TEST REPORT

Report Reference No.....: CTA24121101604

FCC ID.: 2AXCX-GT60

Compiled by

(position+printed name+signature)..: File administrators Xudong Zhang

Supervised by

(position+printed name+signature)..: Project Engineer Zoey Cao

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Dec. 23, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name Shenzhen Foxwell Technology Co., Ltd.

5/F, Plant C, Baocheng 71st Zone, Xin'an Street, Baoan District,

Shenzhen, China 518106

Test specification....:

FCC 47CFR §2.1093; ANSI/IEEE C95.1-2019; IEEE 1528-2013;

Standard KDB 248227 D01; KDB 616217 D04; KDB 447498 D01; KDB

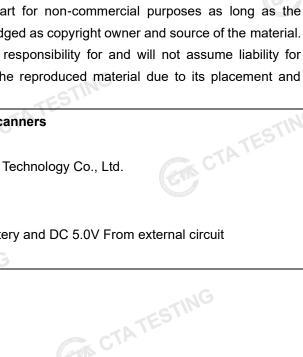
865664 D01; KDB 865664 D02; KDB 690783 D01

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: Android Tablet Scanners

Trade Mark..... N/A


Manufacturer.....: Shenzhen Foxwell Technology Co., Ltd.

Model/Type reference GT60

Listed Modelsi70, GT60Plus

Rating DC 3.7V From battery and DC 5.0V From external circuit

Result...... PASS

Page 2 of 85 Report No.: CTA24121101604 CTA TESTING

TEST REPORT

Equipment under Test Android Tablet Scanners

Model /Type **GT60**

Listed Models i70, GT60Plus

The PCB board, circuit, structure and internal of these models are the Model difference

same, Only model number is different for these model.

Shenzhen Foxwell Technology Co., Ltd. **Applicant**

Address 5/F, Plant C, Baocheng 71st Zone, Xin'an Street, Baoan District,

Shenzhen, China 518106

Manufacturer Shenzhen Foxwell Technology Co., Ltd.

Address 5/F, Plant C, Baocheng 71st Zone, Xin'an Street, Baoan District,

Shenzhen, China 518106

(ET)	17	ESI	
Test Result:	CIL	PASS	EST
			TATES

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTA TESTING

Report No.: CTA24121101604 Page 3 of 85

*** * *** Revision History *** ***

Report No.: OTAL 412110	1004	1 age 3 01 03
TATESTING	※ ※ Revision History	/ × ×
REV.	ISSUED DATE	DESCRIPTION
Rev.1.0	Dec. 23, 2024	Initial Test Report Release
		CTA
		(0.)
-ING		(CT)

CTATESTIN CTATESTING

Report No.: CTA24121101604

Contents

	al Information	
	escription of Equipment Under Test (EUT)	
2.2	escription of Equipment Under Test (EUT)evice Category and SAR Limits	
2.3	evice Category and SAR Limits	۶
	pplied Standard	
	est Facility	
	nvironment of Test Site	
	est Configuration	
	ic Absorption Rate (SAR)	
	ntroduction	
3.2 S	AR Definition	12
	leasurement System	
	-Field Probe	
	ata Acquisition Electronics (DAE)	
4.3 F	tobot	15
4.4 N	leasurement Server	15
4.5 P	hantom	16
	levice Holder	
4.7 D	ata Storage and Evaluation	17
5 Test E	quipment Listquipment List	19
6 Tissue	Simulating Liquids	20
7 Syster	n Verification Procedures	22
•	esting Position	
	ody-Supported Device Configurations	
	rement Procedures	
	patial Peak SAR Evaluation	
	· lower Reference Measurement	
	rea Scan Procedures	
	oom Scan Procedures	
	olume Scan Procedures	
	ower Drift Monitoring	
	CONDITIONS AND RESULTS	
	conducted Power Results	
	ransmit Antennas(Rear View)	
	AR Test Exclusion and Estimated SAR	
	AR Test Results	
10.4 S		
44 00 14	aneous Transmission Analysis	
	romont Lincortainty	39
12 Measu	rement Uncertainty	
12 Measu Appendix	A. EUT Photos and Test Setup Photos	
12 Measu	A. EUT Photos and Test Setup Photos B. Plots of SAR System Check	42

Report No.: CTA24121101604 Page 5 of 85 Appendix D. CTATEST

Report No.: CTA24121101604 Page 6 of 85

1 Statement of Compliance

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

Eroguenov Bond	Highest Reported 1g-SAR(W/Kg)	Simultaneous
Frequency Band	Body (0mm)	Reported SAR (W/Kg)
WLAN2.4G	0.403	CTATES
WLAN5.2G	0.249	N/A
WLAN5.8G	0.162	
SAR Test Limit (W/Kg)	1.60	
Test Result	PASS	
CTA.	ATESTING	STING

Report No.: CTA24121101604 Page 7 of 85

2 General Information

2.1 General Remarks

2 General Information				
2.1 General Remarks		CTATES		
Date of receipt of test sample		Dec. 11, 2024		TATES
			St. 10.114	CAL
Testing commenced on	:	Dec. 11, 2024	The Other Parks	
·G				
Testing concluded on	:	Dec. 23, 2024		

2.2 Description of Equipment Under Test (EUT)

	Product Name:	Android Tablet Scanners	
	Model/Type reference:	GT60	
	Listed Models:	i70, GT60Plus	
	Power supply:	DC 3.7V From battery and DC 5.0V From external circuit	
		Model: PSY0502000	
	Adapter information:	Input: AC 100-240V 50/60Hz 0.6A Max	
		Output: DC 5.0V 2.0A	
	Testing sample ID:	CTA241211016-1# (Engineer sample) CTA241211016-2# (Normal sample)	
	Hardware version:	V1.0	
	Software version:	V1.0	
		V1.0	
	Bluetooth Supported Type:	Bluetooth BR/EDR	
	Modulation:	GFSK, π/4DQPSK, 8DPSK	
P.	Operation frequency:	2402MHz~2480MHz	
	Channel number:	79	
	Channel separation:	1MHz	
	Antenna type:	PIFA antenna	
	Antenna gain:	0.85 dBi	
	WIFI2.4G		
	Supported type:	802.11b/802.11g/802.11n(H20)/ 802.11n(H40)	
	Modulation:	802.11b: DSSS	
	Wodulation.	802.11g/802.11n(H20)/ 802.11n(H40): OFDM	
	Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz	
		802.11n(H40): 2422MHz~2452MHz 802.11b/802.11g/802.11n(H20): 11	
	Channel number:	802.11b/802.11g/802.11n(H20): 11 802.11n(H40):7 5MHz	

