

Test report

392944-5R1TRFWL

Date of issue: March 20, 2025

Applicant:

Perimetrics, Inc

Product:

Dental Diagnostic Device

Model:

INV-1000

FCC ID: 2AXNK-INV1000 ISED Certification Number: 33686-INV1000

Specifications:

- FCC 47 CFR Part 15, Subpart C §15.249
 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25
 GHz
- RSS-210, Issue 11, June 2024
 Licence-Exempt Radio Apparatus: Category I Equipment

Lab and test locations

Company name	Nemko USA Inc.
Address	2210 Faraday Ave, Suite 150
City	Carlsbad
State	California
Postal code	92008
Country	USA
Telephone	+1 760 444 3500
Website	www.nemko.com
FCC Site Number	Test Firm Registration Number: 392943 Designation Number: US5058
ISED Test Site	2040B-3

Tested by	James Cunningham, Wireless Supervisor
Reviewed by	Juan M Gonzalez, EMC & Wireless Divisions Manager
Review date	March 20, 2025
Reviewer signature	A Marie Control of the Control of th

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation.

This report must not be used by the client to claim product certification, approval, or endorsement by ANAB, NIST, or any agency of the U.S. Government.

Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko USA Inc.

Table of Contents

Table of C	able of Contents			
Section 1	Report summary	4		
1.1	Applicant	4		
1.2	Manufacturer	4		
1.3	Test specifications	4		
1.4	Test methods	4		
1.5	Exclusions	4		
1.6	Statement of compliance	4		
1.7	Test report revision history	4		
Section 2				
2.1	FCC Part 15 Subpart C, general requirements	5		
2.2	FCC Part 15.249	5		
2.3	ISED RSS-211, Issue 11	5		
2.4	ISED RSS-GEN, Issue 5 + Amendment 1 + Amendment 2	5		
Section 3	Equipment under test (EUT) details	б		
3.1	Sample information	6		
3.2	EUT information	6		
3.3	Technical information	6		
3.4	EUT exercise and monitoring details	7		
Section 4	Engineering considerations	8		
4.1	Modifications incorporated in the EUT	8		
4.2	Technical judgment	8		
4.3	Deviations from laboratory tests procedures	8		
Section 5	Test conditions	9		
5.1	Atmospheric conditions	9		
5.2	Power supply range	9		
Section 6	Measurement uncertainty	10		
6.1	Uncertainty of measurement	10		
Section 7	Test Equipment	11		
Section 8	Testing data	12		
8.1	§15.249(a) & RSS-210 B.10(a) Field strength of emissions	12		
	FCC 15.249(d) and RSS-210 B.10(b) Radiated spurious emissions			
	FCC 15.249(d) and RSS-210 B.10(b) Radiated restricted band-edges			
8.4	RSS-GEN 6.7 Occupied bandwidth (or 99% emission bandwidth)	21		
Section 9	Block diagrams of test set-ups	23		
9.1	Radiated emissions set-up	23		

Section 1 Report summary

1.1 Applicant

Company name	Perimetrics, Inc.
Address	8441 154 th Ave NE, Bldg H-210
City	Redmond
Province/State	WA
Postal/Zip code	98052
Country	United States

1.2 Manufacturer

Company name	Perimetrics, Inc.
Address	8441 154 th Ave NE, Bldg H-210
City	Redmond
Province/State	WA
Postal/Zip code	98052
Country	United States

1.3 Test specifications

FCC 47 CFR Part 15, Subpart C – §15.249	Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz
IC RSS-210 Issue 11, June 2024	Licence-Exempt Radio Apparatus: Category I Equipment

1.4 Test methods

ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.5 Exclusions

None

1.6 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.7 Test report revision history

Table 1.7-1: Test report revision history

Revision #	Details of changes made to test report
392944-5TRFWL	Original report issued
392944-5R1TRFWL	Updated company name and address, added FCC ID and ISED certification number, updated RSS-210 version

Section 2 Summary of test results

2.1 FCC Part 15 Subpart C, general requirements

Part	Test description	Verdict
§15.207(a)	Conducted limits	Not applicable
§15.31(e)	Variation of power source	Pass
§15.203	Antenna requirement	Pass

Notes: EUT is DC powered via internal battery. Transmitter is not operational while charging. The antenna is an integrated PCB trace antenna.

