

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2200973

FCC RF Test Report

Applicant: Hangzhou Roombanker Technology Co., Ltd

Address of Applicant: A#801 Wantong center, Hangzhou, China

Equipment Under Test (EUT)

Product Name: Smart Ceiling LTE Gateway

Model No.: DSGW-090

FCC ID: 2AUXBDSGW-090

Applicable Standards: FCC CFR Title 47 Part 15C (§15.249)

Date of Sample Receipt: 06 May, 2022

Date of Test: 07 May, to 30 May, 2022

Date of Report Issue: 31 May, 2022

Test Result: PASS

Tested by: Date: 31 May, 2022

Reviewed by: Date: 31 May, 2022

Approved by: ______ Date: ____ 31 May, 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	31 May, 2022	Original

3 Contents

			Page
1	Cov	ver Page	
2	Ver	rsion	2
3	Coi	ntents	3
4	Gei	neral Information	4
	4.1	Client Information	4
	4.2	General Description of E.U.T.	
	4.3	Test Mode and Environment	
	4.4	Description of Support Units	
	4.5	Measurement Uncertainty	
	4.6	Additions to, Deviations, or Exclusions From the Method	
	4.7	Laboratory Facility	
	4.8	Laboratory Location	
	4.9	Test Instruments List	6
5	Mea	asurement Setup and Procedure	8
	5.1	Test Setup	8
	5.2	Test Procedure	
6	Tes	st Results	10
	6.1	Summary	10
	6.2	Antenna Requirement	
	6.3	AC Power Line Conducted Emission	14
	6.4	20dB Bandwidth	16
	6.5	Field Strength of Fundamental	
	6.6	Field Strength of Spurious Emissions	19

4 General Information

4.1 Client Information

Applicant:	Hangzhou Roombanker Technology Co., Ltd	
Address:	A#801 Wantong center, Hangzhou, China	
Manufacturer:	Hangzhou Roombanker Technology Co., Ltd.	
Address:	A#801 Wantong center, Hangzhou, China	

4.2 General Description of E.U.T.

Product Name:	Smart Ceiling LTE Gateway
Model No.:	DSGW-090
Operation Frequency:	908.4 MHz
Channel Numbers:	1
Modulation Type:	GFSK
Antenna Type:	Internal Antenna
Antenna Gain:	1.8 dBi
AC Adapter:	Model No.: KA12C-0502000US
	Input: AC100-240V, 50/60Hz 0.35A
	Output: DC 5.0V, 2A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Report No.: JYTSZ-R12-2200973

4.3 Test Mode and Environment

Test Mode:			
Transmitting mode: Keep the EUT in transmitting mode with modulation			
•	Remark: The EUT was placed on three different polar directions tested: i.e. X axis, Y axis, Z axis, and found the test results are both the "worst case" and "worst setup": Y axis, so the report only reflects the test data of worst mode. Operating Environment:		
Temperature: 15° ~ 35°			
Humidity: 20 % ~ 75 % RH			
Atmospheric Pressure: 1010 mbar			

4.4 Description of Support Units

N/A

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB
Radiated Emission (30MHz ~ 1GHz) (10m SAC)	±4.32 dB

Remark: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions From the Method

No

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

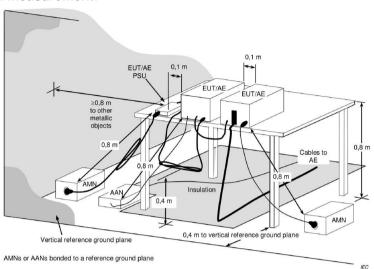
JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-155-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

4.9 Test Instruments List

Radiated Emission(3m SAC):					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	02-17-2022	02-16-2023
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	06-20-2021	06-19-2022
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-17-2022	02-16-2023
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	02-17-2022	02-16-2023
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXG001-7	02-17-2022	02-16-2023
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXG001-3	02-17-2022	02-16-2023
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA- 180400G45B	WXG001-9	02-17-2022	02-16-2023
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	02-17-2022	02-16-2023
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	11-27-2021	11-26-2022
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	/A
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	02-17-2022	02-16-2023
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN- 8M	WXG001-5	02-17-2022	02-16-2023
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS- 8M	WXG001-7	02-17-2022	02-16-2023
Coaxial Cable (9kHz ~ 30MHz)	JYT	JYT3M-1G-BB-5M	WXG001-6	02-17-2022	02-16-2023
Test Software	Tonscend	TS+		Version: 3.0.0.1	

