

Page 1 of 16

FCC ID: 2AGR4-102456

Report No.: LCSA03135030EB

RF Exposure Evaluation

For

The Gem Group, Inc.

EDEN WIRELESS DUAL CHARGING PAD

Test Model: 102456-021B

Prepared for Address	:	The Gem Group, Inc. 9 International Way, Lawrence, MA 01843, USA
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	IF IT	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing Street, Baoan District, Shenzhen, China
Tel	100	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	March 14, 2025
Number of tested samples	:	2
Sample No.	:	A250313048-1, A250313048-2
Serial number	:	Prototype
Date of Test	:	Prototype March 14, 2025 ~ March 27, 2025
Date of Report	:	March 28, 2025

	RF Exposure Evaluation			
Report Reference No:	LCSA03135030EB			
Date Of Issue :	March 28, 2025			
Testing Laboratory Name :	Shenzhen LCS Compliance Test	ing Laboratory Ltd.		
Address::	101, 201 Bldg A & 301 Bldg C, Juj Baoan District, Shenzhen, China	i Industrial Park Shajing Street,		
tt HI Har Jab	Full application of Harmonised sta	ndards		
Testing Location/ Procedure	Partial application of Harmonised s	standards 🗆 💦		
	Other standard testing method \square			
Applicant's Name :	The Gem Group, Inc.			
Address:	9 International Way, Lawrence, M/	A 01843, USA		
Test Specification				
Standard : Test Report Form No :	FCC KDB publication 680106 D01 FCC CFR 47 part1 1.1310 FCC CFR 47 part2 2.1091 FCC CFR 47 part 18.107 TRF-4-E-214 A/0	Wheless Power Transler V04		
TRF Originator : Master TRF	Shenzhen LCS Compliance Testin	g Laboratory Ltd.		
Shenzhen LCS Compliance Testing This publication may be reproduced	in whole or in part for non-comm	ercial purposes as long as the		
the material. Shenzhen LCS Complia assume liability for damages resulting	ance Testing Laboratory Ltd. takes	no responsibility for and will no		
the material. Shenzhen LCS Complia assume liability for damages resulting its placement and context.	nce Testing Laboratory Ltd. takes in the reader's interpretation of	no responsibility for and will no the reproduced material due to		
the material. Shenzhen LCS Complia assume liability for damages resulting its placement and context. Test Item Description	nce Testing Laboratory Ltd. takes in the reader's interpretation of EDEN WIRELESS DUAL CHARG	no responsibility for and will no the reproduced material due to		
the material. Shenzhen LCS Complia assume liability for damages resulting its placement and context. Test Item Description	ance Testing Laboratory Ltd. takes in g from the reader's interpretation of EDEN WIRELESS DUAL CHARG Gemline	no responsibility for and will no the reproduced material due to		
the material. Shenzhen LCS Complia assume liability for damages resulting its placement and context. Test Item Description	ance Testing Laboratory Ltd. takes in g from the reader's interpretation of EDEN WIRELESS DUAL CHARG Gemline 102456-021B	no responsibility for and will no the reproduced material due to		
the material. Shenzhen LCS Complia assume liability for damages resulting its placement and context. Test Item Description : Trade Mark Test Model	ance Testing Laboratory Ltd. takes in g from the reader's interpretation of EDEN WIRELESS DUAL CHARG Gemline 102456-021B Please Refer to Page 6	no responsibility for and will no the reproduced material due to		
the material. Shenzhen LCS Complia assume liability for damages resulting its placement and context. Test Item Description : Trade Mark Test Model	ance Testing Laboratory Ltd. takes in g from the reader's interpretation of EDEN WIRELESS DUAL CHARG Gemline 102456-021B Please Refer to Page 6	no responsibility for and will no the reproduced material due to		
Shenzhen LCS Compliance Testing I the material. Shenzhen LCS Complia assume liability for damages resulting its placement and context. Test Item Description: Trade Mark: Test Model: Ratings: Result: Compiled by: Joker.Hu	ance Testing Laboratory Ltd. takes in g from the reader's interpretation of EDEN WIRELESS DUAL CHARG Gemline 102456-021B Please Refer to Page 6 Positive	ING PAD		

