

NTEK 北测

FCC RADIO TEST REPORT FCC ID: 2A8WC-S400-0102

Product: Remote control

Trade Mark:

Model No.: GDU RC SEE Family Model: N/A Report No.: S22092902306006 Issue Date: Apr 01, 2024

Prepared for

GDU-Tech Co., Ltd.

Building 2, No.5, Huanglongshan South Road, Donghu New Technology Development Zone, Wuhan 430074, China

Prepared by

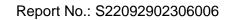
Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District Shenzhen, Guangdong, China Tel:400-800-6106,0755-2320 0050 / 2320 0090 Website:http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name:	GDU-Tech Co., Ltd.
Address:	Building 2, No.5, Huanglongshan South Road, Donghu New Technology Development Zone, Wuhan 430074, China
Manufacturer's Name:	GDU-Tech Co., Ltd.
Address:	Building 2, No.5, Huanglongshan South Road, Donghu New Technology Development Zone, Wuhan 430074, China
Product description	
Product name:	Remote control
Trade mark:	
Model and/or type reference:	GDU RC SEE
Family Model:	N/A
Test Sample Number	S220929023001
Date of tests:	Mar 01, 2024 ~ Apr 01, 2024
Standards	FCC Part15.407
Test procedure	ANSI C63.10-2013 KDB 789033 D02 General UNII Test Procedures New Rules v02r01 FCC KDB 662911 D01 Multiple Transmitter Output v02r01

This device described above has been tested by NTEK, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document.


(Project Engineer)

Prepared By: Mukzi Lee By: Mukzi Lee (Device t Engineer) Reviewed By: Aaron Cheng (Supervisor) Approved (Supervisor)

(Supervisor)

(Manager)

Version.1.2

Table of Contents	
	Page
FCC RADIO TEST REPORT	1
1. SUMMARY OF TEST RESULTS	7
1.1 FACILITIES AND ACCREDITATIONS	8
1.2 MEASUREMENT UNCERTAINTY	8
2. GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 DESCRIPTION OF TEST MODES	11
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 13
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	14
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	15
3. EMC EMISSION TEST	17
3.1 CONDUCTED EMISSION MEASUREMENT	17
3.1.1 APPLICABLE STANDARD 3.1.2 CONFORMANCE LIMIT	17 17
3.1.3 TEST CONFIGURATION	17
3.1.4 TEST PROCEDURE	17
3.2 RADIATED EMISSION MEASUREMENT	20
3.2.1 APPLICABLE STANDARD 3.2.2 CONFORMANCE LIMIT	20 20
3.2.3 MEASURING INSTRUMENTS	20
3.2.4 TEST CONFIGURATION	21
3.2.5 TEST PROCEDURE 3.2.6 TEST RESULTS (9KHZ – 30 MHZ)	22 23
3.2.7 TEST RESULTS (30MHZ – 1GHZ)	24
3.2.8 TEST RESULTS (1GHZ-18GHZ)	26
3.2.10 TEST ESULTS (18GHZ-40GHZ) 3.2.11 SPURIOUS EMISSION IN RESTRICTED BAND 4.5GHZ~5.150 GHZ	27 28
5.350GHZ~5460GHZ	29
4. POWER SPECTRAL DENSITY TEST	30
4.1 APPLIED PROCEDURES / LIMIT	30
4.2 TEST PROCEDURE 4.3 DEVIATION FROM STANDARD	31 31
4.3 DEVIATION FROM STANDARD 4.4 TEST SETUP	31
4.5 EUT OPERATION CONDITIONS	31
4.6 TEST RESULTS	32
5. 26DB & 99% EMISSION BANDWIDTH	33

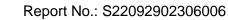
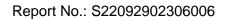


Table of Contents	
	Page
5.1 APPLIED PROCEDURES / LIMIT 5.2 TEST PROCEDURE 5.3 EUT OPERATION CONDITIONS 5.4 TEST RESULTS	33 33 34 34
6. MINIMUM 6 DB BANDWIDTH 6.1 APPLIED PROCEDURES / LIMIT 6.2 TEST PROCEDURE 6.3 DEVIATION FROM STANDARD 6.4 TEST SETUP 6.5 EUT OPERATION CONDITIONS 6.6 TEST RESULTS	35 35 35 35 35 35 35 36
7. MAXIMUM CONDUCTED OUTPUT POWER 7.1 PPLIED PROCEDURES / LIMIT 7.5 TEST RESULTS	37 37 39
8. OUT OF BAND EMISSIONS 8.1 APPLICABLE STANDARD 8.2 TEST PROCEDURE 8.3 DEVIATION FROM STANDARD 8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS	40 40 40 40 40 40 40
9. FREQUENCY STABILITY MEASUREMENT	42
9.1 LIMIT	42
9.2 TEST PROCEDURES	42
9.3 TEST SETUP LAYOUT	42
9.4 EUT OPERATION DURING TEST	42
9.5 TEST RESULTS	43
10. ANTENNA REQUIREMENT	46
10.1 STANDARD REQUIREMENT	46
10.2 EUT ANTENNA	46
11. TEST RESULT	47
	47
11.2 MAXIMUM CONDUCTED OUTPUT POWER	56 57
11.3 -6DB EMISSION BANDWIDTH 11.4 OCCUPIED CHANNEL BANDWIDTH	57
11.4 OCCUPIED CHANNEL BANDWIDTH 11.5 MAXIMUM POWER SPECTRAL DENSITY LEVEL	66 84
	04

ilac-MRA

ACCREDITED Certificate #4298.01

Table of ContentsPage11.6 BAND EDGE9311.7 CONDUCTED RF SPURIOUS EMISSION100



Revision History

Report No.	Version	Description	Issued Date
S22092902306006	Rev.01	Initial issue of report	Apr 01, 2024
	1	l	1

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.407) , Subpart E			
Standard Section	Test Item	Judgment	Remark
15.207	AC Power Line Conducted Emissions	PASS	
15.209(a), 15.407 (b)(1) 15.407 (b)(4) 15.407 (b)(9) 15.407 (b)(10)	Spurious Radiated Emissions	PASS	
15.407 (a)(1) 15.407 (a)(3)	26 dB and 99% Emission Bandwidth	PASS	
15.407(e)	Minimum 6 dB bandwidth	PASS	
15.407 (a)(1) 15.407 (a)(3)	Maximum Conducted Output Power	PASS	
15.407(b)(1) 15.407(b)(4)	Band Edge	PASS	
15.407 (a)(1) 15.407 (a)(3)	Power Spectral Density	PASS	
15.407(b)	Spurious Emissions at Antenna Terminals	PASS	
15.203	Antenna Requirement	PASS	

ACCREDI

ED Certificate #4298.01

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) This device operates with a duty cycle greater than 99%

1.1 FACILITIES AND ACCREDITATIONS

FACILITIES

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

Certificate #4298.01

LABORATORY ACCREDITATIONS AND LISTINGS

Site Description		
CNAS-Lab.	The Certificate Registration Number is L5516.	
IC-Registration	The Certificate Registration Number is 9270A.	
	CAB identifier:CN0074	
FCC- Accredited	Test Firm Registration Number: 463705.	
	Designation Number: CN1184	
A2LA-Lab.	The Certificate Registration Number is 4298.01	
Name of Firm	Shenzhen NTEK Testing Technology Co., Ltd.	
Site Location	1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District	
	Shenzhen, Guangdong, China	

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(9KHz~30MHz)	±6dB
5	All emissions, radiated(30MHz~1GHz)	±2.64dB
6	All emissions, radiated(1GHz~6GHz)	±2.40dB
7	All emissions, radiated(> 6GHz)	±2.52dB
8	Temperature	±0.5°C
9	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Remote control		
Trade Mark			
Model Name	GDU RC SEE		
Family Model	N/A		
Model Difference	N/A		
FCC ID	2A8WC-S400-0102	2	
Product Description		⊠10M/20M/40M BPSK,QPSK,16QAM,64QAM Please see Note 2 □Outdoor AP □Indoor AP □Fixed P2P ⊠Client □SISO for 10M/20M/40M ⊠MIMO for 10M/20M/40M External Antenna 3.55dBi cation, features, or specification exhibited in User's Manual, T technical specification, please refer to the User's Manual.	
Adapter	Model: CPD-BC12 Input: AC100-240V~50/60Hz 5A Output: 26.4V14A; 12V3A; 5V3A		
Battery	DC 7.2V, 7000mAh	DC 7.2V, 7000mAh	
Rating	DC 7.2V from batte	DC 7.2V from battery or DC 26.4V from adapter	
Connecting I/O Port(s)	Please refer to the User's Manual		
Hardware Version	N/A	N/A	
Software Version	N/A		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

ACCREDITED Certificate #4298.01

2. Number Of Channel List

	Channel	Frequency
	01	5740
	02	5760
10M/20M	03	5780
	04	5800
	05	5820
	02	5760
40M	03	5780
	04	5800
	05	5820

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Certificate #4298.01

Pretest Mode	Description
Mode 1	Normal Link Mode
Mode 2	BPSK 10M CH01/03/05
Mode 3	BPSK 20M CH01/03/05
Mode 4	BPSK 40M CH02/03/05

For Radiated Emission		
Final Test Mode	Description	
Mode 2	BPSK 10M CH01/03/05	
Mode 3	BPSK 20M CH01/03/05	
Mode 4	BPSK 40M CH02/03/05	

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1 Normal Link Mode		

For Conducted Test Cases					
Final Test Mode Description					
Mode 2	BPSK 10M CH01/03/05				
Mode 3	BPSK 20M CH01/03/05				
Mode 4	BPSK 40M CH02/03/05				

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

This EUT has two antennas, and different modes support different transmit mode what describe as following:

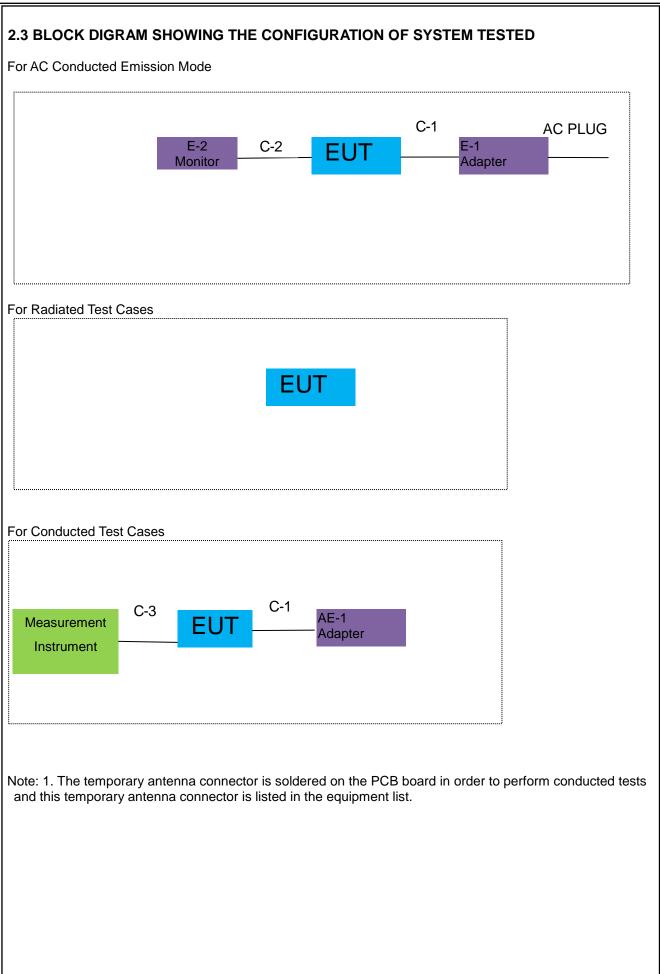
Mode	Tx/Rx
10M/20M/40M	2TX, 2RX

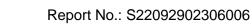
For 5.8GHz band has MIMO mode, Antenna 1,2 are simultaneous transmissions, each with the same directional gain.

For power spectral density (PSD) measurements: Directional gain=G_{ANT} + Array Gain=3.55dBi + 3.01 = 6.56dBi. For power measurements: Directional gain=G_{ANT} + Array Gain=3.55dBi + 0 = 3.55dBi.

Note: G_{ANT} means antenna gain for the same gain in dBi.

For power spectral density (PSD) measurements: Array Gain = $10\log(N_{ANT}/N_{ss})dB$. Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$; Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT} ; Array Gain = $5 \log(N_{ANT}/N_{SS}) dB$ or 3 dB, whichever is less, for 20-MHz channel widths


with $N_{ANT} \ge 5$. For power measurements:


 N_{ANT} = number of transmit antennas and

 N_{SS} = number of spatial streams. (Assume $N_{SS} = 1$ unless you have specific information to the contrary.)

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Certificate #4298.0

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	CPD-BC12	N/A	Peripherals
AE-2	Monitor	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	NO	NO	1.0m
C-2	HDMI Cable	YES	YES	1.5m
C-3	RF Cable	YES	NO	0.1m

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength¹ column.
- (3) During the battery power test, the battery is fully charged.

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

luului		rest equipment					
	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4440A	MY4100013 0	2023.03.27 2024.03.12	2024.03.26 2025.03.11	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY4910006 0	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.05.29	2024.05.28	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27 2024.03.12	2024.03.26 2025.03.11	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16 2024.03.11	2024.03.15 2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	SCHWARZBE CK	BBHA 9120 D	2816	2023.01.12	2026.01.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2025.11.06	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.11.03	2026.11.02	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.03.26	2026.03.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment

NTEK 北测

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27 2024.03.12	2024.03.26 2025.03.11	1 year
2	LISN	R&S	ENV216	101313	2023.03.27 2024.03.12	2024.03.26 2025.03.11	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27 2024.03.12	2024.03.26 2025.03.11	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Test Cable& Aux Equipment which is scheduled for calibration every 3 years.

