

CFR 47 FCC PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

WisePOS 4G

MODEL NUMBER: WisePOS 4G

FCC ID: 2AB7X-WISEPOS4G

REPORT NUMBER: 4788704908.1-2

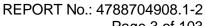
ISSUE DATE: December 18, 2018

Prepared for

BBPOS International Limited
Suite 1903-04, Tower 2, Nina Tower, 8 Yeung Uk Road, Tsuen Wan, NT, Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China


> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Page 2 of 103

Revision History

Rev.	Issue Date	Revisions	Revised By	
VO	11/12/2018	Initial Issue		
V1	12/18/2018	Retest and Updated Dwell Time plots	Jacky Jiang	

Page 3 of 103 Summary of Tost Results

Summary of Test Results					
Clause	Test Items	FCC/IC Rules	Test Results		
1	20dB Bandwidth and 99% Occupied Bandwidth	FCC 15.247 (a) (1)	Pass		
2	Conducted Output Power	FCC 15.247 (b) (1)	Pass		
3	Carrier Hopping Channel Separation	FCC 15.247 (a) (1)	Pass		
4	Number of Hopping Frequency	15.247 (a) (1) III	Pass		
5	Time of Occupancy (Dwell Time)	15.247 (a) (1) III	Pass		
6	Conducted Bandedge	FCC 15.247 (d)	Pass		
7	Radiated Bandedge and Spurious	FCC 15.247 (d) FCC 15.209 FCC 15.205	Pass		
8	Conducted Emission Test For AC Power Port	FCC 15.207	Pass		
9	Antenna Requirement	FCC 15.203	Pass		

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	6
2.	TES	ST METHODOLOGY	7
3.	FA	CILITIES AND ACCREDITATION	7
4.	CA	LIBRATION AND UNCERTAINTY	8
	4.1.	MEASURING INSTRUMENT CALIBRATION	8
	4.2.	MEASUREMENT UNCERTAINTY	8
5.	EQ	UIPMENT UNDER TEST	9
	5.1.	DESCRIPTION OF EUT	9
	5.2.	MAXIMUM OUTPUT POWER	9
	5.3.	PACKET TYPE CONFIGURATION	9
	5.4.	CHANNEL LIST	10
	5.5.	TEST CHANNEL CONFIGURATION	10
	5.6.	THE WORSE CASE POWER SETTING PARAMETER	10
	5.7.	DESCRIPTION OF AVAILABLE ANTENNAS	11
	5.8.	WORST-CASE CONFIGURATIONS	11
	5.9.	TEST ENVIRONMENT	11
	5.10.	DESCRIPTION OF TEST SETUP	12
	5.11.	MEASURING INSTRUMENT AND SOFTWARE USED	13
6.	AN	TENNA PORT TEST RESULTS	14
	6.1.	ON TIME AND DUTY CYCLE	14
	6.2.	20 dB OCCUPIED BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
	6.2 6.2		
	6.3.	CONDUCTED OUTPUT POWER	
	6.3	1. GFSK MODE	26
		2. 8DPSK MODE	
	<i>6.4.</i> 6.4	CARRIER HOPPING CHANNEL SEPARATION	
	_	2. 8DPSK MODE	
		NUMBER OF HOPPING FREQUENCY	
		1. GFSK MODE	
	<i>6.6.</i> 6.6	,	
	6.6		
	6.7.	CONDUCTED SPURIOUS EMISSION	39

REPORT No.: 4788704908.1-2 Page 5 of 103

	Page 5 of 103
6.7.1. GFSK MODE	
6.7.2. 8DPSK MODE	47
7. RADIATED TEST RESULTS	5454
7.1. LIMITS AND PROCEDU	IRE54
7.2. RESTRICTED BANDED	GE59
	64
7.3 SPURIOUS EMISSIONS	S (1~3GHz)68
	74
7 A SPLIPIOLIS EMISSIONS	S (3~18GHz)80
	S 18G ~ 26GHz92
	92
	S 30M ~ 1 GHz94 94
	S BELOW 30M96
7.7.1. GFSK MODE	96
8. AC POWER LINE CONDUC	TED EMISSIONS100
8.1.1. GFSK MODE	101
O. I. I. OI OI WODE	101
9. ANTENNA REQUIREMENTS	5103

Page 6 of 103

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: BBPOS International Limited

Address: Suite 1903-04, Tower 2, Nina Tower, 8 Yeung Uk Road, Tsuen

Wan, NT, Hong Kong

Manufacturer Information

Company Name: BBPOS International Limited

Address: Suite 1903-04, Tower 2, Nina Tower, 8 Yeung Uk Road, Tsuen

Wan, NT, Hong Kong

EUT Description

EUT Name: WisePOS 4G
Model: WisePOS 4G
Brand Name: BBPOS
Sample Status: Normal
Sample ID: 1865555

Sample Received Date: October 15, 2018

Date of Tested: October 26, 2018 ~ November 06, 2018

December 18,2018

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
CFR 47 FCC PART 15 SUBPART C	PASS			

Prepared By:	Checked By:	
Jacky Jang	Shemylier	

Jacky Jiang Engineer Project Associate

Sephenbuo

Shawn Wen Laboratory Leader

Approved By:

Stephen Guo

Laboratory Manager

Page 7 of 103

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB414788 D01 Radiated Test Site v01, ANSI C63.10-2013, CFR 47 FCC Part 2, CFR 47 FCC Part 15, RSS-GEN Issue 5, and RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification
	rules
Accreditation	IC(Company No.: 21320)
Certificate	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OATS.

Page 8 of 103

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Uncertainty	
3.62dB	
2.2dB	
4.00dB	
5.78dB (1GHz-18Gz)	
5.23dB (18GHz-26Gz)	

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 103

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment	WisePOS 4G			
Model Name	WisePOS 4G			
	Operation Frequency 2402 MH		z ~ 2480 MHz	
Product	Modulation Type		Data Rate	
Description	GFSK		1Mbps	
(Bluetooth)	∏/4-DQPSK		2Mbps	
	8DPSK		3Mbps	
Bluetooth Version	BT4.0+V2.1+EDR			
Rated Input	5V/1A			
Battery	2450mAh/ 9.31Wh 3.8V			

5.2. MAXIMUM OUTPUT POWER

Bluetooth Mode	Frequency (MHz)	Channel Number	Max Output Power (dBm)	EIRP (dBm)
GFSK	2402-2480	0-78[79]	3.898	2.298
8DPSK	2402-2480	0-78[79]	3.514	1.914

5.3. PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting(Packet Length)		
	DH1	27		
GFSK	DH3	183		
	DH5	339		
	2-DH1	54		
∏/4-DQPSK	2-DH3	367		
	2-DH5	679		
	3-DH1	83		
8DPSK	3-DH3	552		
	3-DH5	1021		

Page 10 of 103

5.4. CHANNEL LIST

	U.A. OHAMILE LIOT						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	\	\

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel Number	Test Channel	
GFSK	CH 00, CH 39, CH 78	Low, Middle, High	
8DPSK	CH 00, CH 39, CH 78	Low, Middle, High	

5.6. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Software Engineering Mode						
Modulation Type	Transmit Antenna	Test Channel				
Modulation Type	Number	CH 00	CH 39	CH 78		
GFSK	1	default	default	default		
8DPSK 1 default default default						

Page 11 of 103

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2402-2480	PIFA	-1.6

Test Mode	Transmit and Receive Mode	Description	
GFSK	1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.	
8DPSK	1TX, 1RX	Chain 1 can be used as transmitting/receiving antenna.	

5.8. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

5.9. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests				
Relative Humidity	55 ~ 65%				
Atmospheric Pressure:	1025Pa				
Temperature	TN 23 ~ 28 °C				
	VL	N/A			
Voltage :	VN	DC 3.8V			
	VH	N/A			

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage.

VH= Upper Extreme Test Voltage

TN= Normal Temperature

Page 12 of 103

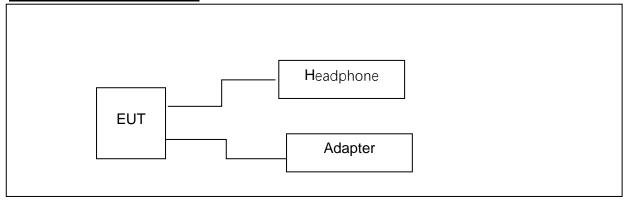
5.10. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	High Pass Filter	Wi	WHKX10-2700-3000- 18000-40SS	23
2	Band Reject Filter	Wainwright	WRCJV8-2350-2400- 2483.5-2533.5-40SS	4

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	N/A	N/A	0.5	N/A


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	Headphone	SONY	MDR-ZX310	/
	Adapter	XIAOMI	MDY-08-EF	5V/1A

TEST SETUP

The EUT can work in an engineer mode through command.