Report No.: CTA24121101604 Page 8 of 85

	Antenna type:	PIFA antenna			_
	Antenna gain:	0.85 dBi	NG.		
	WIFI5G				
		20MHz system	40MHz system	80MHz system	160MHz system
	Supported type:	802.11a 802.11n 802.11ac	802.11n 802.11 ac	N/A	N/A
CTATE	Operation frequency:	5180MHz-5240MHz 5745MHz-5825MHz	5190MHz-5230MHz 5755MHz-5795MHz	N/A	N/A
	Modulation:	OFDM	OFDM	N/A	N/A
	Channel number:	9	4ATES	N/A	N/A
	Channel separation:	20MHz	40MHz	N/A	N/A
Cs.	Antenna type:	Internal antenna		EN	N. C.
G	Antenna gain:	5.1GWIFI: 0.88 dBi 5.8GWIFI: 0.88 dBi			
	Category of device:	Body close device	TING		
1	444	·	761"	·	

Remark:

The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Report No.: CTA24121101604 Page 9 of 85

2.3 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
ANSI/IEEE C95.1-2019	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
KDB 248227 D01	SAR Guidance for IEEE 802 11 Wi-Fi SAR v02r02
KDB 447498 D01	General RF Exposure Guidance v06
KDB 865664 D01	SAR Measurement 100 MHz to 6 GHz v01r04
KDB 865664 D02	RF Exposure Reporting v01r02
KDB 690783 D01	SAR Listings on Grants v01r03
KDB 616217 D04	SAR for Tablet and Laptop

Report No.: CTA24121101604 Page 10 of 85

2.5 Test Facility

Designation Number: CN1318 FCC-Registration No.: 517856

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Report No.: CTA24121101604 Page 11 of 85

2.6 Environment of Test Site

> C\\r`			
Temperature (°C)	18-25	22~23	
Humidity (%RH)	30-70	55~65	

2.7 Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

Report No.: CTA24121101604 Page 12 of 85

Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2 SAR Definition

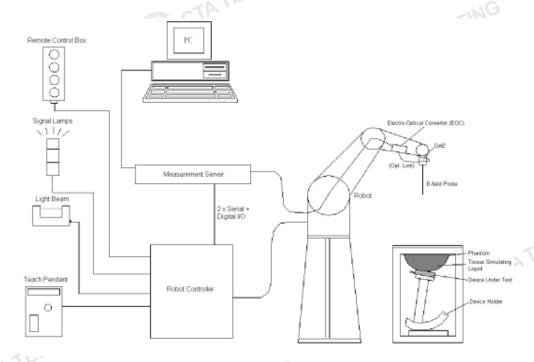
The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$


CTATES Where: C is the specific head capacity, δT is the temperature rise and δtisthe exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. CTA TESTING Report No.: CTA24121101604 Page 13 of 85

4 SAR Measurement System

DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

4.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special

Page 14 of 85 Report No.: CTA24121101604

calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

> E-Field Probe Specification

<EX3DV4 Probe>

Construction	Symmetrical design with triangular core		
	Built-in shielding against static charges		
	PEEK enclosure material (resistant to organic		
	solvents, e.g., DGBE)		- 0
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB	9.0	
Directivity	± 0.3 dB in HSL (rotation around probe axis)	_	
	± 0.5 dB in tissue material (rotation normal to	_	
	probe axis)	_	
Dynamic Range	10 μW/g to 100 W/kg; Linearity: ± 0.2 dB (noise:	_	
	typically< 1 µW/g)		1G
Dimensions	Overall length: 330 mm (Tip: 20 mm)	AVY	19
	Tip diameter: 2.5 mm (Body: 12 mm)	Photo of EX3DV4	
	Typical distance from probe tip to dipole centers:		
	1 mm		

E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy shall be evaluated and within ± 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Photo of DAE

Report No.: CTA24121101604 Page 15 of 85

4.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability ±0.035 mm)
- > High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

Report No.: CTA24121101604 Page 16 of 85

4.5 Phantom

<SAM Twin Phantom>

Shell Thickness $2 \pm 0.2 \text{ mm}$;

 2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm

Filling Volume Approx. 25 liters

Dimensions Length: 1000 mm; Width: 500 mm;

Height: adjustable feet

Measurement Areas Left Hand, Right Hand, Flat Phantom

Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)		
Filling Volume	Approx. 30 liters		
Dimensions	Major ellipse axis: 600 mm		
	Minor axis:400 mm		TATES
		Photo of ELI4 Phantom	

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Report No.: CTA24121101604 Page 17 of 85

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

4.7 Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

> Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

> > - Conversion factor ConvF_i

- Diode compression point dcpi CTATESTING

Device parameters: - Frequency f

> - Crest factor cf

- Conductivity Media parameters:

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes:
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i,(i= x, y, z)

Norm_i= sensor sensitivity of channel i, (i= x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF= sensitivity enhancement in solution

aii= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei= electric field strength of channel iin V/m

H_i= magnetic field strength of channel iin A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude): CTA TESTING

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/kg

E_{tot}= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

CTATES Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Report No.: CTA24121101604 Page 19 of 85