2.2 FCC Part 15.249

Part	Test description	Verdict
§15.249(a)	Field strength of emissions	Pass
§15.249(d)	Spurious emissions	Pass

2.3 ISED RSS-211, Issue 11

Part	Test description	Verdict
B.10(a)	Field strength of fundamental and harmonic emissions	Pass
B.10(b)	Emissions outside of the specified frequency bands	Pass

2.4 ISED RSS-GEN, Issue 5 + Amendment 1 + Amendment 2

Part	Test description	Verdict
6.7	Transmitter occupied bandwidth	Pass
7.3	Receiver radiated emission limits	Not applicable
7.4	Receiver conducted emission limits	Not applicable
8.8	Power Line Conducted Emissions Limits for License-Exempt Radio Apparatus	Not applicable

Note: Per RSS-GEN Section 7, receiver radiated and conducted emissions are not applicable as the EUT is neither a scanning receiver nor operates as a standalone receiver. The EUT is powered by internal battery. Transmission is not possible during battery charging.

Section 3 Equipment under test (EUT) details

3.1 Sample information

Receipt date	July 27, 2020
Nemko sample ID number	NEx: 392944

3.2 EUT information

Product name	Dental Diagnostic Device
Model	INV-1000
Serial number	AE11

3.3 Technical information

Used IC test site(s) reg. number	2040A
RSS number and issue	RSS-211 Issue 11 (June 2024)
Frequency band	2400 – 2483.5 MHz
Operating frequency (MHz)	2473.13 MHz (single channel operation)
Maximum output (dBμV/m	75.44 dBμV/m @ 3 m
@3m)	
Power requirements	Internal 5 V battery
Antenna information	Integrated PCB trace antenna

3.4 EUT exercise and monitoring details

The EUT was configured to continuously transmit a modulated signal at full power.

Table 3.4-1: EUT sub assemblies

Description	Brand name	Model/Part number	Serial number	Rev.
Test sample	Perimetrics	INV-1000	AE11	N/A

Table 3.4-2: EUT interface ports

Description	Qty.
DC power ⁽¹⁾	1

Note: (1) DC power interface was a temporary interface for testing only. Interface is not present in the normal device.

Table 3.4-3: Support equipment

Description	Brand name	Model/Part number	Serial number	Rev.
DC power supply	BK Precision	1697	260G13306	N/A

Table 3.4-4: Inter-connection cables

Cable description	From	То	Length (ft)
DC power	EUT	DC power supply	3

Figure 3.4-1: Test setup

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature	15-30 °C
Relative humidity	20-75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
Radiated spurious emissions	3.78
Powerline conducted emissions	1.38
All antenna port measurements	0.55
Conducted spurious emissions	1.13

Section 7 Test Equipment

Table 6.1-1: Test Equipment List

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Test Receiver	Rohde & Schwarz	ESU40	E1121	1 year	25 Nov 2020
System Controller	Sunol Sciences	SC104V	E1129	NCR	NCR
Bilog Antenna	Schaffner	CBL6111C	1480	1 year	18 Oct 2020
DRG Horn	ETS-Lindgren	3117-PA	E1160	1 year	30 Oct 2020
Horn /Antenna	Sage	SAR-2309-42-S2	E1143	2 years	5 Sept 2020