SETUP DIAGRAM FOR TESTS

Page 13 of 103

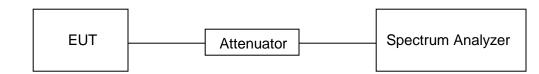
5.11. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions Instrument Used Equipment Manufacturer Model No. Serial No. Last C ☑ EMI Test Receiver R&S ESR3 101961 Dec.12, ☐ Two-Line V-Network R&S ENV216 101983 Dec.12,	,2017 Dec.11,2018						
Used Equipment Manufacturer Model No. Serial No. Last C ☑ EMI Test Receiver R&S ESR3 101961 Dec.12, ☐ Two-Line V- R&S ENIV216 101983 Dec.12	,2017 Dec.11,2018						
 ✓ EMI Test Receiver ✓ Two-Line V- ✓ R&S ✓ ESR3 ✓ Two-Line V- ✓ ENIV216 ✓ 101983 ✓ Dec 12 	,2017 Dec.11,2018						
Two-Line V- P&S ENIV216 101983 Dec 12	,						
V $ V $,2017 Dec.11,2018						
Artificial Mains Networks Schwarzbeck NSLK 8126 8126465 Dec.12,	,2017 Dec.11,2018						
Software							
Used Description Manufacturer Name	e Version						
☑ Test Software for Conducted disturbance Farad EZ-EM	MC Ver. UL-3A1						
Radiated Emissions							
Instrument							
Used Equipment Manufacturer Model No. Serial No. Last C	Cal. Next Cal.						
☑ MXE EMI Receiver KESIGHT N9038A MY56400036 Dec.12,	,2017 Dec.11,2018						
Hybrid Log Periodic Antenna TDK HLP-3003C 130960 Jan.09,	, 2016 Jan.09, 2019						
✓ Preamplifier HP 8447D 2944A09099 Dec.12,	,2017 Dec.11,2018						
EMI Measurement R&S ESR26 101377 Dec.12,	2,2017 Dec.11,2018						
✓ Horn Antenna TDK HRN-0118 130939 Jan. 0							
High Gain Horn Antenna Schwarzbeck BBHA-9170 691 Jan.06,	, 2016 Jan.06, 2019						
✓ Preamplifier TDK PA-02-0118 TRS-305-00066 Dec.12,	,2017 Dec.11,2018						
✓ Preamplifier TDK PA-02-2 TRS-307-00003 Dec.12,	,2017 Dec.11,2018						
Loop antenna Schwarzbeck 1519B 00008 Mar. 26	6, Mar. 25, 2019						
Software							
Used Description Manufacturer Name	Version						
Test Software for Radiated Gisturbance Farad EZ-EMC	Ver. UL-3A1						
Other instruments							
Used Equipment Manufacturer Model No. Last C	Cal. Next Cal.						
☑ Spectrum Analyzer Keysight N9030A MY55410512 Dec.12,	,2017 Dec.11,2018						
☑ Spectrum Analyzer Keysight N9030A MY55410512 Dec.11,	,2018 Dec.10,2019						
Power Meter Keysight N9031A MY55416024 Dec.12,	,2017 Dec.11,2018						
Power Sensor Keysight N9323A MY55440013 Dec.12,	,2017 Dec.11,2018						

Page 14 of 103

6. ANTENNA PORT TEST RESULTS

ON TIME AND DUTY CYCLE 6.1.


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

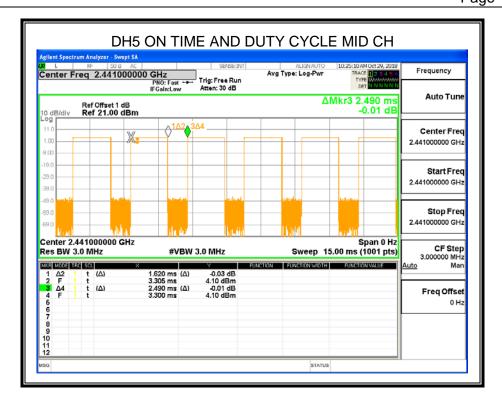
TEST ENVIRONMENT

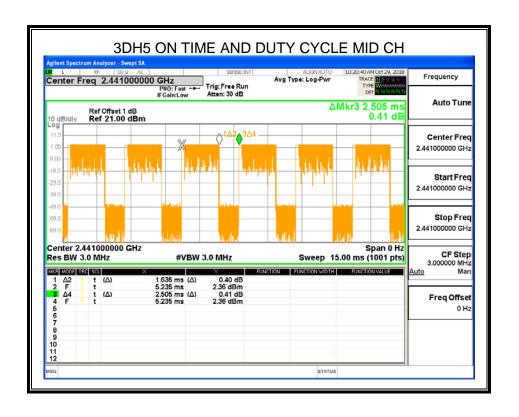
Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
GFSK	1.620	2.490	0.6506	65.06	1.87	0.62	1
8DPSK	1.635	2.505	0.6527	65.27	1.85	0.61	1

Note:


Duty Cycle Correction Factor=10log (1/x).


Where: x is Duty Cycle (Linear)

Where: T is On Time

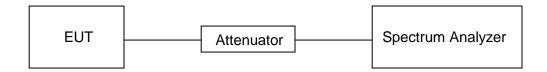
If that calculated VBW is not available on the analyzer then the next higher value should be used.

Page 16 of 103

6.2. 20 dB OCCUPIED BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a)	20dB Occupied Bandwidth	N/A	2400-2483.5	
ISED RSS-Gen Clause 6.6	99% Occupied Bandwidth	N/A	2400-2483.5	


TEST PROCEDURE

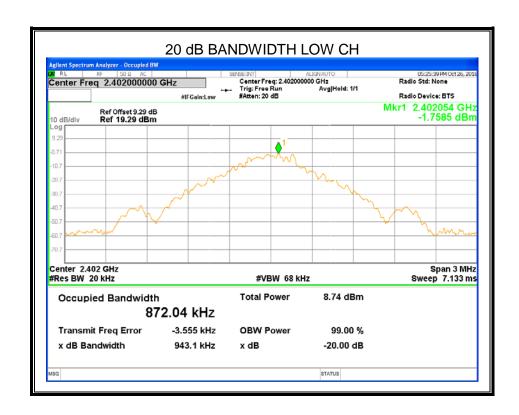
Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
	For 20dB Occupied Bandwidth: 1% of the 20 dB bandwidth For 99% Occupied Bandwidth: 1% to 5% of the occupied bandwidth
VBW	For 20dB Occupied Bandwidth: 3 x RBW For 99% Occupied Bandwidth: approximately 3 x RBW
Span	approximately 2 to 3 times the 20 dB bandwidth
Trace	Max hold
Sweep	Auto couple

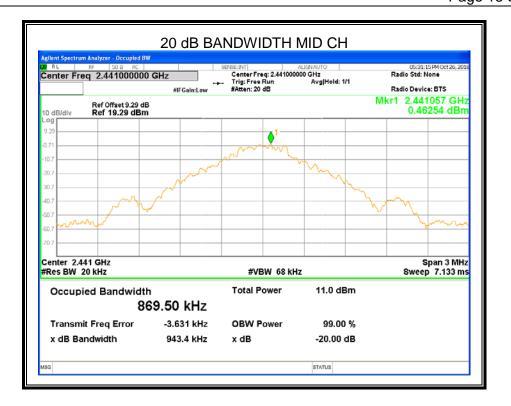
Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB and 99% relative to the maximum level measured in the fundamental emission.