Test Equipment List

5 Test I	Equipment List	TESTING		, NG		
Manufacturer	Name of Equipment	Type/Medal	Carial Number	Calibration		
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	2450MHz System Validation Kit	D2450V2	745	Aug. 28,2023	Aug. 27,2026	
SPEAG	5GHz System Validation Kit	D5GHzV2	1160	Oct. 02,2024	Oct. 01,2027	
Rohde & Schwarz	UNIVERSAL RADIO COMMUNICATION TESTER	CMW500	1201.0002K50-1 04209-JC	Aug.25, 2024	Aug.24, 2025	
SPEAG	Data Acquisition Electronics	DAE4	387	Sep.02,2024	Sep.01,2025	
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May.06,2024	May.05,2025	
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Aug.25, 2024	Aug.24, 2025	
SPEAG	DAK	DAK-3.5	1226	Aug.25, 2024	Aug.24, 2025	
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NA1	NA1	
SPEAG	ELI Phantom	QDOVA004AA	2058	NA1	NA1	
AR	Amplifier	ZHL-42W	QA1118004	Aug.25, 2024	Aug.24, 2025	
Agilent	Power Meter	N1914A	MY50001102	Aug.25, 2024	Aug.24, 2025	
Agilent	Power Sensor	N8481H	MY51240001	Aug.25, 2024	Aug.24, 2025	
R&S	Spectrum Analyzer	N9020A	MY51170037	Aug.25, 2024	Aug.24, 2025	
Agilent	Signal Generation	N5182A	MY48180656	Aug.25, 2024	Aug.24, 2025	
Worken	Directional Coupler	0110A05601O-10	COM5BNW1A2	Aug.25, 2024	Aug.24, 2025	

Note:

- The calibration certificate of DASY can be referred to appendix C of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it
- "1": NA as this is not measurement equipment. 6.

Report No.: CTA24121101604 Page 20 of 85

Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height

	The following table gives	the recipes											
	Ingredients			Frequency (I	MHz)								
	(% by weight)	450	700-900	1750-2000	2300-2500	2500-2700							
A	Water	38.56	40.30	55.24	55.00	54.92							
	Salt (NaCl)	3.95	1.38	0.31	0.2	0.23							
	Sucrose	56.32	57.90	0 61	0	0							
	HEC	0.98	0.24	0	0	0							
	Bactericide	0.19	0.18	0	0	05							
	Tween	0	0	44.45	44.80	44.85							

Sucrose: 98+% Pure Sucrose

CTATES

HEC: Hydroxyethyl Cellulose

CTATESTING

Salt: 99+% Pure Sodium Chloride

Water: De-ionized, 16 MΩ+ resistivity

Tween: Polyoxyethylene (20) sorbitan monolaurate

CTA TESTING HSL5GHz is composed of the following ingredients:

Water: 50-65%

Mineral oil: 10-30% Emulsifiers: 8-25% Sodium salt: 0-1.5%

Report No.: CTA24121101604

Page 21 of 85

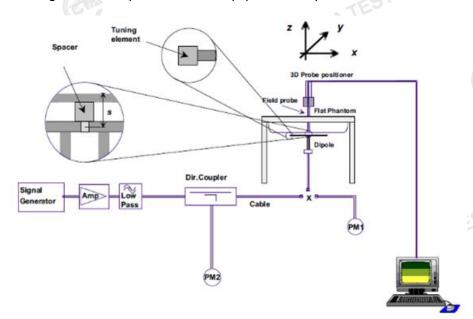
The following table shows the measuring results for simulating liquid.

Measured	Target	Tissue		Measured ³	Tissue		Liquid			
Frequency (MHz)	εr	σ	εr	Dev. (%)	σ	Dev. (%)	Temp.	Test Data		
2450	39.2	1.80	39.585	0.98%	1.754	-2.56%	22.5	12/18/2024		
5250	36.0	4.66	36.554	4.52%	4.578	-1.57%	23.2	12/19/2024		
5750	35.3	5.27	36.897	0.98%	5.187	-2.56%	23.2	12/19/2024		

STING

Report No.: CTA24121101604 Page 22 of 85

System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system CTATES performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation CTATES.

Report No.: CTA24121101604 Page 23 of 85 CTATESTING

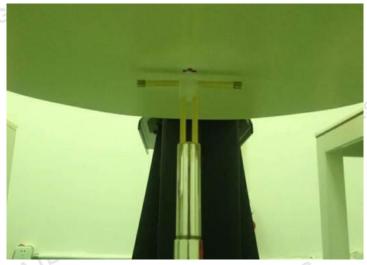


Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix B of this report.

Date	Frequency (MHz)	Power fed onto reference dipole (mW)	Targeted SAR 1g (W/kg)	Measured SAR1g (W/kg)	Normalized SAR (W/kg)	Deviation (%)
12/18/2024	2450	125	52.7	7.02	56.16	6.57%
12/19/2024	5250	100	80.7	7.75	77.50	-3.97%
12/19/2024	5750	100	82.0	8.12	81.20	-0.98%

Report No.: CTA24121101604 Page 24 of 85

8 EUT Testing Position

8.1 Body-Supported Device Configurations

According to KDB 616217 section 4.3, SAR should be separately assessed with each surface and separation distance positioned against the flat phantom that correspond to the intended use as specified by the manufacturer. The antennas in tablets are typically located near the back (bottom) surface and/or along the edges of the devices; therefore, SAR evaluation is required for these configurations. Exposures from antennas through the front (top) surface of the display section of a full-size tablet, away from the edges, are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary, except for tablets that are designed to require continuous operations with the hand(s) next to the antenna(s).

- To position the device parallel to the phantom surface with either keypad up or down.
- To adjust the device parallel to the flat phantom.
- > To adjust the distance between the device surface and the flat phantom to 0 mm.
- When each surface is measurement, the SAR Test Exclusion Threshold in KDB 447498 should be applied.