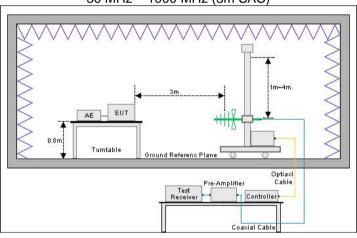
Radiated Emission(10m SAC):					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
10m SAC	ETS	RFSD-100-F/A	WXJ090	04-28-2021	04-27-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-1	03-30-2022	03-29-2023
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-2	03-30-2022	03-29-2023
EMI Test Receiver	R&S	ESR 3	WXJ090-3	03-30-2022	03-29-2023
EMI Test Receiver	R&S	ESR 3	WXJ090-4	03-30-2022	03-29-2023
Low Pre-amplifier	Bost	LNA 0920N	WXG002-3	03-30-2022	03-29-2023
Low Pre-amplifier	Bost	LNA 0920N	WXG002-4	03-30-2022	03-29-2023
Cable	Bost	JYT10M-1G-NN-10M	XG002-7	03-30-2022	03-29-2023
Cable	Bost	JYT10M-1G-NN-10M	XG002-8	03-30-2022	03-29-2023
Test Software	R&S	EMC32		Version: 10.50.40)

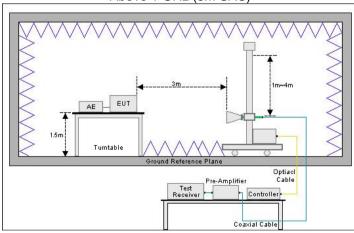
Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	10-21-2021	10-20-2022
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-17-2022	02-16-2023
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-18-2021	06-17-2022
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-17-2022	02-16-2023
RF Switch	TOP PRECISION	RSU0301	WXG003	N	I/A
Test Software	AUDIX	E3	V	ersion: 6.110919	9b


Conducted Method:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI3	WXJ003	01-19-2022	01-18-2023

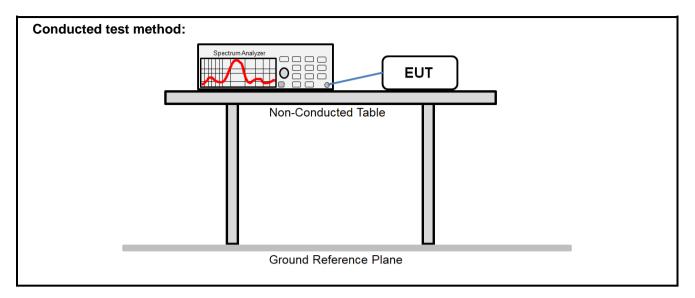
5 Measurement Setup and Procedure

5.1 Test Setup


Conducted emission measurement:


Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

Radiated emission measurement:


30 MHz - 1000 MHz (3m SAC)

Above 1 GHz (3m SAC)

5.2 Test Procedure

Test method	Test step
Conducted emission	The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.
	2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
Conducted test method	The antenna port of EUT was connected to the RF port of the spectrum analyzer through an RF cable.
	The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	3. The test data is saved by the screenshot function of the spectrum analyzer.

6 Test Results

6.1 Summary

6.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
20dB Bandwidth	15.215	See Section 6.4	Pass
Field Strength of Fundamental	15.249	See Section 6.5	Pass
Field Strength of Spurious Emissions	15.209, 15.249	See Section 6.6	Pass
Remark:	•		
1. Pass: The EUT complies with the essential	requirements in the standard	d.	
Tost Mothod: ANSI C62 10 2012	requirements in the standard	1.	