Notes: NCR – no calibration required

Table 6.1-2: Test Software

Manufacturer of Software	Details
Rohde & Schwarz	EMC 32 V10.60.15

Section 8 Testing data

8.1 §15.249(a) & RSS-210 B.10(a) Field strength of emissions

8.1.1 Definition and limits

Title 47 \rightarrow Chapter I \rightarrow Subchapter A \rightarrow Part 15 \rightarrow Subpart C \rightarrow §15.247(a)(2) RSS-210 \rightarrow §B.10(a)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts / meter)	Field strength of harmonics (millivolts / meter)
902 – 928 MHz	50	500
2400 – 2483.5 MHz	50	500
5275 – 5875 MHz	50	500
24.0 - 24.25 GHZ	250	2500

- (c) Field strength limits are specified at a distance of 3 meters.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) ad (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth,

8.1.2 Test summary

Verdict	Pass		
Test date	September 2, 2020	Temperature	25 °C
Test engineer	James Cunningham	Air pressure	1005 mbar
Test location	3m semi-anechoic chamber	Relative humidity	56 %

8.1.3 Notes

Testing was performed with the EUT transmitting on a fixed channel at full power.

8.1.4 Setup details

EUT setup configuration	Tabletop
Test facility	3m semi anechoic chamber
Measurement method	ANSI C63.10 §6.6

Receiver/spectrum analyzer settings:

, , , ,	
Resolution bandwidth	1 MHz
Video bandwidth	3 MHZ
Detector mode	Peak and Average
Measurement time	5 s

8.1.5 Test data

Full Spectrum

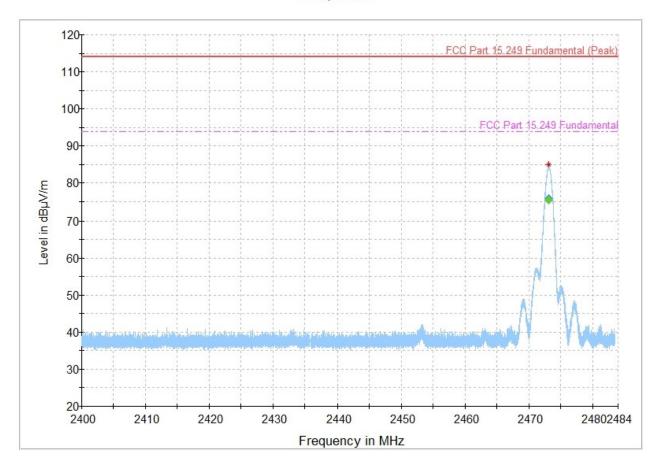


Figure 8.1-1: Field strength of fundamental emission

Table 8.1-1: Field strength of fundamental emission

Frequency (MHz)	MaxPeak (dBμV/m)	CAverage (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
2473.127784		75.44	93.97	18.53	5000.0	1000.000	177.0	Н	311.0	-8.7
2473.127784	75.74		113.97	38.23	5000.0	1000.000	177.0	Н	311.0	-8.7

Notes:

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB) Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to dBµV/m.

8.2 FCC 15.249(d) and RSS-210 B.10(b) Radiated spurious emissions

8.2.1 Definition and limits

Title 47 \rightarrow Chapter I \rightarrow Subchapter A \rightarrow Part 15 \rightarrow Subpart C \rightarrow §15.249(d) RSS-210 \rightarrow §B.10(b)

(d) Emissions radiated outside the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the less attenuation.

Table 8.2-1: FCC §15.209- Radiated emission limits

Frequency,	Field stren	gth of emissions	Measurement distance, m
MHz	μV/m	dBμV/m	
0.009-0.490	2400/F	$67.6 - 20 \times \log_{10}(F)$	300
0.490-1.705	24000/F	$87.6 - 20 \times \log_{10}(F)$	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

8.2.2 Test summary

Verdict	Pass		
Test date	September 2, 2020		22 °C (Sept 2)
	September 10, 2020	Temperature	24 °C (Sept 10)
	September 16, 2020		22 °C (Sept 16)
Test engineer	James Cunningham		1007 mbar (Sept 2)
		Air pressure	1005 mbar (Sept 10)
			1005 mbar (Sept 16)
	3m semi anechoic chamber		62 % (Sept 2)
Test location		Relative humidity	56 % (Sept 10)
			58 % (Sept 16)

8.2.3 Notes

Testing was performed with the EUT transmitting on a fixed channel at full power.