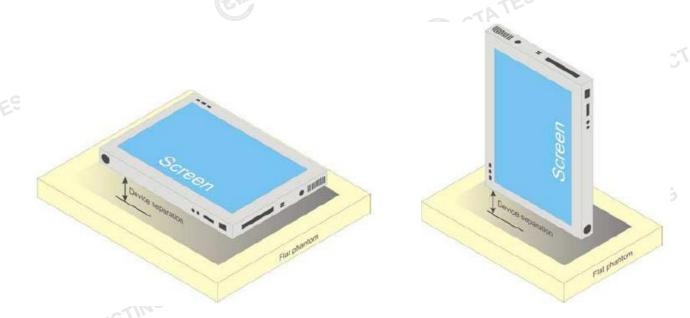


Fig.81 Illustration for Body Position

ESTING

Report No.: CTA24121101604 Page 25 of 85

Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power CTATE! continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels attheworst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan

9.1 Spatial Peak SAR Evaluation

The procedure for continuation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines Report No.: CTA24121101604 Page 26 of 85

the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3 Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			A. Control of the Con
	≤3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	ESTIN
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	20° ± 1°	
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orientat above, the measurement rescorresponding x or y dimen at least one measurement po	ion, is smaller than the olution must be \leq the sion of the test device with	
n Scan Procedures		TESTING	7

9.4 Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. CTATESTING

Report No.: CTA24121101604 Page 27 of 85

			≤3 GHz	> 3 GHz	
Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$	
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid	$\Delta z_{Zoom}(1)$: between 1st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$	
	gna	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1) \text{ mm}$		
Minimum zoom scan volume	Minimum zoom		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregateSAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

^{*} When zoom scan is required and the <u>reported</u> SAR from the *area scan based 1-g SAR estimation* procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: CTA24121101604 Page 28 of 85

10 TEST CONDITIONS AND RESULTS

10.1 Conducted Power Results

<WLAN 2.4GHz Conducted Power>

WLAN 2.4GHz Conducted Pov	ver>		ESTING
Туре	Channel	Output power (dBm)	Tune-up limit (dBm)
802.11b	01	14.95	15.00
802.11b	06	14.04	15.00
CTATE	11	14.48	15.00
STA STATE	01	13.71	14.00
802.11g	06	13.30	14.00
	11	13.09	14.00
	01	13.65	14.00
802.11n(HT20)	06	13.15	14.00
TESTING	11	13.06	14.00
CTA	03	12.94	13.00
802.11n(HT40)	06	12.55	13.00
	09	13.75	14.00
		CIA	(en

Report No.: CTA24121101604 <WLAN 5.2GHz Conducted Power>

	-1810		0 1 1	- 11 1/
	Туре	Channel	Output power (dBm)	Tune-up limit (dBm)
	CIA	36	12.77	13.00
	802.11a	44	12.20	12.50
		48	12.08	12.50
		36	12.83	13.00
	802.11n(HT20)	44	12.62	13.00
	STING	48	12.77	13.00
CTATE	802.11n(HT40)	38	11.76	12.00
	602.1111(H140)	46	12.85	13.50
	CINCIL	36	11.25	12.00
	802.11ac(HT20)	44	11.29	12.00
		48	10.30	11.00
	802.11ac(HT40)	38	12.04	12.50
G	` ,	46	11.98	12.00
(CTA TESTING	CTATEST	ING	-01G
		G.V.		

CTATESTING

CTATESTING

CTATESTING

CTATESTING

CTATESTING

CTATESTING

CTATESTING

CTATESTING

CTATESTING

Report No.: CTA24121101604 <WLAN 5.8GHz Conducted Power>

Туре	Channel	Output power (dBm)	Tune-up limit (dBm)
(Carry	149	11.48	11.50
802.11a	157	11.10	11.50
	165	10.44	11.00
	149	11.77	12.00
802.11n(HT20)	.11n(HT20) 157 10.64		11.00
STING	165	11.03	11.50
802 11n(HT40)	151	10.39	11.00
802.11n(HT40)	159	9.95	10.00
CIRCIP	149	10.04	11.00
802.11ac(HT20)	157	9.09	10.00
	165	8.75	9.00
000 44 co/UT40\	151	10.62	11.00
802.11ac(HT40)	159	8.83	9.00
CTA TESTING	CTATEST	ING	ESTING

ESTING

CTATESTING

CTATESTING

CTATESTING

CTATESTING

CTATESTING

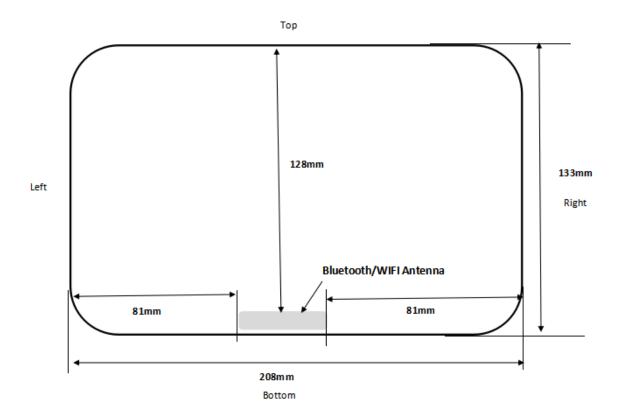
CTATESTING

CTATESTING

CTATESTING

Report No.: CTA24121101604 < Bluetooth Conducted Power>

	Туре	Type Channel Output power (dBm)			
	1	00	-1.51	-1.00	
	GFSK	39	-0.17	0.00	
		78	0.34	1.00	
	ு π/4DQPSK	00	-2.62	-2.00	
		39	-0.83	0.00	
TATESTI		78	-0.41	0.00	
		00	-2.06	-2.00	
	8DPSK	39	-0.12	0.00	
	GIL	78	0.38	1.00	
				T.OU	


CTATESTING

CTATESTING

CTATESTING

Report No.: CTA24121101604 Page 32 of 85

10.2 Transmit Antennas(Rear View)

	Distance of The Antenna to the EUT surface and edge									
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side				
BT&WLAN	<5mm	<5mm	128mm	<5mm	81mm	81mm				
		TING								

ESTING

Report No.: CTA24121101604

10.3 SAR Test Exclusion and Estimated SAR

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and Product specific 10g SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and ≤ 50 mm

MHz	5	10	15	20	25	mm			
150	39	77	116	155	194				
300	27	55	82	110	137				
450	22	45	67	89	112				
835	16	33	49	66	82				
900	16	32	47	63	79	04P.T.			
1500	12	24	37	49	61	SAR Test Exclusion			
1900	11	22	33	44	54	Threshold (mW)			
2450	10	19	29	38	48				
3600	8	16	24	32	40				
5200	7	13	20	26	33				
5400	6	13	19	26	32				
5800	6	12	19	25	31				
MHz	30	35	40	45	50	mm			
150	232	271	310	349	387				
300	164	192	219	246	274				
450	134	157	179	201	224				
835	98	115	131	148	164				
900	95	111	126	142	158	CART			
1500	73	86	98	110	122	SAR Test Exclusion			
1900	65	76	87	98	109	Threshold (mW)			
2450	57	67	77	86	96	()			
3600	47	55	63	71	79				
5200	39	46	53	59	66				
5400	39	45	52	58	65				
5800	37	44	50	56	62				

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Report No.: CTA24121101604 Page 34 of 85

The test exclusions are applicable only when the minimum test separation distance is > 50 mm and for transmission frequencies between 100 MHz and 6 GHz.

SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and > 50 mm

MHz	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	mm
100	474	481	487	494	501	507	514	521	527	534	541	547	554	561	567	
150	387	397	407	417	427	437	447	457	467	477	487	497	507	517	527	
300	274	294	314	334	354	374	394	414	434	454	474	494	514	534	554	
450	224	254	284	314	344	374	404	434	464	494	524	554	584	614	644	
835	164	220	275	331	387	442	498	554	609	665	721	776	832	888	943	
900	158	218	278	338	398	458	518	578	638	698	758	818	878	938	998	
1500	122	222	322	422	522	622	722	822	922	1022	1122	1222	1322	1422	1522	mW
1900	109	209	309	409	509	609	709	809	909	1009	1109	1209	1309	1409	1509	
2450	96	196	296	396	496	596	696	796	896	996	1096	1196	1296	1396	1496	
3600	79	179	279	379	479	579	679	779	879	979	1079	1179	1279	1379	1479	
5200	66	166	266	366	466	566	666	766	866	966	1066	1166	1266	1366	1466	
5400	65	165	265	365	465	565	665	765	865	965	1065	1165	1265	1365	1465	
5800	62	162	262	362	462	562	662	762	862	962	1062	1162	1262	1362	1462	

According to the table above, Standalone SAR exclusion calculation for this device are as below:

eq. nd	Frequency (MHz)	Position	Test Separation	Max Power	Max Power	Exclusion Threshold	Exclusion (Yes/No)	CTAT
1/4		` '		(mW)	(mW)	` ′	CIN	
110	2480	Back	5	1.00	1.26	10	Yes	The control of
	2480	Left edge	81	1.00	1.26	406	Yes	
Т	2480	Right edge	81	1.00	1.26	406	Yes	
	2480	Top edge	128	1.00	1.26	G 876	Yes	
	2480	Bottom edge	5	1.00	1.26	10	Yes	
	2412	Back	5	15.00	31.62	10	No	TING
- :	2412	Left edge	81	15.00	31.62	406	Yes	9 *
	2412	Right edge	81	15.00	31.62	406	Yes	
ŧG	2412	Top edge	128	15.00	31.62	876	Yes	
•	2412	Bottom edge	5	15.00	31.62	10	No	
	5230	Back	5	13.50	22.39	7	No	
	5230	Left edge	81	13.50	22.39	376	Yes	
	5230	Right edge	81	13.50	22.39	376	Yes	
<u>2</u> G	5230	Top edge	128	13.50	22.39	846	Yes	
•	5230	Bottom edge	5	13.50	22.39	7	No	
-Fi	5745	Back	5	12.00	15.85	6	No	CTAT
3G	5745	Left edge	81	12.00	15.85	372	Yes	CTAT
1	T Fi .G Fi	2480 2480 2480 2480 2480 2480 2480 2412 2412 2412 2412 2412 2412 5230 5230 5230 5230 5230 5230 5230	2480 Back 2480 Left edge 2480 Top edge 2480 Bottom edge 2412 Back 2412 Left edge 2412 Right edge 2412 Right edge 2412 Bottom edge 5230 Back 5230 Left edge 5230 Right edge 5230 Right edge 5230 Bottom edge 5230 Back Society Society	Position Separation (mm)	Position Separation (mm) Power (dBm)	Eq. (MHz) Frequency (MHz) Position (mm) Separation (mm) Power (dBm) Power (mW) 2480 Back 5 1.00 1.26 2480 Left edge 81 1.00 1.26 2480 Right edge 81 1.00 1.26 2480 Bottom edge 5 1.00 1.26 2480 Bottom edge 5 1.00 1.26 2412 Back 5 15.00 31.62 2412 Left edge 81 15.00 31.62 2412 Right edge 81 15.00 31.62 2412 Top edge 128 15.00 31.62 2412 Bottom edge 5 15.00 31.62 2412 Bottom edge 5 15.00 31.62 2530 Back 5 13.50 22.39 5230 Right edge 81 13.50 22.39 5230 Top edge 128 13.50 22.39	Position Power Power Common Power Common Power Common Power Common Power Common Power Common Common	Position Power (dBm) Pow

Report No.: CTA24121101604 Page 35 of 85

5745	Right edge	81	12.00	15.85	372	Yes	
5745	Top edge	128	12.00	15.85	842	Yes	
5745	Bottom edge	5	12.00	15.85	6	No	

	EUT Sides for SAR Testing									
		Mode	Exposure Condition	Front	Back	Left	Right	Тор	Bottom	
		ВТ	Body	N/A	No	No	No	No	No	
	ANT1	WIFI 2.4G	Body	N/A	Yes	No	No	No	Yes	
TE		WIFI 5.2G	Body	N/A	Yes	No	No	No	Yes	
AIL		WIFI 5.8G	Body	N/A	Yes	No	No	No	Yes	

EUT Sides for SAR Testing.

Remark:

1). According to KDB616217, exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary.