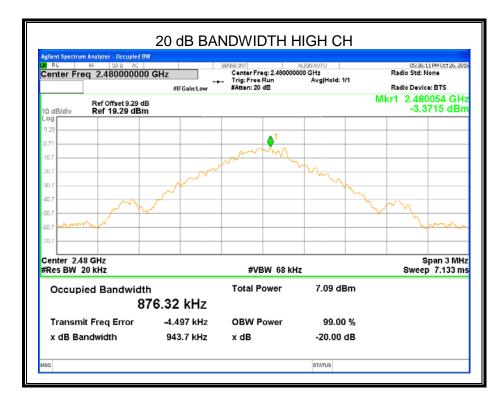
TEST SETUP

TEST ENVIRONMENT

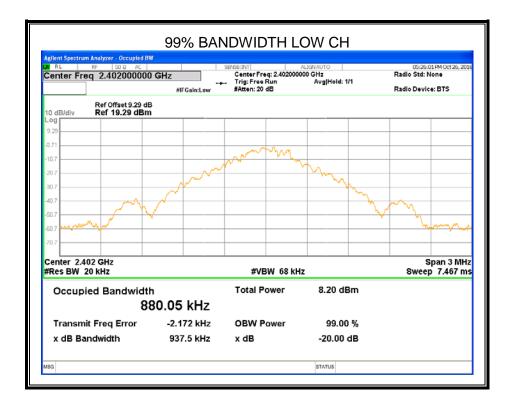

Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

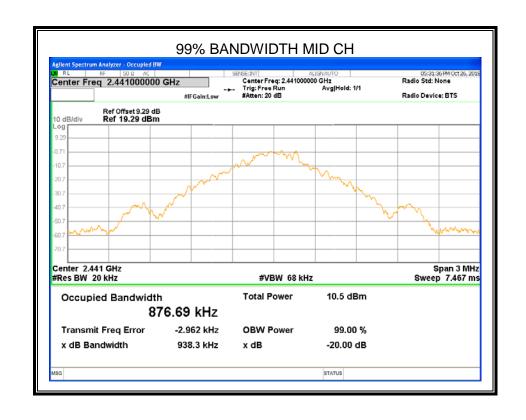
RESULTS

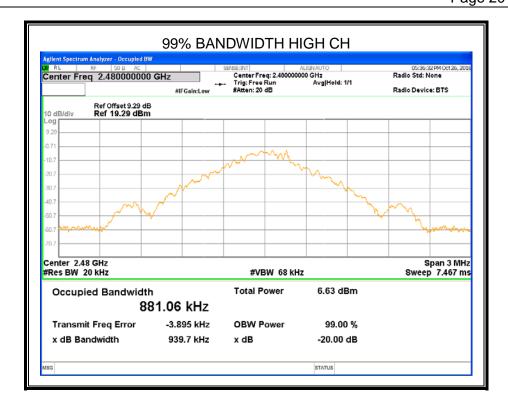

6.2.1. GFSK MODE

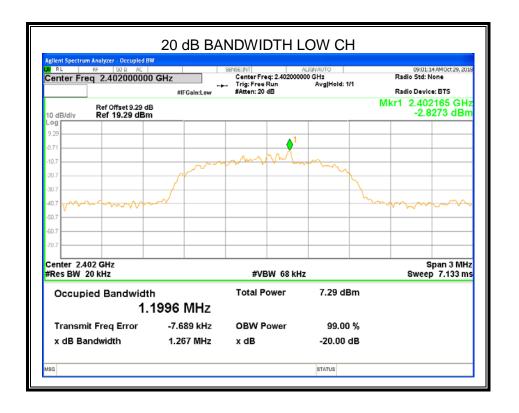

Channel	Frequency (MHz)	20dB Occupied bandwidth (MHz)	99% Occupied bandwidth (MHz)	Result
Low	2402	0.943	0.880	PASS
Middle	2441	0.943	0.877	PASS
High	2480	0.944	0.881	PASS

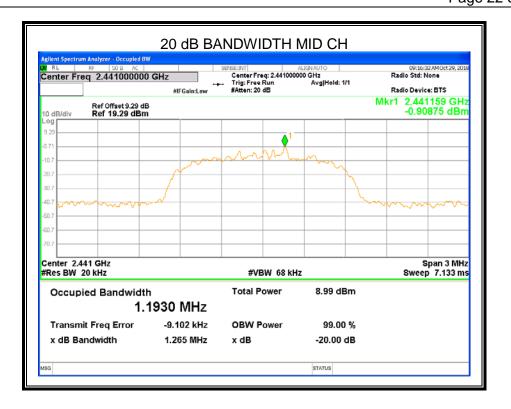
Test Graph





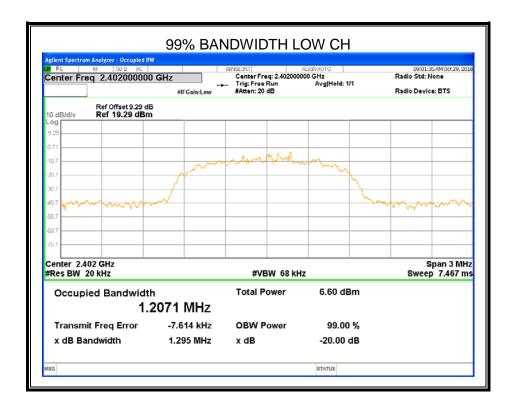


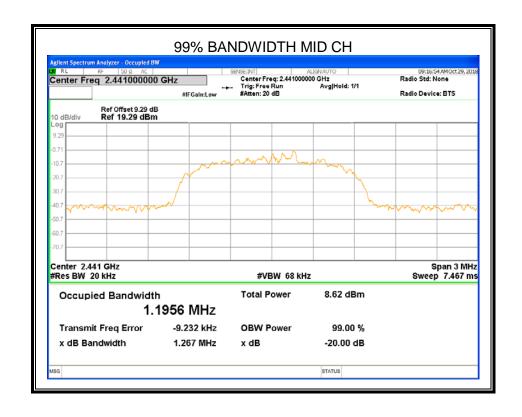


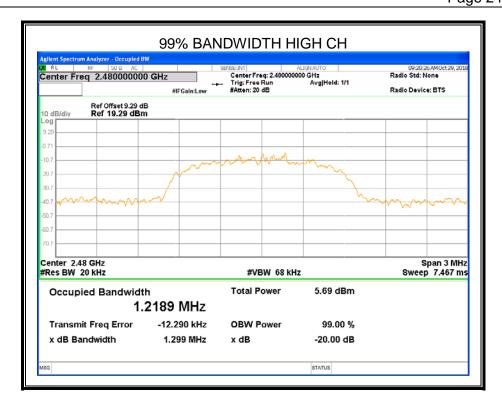

6.2.2. 8DPSK MODE

Channel	Frequency (MHz)	20dB Occupied bandwidth (MHz)	99% Occupied bandwidth (MHz)	Result
Low	2402	1.267	1.207	PASS
Middle	2441	1.265	1.196	PASS
High	2480	1.268	1.219	PASS

Test Graph





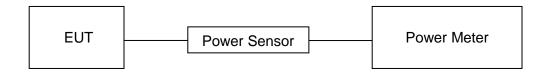


Page 25 of 103

6.3. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) , Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247 (b) (1)	Peak Conducted Output Power	1 watt or 30dBm	2400-2483.5	


TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power each channel.

TEST SETUP

Page 26 of 103

TEST ENVIRONMENT

Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

RESULTS

6.3.1. GFSK MODE

Channel	Frequency	Maximum Conducted Output Power(PK)	Result	
	(MHz)	(dBm)		
Low	2402	1.659	Pass	
Middle	2441	3.898	Pass	
High	2480	0.024	Pass	

6.3.2. 8DPSK MODE

Channel	Frequency	Maximum Conducted Output Power(PK)	Result	
	(MHz)	(dBm)		
Low	2402	1.597	Pass	
Middle	2441	3.514	Pass	
High	2480	0.379	Pass	

Page 27 of 103

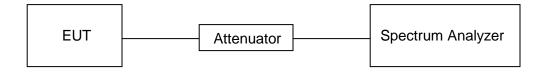
6.4. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

CFR 47 FCC Part15 (15.247) , Subpart C			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC 15.247 (a) (1)	Carrier Hopping Channel Separation	25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.	2400-2483.5

TEST PROCEDURE

Connect the UUT to the spectrum Analyzer and use the following settings:

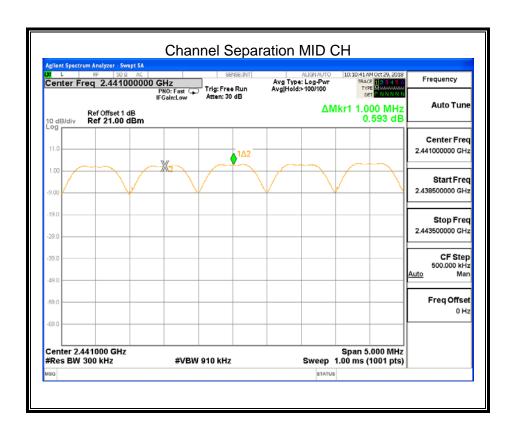

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
RBW	Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

A plot of the data shall be included in the test report.

TEST SETUP

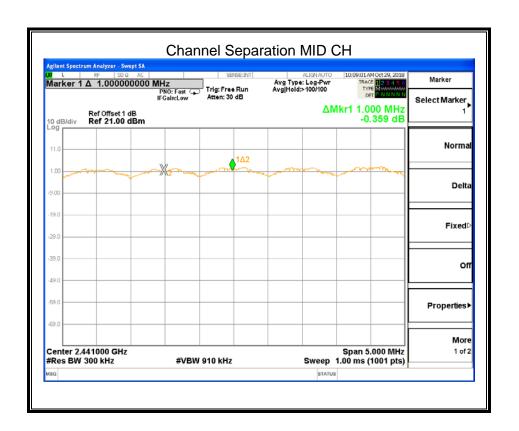

TEST ENVIRONMENT

Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

RESULTS

6.4.1. GFSK MODE

Channel	Carrier Hopping Channel Separation (MHz)	Limit (MHz)	Result
Middle	1.0	≥ two-thirds of the 20 dB Bandwidth Of The Hopping Channel	PASS



Note: For 20 dB Bandwidth of The Hopping Channel, please refer to clause 6.2.1.

6.4.2. 8DPSK MODE

Channel	Carrier Hopping Channel Separation (MHz)	Limit (MHz)	Result
Middle	1.0	≥ two-thirds of the 20 dB Bandwidth Of The Hopping Channel	PASS

Note: For 20 dB Bandwidth of The Hopping Channel, please refer to clause 6.2.2.