LCS Testing Lab

LCS Testing Lab

RF Exposure Evaluation

Test Report No. :	LCSA03135030EB	
rest Report No	LOOKUJIJJUJULD	

March 28, 2025 Date of issue

Test Model	: 102456-021B	
EUT	: EDEN WIRELESS DUAL CHARGING PAD	
Applicant	: The Gem Group, Inc.	
Address	: 9 International Way, Lawrence, MA 01843, U	ISA
Telephone	: /	
Fax	: /	
Manufacturer	: ShenzhenFuture chargerTechnologyCoL	.td
Address	: Yongfengtianindustiralpark, 3rd industrialzon	e, fenghuang,
Http:// Lab	Fuyong, Bao'anDistrict, Shenzhen. China.51	810
Telephone	STIST LOSTEST	
Fax	: /	
Factory	: ShenzhenFuture chargerTechnologyCoL	.td
Address	: Yongfengtianindustiralpark, 3rd industrialzon	e, fenghuang,
	Fuyong, Bao'anDistrict, Shenzhen. China.51	810
Telephone	:/	
Fax	:/ III. 拉訊检測版的	
Les Les IV.	S. LCS TO-	SA LOS IST

|--|

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: LCSA03135030EB

Revision History

Report Version	Issue Date	Revision Content	Revised By	
000	March 28, 2025	Initial Issue		

TABLE OF CONTENTS

Description

Page

1. PRODUCT INFORMATION	6
2. EVALUATION METHOD	6
3. EVALUATION LIMIT	
4. TEST SETUP DIAGRAM	
5. TEST EQUIPMENT	
6. MEASUREMENT PROCEDURE	
7. EQUIPMENT APPROVAL CONSIDERATIONS	
8. AND H FIELD STRENGTH	
9. TEST SETUP PHOTOS	
10. CONCLUSION	
11. DESCRIPTION OF TEST FACILITY	
12. MEASUREMENT UNCERTAINTY	16

1. Product Information

Product Name	EDEN WIRELESS DUAL CHARGING PAD	
Model Number	102456-021B	
Ratings	Input: DC 9V/2.0A Wireless Output: 10W(Max) For airpods output: 5W(max) USB output: DV 5V/1.0A	
Modulation Type	ASK	
Frequency Range	110.1~205.0KHz	Will Belt
Antenna Type	Coil Antenna	Tilleanna Lab
Hardware version	1 LCS 15	Tes
Software version	1	
Accessories	1	
Exposure category	General population/uncontrolled environment	
ЕИТ Туре	Production Unit	
Device Type	Mobile Device	

Note: For a more detailed antenna description, please refer to the antenna specifications or the antenna report provided by the customer.

2. Evaluation Method

Per KDB 680106 D01 Section 3. RF Exposure Requirements;

- 1) Wireless power transfer devices must comply with RF exposure requirements for all design configurations in which they can operate. At a minimum, RF exposure must be evaluated for the worst-case scenario, typically when the transmitter, while delivering energy to a client device, is operating at maximum output power. RF exposure compliance for equipment authorization must be determined following the guidance of KDB447498, which includes consideration of the different test requirements for *Mobile Device* and *Portable Device* exposure categories, as defined in §§ 2.1091 and 2.1093 of the Rules.
- 2) The RF exposure limits, as set forth in § 1.1310, do not cover the frequency range below 100 kHz for Specific Absorption Rate (SAR) and below 300 kHz for Maximum Permitted Exposure (MPE). In addition, present limitations of RF exposure evaluation systems prevent an accurate evaluation of SAR below 4 MHz. For these reasons, a specific MPE-based RF Exposure compliance procedure for devices operating in the aforementioned low-frequency ranges has been set in place. This procedure is applicable to Equipment Authorization of all RF devices, thus including, but not limited to, Part 18 and WPT devices. Accordingly, for § 2.1091-*Mobile* devices, the MPE limits between 100 kHz to 300 kHz are to be considered the same as those at 300 kHz in Table 1 of § 1.1310, that is, 614 V/m and 1.63 A/m, for the electric field and magnetic field, respectively. For § 2.1093-*Portable* devices below 4 MHz and down to 100 kHz, the MPE limits in § 1.1310 (with the 300 kHz limit applicable all the way down to 100 kHz) can be used for the purpose of equipment authorization in lieu of SAR evaluations.