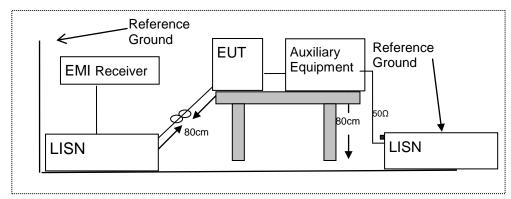
3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 APPLICABLE STANDARD

According to FCC Part 15.207(a)

3.1.2 CONFORMANCE LIMIT


Frequency (MHz)	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

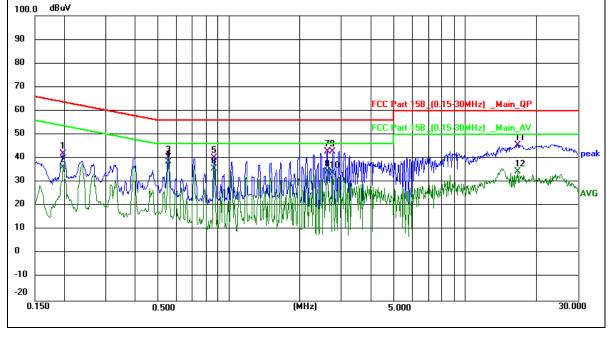
3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.1.3 TEST CONFIGURATION

3.1.4 TEST PROCEDURE

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

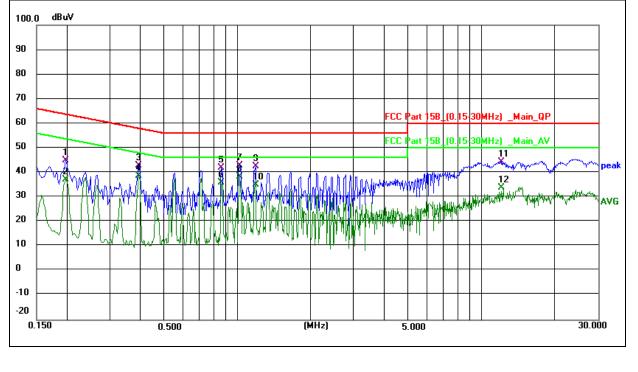

EUT :	Remote control	Model Name. :	GDU RC SEE
Temperature :	23.5 ℃	Relative Humidity :	45%
Pressure :	1010hPa	Phase :	L
	DC 26.4V from Adapter AC 120V/60Hz	Test Mode :	Mode 1

Frequency	Reading Level	Correct Factor	Measure-me nt	Limits	Margin	Remar
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	k
0.1980	31.99	10.03	42.02	63.69	-21.67	QP
0.1980	26.08	10.03	36.11	53.69	-17.58	AVG
0.5540	29.59	10.75	40.34	56.00	-15.66	QP
0.5540	27.87	10.75	38.62	46.00	-7.38	AVG
0.8660	28.61	11.40	40.01	56.00	-15.99	QP
0.8660	24.27	11.40	35.67	46.00	-10.33	AVG
2.6140	33.07	9.67	42.74	56.00	-13.26	QP
2.6140	24.92	9.67	34.59	46.00	-11.41	AVG
2.7460	33.19	9.67	42.86	56.00	-13.14	QP
2.7460	24.29	9.67	33.96	46.00	-12.04	AVG
16.7220	35.88	9.71	45.59	60.00	-14.41	QP
16.7220	24.61	9.71	34.32	50.00	-15.68	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

dBu¥



EUT :	Remote control	Model Name. :	GDU RC SEE
Temperature :	23.5 ℃	Relative Humidity :	45%
Pressure :	1010hPa	Phase :	Ν
	DC 26.4V from Adapter AC 120V/60Hz	Test Mode :	Mode 1

Frequency	Reading Level	Correct Factor	Measure-me nt	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	
0.1980	34.98	10.03	45.01	63.69	-18.68	QP
0.1980	27.13	10.03	37.16	53.69	-16.53	AVG
0.3940	32.48	10.42	42.90	57.98	-15.08	QP
0.3940	28.24	10.42	38.66	47.98	-9.32	AVG
0.8580	30.64	11.38	42.02	56.00	-13.98	QP
0.8580	24.71	11.38	36.09	46.00	-9.91	AVG
1.0220	31.11	11.70	42.81	56.00	-13.19	QP
1.0220	26.68	11.70	38.38	46.00	-7.62	AVG
1.1860	30.45	12.04	42.49	56.00	-13.51	QP
1.1860	22.87	12.04	34.91	46.00	-11.09	AVG
11.9977	34.80	9.70	44.50	60.00	-15.50	QP
11.9977	24.01	9.70	33.71	50.00	-16.29	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 APPLICABLE STANDARD

NTEK 北测

According to FCC Part 15.407(b)(9) and 15.209

3.2.2 CONFORMANCE LIMIT

According to FCC Part 15.407(b) (9): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205. Restricted bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
Γ	0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
	0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
	1.705~30.0	30	29.5	30
	30-88	100	40	3
	88-216	150	43.5	3
	216-960	200	46	3
	Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)					
η τεγάειτος (Ινίπτε)	PEAK	AVERAGE				
Above 1000	74	54				

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

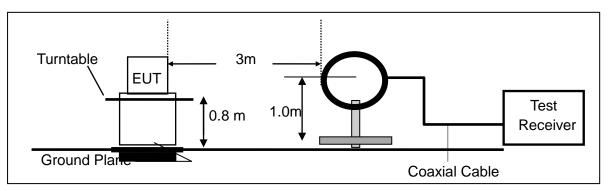
Limit line=Specific limits(dBuV) + distance extrapolation factor.

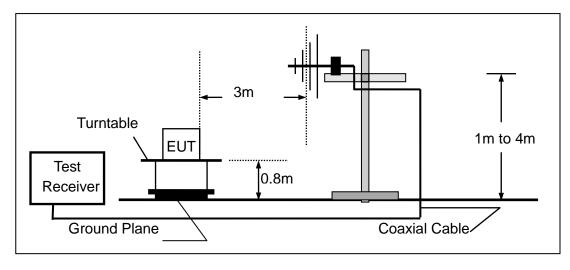
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

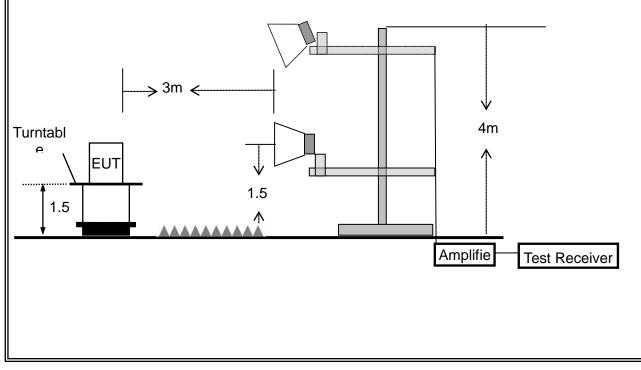
Limit line=Specific limits(dBuV) + distance extrapolation factor.

3.2.3 MEASURING INSTRUMENTS


The Measuring equipment is listed in the section 6.3 of this test report.



3.2.4 TEST CONFIGURATION


(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

3.2.5 TEST PROCEDURE

NTEK 北测

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

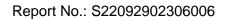
This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting					
Attenuation	Auto					
Start Frequency	1000 MHz					
Stop Frequency	10th carrier harmonic					
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average					

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested


and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Ab aug 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

3.2.6 TEST RESULTS (9KHZ - 30 MHZ)

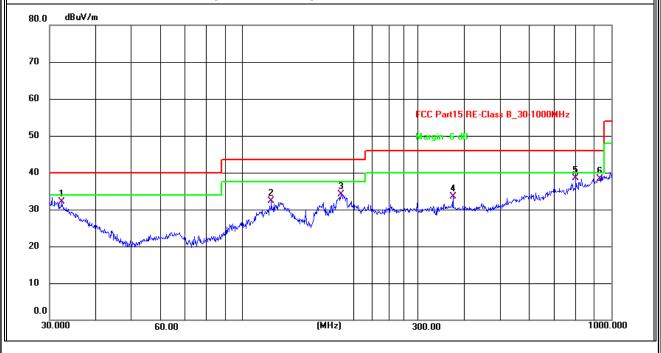
EUT :	Remote control	Model Name :	GDU RC SEE
Temperature :	26 ℃	Relative Humidity :	54%
Pressure:	1010 hPa	Test Voltage :	DC 7.2V
Test Mode :	ТХ	Polarization :	

ACCREDITED Certificate #4298.01

Freq.	Reading	Reading Limit Margin			
(MHz)	(dBuV/m)	(dB)	P/F		
				N/A	
				N/A	

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


3.2.7 TEST RESULTS (30MHZ - 1GHZ)

EUT :	Remote control	Model Name :	GDU RC SEE
Temperature :	25.2	Relative Humidity :	55%
Pressure :	1010 hPa	Test Voltage :	DC 7.2V
Test Mode :	TX- 40M BPSK mode(CH02)		

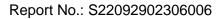
Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	32.4060	7.17	25.00	32.17	40.00	-7.83	QP
V	119.8555	13.61	18.61	32.22	43.50	-11.28	QP
V	185.1374	17.62	16.47	34.09	43.50	-9.41	QP
V	372.0045	10.81	22.60	33.41	46.00	-12.59	QP
V	801.7862	8.99	29.57	38.56	46.00	-7.44	QP
V	932.2712	7.31	31.09	38.40	46.00	-7.60	QP

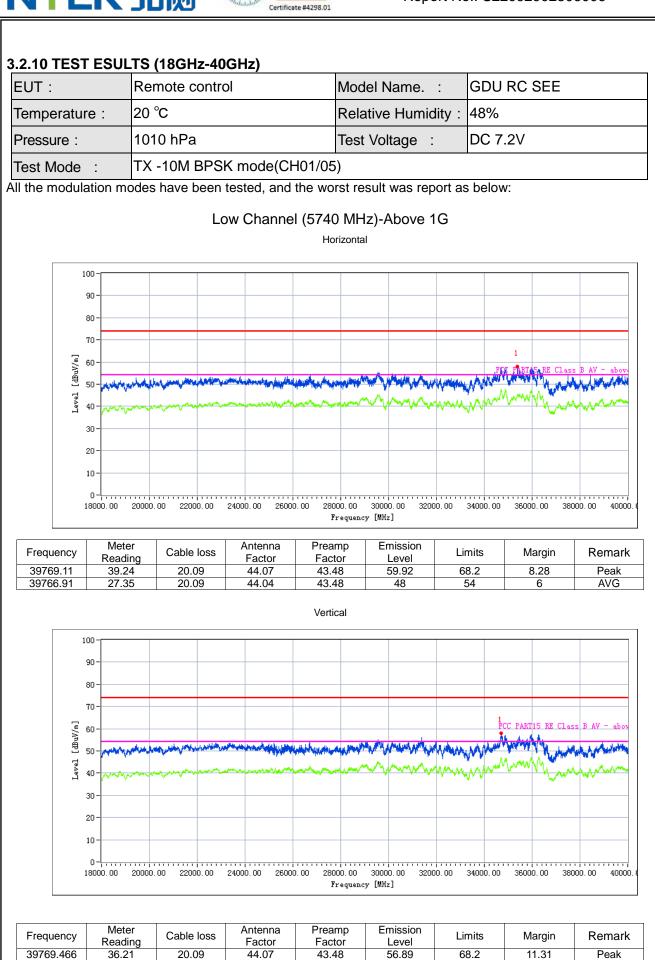
Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Fre	equei	ncy		Me Rea	eter din		Factor	Emi Le	ssio evel		Lim	its	Ма	rgin		Re	emarl
(H/V)		(MHz	:)		(dE	BuV	')	(dB)	(dB	JV/r	n)	(dBu\	//m)	(dB)				Sinan
Н	3	1.842	27		5.	75		25.32	31	.07	,	40.0	00	-8	.93			QP
Н	18	37.75	30		18	.40)	16.37	34	.77	,	43.	50	-8	.73			QP
Н	22	22.95	00		19	.75	5	16.98	36	5.73		46.0	00	-9	.27			QP
Н	37	72.00	45		17	.24	ŀ	22.60	39	.84		46.0	00	-6	.16			QP
Н	38	31.24	-85		14	.75	5	22.80	37	.55		46.0	00	-8	.45			QP
Н	82	27.49	32		9.	13		29.92	39	0.05		46.0	00	-6	.95			QP
	on Le∖ dBuV/m		viete			ing	+ F	actor, Marg	jin= El			Levei -						_
70																		_
60 — 50 —												FCC Part1	5 RE-Clas	\$ B_30	1000	IHz		
40						ſ			Z			Hargin-6					<u>6</u>	-
30 🙀	Marinny	March		~~	mu		WWW	and the proven and	ological and a				MANNA	Munny	Anjim is ter			_
20		. un filone	Vwm	s"	. Nor	<u>а</u> ца 1												
			I		I		I				1	1	1		i I		- 1	