Report No.: CTA24121101604 Page 36 of 85

10.4 SAR Test Results

General Note:

1 Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

- a) Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
- b) For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor
 Tune-up scaling factor
- Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3 Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

Report No.: CTA24121101604

<Body SAR>

SAR Values [WIFI 2.4G]

Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Conducted Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
		Me	easui	red / Rep	orted SAR nui	mbers-Body	distance	0mm		
#1	802.11b	Back	1	2412	14.95	15.00	1.012	0.11	0.398	0.403
	802.11b	Bottom edge	1	2412	14.95	15.00	1.012	-0.17	0.377	0.381

Remark:

- The maximum Scaled SAR value is marked in bold.
- When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

SAR Values [WIFI 5.2G]

						TATES				
				SAR	Values [WIF	1 5.2G]				ESTIN
Plot No.	Mode	Test Position	Ch.	Freq.	Conducted Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
		Measure	ed / F	Reporte	d SAR numbe	rs-Body di	stance 0n	nm		
#2	802.11n(HT40)	Back	46	5230	12.85	13.50	1.161	-0.09	0.214	0.249
ar ar	802.11n(HT40)	Bottom edge	46	5230	12.85	13.50	1.161	-0.10	0.206	0.239

Remark:

- The maximum Scaled SAR value is marked in bold.
- When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

SAR Values [WIFI 5.8G]

Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Conducted Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
		Measure	ed / R	Reporte	d SAR numbe	rs-Body di	stance 0n	nm		
#3	802.11n(HT20)	Back	149	5745	11.77	12.00	1.054	0.07	0.154	0.162
	802.11n(HT20)	Bottom edge	149	5745	11.77	12.00	1.054	0.02	0.142	0.150

Remark:

- 1) The maximum Scaled SAR value is marked in bold.
- When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order CTATESTING 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

Report No.: CTA24121101604 Page 38 of 85

11 Simultaneous Transmission Analysis

Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg. When the CTATES sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1+SAR_2)^{1.5}}{(peak location separation,mm)} < 0.04$$

CTATESTING The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices The EUT only have one ANT, So the Simultaneous Transmission Analysis is not applicable for the EUT. which may simultaneously transmit with the licensed transmitter.

Report No.: CTA24121101604 Page 39 of 85

12 Measurement Uncertainty

When the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. to KDB 865664D01.

Report No.: CTA24121101604 Page 40 of 85

Appendix A. EUT Photos and Test Setup Photos

CTATES.

CTATES

CTATEST

Back side(0mm)

Bottom edge(0mm)

CTATESTING

CTATESTING

Report No.: CTA24121101604 Page 41 of 85 CTA! 8 9 10 3 4 CTATES' CH1115 6 7 8 95/11 2 CTATESTING TESTING CTATESTIN Liquid depth in the body phantom

CTATESTING CTATESTING

ESTING

Report No.: CTA24121101604 Page 42 of 85

Date: 12/18/2024

Appendix B. Plots of SAR System Check

2450MHz System Check

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 745

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.754 \text{ S/m}$; $\epsilon r = 39.585$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

 Probe: EX3DV4 - SN7396; ConvF(7.57, 7.57, 7.57); Calibrated: May. 06, 2024 CTA TESTING

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: 09/02/2024

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (4x8x1): Measurement grid: dx=12 mm, dy=12 mm

Maximum value of SAR (Measurement) = 9.4W/kg

CTA TESTING Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.25 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 15.8 W/kg

SAR(1 g) = 7.02 W/kg; SAR(10 g) = 2.96 W/kg

Maximum value of SAR (measured) = 10.3 W/kg

CTA TESTING System Performance Check 2450MHz 125mW

Report No.: CTA24121101604 Page 43 of 85 Date: 12/19/2024 5250MHz System Check

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1160

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5250 MHz; σ =4.578 S/m; ϵ r = 36.554; ρ = 1000 kg/m3 CTATE

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(5.33, 5.33, 5.33); Calibrated: May. 06, 2024

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn387; Calibrated: 09/02/2024

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (5x5x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 15.9 W/kg

Zoom Scan (7x7x12): Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 67.30 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) =22.6 W/kg

SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.46 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

System Performance Check 5250MHz 100mW

Report No.: CTA24121101604 Page 44 of 85 Date: 12/19/2024 **5750MHz System Check**

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1160

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5750 MHz; σ =5.187 S/m; ϵ r = 36.897; ρ = 1000 kg/m3 CTATE

Phantom section: Flat Section

DASY5 Configuration:

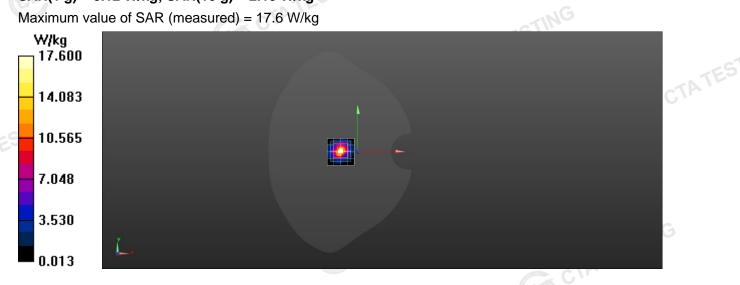
Probe: EX3DV4 - SN7396; ConvF(4.92, 4.92, 4.92); Calibrated: May. 06, 2024

Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn387; Calibrated: 09/02/2024

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Area Scan (5x5x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 15.3 W/kg

Zoom Scan (7x7x12): Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 70.00 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) =24.5W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.15 W/kg

System Performance Check 5750MHz 100mW

Page 45 of 85 Report No.: CTA24121101604

Appendix C. Plots of SAR Test Data

#1

Date: 12/18/2024

WIFI2.4G_802.11b_Back_0mm_Ch01

Communication System: UID 0, Generic WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.755 \text{ S/m}$; $\epsilon r = 40.154$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

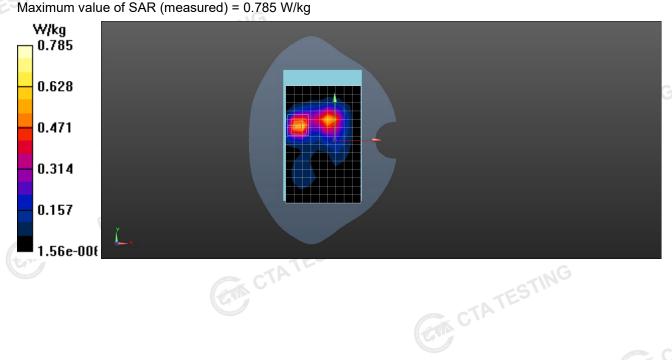
DASY5 Configuration:

CTA TESTING Probe: EX3DV4 - SN7396; ConvF(7.57, 7.57, 7.57); Calibrated: May. 06, 2024

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: 09/02/2024

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974


DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear /Area Scan (10x15x1): Measurement grid: dx=12 mm, dy=12 mm Maximum value of SAR (Measurement) = 0.745 W/kg

Rear /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 6.526 V/m: Power Deff = 6.44

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 0.398 W/kg; SAR(10 g) = 0.225 W/kg

Report No.: CTA24121101604 Page 46 of 85

#2

Date: 12/19/2024

WIFI5.2G_802.11n(HT40)_Back_0mm_Ch46

Communication System: UID 0, Generic WIFI (0); Frequency: 5230 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5230 MHz; $\sigma = 4.485 \text{ S/m}$; $\epsilon r = 37.125$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(5.33, 5.33, 5.33); Calibrated: May. 06, 2024

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: 09/02/2024

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear /Area Scan (11x18x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.536 W/kg

Rear /Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0.854 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.214 W/kg; SAR(10 g) = 0.118 W/kg

Maximum value of SAR (measured) =0.555 W/kg

Page 47 of 85 Report No.: CTA24121101604

#3

Date: 12/19/2024

WIFI5.8G_802.11n(HT20)_Back_0mm_Ch149

Communication System: UID 0, Generic WIFI (0); Frequency: 5745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5745 MHz; $\sigma = 5.398$ S/m; $\epsilon r = 34.448$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(4.92,4.92, 4.92); Calibrated: May. 06, 2024

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: 09/02/2024

Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear /Area Scan (11x18x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.294 W/kg

Rear /Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value =6.528 V/m; Power Drift =0.07 dB

Peak SAR (extrapolated) = 0.74 W/kg

SAR(1 g) = 0.154 W/kg; SAR(10 g) = 0.092 W/kg

Maximum value of SAR (measured) =0.300 W/kg

Report No.: CTA24121101604 Page 48 of 85

Appendix D. DASY System Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, Chin Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Anbotek (Auden) Certificate No: Z24-98671

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:7396

Calibration Procedure(s) FF-Z12-006-08

Calibration Procedures for Dosimetric E-field Probes

Calibration date: May 06, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards		ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NF	RP2	101919	20-Jun-23 (CTTL, No.J23 X07447)	Jun-23
Power sensor NF	RP-Z91	101547	20-Jun-23 (CTTL, No.J23 X07447)	Jun-23
Power sensor NF	RP-Z91	101548	20-Jun-23 (CTTL, No.J23 X07447)	Jun-23
Reference10dBAtt	tenuator	18N50W-10dB	13-Mar-24(CTTL,No.J24X01547)	Mar-24
Reference20dBAtt	tenuator	18N50W-20dB	13-Mar-24(CTTL, No.J24X01548)	Mar-24
Reference Probe	EX3DV4	SN 7433	26-Sep-23(SPEAG,No.EX3-7433_Sep22)	Sep-23
DAE4		SN 549	13-Dec-23(SPEAG, No.DAE4-549_Dec22)	Dec -23
Secondary Standa	ırds	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorM	G3700A	6201052605	27-Jun-23 (CTTL, No.J23X04776)	Jun-23
Network Analyzer	E5071C	MY46110673	13-Jan-24 (CTTL, No.J24X00285)	Jan -24
	1	Name	Function	Signature
Calibrated by:		Yu Zongying	SAR Test Engineer	EVE
Reviewed by:		Lin Hao	SAR Test Engineer	林杨
Approved by:		Qi Dianyuan	SAR Project Leader	252
			Innuada May O	. 2024

Issued: May06, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 11

Certificate No: Z24-98671

Report No.: CTA24121101604 Page 49 of 85

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z24-98671

Page 2 of 11

Report No.: CTA24121101604 Page 50 of 85

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Probe EX3DV4

SN: 7396

Calibrated: May 06, 2024

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z24-98671

Page 3 of 11

Report No.: CTA24121101604 Page 51 of 85

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Fax: +86-10-62304634-2000 Fax: +86-10-6230463-2000 Fax: +86-10-62304630-2000 Fax: +86-10-6000 Fax: +8

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.54	0.53	0.50	±10.0%
DCP(mV) ^B	97.8	104.5	102.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	199.9	±2.4%
		Υ	0.0	0.0	1.0		203.3	-
		Z	0.0	0.0	1.0		195.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

Certificate No: Z24-98671

TING

Page 4 of 11

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Report No.: CTA24121101604 Page 52 of 85

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.82	9.82	9.82	0.30	0.85	±12.1%
835	41.5	0.90	9.71	9.71	9.71	0.15	1.36	±12.1%
900	41.5	0.97	9.87	9.87	9.87	0.16	1.37	±12.1%
1750	40.1	1.37	8.61	8.61	8.61	0.25	1.04	±12.1%
1900	40.0	1.40	8.13	8.13	8.13	0.24	1.01	±12.1%
2100	39.8	1.49	8.14	8.14	8.14	0.24	1.04	±12.1%
2300	39.5	1.67	7.85	7.85	7.85	0.40	0.75	±12.1%
2450	39.2	1.80	7.57	7.57	7.57	0.50	0.75	±12.1%
2600	39.0	1.96	7.38	7.38	7.38	0.64	0.68	±12.1%
5250	35.9	4.71	5.33	5.33	5.33	0.45	1.30	±13.3%
5600	35.5	5.07	4.89	4.89	4.89	0.45	1.35	±13.3%
5750	35.4	5.22	4.92	4.92	4.92	0.45	1.45	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z24-98671

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Report No.: CTA24121101604 Page 53 of 85