Furthermore, consistent with FCC's equipment authorization RF exposure guidance, any device (both portable and mobile) operating at frequencies below 100 kHz is considered compliant for the purpose of equipment authorization when the external (unperturbed) temporal peak field strengths do not exceed the following reference levels:

83 V/m for the electric field strength (E)

and 90 A/m for the magnetic field strength (H)

These data may be provided through measurements and/or numerical simulations, and for all the positions in space relevant for any possible body exposure.

3) "Large size" probes may prevent the measurement of E- and/or H-fields near the surface of the radiating structure (e.g., a WPT source coil), as in the example shown in Figure 1.

If the center of the probe sensing element is located more than 5 mm from the probe outer surface, the field strengths need to be estimated through modeling for those positions that are not reachable. The estimates may be done either via numerical calculation, or via analytic model: e.g., approximated formulas for circular coils, dipoles, etc., may be acceptable if it is shown that the model is applicable for the design parameters considered. A typical example is the use of a quasi-static approximation formula for a low-frequency magnetic field source. These estimates shall include points spaced no more than 2 cm from each other. Thus, in the example of

Figure 1, at least the estimates at 0 cm2 and 2 cm are required, while only one point would not be sufficient. In addition, the model needs to be validated through the probe measurements for the two closest points to the device surface, and with 2-cm increments, as indicated in Figure 1. In that example, the same model must also be applied to the 4 cm and 6 cm positions, and then compared with the measured data, for validation purposes. The validation is considered sufficient if a 30% agreement between the model and the (E- and/or H-field) probe measurements is demonstrated. If such a level of agreement cannot be shown, a more accurate model (and/or a smaller probe) shall be used.

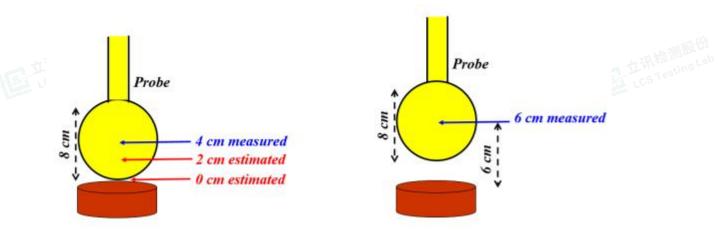


Figure 1. Example of probe (in yellow) measurements in points close to the WPT device (in red/brown). The probe radius is 4 cm, thus the closest point to the device where the field can be measured is at 4 cm from the surface (this example assumes that the probe calibration refers to the center of the sensing element structure, in this case a sphere of 4 cm radius). Data at 0 cm and 2 cm must be estimated through a model, and then the same model must be validated via comparison with the actual measurements at 4 cm and 6 cm, where the probe center can be positioned and collect valid data.

4) Part 18 Wireless Power Transfer up to One-Meter Distance. This section applies only to WPT transmitters that, by design, can provide power to a load located at a distance no greater than one meter. This distance shall be measured between the closest points between the transmitter and the receiver enclosure surfaces. For instance, two coils positioned as in Figure 2-a may be operated and considered under the provisions of this section, because both receivers are within one-meter distance from the transmitter. However, the case in Figure 2-b cannot be considered in the same way, and it is treated according to the prescription of Section 5.3.

For WPT designs with more than one radiating structure the distance to the load shall be considered as in Figure 3, thus measured between the receiver and the closest transmitting structure.