Report No.: S22092902306006


3.2.8 TEST RESULTS (1GHz-18GHz)


NTEK 北测

EUT :	F	Remote cor	itrol		Model Na	me. :	GDU RC SEE					
Temperatur	e: 2	20 °C			Relative H	lumidity :	48%					
Pressure :		1010 hPa			Test Volta	ge :	DC 7.2V					
Test Mode : TX- 10M BPSK mode												
Polar	Frequer	cy Meter Reading	Cable	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector Type			
(H/V)	(MHz)	-	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)				
	,		. ,	nnel (5760	MHz)10M-0	GFSK	, ,					
Vertical	3694.3	61.82	5.94	35.40	44.00	59.16	74.00	-14.84	Pk			
Vertical	3694.3		5.94	35.40	44.00	40.04	54.00	-13.96	AV			
Vertical	11480.	59 61.22	10.12	38.80	44.10	66.04	74.00	-7.96	Pk			
Vertical	11480.4	48 39.91	10.12	38.80	42.70	46.13	54.00	-7.87	AV			
Vertical	17221.	57 58.90	8.46	39.75	44.50	62.61	68.20	-5.59	Pk			
Horizontal	3713.5	63.70	5.94	35.18	44.00	60.82	74.00	-13.18	Pk			
Horizontal	3713.4	9 44.17	5.94	35.18	44.00	41.29	54.00	-12.71	AV			
Horizontal	11480.0	58 57.73	10.12	38.38	44.10	62.13	74.00	-11.87	Pk			
Horizontal	11481.8	35 41.18	10.12	38.38	44.10	45.58	54.00	-8.42	AV			
Horizontal	17220.	39 59.07	8.46	38.71	44.50	61.74	68.20	-6.46	Pk			
			middle Ch	annel (578	0 MHz)10M-	GFSK			•			
Vertical	3624.6	58.78	6.48	36.35	44.05	57.56	74.00	-16.44	Pk			
Vertical	3624.6	43.18	6.48	36.35	44.05	41.96	54.00	-12.04	AV			
Vertical	11560.	66 60.46	10.12	38.80	44.10	65.28	74.00	-8.72	Pk			
Vertical	11560.	70 39.95	10.12	38.80	42.70	46.17	54.00	-7.83	AV			
Vertical	17340.3	60.23	8.47	37.88	44.51	62.07	68.20	-6.13	Pk			
Horizontal	4202.5	6 58.69	6.48	36.37	44.05	57.49	74.00	-16.51	Pk			
Horizontal	4202.4	0 45.25	6.48	36.37	44.05	44.05	54.00	-9.95	AV			
Horizontal	11561.0	01 60.15	10.12	38.38	44.10	64.55	74.00	-9.45	Pk			
Horizontal	11560.9	98 41.44	10.12	38.38	44.10	45.84	54.00	-8.16	AV			
Horizontal	17340.	61.71	8.47	38.64	44.50	64.32	68.20	-3.88	Pk			
			High Cha	annel (5820	MHz)10M-0	GFSK	I	I	I			
Vertical	4397.9		7.10	37.24	43.50	65.20	74.00	-8.80	Pk			
Vertical	4398.2		7.10	37.24	43.50	44.35	54.00	-9.65	AV			
Vertical	11633.		10.12	38.80	44.10	66.71	74.00	-7.29	Pk			
Vertical	11635.		10.12	38.80	42.70	46.93	54.00	-7.07	AV			
Vertical	17480.4		8.46	37.68	44.50	61.96	68.20	-6.24	Pk			
Horizontal	4589.6		7.10	37.24	43.50	62.31	74.00	-11.69	Pk			
Horizontal	4589.6		7.10	37.24	43.50	42.54	54.00	-11.46	AV			
Horizontal	11638.		10.12	38.38	44.10	64.64	74.00	-9.36	Pk			
Horizontal	11640.		10.12	38.38	44.10	47.87	54.00	-6.13	AV			
Horizontal	17481.0 PSK" mode	08 62.59 is the worst mod	8.46	38.57	44.50	65.12 e limit So ave	68.20	-3.08	Pk			

The amplitude of spurious emissions that are attenuated by more than the Average value limit, so average did has no need to be reported. Emission level (dBuV/m) = 20 log Emission level (uV/m). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

ACCREDITED

39769.015

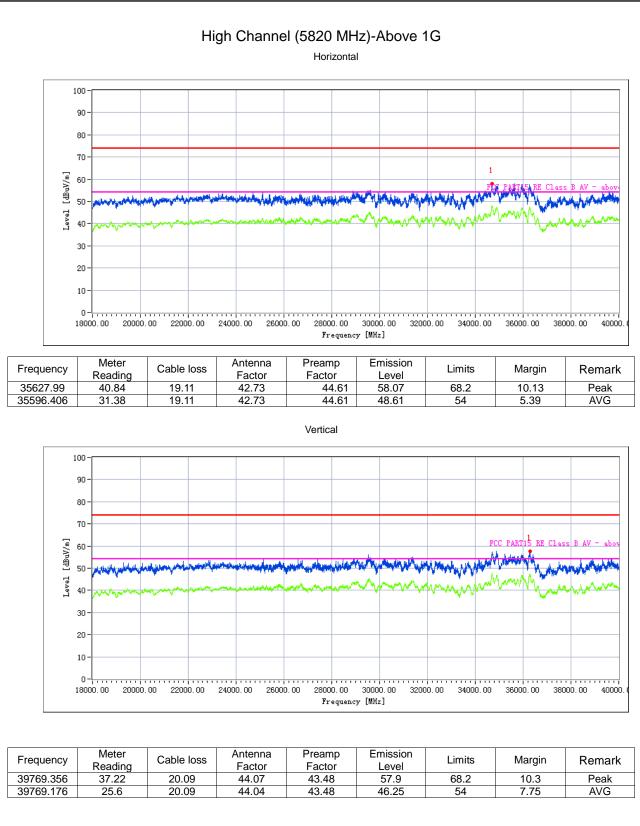
27.49

44.04

43.48

48.14

20.09


AVG

5.86

54

NTEK 北测

.2.11 SPURIOUS	SEMISSION IN RESTRICTED BA	ND 4.5GHZ~5.150	GHZ& 5.350GHZ~5460GHZ
EUT :	Remote control	Model Name. :	GDU RC SEE
Temperature :	20 ℃	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 7.2V
Test Mode :	TX -40M BPSK		

All the modulation modes have been tested, The report just record the worst data mode.

Polar	Frequency	Meter	Cable	Antenna	Preamp	Emission	Limits	Margin	Detector
		Reading	loss	Factor	Factor	Level			Туре
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Low Channel (5760 MHz)10M-Above 1G									
Vertical	5460	68.15	5.61	35.40	44.00	65.16	74.00	-8.84	Pk
Vertical	5460	51.27	5.76	35.40	44.00	48.43	54.00	-5.57	AV
Horizontal	5460	63.10	5.78	35.18	44.00	60.06	74.00	-13.94	Pk
Horizontal	5460	48.17	5.66	35.18	44.00	45.01	54.00	-8.99	AV

Note: (1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2) "40M BPSK" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

4. POWER SPECTRAL DENSITY TEST

4.1 APPLIED PROCEDURES / LIMIT

According to FCC §15.407(a)

NTEK 北测

For the band 5.15-5.25 GHz,

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in

maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz

(3)For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2 TEST PROCEDURE

NTEK 北测

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW \geq 1/T, where T is defined in section II.B.I.a).

- b) Set VBW \geq 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add

10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add
 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution
 bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS

EUT :	Remote control	Model Name :	GDU RC SEE
-			
Temperature :	26 °C	Relative Humidity :	54%
Pressure :	1015 hPa	Test Voltage :	DC 7.2V
Test Mode :	Mode2/3/4		

For 5G band, Directional gain=6.56dBi 6.56dBi>6.0 dBi, so MIMO power spectral density limit=29.44dBm / 1MHz;

Test data reference attachment.

Report No.: S22092902306006

5. 26DB & 99% EMISSION BANDWIDTH

5.1 APPLIED PROCEDURES / LIMIT

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

5.2 TEST PROCEDURE

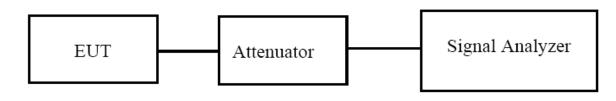
a) Set RBW = approximately 1% of the emission bandwidth.

b) Set the VBW > RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.


The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW \ge 3 \cdot RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

6. Use the 99 % power bandwidth function of the instrument (if available).

7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

5.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.4 TEST RESULTS

EUT :	Remote control	Model Name :	GDU RC SEE
Temperature :	26 °C	Relative Humidity :	54%
Pressure :	1012 hPa	Test Voltage :	DC 7.2V
Test Mode :	Mode2/3/4		

Test data reference attachment.

6. MINIMUM 6 DB BANDWIDTH

6.1 APPLIED PROCEDURES / LIMIT

According to FCC §15.407(e)

NTEK 北测

(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

6.2 TEST PROCEDURE

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

EUT :	Remote control	Model Name :	GDU RC SEE
Temperature :	26 °C	Relative Humidity :	54%
Pressure :	1012 hPa	Test Voltage :	DC 7.2V
Test Mode :	Mode2/3/4		

Test data reference attachment.

7. MAXIMUM CONDUCTED OUTPUT POWER

7.1 PPLIED PROCEDURES / LIMIT

According to FCC §15.407

The maximum conduced output power should not exceed:

Frequency Band(MHz)	Limit
5150~5250	0.25W
5725~5850	1W

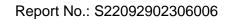
7.2 TEST PROCEDURE

• Method PM is Measurement using an RF average power meter. The procedure for this method is as follows:

a) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:

1) The EUT is configured to transmit continuously, or to transmit with a constant duty cycle.

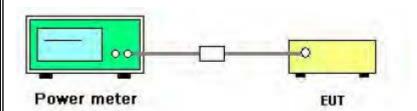
2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.


3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

b) If the transmitter does not transmit continuously, measure the duty cycle D of the transmitter output signal as described in 12.2.

c) Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.

d) Adjust the measurement in dBm by adding [10 log (1 / D)], where D is the duty cycle {e.g., [10 log (1 / 0.25)], if the duty cycle is 25%}.



7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

ACCREDITED Certificate #4298.01

7.5 TEST RESULTS

EUT :	Remote control	Model Name :	GDU RC SEE
Temperature :	26 °C	Relative Humidity :	54%
Pressure :	1012 hPa	Test Voltage :	DC 7.2V
Test Mode :	Mode2/3/4		

ED

For 5G band. Directional gain=3.55dBi; 6.0dBi > 3.55dBi, so conducted power limit= 30.00dBm.

Test data reference attachment.

8. OUT OF BAND EMISSIONS

8.1 APPLICABLE STANDARD

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(9) (10) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

 For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

(2) For transmitters operating in the 5.725-5.85 GHz band: For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

8.2 TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

EUT		SPECTRUM
	Att	ANALYZER

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

EUT :	Remote control	Model Name :	GDU RC SEE
Temperature :	26 °C	Relative Humidity :	54%
Pressure :	1012 hPa	Test Voltage :	DC 7.2V
Test Mode :	Mode2/3/4		

ACCREDITED Certificate #4298.01

Test data reference attachment.

9. Frequency Stability Measurement

9.1 LIMIT

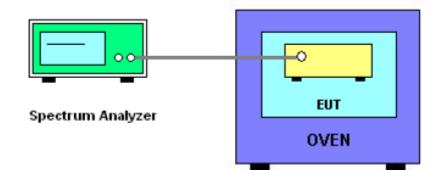
Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

9.2 TEST PROCEDURES

1. The transmitter output (antenna port) was connected to the spectrum analyzer.

2. EUT have transmitted absence of modulation signal and fixed channelize.

3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.


4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.

5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10_6$ ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).

6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value

7. Extreme temperature is -20°C~70°C.

9.3 TEST SETUP LAYOUT

9.4 EUT OPERATION DURING TEST

- 1. The EUT was programmed to be in continuously un-modulation transmitting mode.
- 2. The has two antennas, and the worst data is Antenna 1, only shown Antenna 1 Plot.

9.5 TEST RESULTS

EUT :	Remote control	Model Name. :	GDU RC SEE						
Temperature :	25 °C	Relative Humidity :	56%						
Pressure :	1012 hPa	Test Voltage :	DC 7.2V						
Test Mode :	Mode2								

1(2) Represent the value of antenna 1 and 2, the worst data is Antenna 1 user10M MIMO mode, only shown Antenna 1 10M BPSK mode data.

Voltage vs. Frequency Stability

			Reference Frequency: 5740MHz			
тсет					Max.	Max.
IESI	CONDITIONS		f	fc	Deviation	Deviation
					(MHz)	(ppm)
	V nom (V)	7.2	5740.0237	5740	0.0237	-4.1289
20	V max (V)	8.51	5740.0067	5740	0.0067	-1.1672
	V min (V)	6.29	5740.0061	5740	0.0061	-1.0627
	Limits		Within 5745-5850MHz			
	Result		Complies			
		20 V max (V) V min (V) Limits	V nom (V) 7.2 20 V max (V) 8.51 V min (V) 6.29 Limits	V nom (V) 7.2 5740.0237 20 V max (V) 8.51 5740.0067 V min (V) 6.29 5740.0061 Limits V	TEST CONDITIONS f fc 20 V nom (V) 7.2 5740.0237 5740 20 V max (V) 8.51 5740.0067 5740 V min (V) 6.29 5740.0061 5740 Limits Within 5745	TEST CONDITIONS f Max. fc Max. Deviation (MHz) 20 V nom (V) 7.2 5740.0237 5740 0.0237 20 V max (V) 8.51 5740.0067 5740 0.0067 V min (V) 6.29 5740.0061 5740 0.0061 Limits

Temperature vs. Frequency Stability

					Reference Frequency: 5740MHz			
- -		ONDITIONS				Max.	Max.	
·	E31 U	ONDITIONS		f	fc	Deviation	Deviation	
						(MHz)	(ppm)	
		T (°C)	-20	5740.0318	5740	0.0318	-5.5401	
		T (°C)	-10	5740.0299	5740	0.0299	-5.2091	
		T (°C)	0	5740.0126	5740	0.0126	-2.1951	
	7.2	T (°C)	10	5740.0311	5740	0.0311	-5.4181	
V nom (V)		7.0	T (°C)	20	5740.0340	5740	0.0340	-5.9233
V nom (V)		T (°C)	30	5740.0064	5740	0.0064	-1.1150	
		T (°C)	40	5740.0290	5740	0.0290	-5.0523	
		T (°C)	50	5740.0321	5740	0.0321	-5.5923	
		T (°C)	60	5740.0082	5740	0.0082	-1.4286	
		T (°C)	70	5740.0189	5740	0.0189	-3.2927	
	Limits				Within 5745-5850MHz			
	F	lesult			Com	plies		