Page 30 of 103

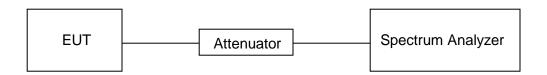
6.5. NUMBER OF HOPPING FREQUENCY

LIMITS

CFR 47 FCC Part15 (15.247) , Subpart C			
Section	Test Item	Limit	
CFR 47 15.247 (a) (1) III	Number of Hopping Frequency	at least 15 hopping channels	

TEST PROCEDURE

Connect the EUT to the spectrum Analyzer and use the following settings:

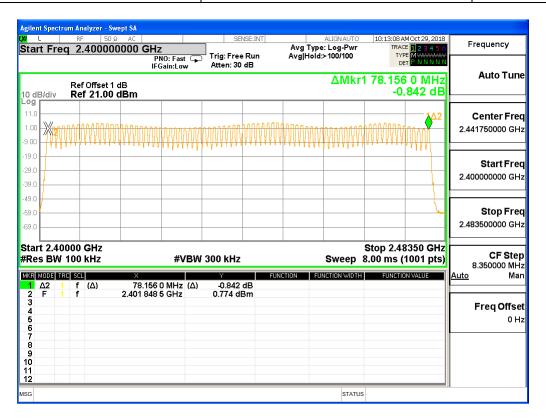

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer.

Count the quantity of peaks to get the number of hopping channels.

FHSS Mode: 79 Channels observed. AFHSS Mode: 20 Channels declared.

TEST SETUP


TEST ENVIRONMENT

Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

6.5.1. GFSK MODE

Hopping numbers	Limit	Results	
79	>15	Pass	

8DPSK MODE

Hopping numbers	Limit	Results
79	>15	Pass

Page 33 of 103

6.6. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

CFR 47 FCC Part15 (15.247) , Subpart C				
Section Test Item Limit				
CFR 47 15.247 (a) (1) III	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.		

TEST PROCEDURE

Connect the UUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥3*RBW
Span	zero span
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.

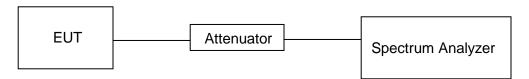
A Period Time = (channel number)*0.4

For FHSS Mode (79 Channel):

DH1 Time Slot: Reading * (1600/2)*31.6/(channel number)

DH3 Time Slot: Reading * (1600/4)*31.6/(channel number)

DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)


For AFHSS Mode (20 Channel):

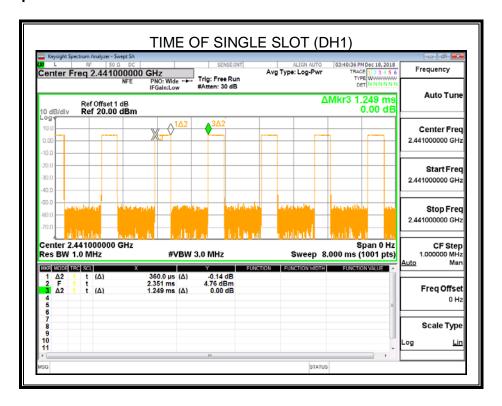
DH1 Time Slot: Reading * (1600/2)*8/(channel number) DH3 Time Slot: Reading * (1600/4)*8/(channel number)

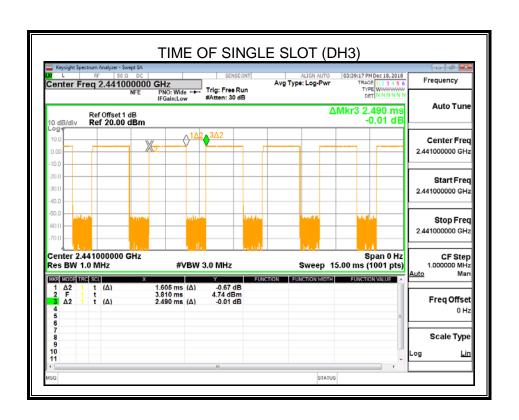
DH5 Time Slot: Reading * (1600/6)*8/(channel number)

TEST SETUP

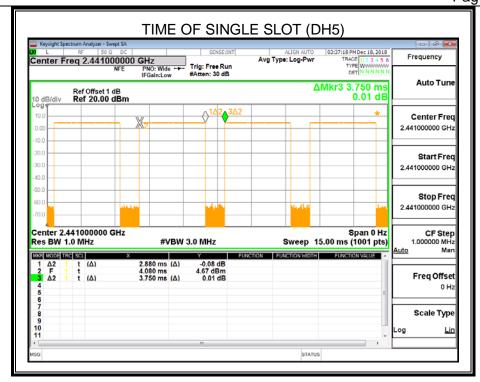
TEST ENVIRONMENT

Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

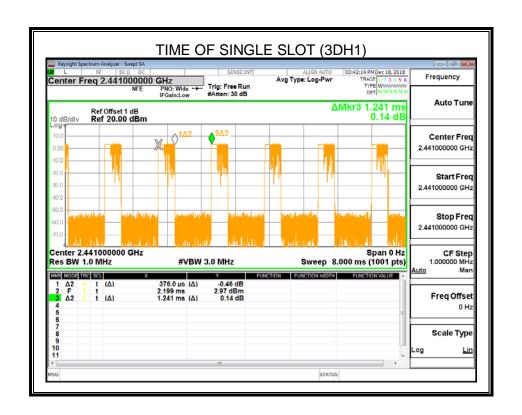

RESULTS

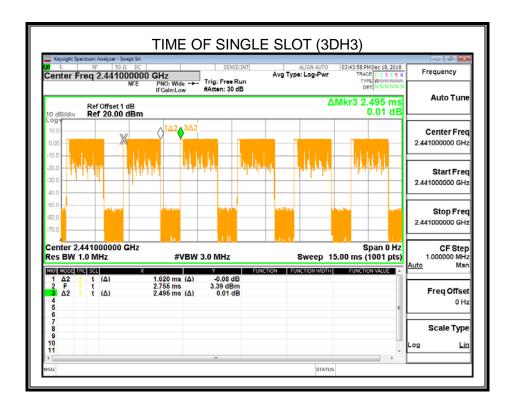

6.6.1. GFSK MODE

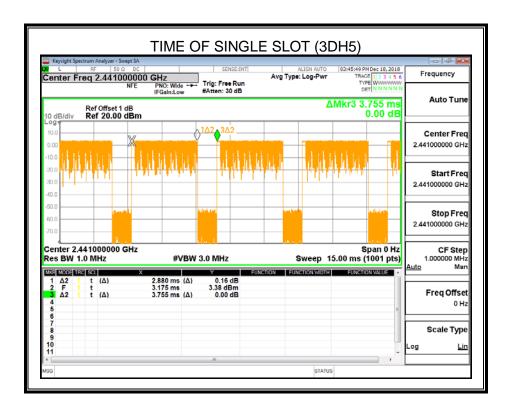
FHSS Mode					
Packet	Channel	Burst Width	Dwell Time	Duty Cycle	Results
racket	Chamilei	[ms/hop/ch]	[ms]	[%]	Nesuits
DH1	MCH	0.360	0.115	28.8	PASS
DH3	MCH	1.606	0.257	64.5	PASS
DH5	MCH	2.880	0.372	76.8	PASS
AFHSS Mode					
DH1	MCH	0.360	0.115	28.8	PASS
DH3	MCH	1.606	0.257	64.5	PASS
DH5	MCH	2.880	0.372	76.8	PASS

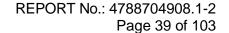


Test Graph




6.6.2. 8DPSK MODE


FHSS Mode								
Packet	Channel	Burst Width [ms/hop/ch]	Dwell Time [ms]	Duty Cycle [%]	Results			
3DH1	MCH	0.375	0.120	30.0	PASS			
3DH3	MCH	1.620	0.259	64.9	PASS			
3DH5	MCH	2.880	0.372	76.7	PASS			
	AFHSS Mode							
3DH1	MCH	0.375	0.120	30.0	PASS			
3DH3	MCH	1.620	0.259	64.9	PASS			
3DH5	MCH	2.880	0.372	76.7	PASS			


Test Graph

6.7. CONDUCTED SPURIOUS EMISSION

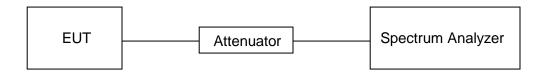
LIMITS

CFR 47 FCC Part15 (15.247), Subpart C					
Section Test Item Limit					
CFR 47 FCC §15.247 (d)	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power			

TEST PROCEDURE

Please refer to the ANSI C63.10 section 6.10.