8.2.4 Setup details

EUT setup configuration	Tabletop
Test facility	3m semi anechoic chamber at 3 m measurement distance
Measurement details	Radiated spurious emissions measurement performed as per C63.10 §11.12

Receiver settings for radiated measurements below 1 GHz:

Resolution bandwidth	120 kHz
Video bandwidth	300 kHz
Detector mode	Peak (preview measurements)
	Quasi-Peak (final measurements)
Trace mode	Max Hold
Measurement time	5 s (final measurements)

Receiver settings for radiated measurements above 1 GHz:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Average and peak (final measurements)
Trace mode	Max Hold
Measurement time	5 s (final measurements)

8.2.5 Test data

Full Spectrum

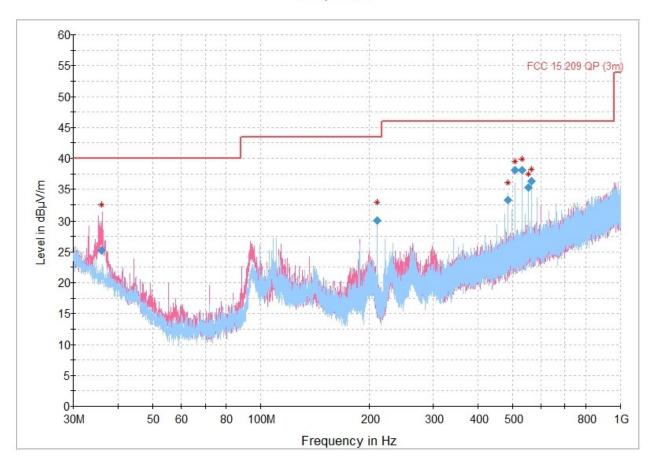


Figure 8.2-1: Radiated emissions, 30 – 1000 MHz

Table 8.2-2: Radiated emissions, 30 – 1000 MHz

Frequency (MHz)	QuasiPeak (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.043333	25.26	40.00	14.74	5000.0	120.000	148.0	V	274.0	23.1
210.116667	30.08	43.50	13.42	5000.0	120.000	156.0	Н	246.0	17.9
486.631333	33.24	46.00	12.76	5000.0	120.000	154.0	Н	154.0	26.4
508.747333	38.03	46.00	7.97	5000.0	120.000	147.0	Н	167.0	26.8
530.855667	38.12	46.00	7.88	5000.0	120.000	163.0	Н	158.0	27.2
552.979333	35.23	46.00	10.77	5000.0	120.000	200.0	Н	152.0	27.9
564.029667	36.37	46.00	9.63	5000.0	120.000	278.0	Н	152.0	28.0

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to $dB\mu V/m$ and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