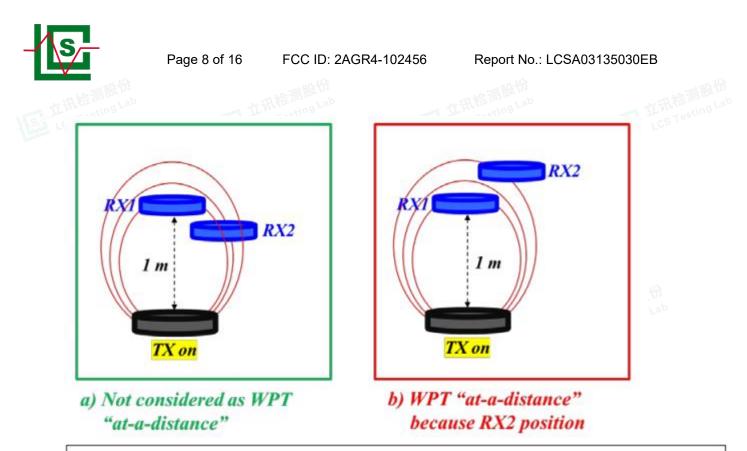


Figure 2-a) For multiple-receiver systems (here shown with two receivers, indicated with RX1 and RX2) the one-meter distance limit must apply for all the receivers that are engaged in the charging process. b) The WPT system is considered "at-a-distance" because it can function when the RX2 is further away than one meter from the transmitter.

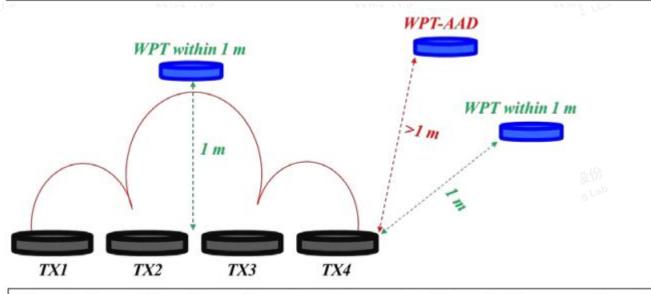


Figure 3. For multiple-coil transmitter systems, the one-meter distance limit is measured from the closest coil edge. A WPT within one meter operates with loads configured as those labeled in green font, if a load can be powered beyond one meter (in red), then it shall be considered "at-a-distance"

There might be situations where the WPT RF emissions are limited enough that even operations in a "crowded" environment, where many similar WPT devices are present, do not pose significant EMC and RF exposure concerns. In this scenario, and for devices operating within a one-meter distance from the receiver, as defined above, a manufacturer will not have to submit an "Equipment Compliance Review" KDB, and receive FCC concurrence before proceeding with equipment authorization. This exception to the requirement of submitting the ECR to obtain FCC concurrence only applies when all the following criteria (1) through (6) are met:

- (1) The power transfer frequency is below 1 MHz.
- (2) The output power from each transmitting element (e.g., coil) is less than or equal to 15 watts.
- (3) A client device providing the maximum permitted load is placed in physical contact with the transmitter (i.e., the surfaces of the transmitter and client device enclosures need to be in physical contact)
- (4) Only § 2.1091- Mobile exposure conditions apply (i.e., this provision does not cover § 2.1093 Portable exposure conditions).
- (5) The E-field and H-field strengths, at and beyond 20 cm surrounding the device surface, are demonstrated to be less than 50% of the applicable MPE limit, per KDB 447498, Table 1. These measurements shall be taken along the principal axes of the device, with one axis oriented along the direction of the estimated maximum field strength, and for three points per axis or until a 1/d (inverse distance from the emitter structure) field strength decay is observed. Symmetry considerations may be used for test reduction purposes. The device shall be operated in documented worst-case compliance scenarios (i.e., the ones that lead to the maximum field components), and while all the radiating structures (e.g., coils or antennas) that by design can simultaneously transmit are energized at their nominal maximum power.
- 5) For systems with more than one radiating structure, the conditions specified in (5) must be met when the system is fully loaded (i.e., clients absorbing maximum power available), and with all the radiating structures operating at maximum power at the same time, as per design conditions. If the design allows one or more radiating structures to be powered at a higher level while other radiating structures are not powered, then those cases must be tested as well. For instance, a device may use three RF coils powered at 5 W, or one coil powered at 15 W: in this case, both scenarios shall be tested