Voltage vs. Frequency Stability

				Reference Frequency: 5780MHz			
	TEST					Max.	Max.
	TEST CONDITIONS				fc	Deviation	Deviation
						(MHz)	(ppm)
Thom		V nom (V)	7.2	5780.0202	5780	0.0202	-3.4948
T nom	20	V max (V)	8.51	5780.0107	5780	0.0107	-1.8512
(°C)		V min (V)	6.29	5780.0024	5780	0.0024	-0.4152
		Limits		Within 5745-5850MHz			
	Result				Complies		

Temperature vs. Frequency Stability

				Reference Frequency: 5780MHz			
т		ONDITIONS				Max.	Max.
1		ONDITIONS		f	fc	Deviation	Deviation
						(MHz)	(ppm)
		T (°C)	-20	5780.0185	5780	0.0185	-3.2007
		T (°C)	-10	5780.0061	5780	0.0061	-1.0554
		T (°C)	0	5780.0212	5780	0.0212	-3.6678
	7.2	T (°C)	10	5780.0287	5780	0.0287	-4.9654
V nom (V)		T (°C)	20	5780.0178	5780	0.0178	-3.0796
v honi (v)		T (°C)	30	5780.0048	5780	0.0048	-0.8304
		T (°C)	40	5780.0062	5780	0.0062	-1.0727
		T (°C)	50	5780.0141	5780	0.0141	-2.4394
		T (°C)	60	5780.0008	5780	0.0008	-0.1384
		T (°C)	70	5780.0274	5780	0.0274	-4.7405
	Limits				/ithin 574	5-5850MHz	
	F	Result			Com	plies	

Voltage vs. Frequency Stability

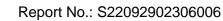
				Reference Frequency: 5820MHz			
	тсет					Max.	Max.
	TEST	CONDITIONS		f	fc	Deviation	Deviation
						(MHz)	(ppm)
Thom		V nom (V)	7.2	5820.0060	5820	0.0060	-1.0309
	20	V max (V)	8.51	5820.0104	5820	0.0104	-1.7869
(°C)		V min (V)	6.29	5820.0045	5820	0.0045	-0.7732
		Limits		Within 5745-5850MHz			
		Result		Complies			

Temperature vs. Frequency Stability

_				Reference Frequency: 5820MHz			
- -		ONDITIONS				Max.	Max.
1	ESIC	ONDITIONS		f	fc	Deviation	Deviation
						(MHz)	(ppm)
		T (°C)	-20	5820.0310	5820	0.0310	-5.3265
		T (°C)	-10	5820.0121	5820	0.0121	-2.0790
		T (°C)	0	5820.0149	5820	0.0149	-2.5601
	7.2	T (°C)	10	5820.0104	5820	0.0104	-1.7869
V nom (V)		T (°C)	20	5820.0140	5820	0.0140	-2.4055
V nom (V)		T (°C)	30	5820.0170	5820	0.0170	-2.9210
		T (°C)	40	5820.0130	5820	0.0130	-2.2337
		T (°C)	50	5820.0130	5820	0.0130	-2.2337
		T (°C)	60	5820.0326	5820	0.0326	-5.6014
		T (°C)	70	5820.0296	5820	0.0296	-5.0859
	Limits				/ithin 574	5-5850MHz	
	Result				Com	plies	

10. ANTENNA REQUIREMENT

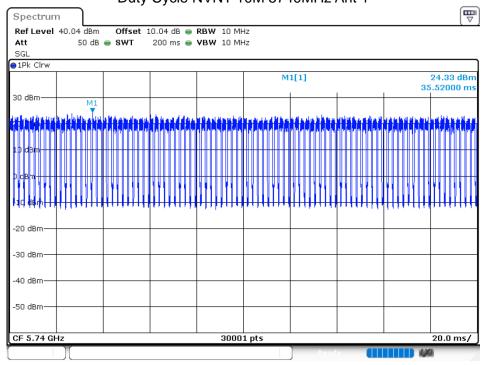
NTEK 北测


10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 EUT ANTENNA

The EUT antenna is permanent attached Antenna: External Antenna (Gain:3.55 dBi), It comply with the standard requirement.

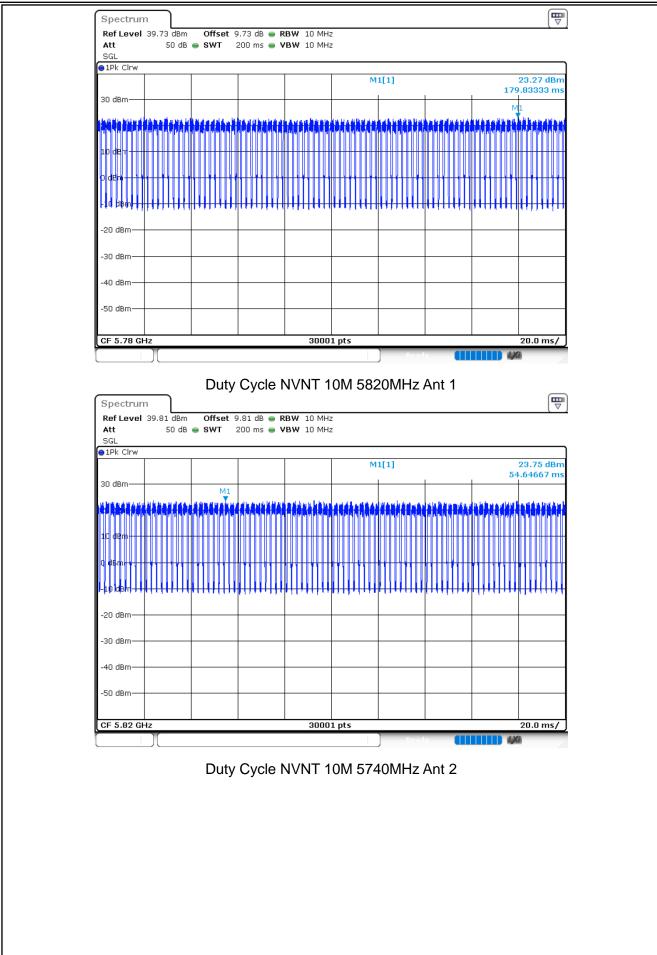


11. TEST RESULT

11.1 DUTY CYCLE

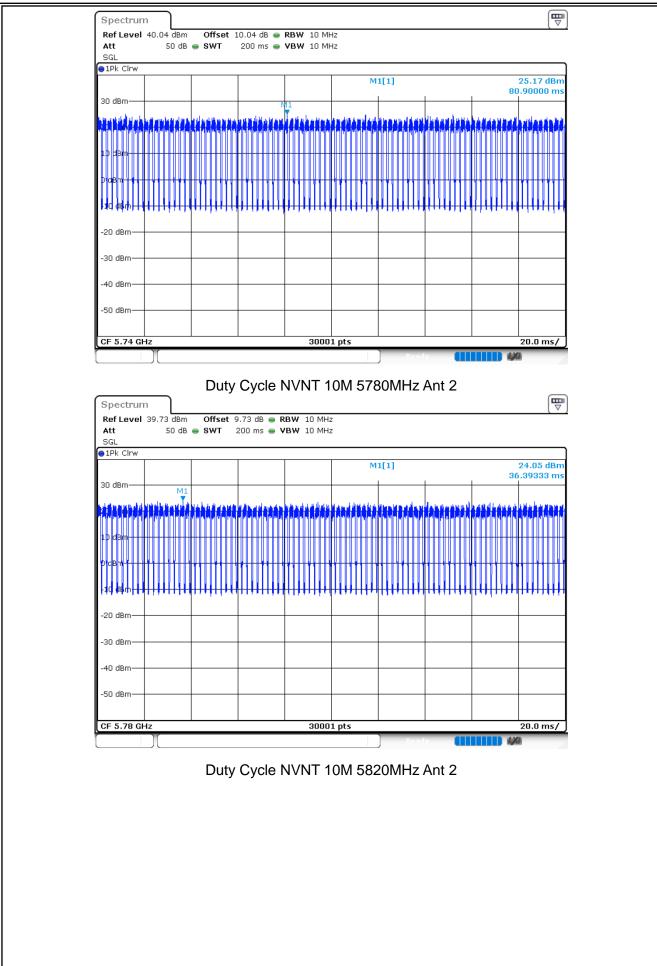
Antonno		Mada		$\mathbf{D}_{\mathbf{v}}$ the $\mathbf{O}_{\mathbf{v}}$ and $\mathbf{O}_{\mathbf{v}}$	Composition Footon (dD)
Antenna	Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
Ant 1	NVNT	10M	5740	73.32	1.35
Ant 1	NVNT	10M	5780	79.33	1.01
Ant 1	NVNT	10M	5820	74.14	1.3
Ant 2	NVNT	10M	5740	74.28	1.29
Ant 2	NVNT	10M	5780	77.32	1.12
Ant 2	NVNT	10M	5820	77.58	1.1
Ant 1	NVNT	20M	5740	73.31	1.35
Ant 1	NVNT	20M	5780	73.32	1.35
Ant 1	NVNT	20M	5820	73.32	1.35
Ant 2	NVNT	20M	5740	73.32	1.35
Ant 2	NVNT	20M	5780	73.31	1.35
Ant 2	NVNT	20M	5820	73.31	1.35
Ant 1	NVNT	40M	5760	57.9	2.37
Ant 1	NVNT	40M	5780	57.9	2.37
Ant 1	NVNT	40M	5820	58.04	2.36
Ant 2	NVNT	40M	5760	58.02	2.36
Ant 2	NVNT	40M	5780	57.91	2.37
Ant 2	NVNT	40M	5820	58	2.37