Full Spectrum

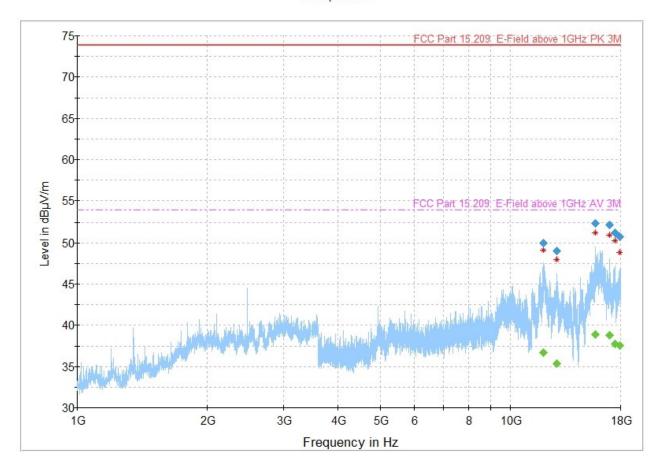


Figure 8.2-2: Radiated emissions, 1 – 18 GHz

Table 8.2-3: Radiated emissions, 1 – 18 GHz

Frequency (MHz)	MaxPeak (dBμV/m)	CAverage (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimut h (deg)	Corr. (dB)
11937.523350		36.65	53.90	17.25	5000.0	1000.000	402.0	V	232.0	7.1
11937.523350	49.92		73.90	23.98	5000.0	1000.000	402.0	V	232.0	7.1
12824.513600		35.39	53.90	18.51	5000.0	1000.000	368.0	V	99.0	7.4
12824.513600	48.97		73.90	24.93	5000.0	1000.000	368.0	V	99.0	7.4
15747.235450	52.39		73.90	21.51	5000.0	1000.000	229.0	Н	357.0	11.9
15747.235450		38.92	53.90	14.98	5000.0	1000.000	229.0	Н	357.0	11.9
17006.675300	52.19		73.90	21.71	5000.0	1000.000	401.0	Н	216.0	11.2
17006.675300		38.78	53.90	15.12	5000.0	1000.000	401.0	Н	216.0	11.2
17448.585300		37.77	53.90	16.13	5000.0	1000.000	100.0	Н	22.0	11.4
17448.585300	51.21		73.90	22.69	5000.0	1000.000	100.0	Н	22.0	11.4
17936.446550		37.53	53.90	16.37	5000.0	1000.000	227.0	Н	112.0	14.0
17936.446550	50.73		73.90	23.17	5000.0	1000.000	227.0	Н	112.0	14.0

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to $dB\mu V/m$ and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

A notch filter was used to reduce the level of the transmitter fundamental emission.

Full Spectrum

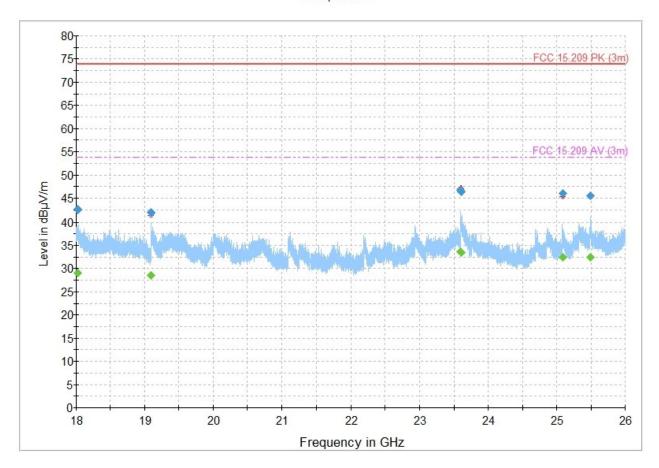


Figure 8.2-3: Radiated emissions, 18 – 26 GHz

Table 8.2-4: Radiated emissions, 18 – 26 GHz

Frequency (MHz)	MaxPeak (dBμV/m)	CAverage (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimut h (deg)	Corr. (dB)
18018.633333		29.02	53.90	24.88	5000.0	1000.000	355.0	V	84.0	13.4
18018.633333	42.65		73.90	31.25	5000.0	1000.000	355.0	V	84.0	13.4
19093.700000	41.88		73.90	32.02	5000.0	1000.000	385.0	V	113.0	13.2
19093.700000		28.49	53.90	25.41	5000.0	1000.000	385.0	V	113.0	13.2
23598.033333	46.69		73.90	27.21	5000.0	1000.000	240.0	Н	34.0	20.5
23598.033333		33.65	53.90	20.25	5000.0	1000.000	240.0	Н	34.0	20.5
23606.033333	46.44		73.90	27.46	5000.0	1000.000	317.0	Н	155.0	20.4
23606.033333		33.38	53.90	20.52	5000.0	1000.000	317.0	Н	155.0	20.4
25087.100000		32.40	53.90	21.50	5000.0	1000.000	250.0	Н	150.0	19.0
25087.100000	45.95		73.90	27.95	5000.0	1000.000	250.0	Н	150.0	19.0
25489.966667	45.51		73.90	28.39	5000.0	1000.000	268.0	V	35.0	19.0
25489.966667		32.41	53.90	21.49	5000.0	1000.000	268.0	V	35.0	19.0