3. Evaluation Limit

3.1 Refer evaluation method

<u>ANSI C95.1–1999</u>: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

<u>FCC KDB publication 680106 D01 Wireless Power Transfer v04:</u> EQUIPMENT AUTHORIZATION OF WIRELESS POWER TRANSFER DEVICES <u>FCC CFR 47 part1 1.1310:</u> Radiofrequency radiation exposure limits. <u>FCC CFR 47 part2 2.1091:</u> Radiofrequency radiation exposure evaluation: mobile devices <u>FCC CFR 47 part 18.107:</u>Indusial, Scientific, and Medical Equipment

Report No.: LCSA03135030EB

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time (minute)	
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)		
Limits for Occupational/Controlled Exposure					
0.3-3.0	614	1.63	*100	6	
3.0-30	1842/f	4.89/f	*900/f ²	6	
30-300	61.4	0.163	1.0	6	
300-1,500	1	Tillizati Palan	f/300	6	
1,500-100,000	1	100	5	6	

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time (minute)	
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)		
Limits for General Population/Uncontrolled Exp					
0.3-1.34	614	1.63	*100	30	
1.34-30	824/f	2.19/f	*180/f ²	30	
30-300	27.5	0.073	0.2	30	
300-1,500	1	1	f/1500	30	
1,500-100,000	/	/	1.0	30	

F=frequency in MHz

*=Plane-wave equivalent power density

According to FCC KDB 680106 D01 Section 3. RF Exposure Requirements clause 3 the Emission-Limits in the frequency range from 100 KHz to 300 KHz should be assessed versus the limits at 300 KHz in Table 1 of CFR 47 - Section 1.310 as following (measured distance shall be 15cm from the center of the probe to the edge of the device):

			1 + 67			
V		E-Field	*/*	B-Field		
V	Frequency	V/m	A/m	uT		
	0.3 MHz – 3.0 MHz	614	1.613	2.0		
	3.0 MHz – 30 MHz	824/f (=27.5 _{30MHz})	2.19/f (=0.073 _{30MHz})			

A KDB inquire was required to determine/confirm the applicable limits below 100 KHz.

Page 11 of 16 FCC ID: 2AGR4-102456 Report No.: LCSA03135030EB 4. Test Setup Diagram Ε E-Field & B-Field Probe П в EUT 15cm

5. Test Equipment

5. Te	st Equipment	立讯检测版份 LCS Testing Lab	E	L讯检测版份 LCS Testing Lab	E	立法检测器的 LCS Testing Li
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Exposure Level Tester	Narda	ELT-400	N-0713	2024-11-11	2025-11-10
2	B-Field Probe	Narda	ELT-400	M-1154	2024-10-08	2025-10-07
3	Electric field probe	Narda	EP601	611WX70332	N/A	N/A

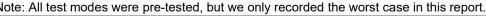
6. Measurement Procedure

- a) The RF exposure test was performed on 360 degree turn table in anechoic chamber.
- b) The measurement probe was placed at test distance (15cm and 20cm) which is between the edges of the charger and the geometric center of probe.
- c) The turn table was rotated 360d degree to search of highest strength.
- d) The highest emission level was recorded and compared with limit as soon as measurement of each points (A, B, C, D, E) were completed.
- e) The EUT were measured according to the dictates of KDB 680106D01v03.

7. Equipment Approval Considerations

The EUT does comply with item 5.2 of KDB 680106 D01v04 as follows table;

Requirements of KDB 680106 D01	Yes / No	Description
Power transfer frequency is less than 1 MHz	Yes	The device operates in the frequency range 110.1 KHz - 205 KHz
The output power from each transmitting element (e.g., coil) is less than or equal to 15 watts.	Yes	For iPhoneThe maximum output power of the primary coil is 10W. For AirPodsThe maximum output power of the primary coil is 5W.
A client device providing the maximum permitted load is placed in physical contact with the transmitter (i.e., the surfaces of the transmitter and client device enclosures need to be in physical contact)	Yes	Client device is placed directly in contact with the transmitter.
Only § 2.1091- Mobile exposure conditions apply (i.e., this provision does not cover § 2.1093-Portable exposure conditions).	Yes	Mobile exposure conditions only
The E-field and H-field strengths, at and beyond 20 cm surrounding the device surface, are demonstrated to be less than 50% of the applicable MPE limit, per KDB 447498, Table 1. These measurements shall be taken along the principal axes of the device, with one axis oriented along the direction of the estimated maximum field strength, and for three points per axis or until a 1/d (inverse distance from the emitter structure) field strength decay is observed. Symmetry considerations may be used for test reduction purposes. The device shall be operated in documented worst-case compliance scenarios (i.e., the ones that lead to the maximum field components), and while all the radiating structures (e.g., coils or antennas) that by design can simultaneously transmit are energized at their nominal maximum power.	Yes	The EUT H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.
For systems with more than one radiating structure, the conditions specified in (5) must be met when the system is fully loaded (i.e., clients absorbing maximum power available), and with all the radiating structures operating at maximum power at the same time, as per design conditions. If the design allows one or more radiating structures to be powered at a	Yes	Only one radiating structure and tested at maximum Output Power