For Bandedge use the following settings:

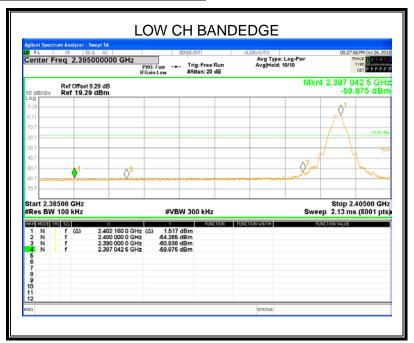

Detector	Peak
RBW	100kHz
VBW	300kHz
Span	wide enough to fully capture the emission being measured
Trace	Max hold
Sweep time	Auto couple.

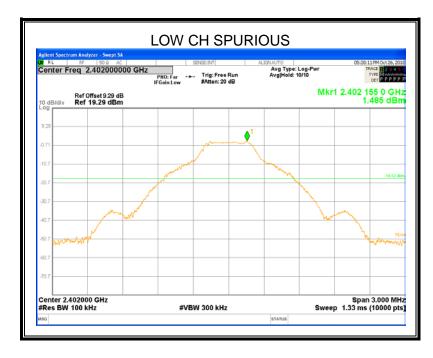
For Spurious Emission use the following settings:

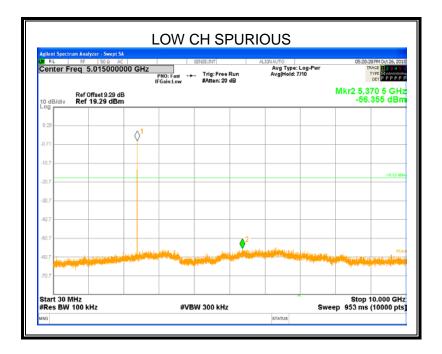
Detector	Peak
RBW	100kHz
VBW	300kHz
Span	wide enough to fully capture the emission being measured
Trace	Max hold
Sweep time	Auto couple.

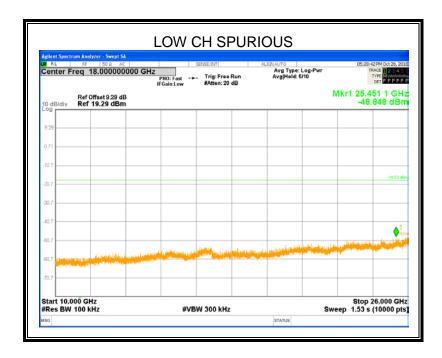
Use the peak marker function to determine the maximum amplitude level.

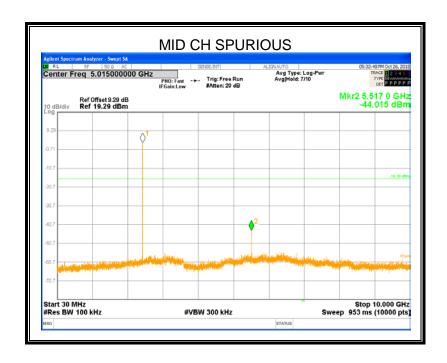
TEST SETUP


TEST ENVIRONMENT

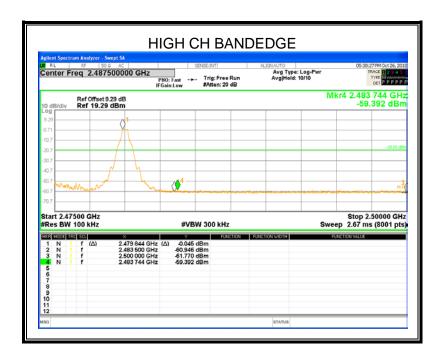

Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

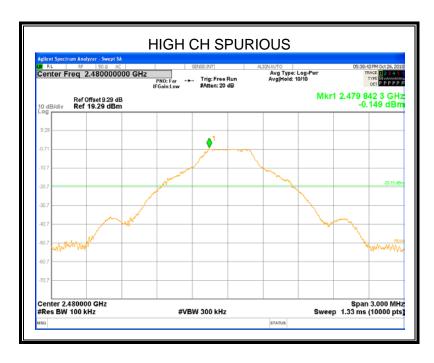

6.7.1. GFSK MODE


SPURIOUS EMISSIONS, LOW CHANNEL

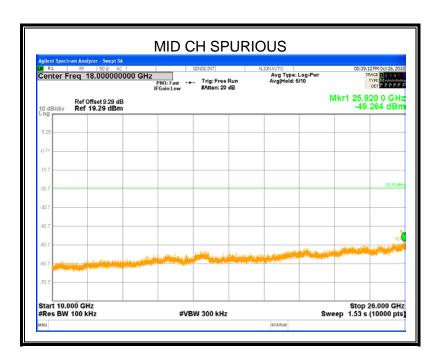


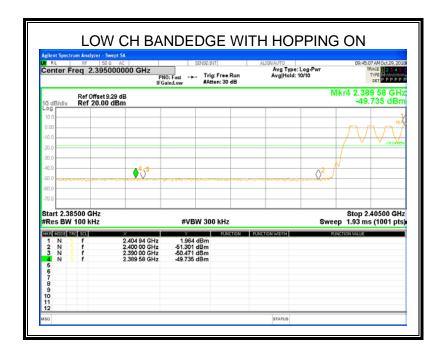
SPURIOUS EMISSIONS, MID CHANNEL

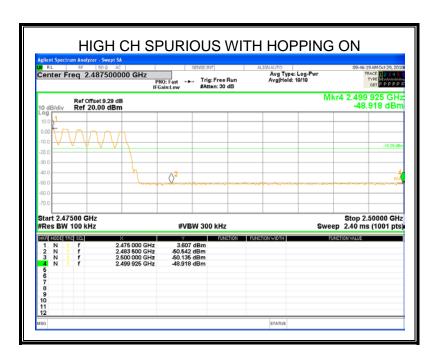




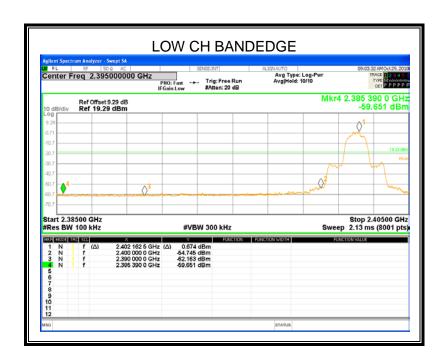
STOP | STOP |

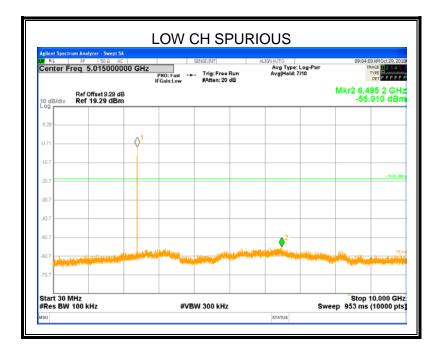

SPURIOUS EMISSIONS, HIGH CHANNEL

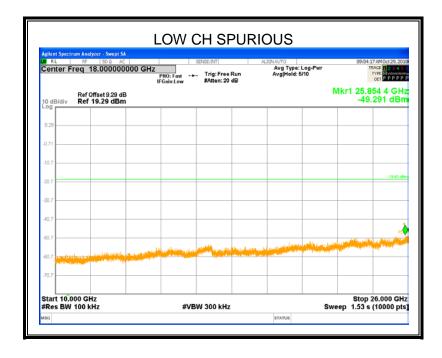


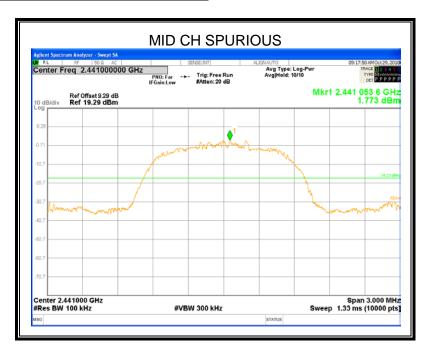


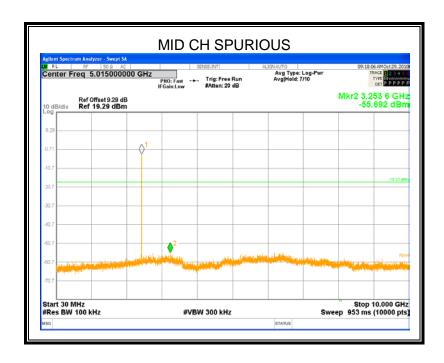
SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON



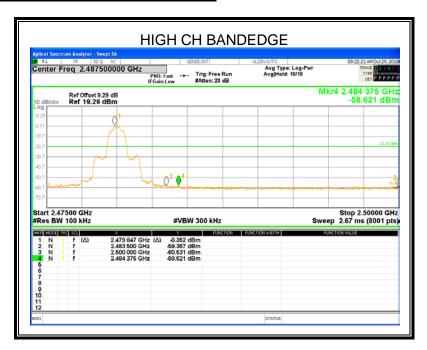

6.7.2. 8DPSK MODE


SPURIOUS EMISSIONS, LOW CHANNEL



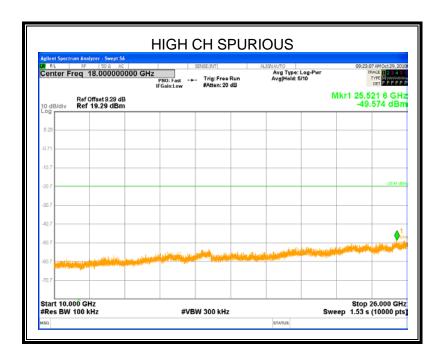


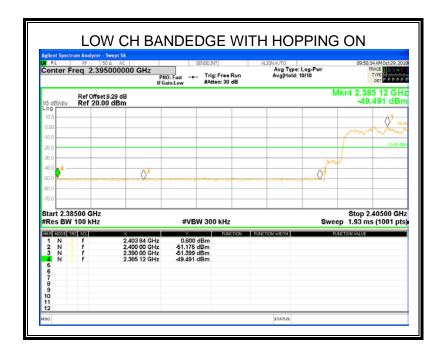
SPURIOUS EMISSIONS, MID CHANNEL

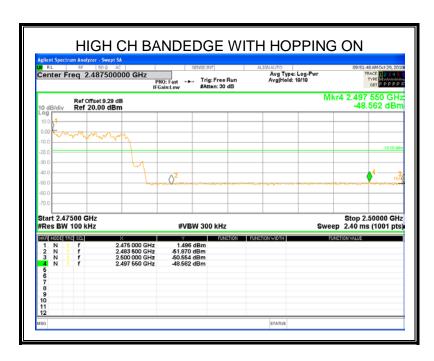


| MID CH SPURIOUS | Agilimi Spectrum Analyzer - Swept SA | SUSCINT | ALIXANJO | O9:18:20 AMO(129, 20:10) | O9:18:20 AMO(129, 20:1

SPURIOUS EMISSIONS, HIGH CHANNEL







SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

REPORT No.: 4788704908.1-2

Page 54 of 103

7. RADIATED TEST RESULTS

7.1. LIMITS AND PROCEDURE

LIMITS

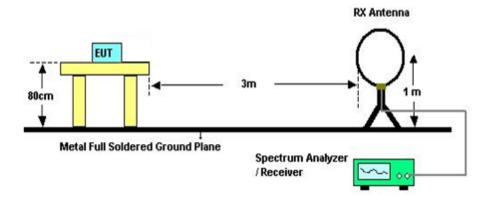
Please refer to CFR 47 FCC §15.205 and §15.209

Radiation Disturbance Test Limit for FCC (Class B)(9kHz-1GHz)

	=					
Frequency	Field Strength	Measurement Distance				
(MHz)	(microvolts/meter)	(meters)				
0.009~0.490	2400/F(kHz)	300				
0.490~1.705	24000/F(kHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
960~1000	500	3				

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

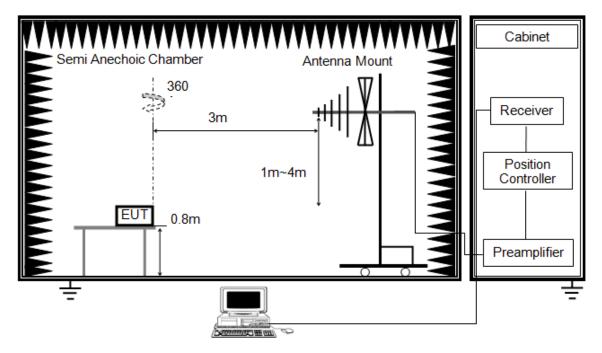
(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.


Radiation Disturbance Test Limit for FCC (Above 1G)

Fraguanay (MHz)	dB(uV/m) (at 3 meters)		
Frequency (MHz)	Peak	Average	
Above 1000	74	54	

About Restricted bands of operation please refer to RSS-Gen section 8.10 and FCC §15.205 (a)

TEST SETUP AND PROCEDURE Below 30MHz

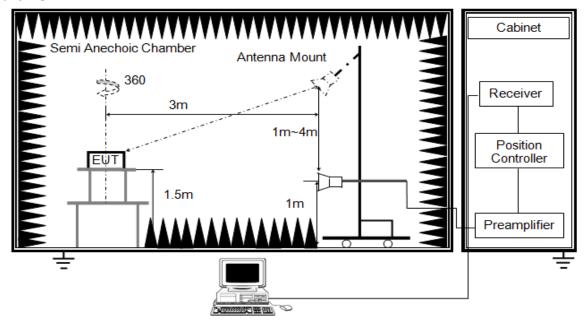


The setting of the spectrum Analyzer

RBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9kHz (From 0.15MHz to 30MHz)
Sweep	Auto
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80cm meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Below 1G and above 30MHz

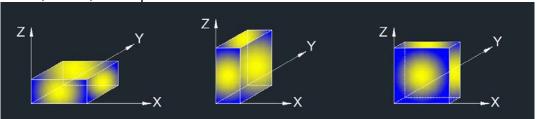


The setting of the spectrum Analyzer

RBW	120K
VBW	300K
Sweep	Auto
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1G



RBW	1M
IVBW	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector. For the Duty Cycle please refer to clause 6.1.ON TIME AND DUTY CYCLE.

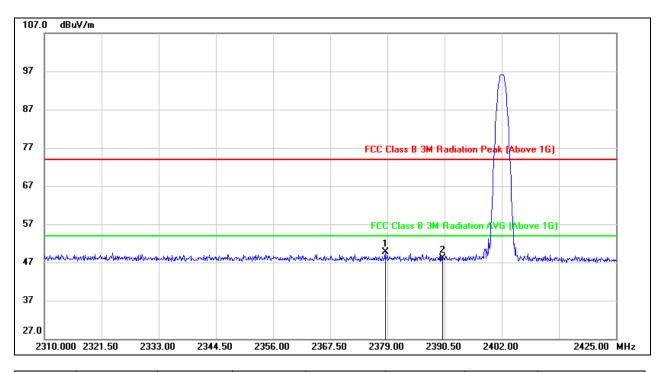
X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (Z axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST ENVIRONMENT

Temperature	24.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8V

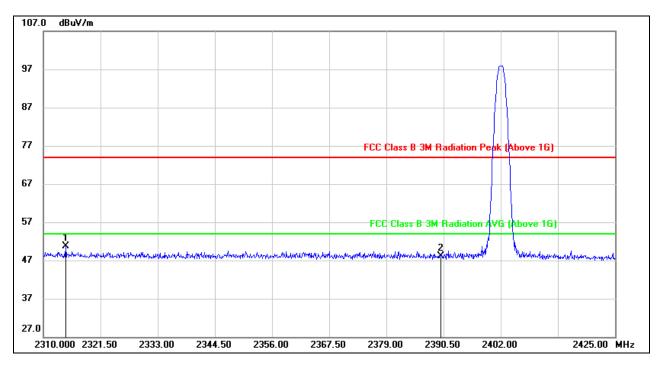

REPORT No.: 4788704908.1-2 Page 59 of 103

7.2. RESTRICTED BANDEDGE

7.2.1. GFSK MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

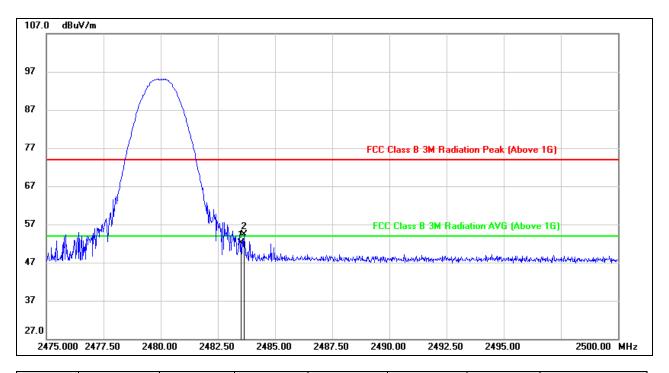
PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2378.540	16.46	33.22	49.68	74.00	-24.32	peak
2	2390.000	14.90	33.14	48.04	74.00	-25.96	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

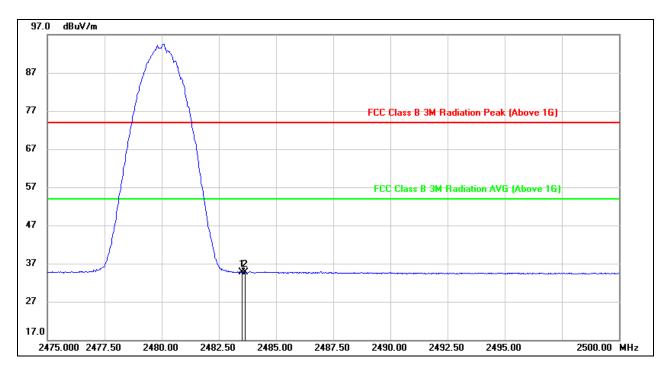
PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2314.485	16.79	33.85	50.64	74.00	-23.36	peak
2	2390.000	14.91	33.24	48.15	74.00	-25.85	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