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to $dB\mu V/m$ and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

8.3 FCC 15.249(d) and RSS-210 B.10(b) Radiated restricted band-edges

8.3.1 Definition and limits

Title 47 \rightarrow Chapter I \rightarrow Subchapter A \rightarrow Part 15 \rightarrow Subpart C \rightarrow §15.249(d) RSS-210 \rightarrow §B.10(b)

(d) Emissions radiated outside the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the less attenuation.

Table 8.3-1: FCC §15.209- Radiated emission limits

Frequency,	Field strength of emissions		Measurement distance, m
MHz	μV/m	dBμV/m	
0.009-0.490	2400/F	67.6 - 20 × log ₁₀ (F)	300
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

Table 8.3-2: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9–410	4.5–5.15
0.495–0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72-173.2	3332–3339	31.2-31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

Section 8

Testing data

Nemko

FCC 15.249(d) and RSS-210 B.10(b) Radiated restricted band-edges

8.3.2 Test summary

Verdict	Pass		
Test date	September 2, 2020	Temperature	25 °C
Test engineer	James Cunningham	Air pressure	1005 mbar
Test location	3m semi-anechoic chamber	Relative humidity	56 %

8.3.3 Notes

Testing was performed with the EUT transmitting on a fixed channel at full power.

8.3.4 Setup details

EUT setup configuration	Tabletop
Test facility	3m semi anechoic chamber
Measurement method	ANSI C63.10 §6.6

Receiver/spectrum analyzer settings:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Peak and Average
Measurement time	5 s