higher level while othe	er radiating structures are not	- Sa los lo	LOS LOS TO
powered, then those of	cases must be tested as well.		
For instance, a device	e may use three RF coils		
powered at 5 W, or or	e coil powered at 10 W: in this		
case, both scenarios	shall be tested		

There might be situations where the WPT RF emissions are limited enough that even operations in a "crowded" environment, where many similar WPT devices are present, do not pose significant EMC and RF exposure concerns. In this scenario, and for devices operating within a one-meter distance from the receiver, as defined above, a manufacturer will not have to submit an "Equipment Compliance Review" KDB, and receive FCC concurrence before proceeding with equipment authorization. This exception to the requirement of submitting the ECR to obtain FCC concurrence only applies when all the following criteria (1) through (6) are met.

8. and H field Strength

Test Mo	des	
Mode 1	AC/DC Adapter (9V/2.0A) + EUT + Phone + TWS Earphone (Battery Status: <1%)	Record
Mode 2	AC/DC Adapter (9V/2.0A) + EUT + Phone + TWS Earphone (Battery Status: <50%)	Record
Mode 3	AC/DC Adapter (9V/2.0A) + EUT + Phone + TWS Earphone (Battery Status: 100%)	Record
Mode 4	AC/DC Adapter (9V/2.0A) + EUT + Phone (Battery Status: <1%)	Pre-tested
Mode 5	AC/DC Adapter (9V/2.0A) + EUT + Phone (Battery Status: <50%)	Pre-tested
Mode 6	AC/DC Adapter (9V/2.0A) + EUT + Phone (Battery Status: 100%)	Pre-tested
Mode 7	AC/DC Adapter (9V/2.0A) + EUT + TWS Earphone (Battery Status: <1%)	Pre-tested
Mode 8	AC/DC Adapter (9V/2.0A) + EUT + TWS Earphone (Battery Status: <50%)	Pre-tested
Mode 9	AC/DC Adapter (9V/2.0A) + EUT + TWS Earphone (Battery Status: 100%)	Pre-tested

For Phone

Field Strength at 15 cm from the edges surrounding the EUT and 15cm from the top surface of the EUT

			Measured Field Strength Values						
Load	Frequency Range	Field	Test	Test	Test	Test	Test	50%	Limits
mode	(kHz)	Strength	Position	Position	Position	Position	Position	Limits	Linito
			А	В	С	D	E		
Mode 1	110.1~205.0	uT	0.125	0.140	0.136	0.131	0.147		
Mode 1	110.1~205.0	A/m	0.100	0.112	0.108	0.104	0.118	0.815	1.63
Mode 1	110.1~205.0	V/m	37.501	41.958	40.776	39.252	44.288	307.0	614.0
Mode 2	110.1~205.0	uT	0.120	0.139	0.135	0.126	0.141	esting P	
Mode 2	110.1~205.0	A/m	0.096	0.111	0.108	0.100	0.113	0.815	1.63
Mode 2	110.1~205.0	V/m	36.004	41.783	40.613	37.760	42.338	307.0	614.0
Mode 3	110.1~205.0	uT	0.112	0.130	0.126	0.117	0.131		
Mode 3	110.1~205.0	A/m	0.089	0.104	0.101	0.094	0.105	0.815	1.63
Mode 3	110.1~205.0	V/m	33.604	38.998	37.906	35.243	39.515	307.0	614.0

