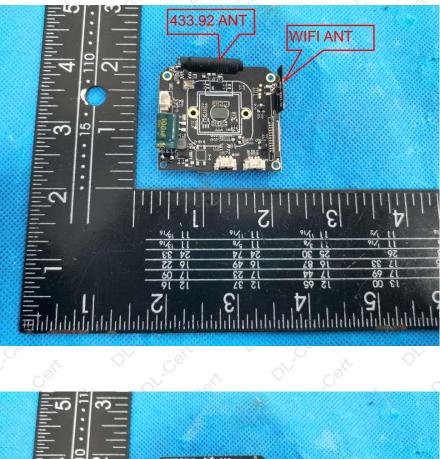

Report No.: DL-20220310017E

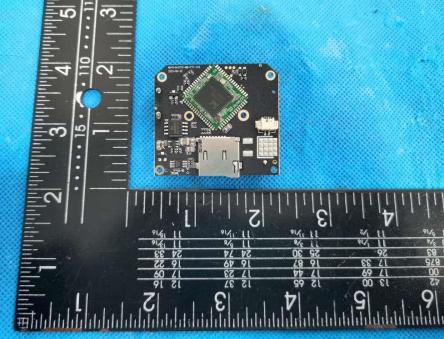

9. EUT PHOTO

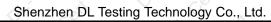












Report No.: DL-20220310017E

**** END OF REPORT ****