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.09	10.09	10.09	0.30	0.90	±12.1%
835	55.2	0.97	9.88	9.88	9.88	0.19	1.32	±12.1%
900	55.0	1.05	9.82	9.82	9.82	0.23	1.15	±12.1%
1750	53.4	1.49	8.24	8.24	8.24	0.24	1.06	±12.1%
1900	53.3	1.52	7.97	7.97	7.97	0.19	1.24	±12.1%
2100	53.2	1.62	8.18	8.18	8.18	0.19	1.39	±12.1%
2300	52.9	1.81	7.88	7.88	7.88	0.55	0.80	±12.1%
2450	52.7	1.95	7.53	7.53	7.53	0.46	0.89	±12.1%
2600	52.5	2.16	7.38	7.38	7.38	0.52	0.80	±12.1%
5250	48.9	5.36	4.93	4.93	4.93	0.45	1.80	±13.3%
5600	48.5	5.77	4.19	4.19	4.19	0.48	1.90	±13.3%
5750	48.3	5.94	4.52	4.52	4.52	0.48	1.95	±13.3%

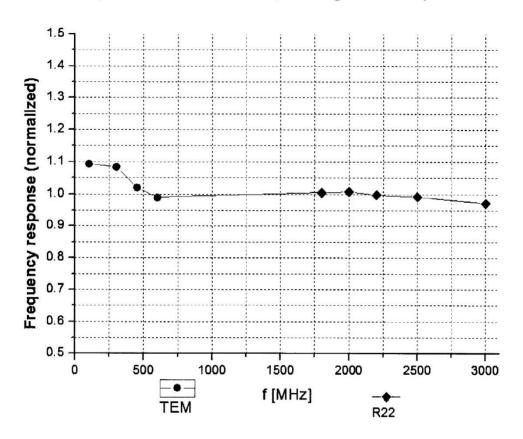
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z24-98671

Page 6 of 11

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Report No.: CTA24121101604 Page 54 of 85

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ettl@chinattl.com

Http://www.chinattl.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

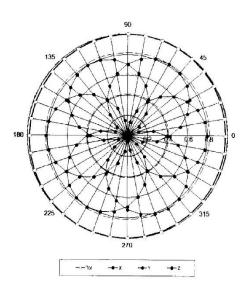
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

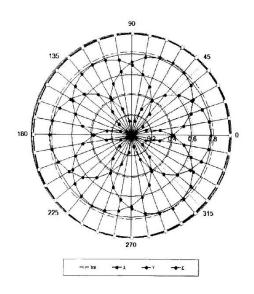
Certificate No: Z24-98671

GTING

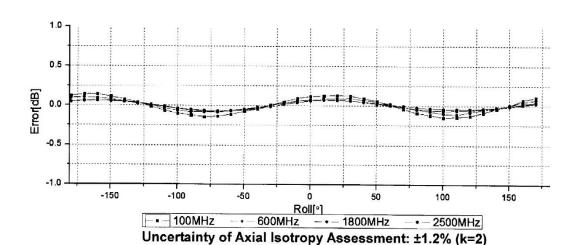
Report No.: CTA24121101604 Page 55 of 85

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China


 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209


 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Receiving Pattern (Φ), θ =0°

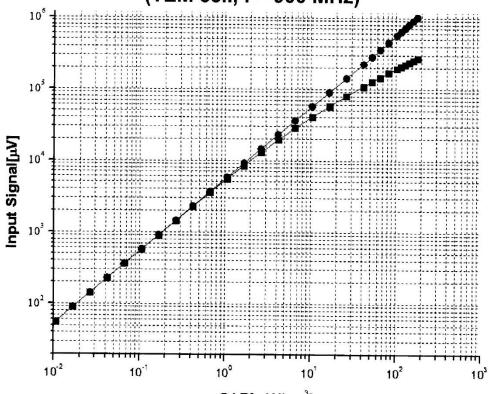

f=600 MHz, TEM

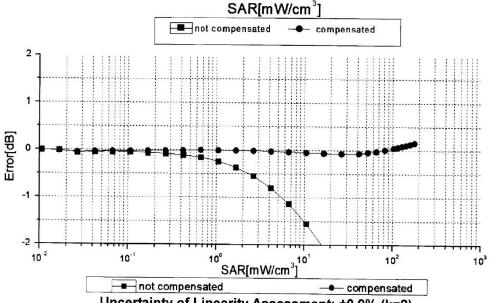
f=1800 MHz, R22

CTATES

Certificate No: Z24-98671

Page 8 of 11





Report No.: CTA24121101604 Page 56 of 85

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

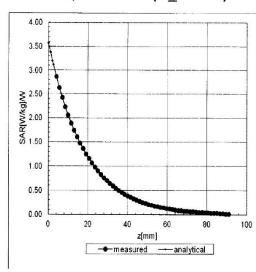
Uncertainty of Linearity Assessment: ±0.9% (k=2)

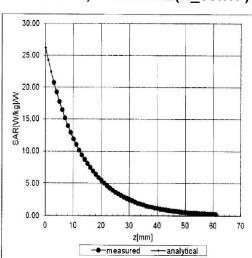
Certificate No: Z24-98671

Page 9 of 11

CTATES!

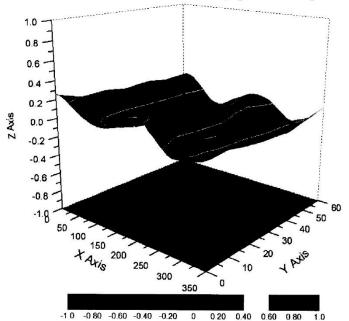
Report No.: CTA24121101604 Page 57 of 85




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)


f=1750 MHz, WGLS R22(H convF)

GTATES

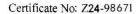
Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

Certificate No: Z24-98671

Page 10 of 11

Report No.: CTA24121101604 Page 58 of 85



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	156.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Report No.: CTA24121101604 Page 59 of 85

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

C

Client

Anbotek (Auden)

Certificate No: DAE4-387_Sep02

CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BM - SN: 387

Calibration procedure(s)

QA CAL-06.v29

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

September 02, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	15-Aug-24 (No:22092)	Aug-24
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	05-Jan-24 (in house check)	In house check: Jan-24
Calibrator Box V2.1	SE UMS 006 AA 1002	05-Jan-24 (in house check)	In house check: Jan-24

Calibrated by:

Name Dominique Steffen Function

Laboratory Technician

Signature

Approved by:

Sven Kühn

Deputy Manager

Issued: September 02, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-387_Sep02

Page 1 of 5