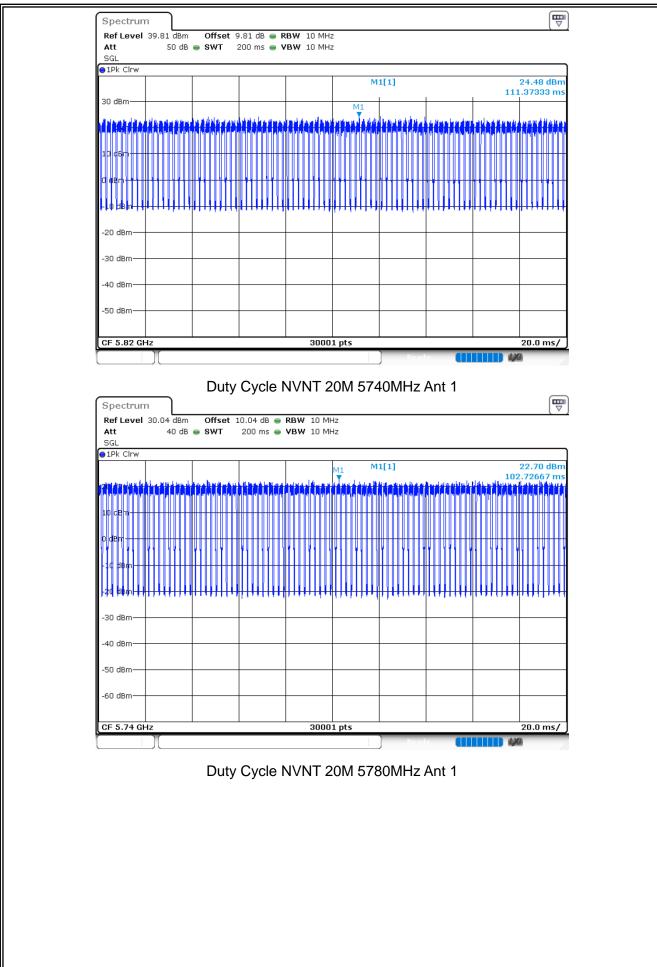
ACCREDITED Certificate #4298.01

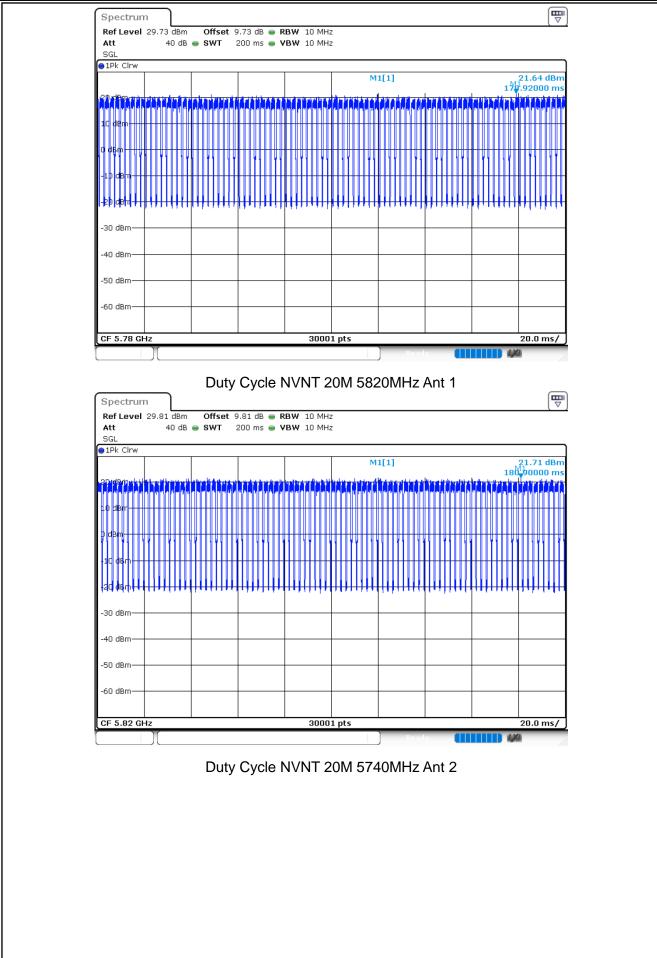


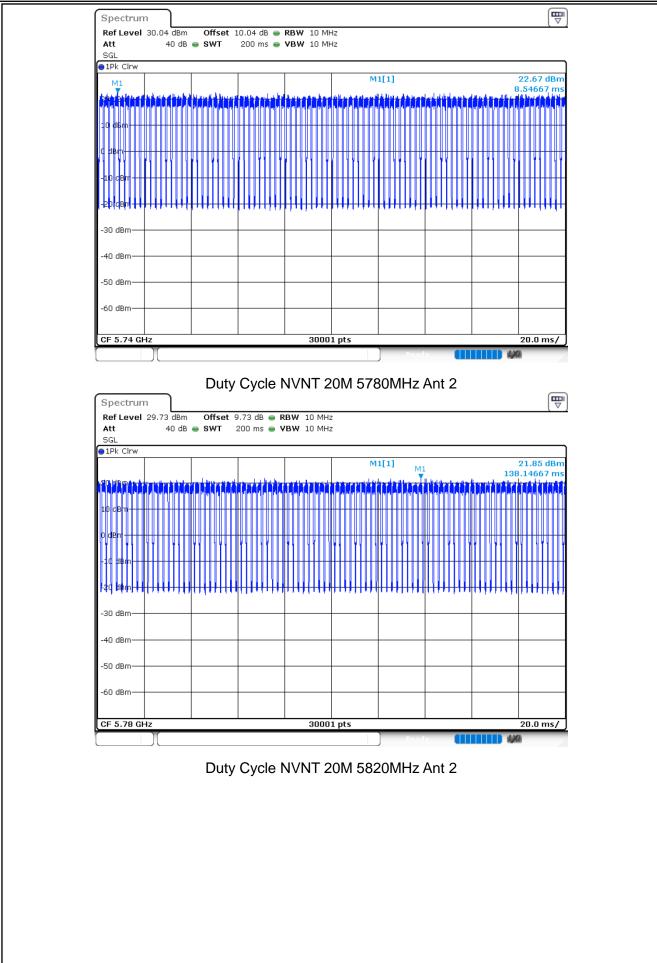
Duty Cycle NVNT 10M 5740MHz Ant 1

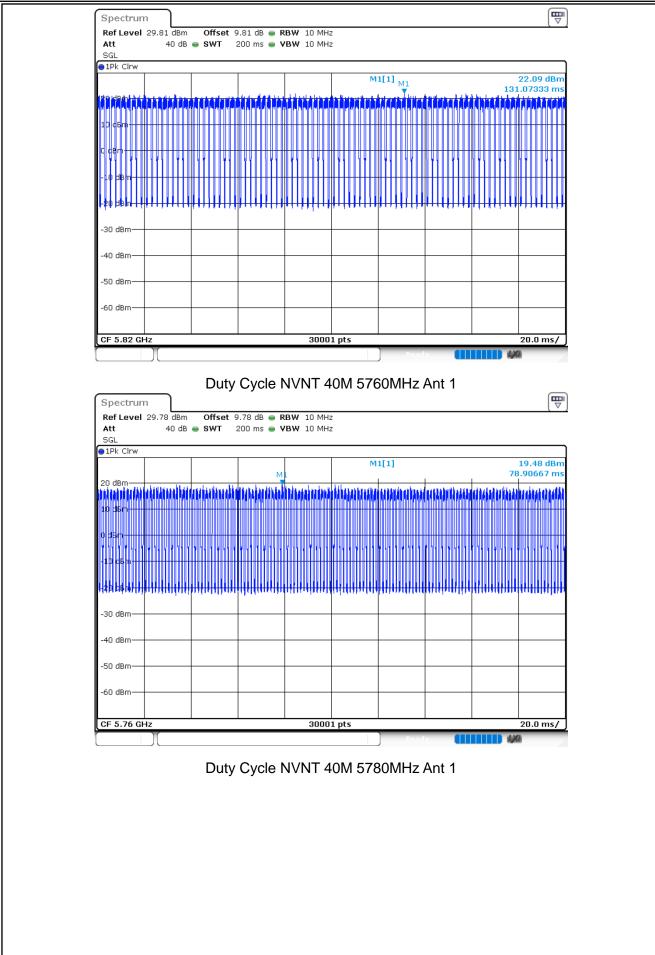
Duty Cycle NVNT 10M 5780MHz Ant 1







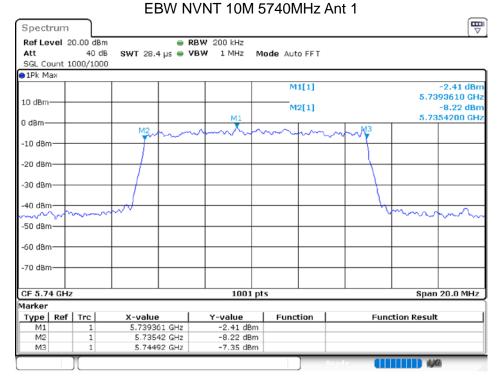






⊖1Pk Clrw	1	· · · · · ·		1		4541			00.01.17
20 d8m			M1		м	1[1]			20.21 dBm /.06000 ms
20 dBm				AN MARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA			i ki kata kata	A A A A A A A A A A A A A A A A A A A	ANNA ANA ANA ANA ANA ANA ANA ANA ANA AN
10 d6m									••••
₿₩₽ ₩₩				***	****		*****	*****	****
-10 d8m									
-30 dBm—									
-40 dBm—									
-50 dBm—									
-60 dBm—									
-00 0811									
CF 5.76 G	Hz			3000	1 pts		411		20.0 ms/
			<u> </u>						- //
Spectrur	<u></u>	Duty	Cycle I	NVNT 4	OM 582	20MHz	Ant 2		-
	29.81 dBm	Offset 9	9.81 dB 🕳 🖡	RBW 10 MH:	2	20MHz	Ant 2		
Ref Level Att SGL	29.81 dBm		9.81 dB 🕳 🖡	RBW 10 MH:	2	20MHz	Ant 2		
Ref Level Att SGL 1Pk Clrw	29.81 dBm	Offset 9	9.81 dB 🕳 🖡	RBW 10 MH:	2 2	20MHz .	Ant 2		20.07 dBm
Ref Level Att SGL 1Pk Cirw 20 dBm	29.81 dBm 40 dB	Offset 9	9.81 dB 🕳 🖡	RBW 10 MH:	2 2		Ant 2		
Ref Level Att SGL 1Pk Clrw	29.81 dBm 40 dB	Offset 9	9.81 dB 🕳 🖡	RBW 10 MH:	2 2		Ant 2		20.07 dBm
Ref Level Att SGL 1Pk Cirw 20 dBm	29.81 dBm 40 dB	Offset 9	9.81 dB 🕳 🖡	RBW 10 MH:	2 2		Ant 2		20.07 dBm
Ref Level Att SGL IPk Cirw 20 dBm 10 cP r	29.81 dBm 40 dB	Offset 9	9.81 dB 🕳 🖡	RBW 10 MH:	2 2		Ant 2		20.07 dBm
Ref Level Att SGL 1Pk Clrw 1D ce r C den	29.81 dBm 40 dB	Offset 9 SWT 2	9.81 dB 🕳 🖡	RBW 10 MH:	2 2		Ant 2	15 	20.07 dBm .84667 ms
Ref Level Att SGL 1Pk Clrw 1Pk Clrw 10 dBm C dBm C dBm C dBm C dBm C dBm C dBm C dBm C dBm	29.81 dBm 40 dB	Offset 9 SWT 2	9.81 dB • F 200 ms • V	RBW 10 MH:	2 2		Ant 2		20.07 dBm .84667 ms
Ref Level Att SGL ● 1Pk Clrw 1D ce r 1D ce r C dem -10 dem -30 dBm -30 dBm	29.81 dBm 40 dB	Offset 9 SWT 2	9.81 dB • F 200 ms • V	RBW 10 MH:	2 2		Ant 2	15 	20.07 dBm .84667 ms
Ref Level Att SGL ● 1Pk Clrw 1D ce r 1D ce r C den 10 den -10 den -30 dBm -40 dBm	29.81 dBm 40 dB	Offset 9 SWT 2	9.81 dB • F 200 ms • V	RBW 10 MH:	2 2		Ant 2	15 	20.07 dBm .84667 ms
Ref Level Att SGL ● 1Pk Clrw 1D ce r 1D ce r C dem -10 dem -30 dBm -30 dBm	29.81 dBm 40 dB	Offset 9 SWT 2	9.81 dB • F 200 ms • V	RBW 10 MH:	2 2		Ant 2	15 	20.07 dBm .84667 ms
Ref Level Att SGL ● 1Pk Clrw 1D ce r 1D ce r C den 10 den -10 den -30 dBm -40 dBm	29.81 dBm 40 dB	Offset 9 SWT 2	9.81 dB • F 200 ms • V	RBW 10 MH:	2 2		Ant 2	15 	20.07 dBm .84667 ms
Ref Level Att SGL ● 1Pk Clrw 10 dBm 10 cB r -10 dBm -30 dBm -40 dBm -50 dBm	29.81 dBm 40 dB	Offset 9 SWT 2	9.81 dB • F 200 ms • V	RBW 10 MH:	2 2 3 4 4 5 6 7 9 4 5 5 6 7 4 4 5 6 7 9 4 5 6 7 4 4 5 6 7 9 4 5 6 7 1 4 5 6 7 9 1 4 5 7 7 1 4 5 6 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 9 1 4 5 7 7 1 4 5 7 7 9 1 4 5 7 7 1 4 5 7 7 9 1 4 5 7 7 7 1 4 5 7 7 9 1 4 5 7 7 7 1 4 5 7 7 9 1 4 5 7 7 7 1 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			15 	20.07 dBm 5.84667 ms

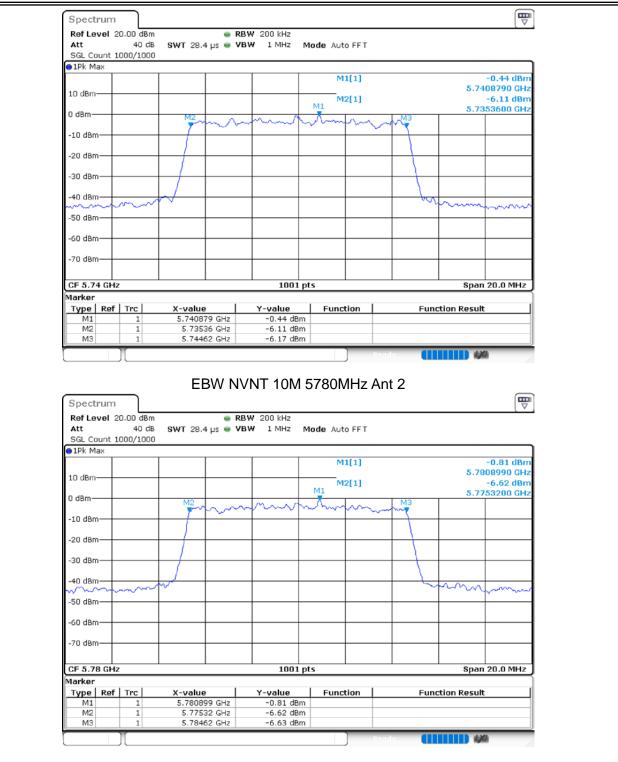
11.2 MAXIMUM CONDUCTED OUTPUT POWER


		DUCTED OU		VER					
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	MIMO POWER (dBm)	Limit (dBm)	Verdict
NVNT	10M	5740	Ant 1	11.4	1.35	12.75	16.03	30	Pass
NVNT	10M	5740	Ant 2	11.98	1.29	13.27	10.03	30	Fass
NVNT	10M	5780	Ant 1	11.33	1.01	12.34	15.51	30	Pass
NVNT	10M	5780	Ant 2	11.54	1.12	12.66	15.51	30	Fass
NVNT	10M	5820	Ant 1	11.72	1.3	13.02	16.07	30	Pass
NVNT	10M	5820	Ant 2	12	1.1	13.1	10.07	30	F 855
NVNT	20M	5740	Ant 1	11.62	1.35	12.97	16.20	30	Pass
NVNT	20M	5740	Ant 2	12.04	1.35	13.39	10.20	30	Fass
NVNT	20M	5780	Ant 1	10.8	1.35	12.15	15.32	30	Pass
NVNT	20M	5780	Ant 2	11.11	1.35	12.46	10.52	30	Fass
NVNT	20M	5820	Ant 1	10.91	1.35	12.26	15.43	30	Pass
NVNT	20M	5820	Ant 2	11.22	1.35	12.57	15.45	30	F 855
NVNT	40M	5760	Ant 1	10.74	2.37	13.11	16.36	30	Pass
NVNT	40M	5760	Ant 2	11.22	2.36	13.58	10.50	30	F 855
NVNT	40M	5780	Ant 1	10.46	2.37	12.83	16.06	30	Page
NVNT	40M	5780	Ant 2	10.88	2.37	13.25	10.00	30	Pass
NVNT	40M	5820	Ant 1	10.53	2.36	12.89	16.09	30	Pass
NVNT	40M	5820	Ant 2	10.89	2.37	13.26	10.09	30	Fa33