Test Method: ANSI C63.10-2013

6.1.2 Test Limit

Test items		Limit		
	Frequency	Limit (dΒμV)	
	(MHz)	Quasi-Peak	Average	
AC Power Line	0.15 – 0.5	66 to 56 Note 1	56 to 46 Note 1	
Conducted Emission	0.5 – 5	56	46	
Conducted Linission	5 – 30	60	50	
	· ·	decreases linearly with the logarith t applies at transition frequencies.	nm of frequency.	
20dB Bandwidth	Intentional radiators operation emission limits, as contained part, must be designed to ensure whatever bandwidth may off which the equipment operated designated in the rule section of intentional radiators operated bandwidth may span across that subpart. The requiremed emission within the specified sweeping, frequency hopping employed as well as the frequariations in temperature and ed in the regulations, it is rewithin at least the central 80 possibility of out-of-band op	If in § 15.217 through 15. Insure that the 20 dB band herwise be specified in the es, is contained within the nunder which the equiprating under the provisions multiple contiguous frequent to contain the designant to contain the designant frequency band include g and other modulation to guency stability of the transpector of the permitted band.	257 and in subpart I dwidth of the emissic especific rule section frequency band ment is operated. In soft subpart E, the enuency bands identified bandwidth of the sthe effects from freechniques that may as mitter over expect quency stability is not a manufactured bandwidth of the stable effects from freechniques that may as mitter over expect quency stability is not a mental emission b	E of this on, or on under the case mission ed in equency be ed t specifie kept

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

- (1) The above field strength limits are specified at a distance of 3 meters.
- (2) As shown in § 15.35(b), for frequencies above 1000 MHz, the fi eld strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Field Strength of Spurious **Emissions**

Field Strength of

Fundamental

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasipeak) limits shown in this table or to the general limits shown in § 15.209. whichever limit permits a higher field strength:

Frequency (MHz)	Limit (dBμV/m) @ 3m	Detector			
30 – 88	40.0	Quasi-peak			
88 – 216	43.5	Quasi-peak			
216 – 960	46.0	Quasi-peak			
960 – 1000	54.0	Quasi-peak			
Note: The more stringent limit ap	plies at transition frequencies.				
Frequency	Limit (dBµV/m) @ 3m				
Frequency	Average	Peake			
Above 1 GHz	54.0	74.0			
Note: The measurement bandwidth shall be 1 MHz or greater.					

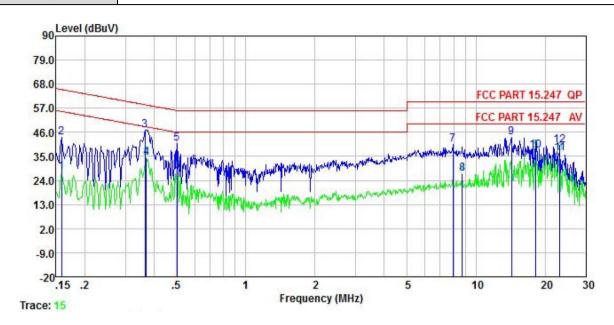
Report No.: JYTSZ-R12-2200973

6.2 Antenna Requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

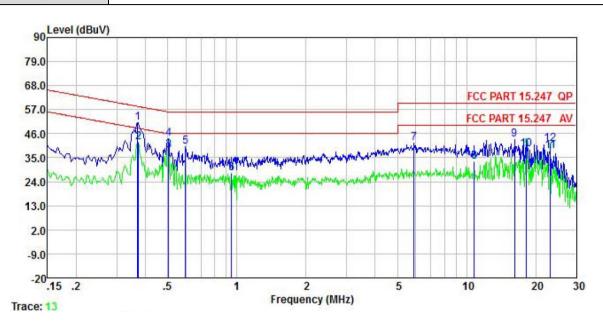
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


E.U.T Antenna:

The Z-wave antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.8 dBi. See product internal photos for details.

6.3 AC Power Line Conducted Emission

Product name:	Smart Ceiling LTE Gateway	Product model:	DSGW-090
Test by: Janet		Test mode:	Z-Wave Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
•	MHz	dBu∇	dB	dB	dBu∀	dBu∇	dB	
1	0.158	27.82	0.04	0.01	27.87			Average
2	0.158	43.74	0.04	0.01	43.79		-21.77	
3	0.365	47.03	0.04	0.03	47.10		-11.51	
4	0.369	34.50	0.04	0.03	34.57	48.52	-13.95	Average
4	0.502	40.95	0.04	0.03	41.02	56.00	-14.98	QP
6	0.505	28.04	0.04	0.03	28.11	46.00	-17.89	Average
7	7.935	40.02	0.17	0.10	40.29	60.00	-19.71	QP
8	8.729	26.85	0.19	0.11	27.15	50.00	-22.85	Average
9	14.288	43.30	0.26	0.13	43.69		-16.31	
10	18.232	37.00	0.30	0.15	37.45			Average
11	23.140	35.86	0.35	0.17	36.38			Average
12	23.140	39.63	0.35	0.17	40.15		-19.85	