8.3.5 Test data

Full Spectrum

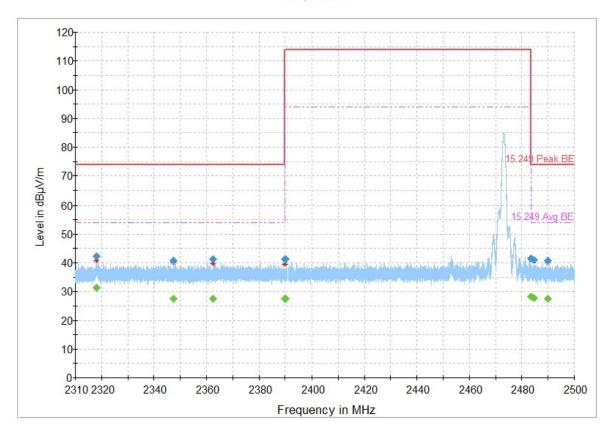


Figure 8.3-1: Radiated emissions, restricted band edges

Table 8.3-2: Radiated emissions, restricted band edges

Frequency (MHz)	MaxPeak (dBμV/m)	CAverage (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
2318.182667		31.36	53.90	22.54	5000.0	1000.000	255.0	V	0.0	-9.3
2318.182667	42.38		73.90	31.52	5000.0	1000.000	255.0	V	0.0	-9.3
2347.449000		27.58	53.90	26.32	5000.0	1000.000	165.0	V	204.0	-9.1
2347.449000	40.67		73.90	33.23	5000.0	1000.000	165.0	V	204.0	-9.1
2362.452667	41.28		73.90	32.62	5000.0	1000.000	366.0	V	143.0	-9.1
2362.452667		27.58	53.90	26.32	5000.0	1000.000	366.0	V	143.0	-9.1
2390.000000	41.15		73.90	32.75	5000.0	1000.000	369.0	Н	167.0	-9.0
2390.000000		27.55	53.90	26.35	5000.0	1000.000	369.0	Н	167.0	-9.0
2483.500000		28.22	53.90	25.68	5000.0	1000.000	359.0	Н	288.0	-8.6
2483.500000	41.44		73.90	32.46	5000.0	1000.000	359.0	Н	288.0	-8.6
2484.762000		27.65	53.90	26.25	5000.0	1000.000	137.0	V	92.0	-8.6
2484.762000	40.90		73.90	33.00	5000.0	1000.000	137.0	V	92.0	-8.6
2490.044000		27.63	53.90	26.27	5000.0	1000.000	325.0	V	93.0	-8.6
2490.044000	40.71		73.90	33.19	5000.0	1000.000	325.0	V	93.0	-8.6

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to dBµV/m and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

Nèmko

RSS-GEN 6.7 Occupied bandwidth (or 99% emission bandwidth)

8.4 RSS-GEN 6.7 Occupied bandwidth (or 99% emission bandwidth)

8.4.1 References

RSS-Gen → §6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

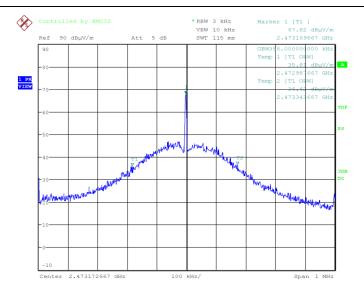
8.4.2 Test summary

Verdict	Pass		
Test date	September 2, 2020	Temperature	25 °C
Test engineer	James Cunningham	Air pressure	1005 mbar
Test location	Wireless bench	Relative humidity	56 %

8.4.3 Notes

Testing was performed with the EUT transmitting on a fixed channel at full power.

8.4.4 Setup details


EUT setup configuration	Tabletop
Test facility	3m semi anechoic chamber
Measurement details	Measurement performed as per C63.10 §6.9.3 using the built-in function of the spectrum analyzer

Receiver/spectrum analyzer settings:

Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Detector mode	Peak	
Trace mode	Max Hold	
Measurement time	Long enough for trace to stabilize	

8.4.5 Test data

Date: 3.SEP.2020 01:30:06

Figure 8.4-1: 99 % bandwidth

Table 8.4-1: 99 % bandwidth

Test Frequency (MHz)	99%Bandwidth (MHz)		
2473.17	0.356		

Section 9 Block diagrams of test set-ups

9.1 Radiated emissions set-up

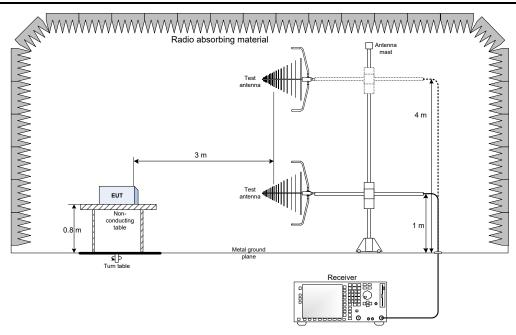


Figure 9.1-1 30 MHz - 1000 MHz Setup

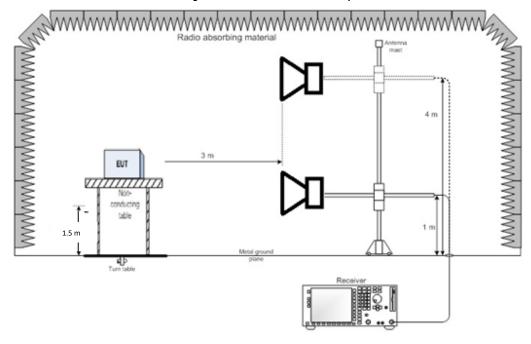


Figure 9.1-2 1 GHz - 26 GHz Setup

Thank you for choosing