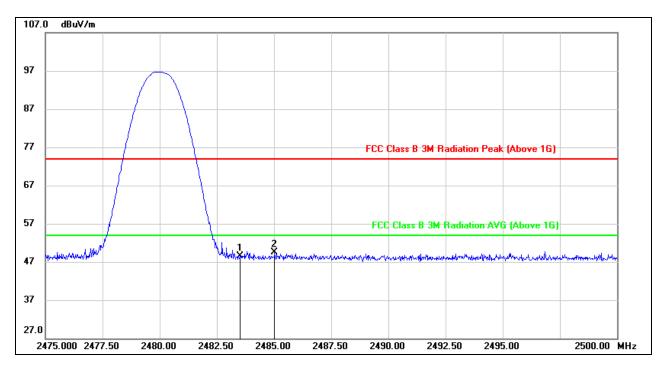
PEAK



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	19.35	32.78	52.13	74.00	-21.87	peak
2	2483.650	21.45	32.78	54.23	74.00	-19.77	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>AVG</u>

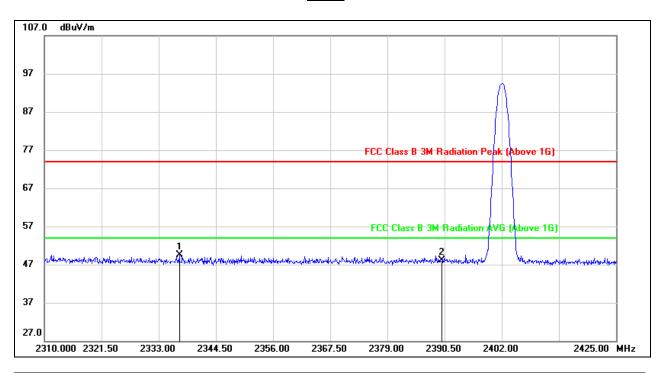

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	1.92	32.78	34.70	54.00	-19.30	AVG
2	2483.650	1.99	32.78	34.77	54.00	-19.23	AVG

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton where: ton is transmit duration.
- 4. For transmit duration, please refer to clause 6.1.
- 5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

PEAK

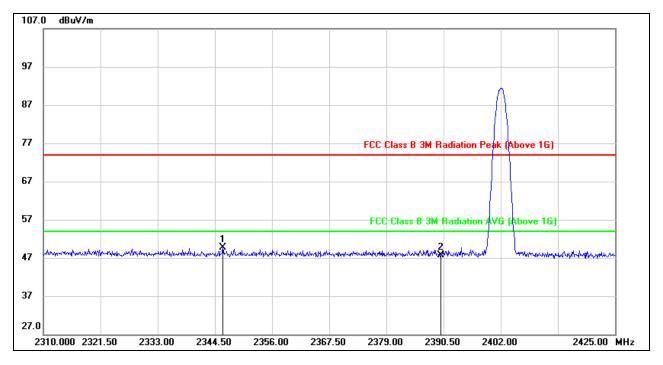
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.66	32.88	48.54	74.00	-25.46	peak
2	2485.025	16.60	32.88	49.48	74.00	-24.52	peak


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7.2.2. 8DPSK MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

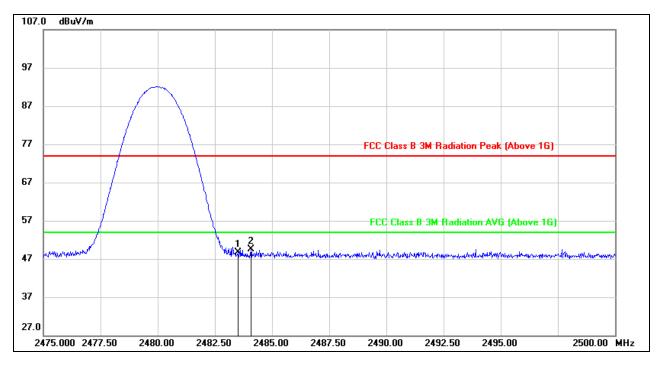
PEAK


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2337.140	16.00	33.52	49.52	74.00	-24.48	peak
2	2390.000	14.91	33.14	48.05	74.00	-25.95	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

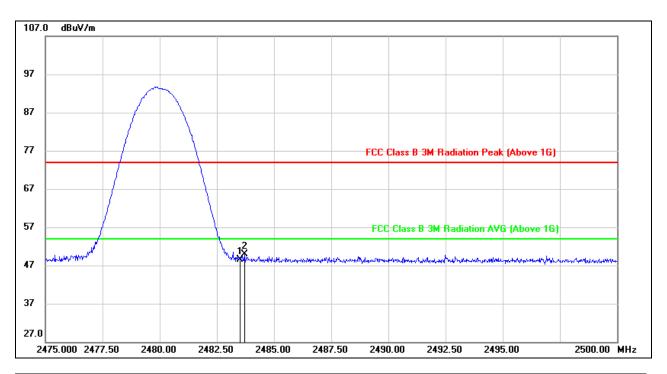
<u>PEAK</u>


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2346.110	16.19	33.57	49.76	74.00	-24.24	peak
2	2390.000	14.50	33.24	47.74	74.00	-26.26	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton where: ton is transmit duration.
- 4. For transmit duration, please refer to clause 6.1.
- 5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

PEAK

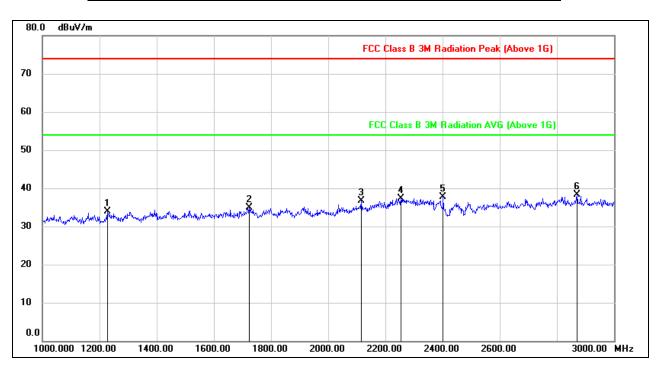

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.88	32.78	48.66	74.00	-25.34	peak
2	2484.075	16.77	32.78	49.55	74.00	-24.45	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

PEAK

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.58	32.88	48.46	74.00	-25.54	peak
2	2483.700	17.04	32.88	49.92	74.00	-24.08	peak

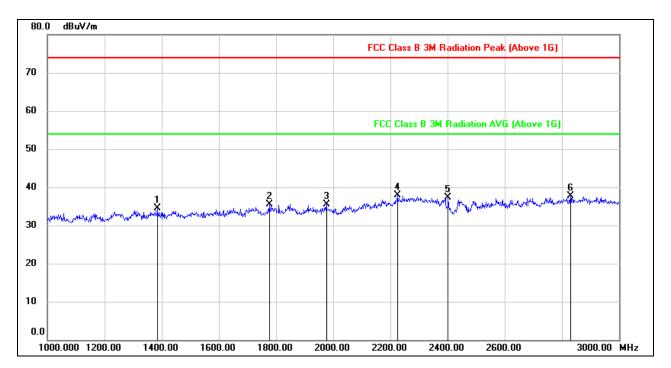

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. AVG: VBW=1/Ton where: ton is transmit duration.
- 4. For transmit duration, please refer to clause 6.1.
- 5. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7.3. SPURIOUS EMISSIONS (1~3GHz)

7.3.1. GFSK MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

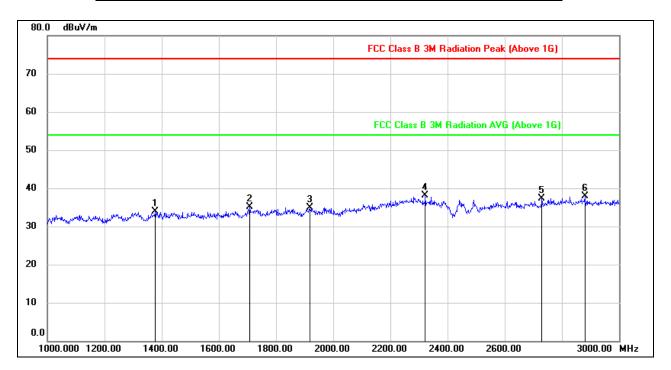
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1228.000	46.90	-12.93	33.97	74.00	-40.03	peak
2	1724.000	46.22	-11.40	34.82	74.00	-39.18	peak
3	2116.000	46.03	-9.37	36.66	74.00	-37.34	peak
4	2254.000	44.96	-7.58	37.38	74.00	-36.62	peak
5	2402.000	45.73	-8.11	37.62	74.00	-36.38	peak
6	2870.000	44.86	-6.62	38.24	74.00	-35.76	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