11.3 -6DB EMISSION BANDWIDTH

		DANDWIDTT				
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	10M	5740	Ant 1	9.5	0.5	Pass
NVNT	10M	5780	Ant 1	9.3	0.5	Pass
NVNT	10M	5820	Ant 1	9.42	0.5	Pass
NVNT	10M	5740	Ant 2	9.26	0.5	Pass
NVNT	10M	5780	Ant 2	9.3	0.5	Pass
NVNT	10M	5820	Ant 2	9.44	0.5	Pass
NVNT	20M	5740	Ant 1	18.04	0.5	Pass
NVNT	20M	5780	Ant 1	18.32	0.5	Pass
NVNT	20M	5820	Ant 1	18.2	0.5	Pass
NVNT	20M	5740	Ant 2	18.36	0.5	Pass
NVNT	20M	5780	Ant 2	18.28	0.5	Pass
NVNT	20M	5820	Ant 2	18.52	0.5	Pass
NVNT	40M	5760	Ant 1	36.16	0.5	Pass
NVNT	40M	5780	Ant 1	35.44	0.5	Pass
NVNT	40M	5820	Ant 1	35.84	0.5	Pass
NVNT	40M	5760	Ant 2	33.52	0.5	Pass
NVNT	40M	5780	Ant 2	34.08	0.5	Pass
NVNT	40M	5820	Ant 2	32.96	0.5	Pass

EBW NVNT 10M 5780MHz Ant 1

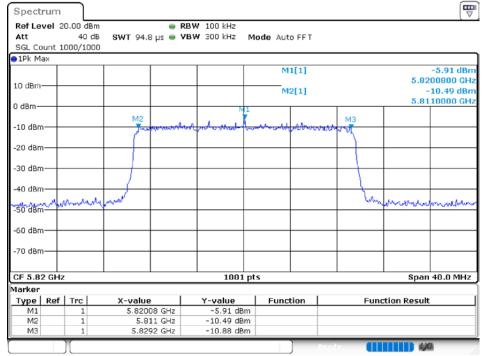


Spectrum									
Ref Level	20.00 dBm		e Re	W 200 kHz					(*
Att	40 dB	SWT 28.		W 1 MHz	Mode Auto	FFT			
SGL Count	1000/1000		-						
∋1Pk Max									
					M1	[1]			-0.52 dBm
10 dBm-								5.78	320180 GHz
					M2 M1	[1]		5.73	-6.45 dBm 753200 GHz
0 dBm		M2 .				10	M3	0.77	
10 40		r 1	hand			\sim	~		
-10 dBm									
-20 dBm									
-30 dBm							\vdash		
-40 dBm	m	~~~					- '~	him	man
-50 dBm-									~~~
-50 dBm									
-60 dBm									
-70 dBm				+					
CF 5.78 GH	z			1001	pts			Spar	20.0 MHz
Marker									
Type Ref	Trc	X-value	e	Y-value	Functi	on	Fun	ction Result	t
M1	1	5.7820	18 GHz	-0.52 dB					
M2	1		32 GHz	-6.45 dBi					
M3		5.784	62 GHz	-6.45 dBi -6.40 dBi	m	Hz An	t 1		4
M3		5.784	62 GHZ BW N\	-6.40 dB	m	tor Hz An	t 1) 4	
мз		5.784 El	62 GHZ BW N\ RE	-6.40 dB	5820M		t 1		
M3 Spectrum Ref Level	1 1 20.00 dBm 40 dB	5.784 El	62 GHZ BW N\ RE	-6.40 dB /NT 10M	5820M		₩ ¶		
M3 Spectrum Ref Level Att	1 1 20.00 dBm 40 dB	5.784 El	62 GHZ BW N\ RE	-6.40 dB /NT 10M	5820M		₩ ¶	****	G (₩ ▽
M3 Spectrum Ref Level Att SGL Count	1 1 20.00 dBm 40 dB	5.784 El	62 GHZ BW N\ RE	-6.40 dB /NT 10M	5820M	FFT	t 1		-1.90 dBm
M3 Spectrum Ref Level Att SGL Count	1 1 20.00 dBm 40 dB	5.784 El	62 GHZ BW N\ RE	-6.40 dB /NT 10M	m 5820M Mode Auto M1	FF T [1]	t 1	5.81	-1.90 dBm L95600 GHz
M3 Spectrum Ref Level Att SGL Count JPk Max	1 1 20.00 dBm 40 dB	5.784 El	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto	FF T [1]	t 1		-1.90 dBm 195600 GHz -7.74 dBm
M3 Spectrum Ref Level Att SGL Count JPk Max	1 1 20.00 dBm 40 dB	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB /NT 10M	m 5820M Mode Auto M1	FF T [1]			-1.90 dBm L95600 GHz
M3 Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	1 1 20.00 dBm 40 dB	5.784 El	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto M1	FF T [1]	t 1		-1.90 dBm 195600 GHz -7.74 dBm
M3 Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm	1 1 20.00 dBm 40 dB	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto M1	FF T [1]			-1.90 dBm 195600 GHz -7.74 dBm
M3 Spectrum Ref Level Att SGL Count 9 IPk Max 10 dBm -10 dBm -10 dBm	1 1 20.00 dBm 40 dB	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto M1	FF T [1]			-1.90 dBm 195600 GHz -7.74 dBm
M3 Spectrum Ref Level Att SGL Count SGL Count 10 dBm	1 1 20.00 dBm 40 dB	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto M1	FF T			-1.90 dBm 195600 GHz -7.74 dBm
M3 Spectrum Ref Level Att SGL Count D (DBm 0 dBm -10 dBm	1 1 20.00 dBm 40 dB	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto M1	FF T			-1.90 dBm 195600 GHz -7.74 dBm
M3 Spectrum Ref Level Att SGL Count PIPk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	1 1 20.00 dBm 40 dB	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto M1	FF T			-1.90 dBm 195600 GHz -7.74 dBm
M3 Spectrum Ref Level Att SGL Count PIPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 20.00 dBm 40 dB 1000/1000	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto M1	FF T		5.81	-1.90 dBm 195600 GHz -7.74 dBm 153000 GHz
M3 Spectrum Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 20.00 dBm 40 dB	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto M1	FF T			-1.90 dBm 195600 GHz -7.74 dBm 153000 GHz
M3 Spectrum Ref Level Att SGL Count PIPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 20.00 dBm 40 dB 1000/1000	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto M1	FF T		5.81	-1.90 dBm 195600 GHz -7.74 dBm 153000 GHz
M3 Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 1 20.00 dBm 40 dB 1000/1000	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto M1	FF T		5.81	-1.90 dBm 195600 GHz -7.74 dBm 153000 GHz
M3 Spectrum Ref Level Att SGL Count IVK Max IO dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 20.00 dBm 40 dB 1000/1000	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto M1	FF T		5.81	-1.90 dBm 195600 GHz -7.74 dBm 153000 GHz
M3 Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 1 20.00 dBm 40 dB 1000/1000	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto M1	FF T		5.81	-1.90 dBm 195600 GHz -7.74 dBm 153000 GHz
M3 Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	1 1 20.00 dBm 40 dB 1000/1000	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	m 5820M Mode Auto M1	FF T		5.81	-1.90 dBm 195600 GHz -7.74 dBm 153000 GHz
M3 Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 1 20.00 dBm 40 dB 1000/1000	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/	Mode Auto	FF T		5.8)	-1.90 dBm 95600 GHz -7.74 dBm 53000 GHz
M3 Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	1 1 20.00 dBm 40 dB 1000/1000	5.784 El swt 28.	62 GHZ BW N\ RE	-6.40 dB/ /NT 10M	Mode Auto	FF T		5.8)	-1.90 dBm 195600 GHz -7.74 dBm 153000 GHz
M3 Spectrum Ref Level Att SGL Count D1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm CF 5.82 GH Marker	1 1 20.00 dBm 40 dB 1000/1000	5.784 El swt 28.	62 GH2 BW N\ 4 μs • VE	-6.40 dB/	Mode Auto	FFT [1] [1]		5.81	- 1.90 dBm 195600 GHz - 7.74 dBm 153000 GHz
M3 Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	1 1 20.00 dBm 40 dB 1000/1000	5.784 El swr 28.	62 GH2 BW N\ 4 μs • VE	-6.40 dB/	m 5820M Mode Auto M1 M2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2	FFT [1] [1]		5.8)	- 1.90 dBm 195600 GHz - 7.74 dBm 153000 GHz
M3 Spectrum Ref Level Att SGL Count ID dBm O dBm	1 1 20.00 dBm 40 dB 1000/1000	5.784 El SWT 28. M2 X-valut X-valut 5.819 5.819	62 GH2 BW N\ 4 µs • ve	-6.40 dB/	m Mode Auto Mode Auto M1 M2 M1 m2 M1 M2 M2 M1 M2 M2 M1 M2 M2 M1 M2 M1 M2 M1 M2 M2 M1 M2 M2 M1 M2 M2 M1 M2 M2 M2 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	FFT [1] [1]		5.81	- 1.90 dBm 195600 GHz - 7.74 dBm 153000 GHz

EBW NVNT 10M 5740MHz Ant 2

EBW NVNT 10M 5820MHz Ant 2

Ref Level 20.00 dBm Att 40 dB SGL Count 1000/1000 ID dBm 0 0 dBm -0 -10 dBm -0 -20 dBm	SWT 28.4 µs 👄 🕯	RBW 200 kHz M VBW 1 MHz M	M1[1] M2[1]	~~~~W3	5.81	-2.02 dBm 99800 GHz -7.95 dBm 53200 GHz
SGL Count 1000/1000 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm		M1	M1[1]	~~~~M3	5.81	99800 GHz -7.95 dBm
1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm		M1		~~~W3	5.81	99800 GHz -7.95 dBm
0 dBm	M2			~~~~W3	5.81	99800 GHz -7.95 dBm
0 dBm	Man	M1	M2[1]	~~~~~M3		-7.95 dBm
-10 dBm	Mennor	M1	M2[1]	~~~~M3		
-10 dBm	Man	h		mm M3		
-20 dBm			· · · · · ·		1 1	
-20 dBm						
-30 dBm						
	+ / - +			\rightarrow		
-40 dBm						
				4		
-50 dBm						
-60 dBm	<u> </u>				+	
70 d8m						
-70 dBm						
CF 5.82 GHz		1001 pl				20.0 MHz
GF 3.82 GHZ Marker		1001 pt			ahqu	20.0 MP12
Type Ref Trc	X-value	Y-value	Function	Fun	ction Result	1
M1 1	5.81998 GHz	-2.02 dBm				
M2 1 M3 1	5.81532 GHz 5.82476 GHz	-7.95 dBm -8.00 dBm				
	3.02470 GH2	-0.00 ubm				
			5740MHz	Ant 1		
Spectrum Ref Level 20.00 dBm Att 40 dB		RBW 100 kHz VBW 300 kHz M		Ant 1		
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100		RBW 100 kHz		Ant 1		
Ref Level 20.00 dBm Att 40 dB		RBW 100 kHz	lode Auto FFT	Ant 1		
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 1Pk Max		RBW 100 kHz		Ant 1		-6.82 dBm
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100		RBW 100 kHz	lode Auto FFT	Ant 1	5.74	
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 1Pk Max		RBW 100 kHz VBW 300 kHz M	Node Auto FFT	Ant 1	5.74	-6.82 dBm 00400 GHz
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 > IPk Max 10 dBm 0 0 dBm 0 dBm 0	SWT 94.8 µs • 1	RBW 100 kHz	Node Auto FFT		5.74	-6.82 dBm 00400 GHz 12.75 dBm
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 SGL Count 100/100 1Pk Max 10 dBm 10 dBm	SWT 94.8 µs • 1	RBW 100 kHz VBW 300 kHz M	Node Auto FFT	мз	5.74	-6.82 dBm 00400 GHz 12.75 dBm
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm	SWT 94.8 µs • 1	RBW 100 kHz VBW 300 kHz M	M1[1] M2[1]	мз	5.74	-6.82 dBm 00400 GHz 12.75 dBm
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm	SWT 94.8 µs • 1	RBW 100 kHz VBW 300 kHz M	M1[1] M2[1]	мз	5.74	-6.82 dBm 00400 GHz 12.75 dBm
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm	SWT 94.8 µs • 1	RBW 100 kHz VBW 300 kHz M	M1[1] M2[1]	мз	5.74	-6.82 dBm 00400 GHz 12.75 dBm
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	SWT 94.8 µs • 1	RBW 100 kHz VBW 300 kHz M	M1[1] M2[1]	мз	5.74	-6.82 dBm 00400 GHz 12.75 dBm
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 1Pk Max 10 10 dBm -0 -10 dBm -20 dBm -30 dBm -40 dBm	SWT 94.8 µs • 1	RBW 100 kHz VBW 300 kHz M	M1[1] M2[1]	M3	5.74	-6.82 dBm 00400 GHz 12.75 dBm 11200 GHz
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	SWT 94.8 µs • 1	RBW 100 kHz VBW 300 kHz M	M1[1] M2[1]	M3	5.74	-6.82 dBm 00400 GHz 12.75 dBm 11200 GHz
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 IPk Max 10 0 dBm -0 -10 dBm -0 -20 dBm	SWT 94.8 µs • 1	RBW 100 kHz VBW 300 kHz M	M1[1] M2[1]	M3	5.74	-6.82 dBm 00400 GHz 12.75 dBm 11200 GHz
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 1Pk Max 10 10 dBm -0 -10 dBm -20 dBm -30 dBm -40 dBm	SWT 94.8 µs • 1	RBW 100 kHz VBW 300 kHz M	M1[1] M2[1]	M3	5.74	-6.82 dBm 00400 GHz 12.75 dBm 11200 GHz
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 IPk Max 10 0 dBm -0 -10 dBm -0 -20 dBm	SWT 94.8 µs • 1	RBW 100 kHz VBW 300 kHz M	M1[1] M2[1]	M3	5.74	-6.82 dBm 00400 GHz 12.75 dBm 11200 GHz
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 IPk Max 10 10 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm - -60 dBm -	SWT 94.8 µs • 1	RBW 100 kHz VBW 300 kHz M	M1[1] M2[1]	M3	5.74	-6.82 dBm 00400 GHz 12.75 dBm 11200 GHz
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 IPk Max 10 10 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm - -60 dBm -	SWT 94.8 µs • 1	RBW 100 kHz VBW 300 kHz M	Iode Auto FFT M1[1] M2[1]	M3	5.74	-6.82 dBm 00400 GHz 12.75 dBm 11200 GHz
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 IPk Max 10 10 dBm -0 -10 dBm -0 -20 dBm -0 -30 dBm -0 -40 dBm -0 -70 dBm -0	SWT 94.8 µs • 1	RBW 100 kHz M WBW 300 kHz M M1 Why MU JUJUN K 1001 pt	Iode Auto FFT	M3 Northeroly hyperiod	5.74	-6.82 dBm 00400 GHz 12.75 dBm 11200 GHz
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 IPk Max 10 10 dBm 0 -10 dBm - -20 dBm - -30 dBm - -40 dBm - -70 dBm - -70 dBm - -<	SWT 94.8 µs • 1	RBW 100 kHz M VBW 300 kHz M N1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M	Iode Auto FFT M1[1] M2[1]	M3 Northeroly hyperiod	5.74	-6.82 dBm 00400 GHz 12.75 dBm 11200 GHz
Ref Level 20.00 dBm Att 40 dB SGL Count 100/100 IPk Max 10 10 dBm -0 -10 dBm -0 -20 dBm -0 -30 dBm -0 -40 dBm -0 -70 dBm -0	SWT 94.8 µs • 1	RBW 100 kHz M WBW 300 kHz M M1 Why MU JUJUN K 1001 pt	Iode Auto FFT	M3 Northeroly hyperiod	5.74	-6.82 dBm 00400 GHz 12.75 dBm 11200 GHz
	EBW N					