For TWS Earphone

Field Strength at 15 cm from the edges surrounding the EUT and 15cm from the top surface of the EUT

-										1 YEA 12 YEA	
					Measured	Field Strer	ngth Values	6			
	Load	Frequency Range	Field	Test	Test	Test	Test	Test	50%	Limits	
	mode	(kHz)	Strength	Position	Position	Position	Position	Position	Limits	Emilio	
				A	В	С	D	E			
	Mode 1	110.1~205.0	uT	0.121	0.132	0.140	0.126	0.144			
	Mode 1	110.1~205.0	A/m	0.096	0.106	0.112	0.101	0.115	0.815	1.63	
	Mode 1	110.1~205.0	V/m	36.260	39.757	42.215	37.890	43.400	307.0	614.0	
	Mode 2	110.1~205.0	uT	0.125	0.137	0.135	0.131	0.139			
	Mode 2	110.1~205.0	A/m	0.100	0.110	0.108	0.105	0.111	0.815	1.63	
	Mode 2	110.1~205.0	V/m	37.616	41.180	40.530	39.424	41.800	307.0	614.0	
	Mode 3	110.1~205.0	uT	0.113	0.123	0.131	0.118	0.135	esting Lar		
	Mode 3	110.1~205.0	A/m	0.090	0.099	0.105	0.094	0.108	0.815	1.63	
	Mode 3	110.1~205.0	V/m	33.842	37.107	39.401	35.364	40.507	307.0	614.0	

For Phone

Field Strength at 20 cm from the edges surrounding the EUT and 20cm from the top surface of the EUT

Load mode	Frequency Range (kHz)	Field Strength	Measured Field Strength Values Test Position E		Limits	
Mode 1	110.1~205.0	uT	0.144			
Mode 1	110.1~205.0	A/m	0.115	0.815	1.63	
Mode 1	110.1~205.0	V/m	43.234	307	614	
Mode 2	110.1~205.0	uT	0.142	NSA LAS	Testing	
Mode 2	110.1~205.0	A/m	0.113	0.815	1.63	
Mode 2	110.1~205.0	V/m	42.576	307	614	
Mode 3	110.1~205.0	uT	0.133			
Mode 3	110.1~205.0	A/m	0.107	0.815	1.63	
Mode 3	110.1~205.0	V/m	40.072	307	614	

For TWS Earphone

Field Strength at 20 cm from the edges surrounding the EUT and 20cm from the top surface of the EUT

	Frequency Range	Field	Measured Field Strength Values	50% Lineite		
Load mode	(kHz)	Strength	Test	50% Limits	Limits	
			Position E			
Mode 1	110.1~205.0	uT	0.141			
Mode 1	110.1~205.0	A/m	0.113	0.815	1.63	
Mode 1	110.1~205.0	V/m	42.338	307	614	
Mode 2	110.1~205.0	uT	0.134		1677111982.077	
Mode 2	110.1~205.0	A/m	0.107	0.815	1.63	
Mode 2	110.1~205.0	V/m	40.177	307	614	
Mode 3	110.1~205.0	uT	0.132			
Mode 3	110.1~205.0	A/m	0.106	0.815	1.63	
Mode 3	110.1~205.0	V/m	39.772	307	614	

Note:V/m=10(((20lg(A/m*10^6)+51.5)-120)/20) Note:A/m=uT/1.25

Report No.: LCSA03135030EB

9. Test Setup Photos

Please refer to separated files for Test Setup Photos of the EUT.

10. Conclusion

A minimum safety distance of at 15 cm surrounding the device and 20 cm above the top surface of the device is required when the device is charging a smart phone. The detected emissions with a distance of 15 cm surrounding the device and 20 cm above the top surface of the device are below the limitations according to FCC KDB 680106 D01 Section 3. RF Exposure Requirement Clause 3.

11. Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024

CAB identifier is CN0071.

CNAS Registration Number is L4595.

Test Firm Registration Number: 254912.

12. Mea	asurement Uncertainty				
SUICSTO	Test Item	Frequency Range	Uncertainty	Note	
	Field Strength Uncertainty :	1Hz~400KHz	1%	(1)	

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