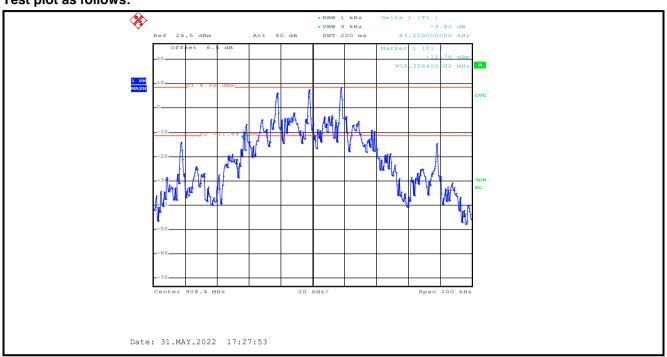
Remark:

1. Level = Read level + LISN Factor + Cable Loss.

Product name:	smart Ceiling LTE Gateway		DSGW-090
Test by:	Janet Test mode:		Z-Wave Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		

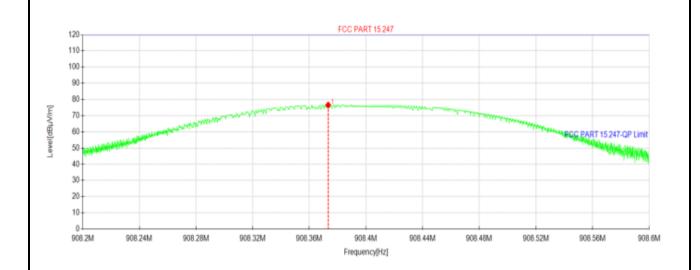
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∇	<u>dB</u>	dB	dBu∀	dBu∇	<u>dB</u>	
1	0.369	51.15	0.04	0.03	51.22	58.52	-7.30	QP
2	0.373	41.84	0.04	0.03	41.91	48.43	-6.52	Average
3	0.505	38.40	0.04	0.03	38.47	46.00	-7.53	Average
1 2 3 4 5 6 7 8 9	0.505	43.71	0.04	0.03	43.78	56.00	-12.22	QP
5	0.598	40.02	0.04	0.02	40.08	56.00	-15.92	QP
6	0.948	27.62	0.05	0.05	27.72	46.00	-18.28	Average
7	5.898	41.58	0.12	0.09	41.79	60.00	-18.21	QP
8	10.790	32.88	0.20	0.12	33.20	50.00	-16.80	Average
9	16.140	42.94	0.26	0.16	43.36	60.00	-16.64	QP
10	18.232	38.31	0.28	0.15	38.74	50.00	-11.26	Average
11	23.140	37.61	0.34	0.17	38.12	50.00	-11.88	Average
12	23.140	40.86	0.34	0.17	41.37	60.00	-18.63	QP

Remark:


1. Level = Read level + LISN Factor + Cable Loss.

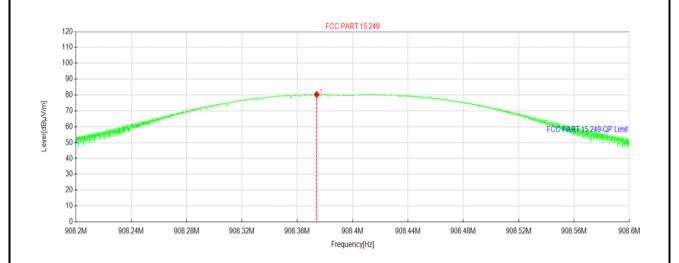
6.4 20dB Bandwidth

20dB bandwidth (MHz)	Limit (MHz)	Results		
0.0832	903.3 <within<926.7< td=""><td>Pass</td></within<926.7<>	Pass		