EBW NVNT 20M 5780MHz Ant 1

Report No.: S22092902306006

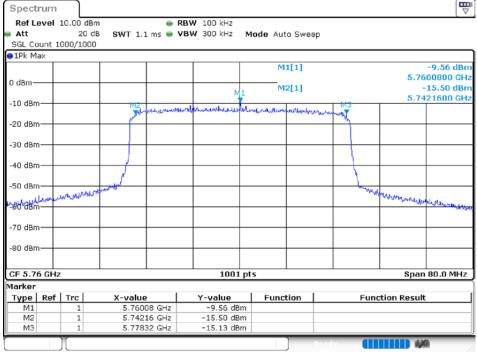
			BW 100 kHz	Bm 👄 RI	0.00 de	vel 20	Ref Lev
		de Auto FFT	BW 300 kHz Mo		40		Att
				000	000/10		SGL Co
						эх	1Pk Ma
-6.03 dBm		M1[1]					
5.7800800 GHz						\rightarrow	LO dBm-
-11.44 dBm		M2[1]					
5.7708800 GHz		1	MI			\rightarrow) dBm—
13	мз			M2			
7	windung	- wanty puters	after and the form	Junduranter		+	10 dBm
		l l					
							20 dBm
							30 dBm
						'	00 0011
<u> </u>	<u>_</u>						40 dBm
way and water marche	hur			man	June	-	n America
and a second direction							50 dBm
						·+-·	60 dBm
							70 dBm
							/o ubiii
Span 40.0 MHz		.	1001 pt s			3 GHz	CF 5.78
							larker
Function Result	Fund	Function	Y-value	X-value		Ref	
			-6.03 dBm	5.78008 GHz	1		M1
			-11.44 dBm -11.95 dBm	5.77088 GHz 5.7892 GHz	1		M2 M3

EBW NVNT 20M 5820MHz Ant 1

EBW NVNT 20M 5740MHz Ant 2

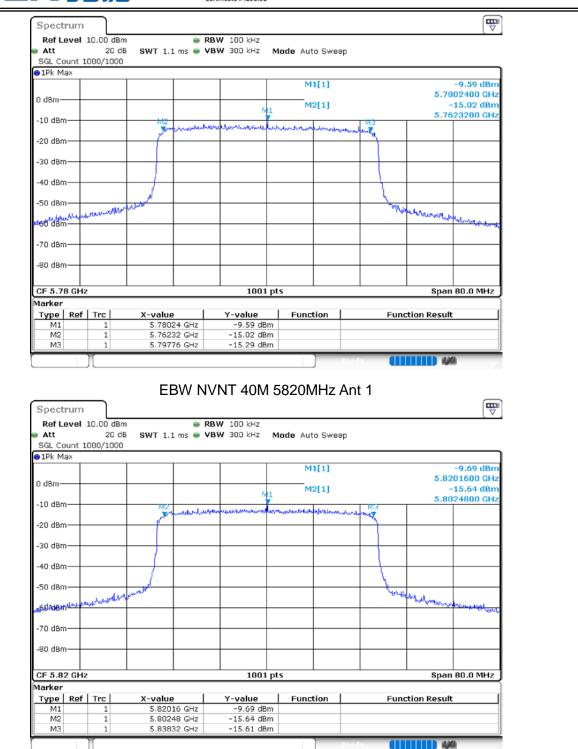
Report No.: S22092902306006

●1Pk Max				M1[1]			6.29 dBm
10 dBm				M2[1]		-1	9950 GHz 2.25 dBm 8400 GHz
0 dBm				M1	мз	3.730	0400 GHZ
-10 dBm	M2	warehown	waterman	wellow	whit		
-20 dBm							
-30 dBm							
-40 dBm							
no demondado	mand				hours	man	معيهليصيلحه
-60 dBm							
-70 dBm							
, o dbiii							
CF 5.74 GHz Marker		1	001 pts			Span 4	IO.O MHZ
Type Ref Trc	X-value	Y-valu		nction	Funct	ion Result	
M1 1	5.744995		9 dBm 5 dBm				
M2 1 M3 1	5.73084		8 dBm				
T I				Rea	47 (111	4,40	
	EB	W NVNT 2	0M 5780	MHz Ar	nt 2		
Spectrum							
Ref Level 20.00 d	Bm	😑 RBW 100 k	Hz				


						M	1[1]				-6.09 dBr
10 dBm—	\perp									5.3	7800000 GH
20 000						M	2[1]				-11.78 dBr
0 dBm—	-				M					5.3	7709200 GH
-10 dBm-			M2		wwwww			мз			
-10 abm-			y.	WUMAN WANN		0	planta.	mond			
-20 dBm-	_						<u> </u>				
-30 dBm-	+										
-40 dBm-									\rightarrow		
		and them	ww						Ulur	the Barrison	rehensen
-50 dBm-		when	· ·								and the second second
-60 dBm-	_										
-70 dBm-											
-/0 ubiii-											
CF 5.78	GHz				1001	pts				Spa	an 40.0 MHz
larker											
Туре	Ref	Trc	X-value		Y-value	Func	tion		Fune	ction Resu	ılt
M1		1	5.	78 GHz	-6.09 dBr						
M2		1	5.7709	92 GHz	-11.78 dBr						
M3				92 GHz	-11.95 dBr						

EBW NVNT 20M 5820MHz Ant 2

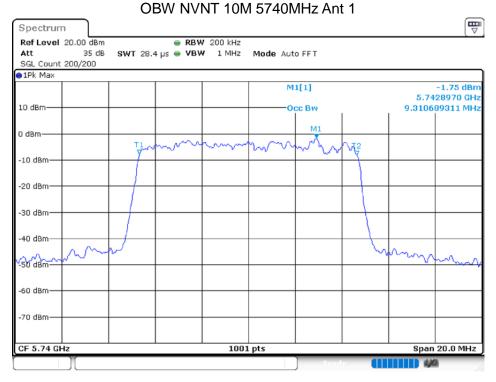
Report No.: S22092902306006


●1Pk Max							
				M1[1]			5.19 dBm 0000 GHz
10 dBm—				M2[1]			2.03 dBm
0 dBm							8000 GHz
o abiii		M2	MI		. мз		
-10 dBm—		me who who who	verlander av and the second	mar and a star and a star of the star of t	www.		
-20 dBm—							
-30 dBm—		+					
-40 dBm—		+					
un	uwan	a week			h	mound	AMARA
-50 dBm-							
-60 dBm—							
-70 dBm—							
CF 5.82 (Hz		1001 pt	<u> </u>		Snan 4	0.0 MHz
Marker			1001 pr			opunt	
	ef Trc	X-value	Y-value	Function	Fu	nction Result	
M1 M2	1	5.82 GHz 5.8108 GHz	-6.19 dBm -12.03 dBm				
M2 M3	1	5.82932 GHz	-12.13 dBm				
						AM6.	

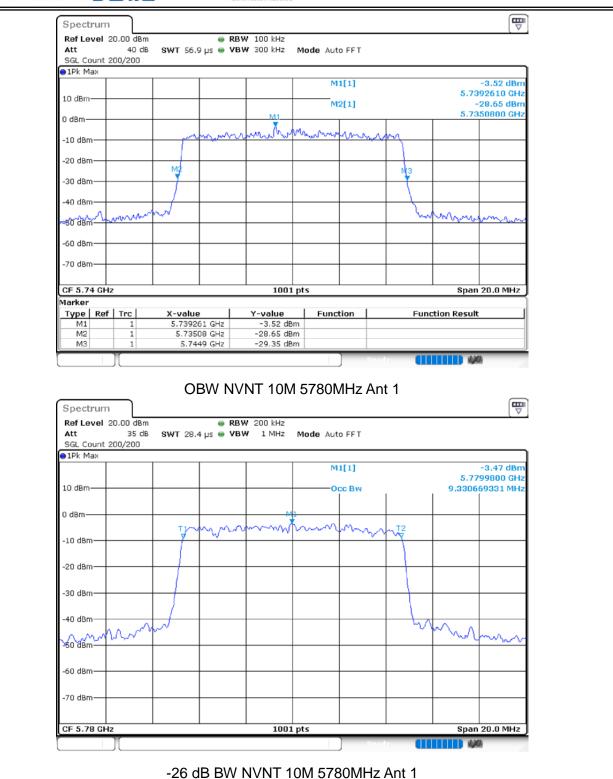
EBW NVNT 40M 5780MHz Ant 1

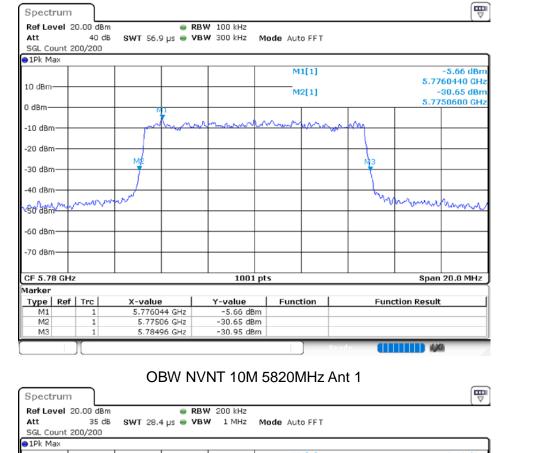


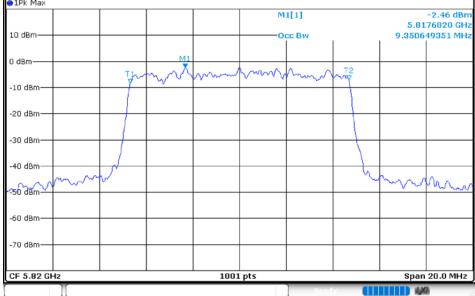
EBW NVNT 40M 5760MHz Ant 2



11.4 OCCUPIED CHANNEL BANDWIDTH

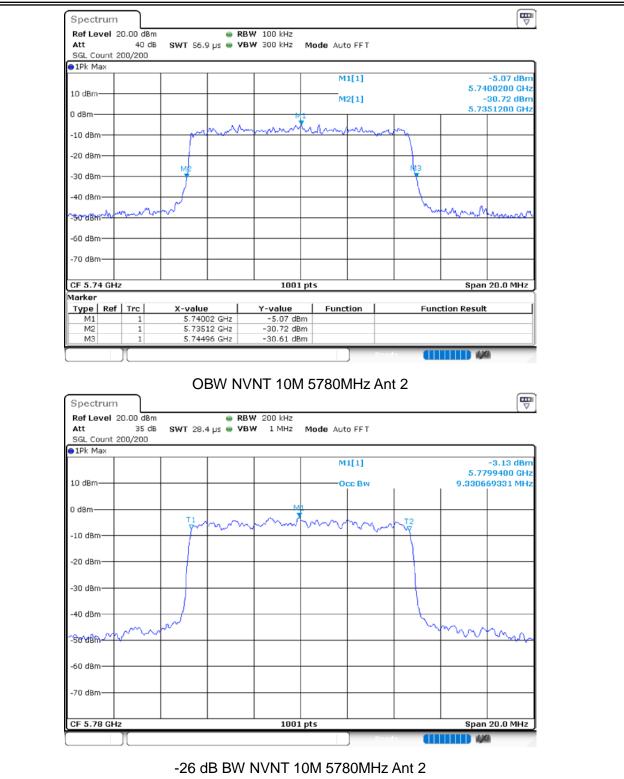

_						
	Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	Verdict
	NVNT	10M	5740	Ant 1	9.3107	Pass
	NVNT	10M	5780	Ant 1	9.3307	Pass
	NVNT	10M	5820	Ant 1	9.3506	Pass
	NVNT	10M	5740	Ant 2	9.3506	Pass
	NVNT	10M	5780	Ant 2	9.3307	Pass
	NVNT	10M	5820	Ant 2	9.3307	Pass
	NVNT	20M	5740	Ant 1	18.7013	Pass
	NVNT	20M	5780	Ant 1	18.6613	Pass
	NVNT	20M	5820	Ant 1	18.6613	Pass
	NVNT	20M	5740	Ant 2	18.5814	Pass
	NVNT	20M	5780	Ant 2	18.6214	Pass
	NVNT	20M	5820	Ant 2	18.5814	Pass
	NVNT	40M	5760	Ant 1	37.0829	Pass
	NVNT	40M	5780	Ant 1	37.0829	Pass
	NVNT	40M	5820	Ant 1	37.003	Pass
	NVNT	40M	5760	Ant 2	36.9231	Pass
	NVNT	40M	5780	Ant 2	36.9231	Pass
	NVNT	40M	5820	Ant 2	36.9231	Pass





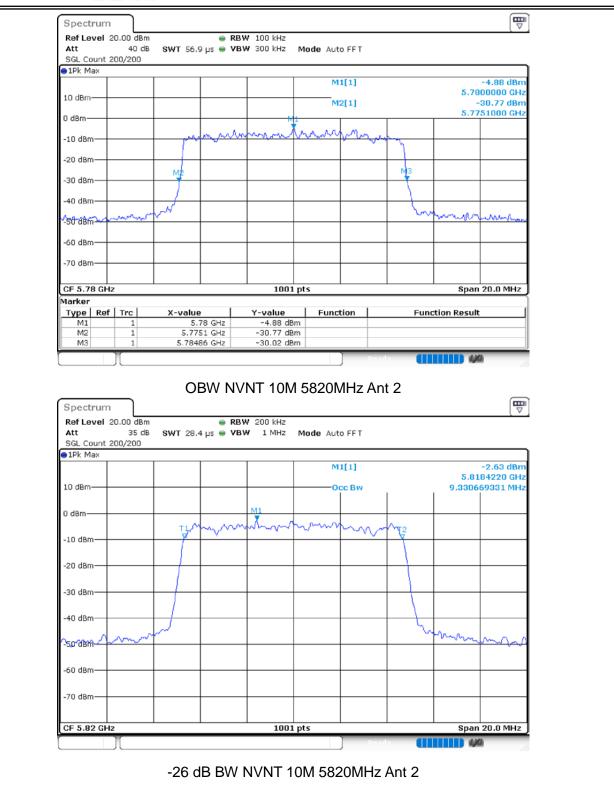


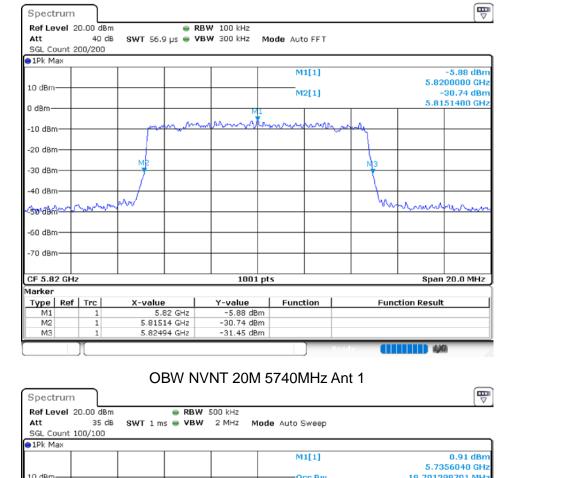
-26 dB BW NVNT 10M 5820MHz Ant 1

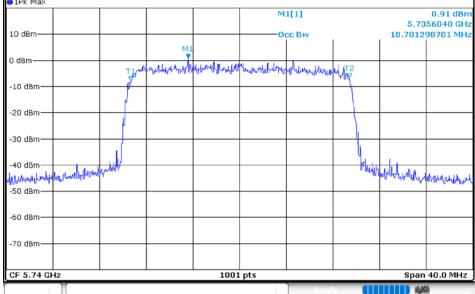


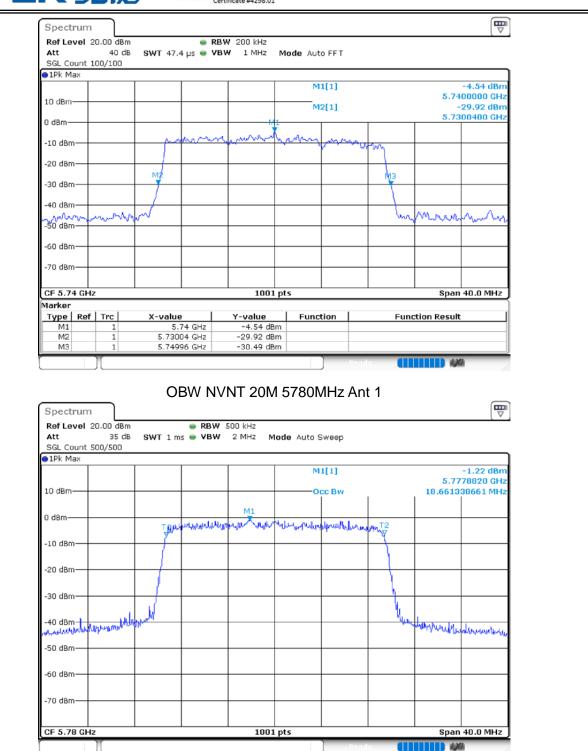
					Read	Y.			1
CF 5.74 GHz			1001	pts				Span	20.0 MHz
-70 dBm									
-60 dBm									
~50'd8m									mar
-40 dBm	ment						5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· ·
-30 dBm									
-20 dBm									
-10 dBm									
	Tin.	nm	~~~~~	m	min	~T2			
0 dBm					M1				

-26 dB BW NVNT 10M 5740MHz Ant 2

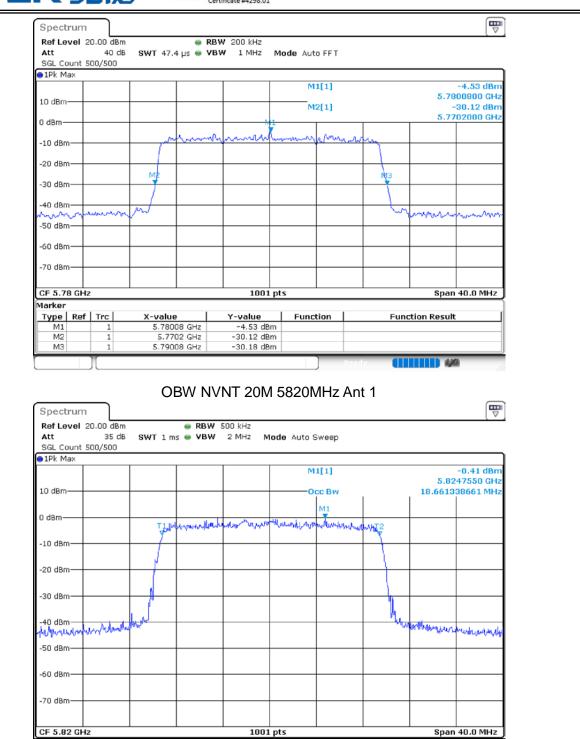








-26 dB BW NVNT 20M 5740MHz Ant 1



-26 dB BW NVNT 20M 5780MHz Ant 1

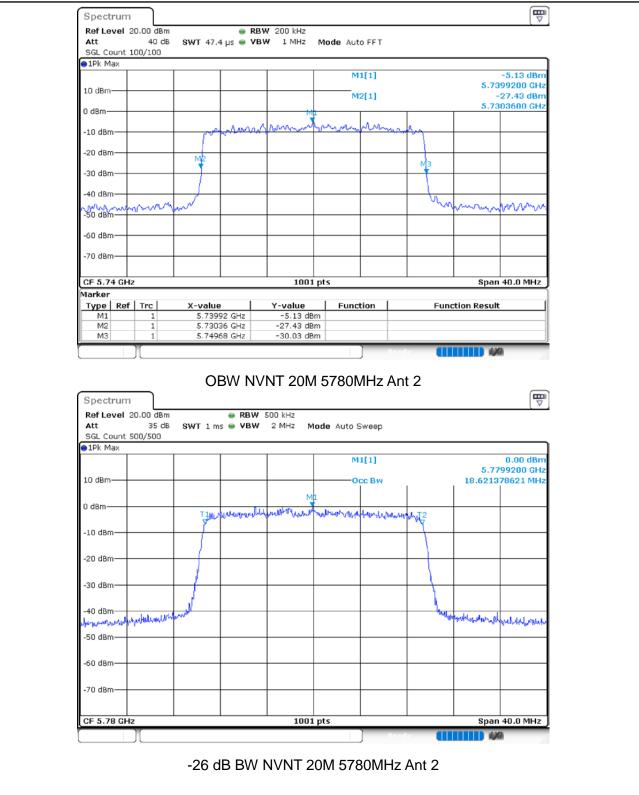
-26 dB BW NVNT 20M 5820MHz Ant 1

1,0

-10 dBm -20 dBm

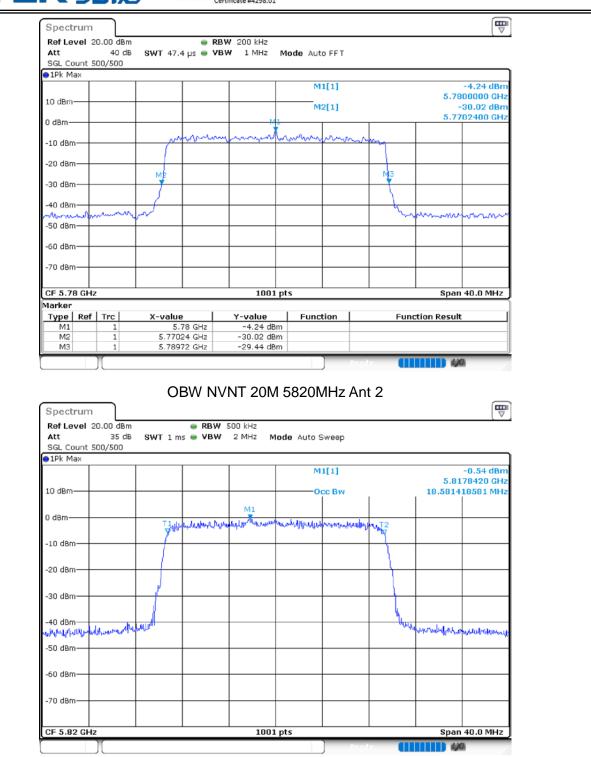
Hac-MRA ACCREDITED Certificate #4298.01

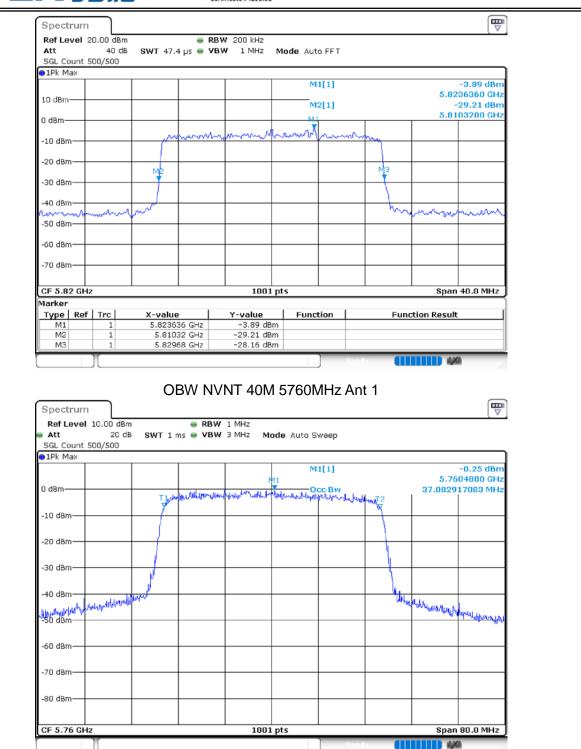
Report No.: S22092902306006



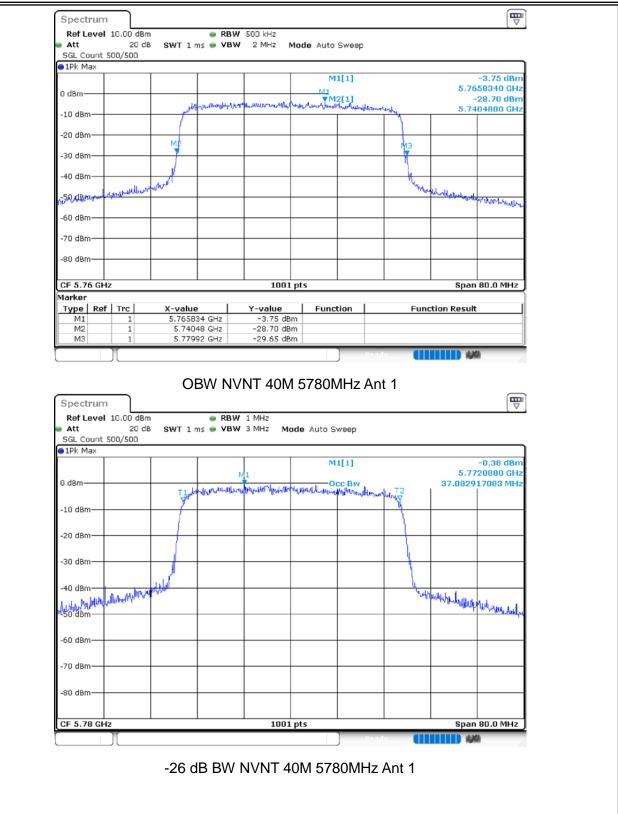
-30 dBm		,				$ \downarrow $			
-40 dBm Մասեվություն -50 dBm—	montheasth	hurb						1 Marthen Agby	our and the second
-50 dBm-									
-70 dBm—									
CF 5.74 GH	lz		1001	pts				Span	40.0 MHz
] Read	γ	Œ		1

-26 dB BW NVNT 20M 5740MHz Ant 2





-26 dB BW NVNT 20M 5820MHz Ant 2


Report No.: S22092902306006

-26 dB BW NVNT 40M 5760MHz Ant 1