Test plot as follows:

6.5 Field Strength of Fundamental

	•			
Product Name:	Product Name: Smart Ceiling LTE Gateway		DSGW-090	
Test By:	Janet	Test mode:	Z-Wave Tx mode	
Test Frequency:	908.4 MHz	Polarization:	Vertical	
Test Voltage:	AC 120V/60HZ			

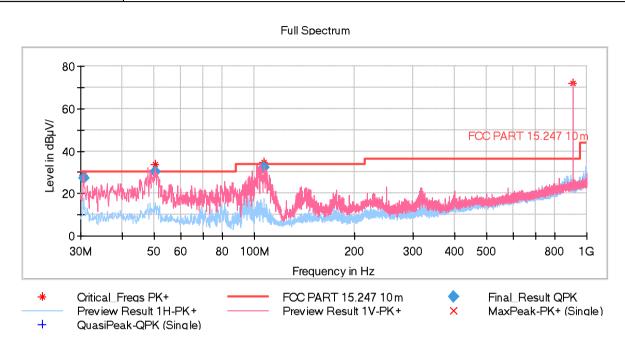

Suspected Data List:								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	908.373	77.90	76.53	-1.37	94.0	17.47	PK	Vertical

Remark:

- 1. Level = Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. PK Level is less than AV limit(94dBuV/m), Pass.

Product Name: Smart Ceiling LTE Gateway		Product Model:	DSGW-090	
Test By:	Janet	Test mode:	Z-Wave Tx mode	
Test Frequency:	908.4 MHz	Polarization:	Horizontal	
Test Voltage:	AC 120V/60HZ			

Sus	Suspected Data List:								
NO	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
1	908.374	81.64	80.27	-1.37	94.0	13.73	PK	Vertical	


Remark:

- 1. Level = Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. PK Level is less than AV limit(94dBuV/m), Pass.

6.6 Field Strength of Spurious Emissions

Product Name:	Smart Ceiling LTE Gateway	Product Model:	DSGW-090	
Test By:	Janet	Test mode:	Z-Wave Tx mode	
Test Frequency:	30 MHz – 1000 MHz	Polarization:	Vertical and Horizontal	
Test Voltage:	AC 120V/60HZ			

Critical_Freqs

Childa_heds								
-	Frequency↓	MaxPeak↓	Limit↓	Margin↓	Height↓	Pol∈	Azimuth↓	Corr.↓
	(MHz)∂	(dB _µ V/m)∂	(dB _µ V/m)∂	(dB) <i>∈</i>	(cm)⊲		(deg)∈	(dB/m)∂
•	30.600000€	28.90∂	30.00	2.85⊖	109.0∂	Vċ□	80.0€	-17.5∉
-	50.450000€	33.77⊖	30.00	-0.58∈	100.0∈	Vċ□	165.0€	-15.8ぐ
-	106.710000€	34.76⊖	33.50∉	0.06	111.0∈	Vċ□	289.0€	-18.3∉
•	908.335000€	72.05⊖	36.00∂	-36.05⊖	100.0∈	H₽	142.0€	-1.1∻

Final Result[←]

•	Frequency↓ (MHz)∂	QuasiPeak↓ (dB _µ V/m)∂	Limit↓ (dBu	Margin↓ (dB)∂	Height↓ (cm)⊲	Pol∂	Azimuth↓ (deg)∂	Corr.↓ (dB/m)∈
-	30.600000	1 P- /	(P-	, ,	109.0	Vċ	80.0€	-17.5÷
-	50.450000€	29.95	30.00∂	0.05	100.0€	Vċ□	165.0⊖	-15.8∹
•	106.710000←	32.28	33.50	1.22€	111.0⊖	Vċ	289.0∈	-18.3∈

Remark:

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Above 1GHz

Z-Wave Tx									
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
1816.80	56.16	-20.99	35.17	74.00	38.83	Vertical			
1816.80	55.84	-20.99	34.85	74.00	39.15	Horizontal			
	Detector: Average Value								
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
1816.80	49.62	-20.99	28.63	54.00	25.37	Vertical			
1816.80	49.11	-20.99	28.12	54.00	25.88	Horizontal			

-----End of report-----