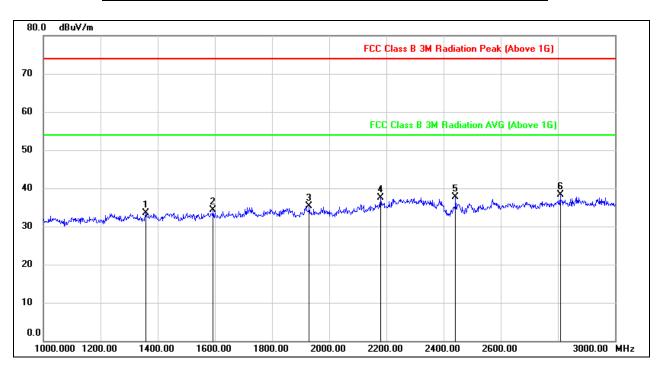
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1386.000	47.02	-12.43	34.59	74.00	-39.41	peak
2	1776.000	46.79	-11.20	35.59	74.00	-38.41	peak
3	1976.000	46.18	-10.71	35.47	74.00	-38.53	peak
4	2224.000	45.95	-7.96	37.99	74.00	-36.01	peak
5	2402.000	45.36	-8.01	37.35	74.00	-36.65	peak
6	2830.000	44.57	-6.80	37.77	74.00	-36.23	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

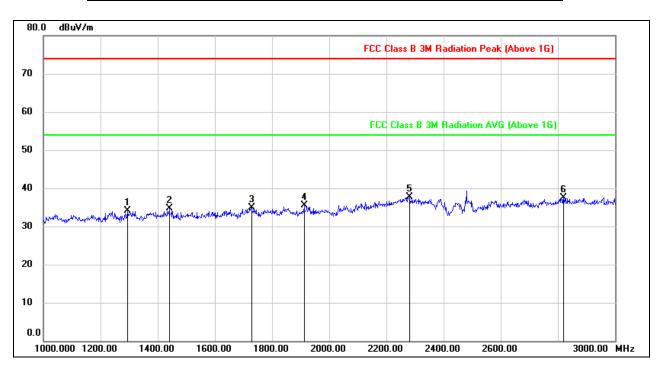
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1378.000	46.16	-12.20	33.96	74.00	-40.04	peak
2	1708.000	46.59	-11.48	35.11	74.00	-38.89	peak
3	1918.000	45.64	-10.71	34.93	74.00	-39.07	peak
4	2322.000	45.60	-7.56	38.04	74.00	-35.96	peak
5	2730.000	44.67	-7.37	37.30	74.00	-36.70	peak
6	2880.000	44.46	-6.60	37.86	74.00	-36.14	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

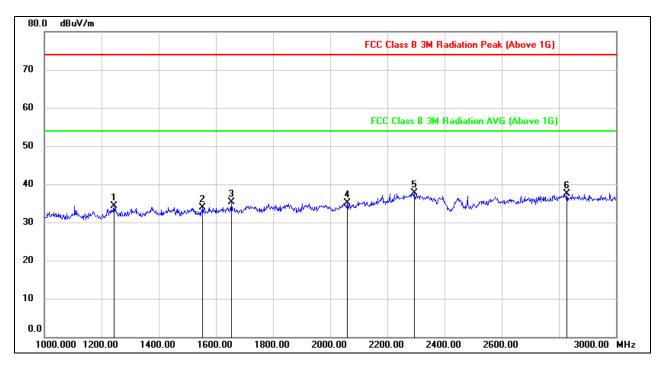
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1358.000	45.92	-12.39	33.53	74.00	-40.47	peak
2	1594.000	46.40	-12.08	34.32	74.00	-39.68	peak
3	1930.000	46.18	-10.80	35.38	74.00	-38.62	peak
4	2180.000	46.10	-8.59	37.51	74.00	-36.49	peak
5	2442.000	45.89	-8.21	37.68	74.00	-36.32	peak
6	2808.000	45.21	-6.92	38.29	74.00	-35.71	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

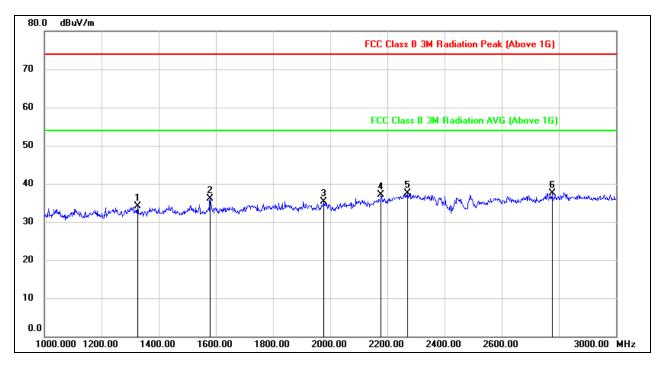
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1294.000	46.50	-12.45	34.05	74.00	-39.95	peak
2	1440.000	46.87	-12.22	34.65	74.00	-39.35	peak
3	1728.000	46.36	-11.38	34.98	74.00	-39.02	peak
4	1912.000	46.21	-10.73	35.48	74.00	-38.52	peak
5	2282.000	45.20	-7.47	37.73	74.00	-36.27	peak
6	2820.000	44.33	-6.85	37.48	74.00	-36.52	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

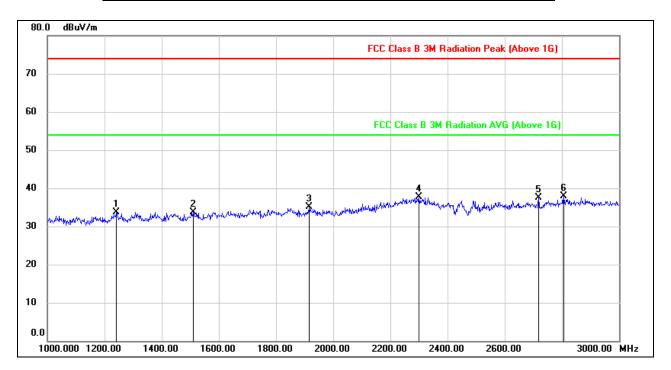

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1244.000	47.14	-12.78	34.36	74.00	-39.64	peak
2	1552.000	46.27	-12.27	34.00	74.00	-40.00	peak
3	1654.000	46.99	-11.73	35.26	74.00	-38.74	peak
4	2060.000	45.18	-10.17	35.01	74.00	-38.99	peak
5	2294.000	45.03	-7.24	37.79	74.00	-36.21	peak
6	2828.000	44.22	-6.81	37.41	74.00	-36.59	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

7.3.2. 8DPSK MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

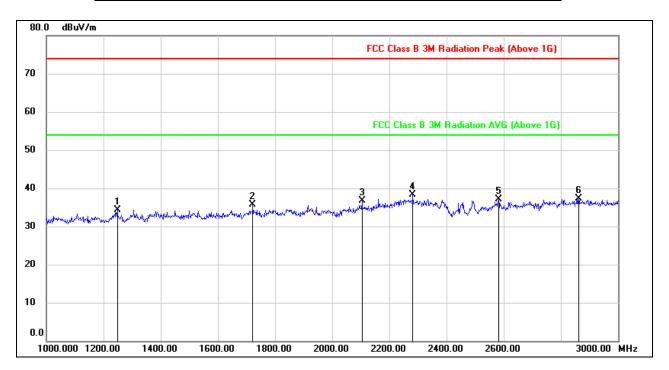
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1326.000	46.50	-12.38	34.12	74.00	-39.88	peak
2	1580.000	48.29	-12.19	36.10	74.00	-37.90	peak
3	1978.000	46.05	-10.65	35.40	74.00	-38.60	peak
4	2178.000	45.58	-8.57	37.01	74.00	-36.99	peak
5	2270.000	44.97	-7.51	37.46	74.00	-36.54	peak
6	2776.000	44.58	-7.09	37.49	74.00	-36.51	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

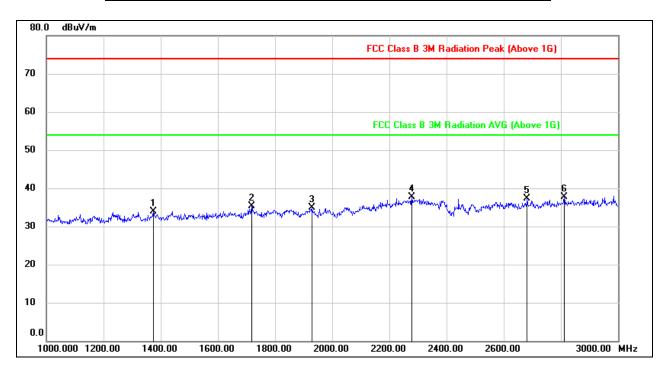
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1242.000	46.56	-12.79	33.77	74.00	-40.23	peak
2	1510.000	46.05	-12.28	33.77	74.00	-40.23	peak
3	1916.000	45.85	-10.82	35.03	74.00	-38.97	peak
4	2300.000	44.91	-7.20	37.71	74.00	-36.29	peak
5	2718.000	44.93	-7.50	37.43	74.00	-36.57	peak
6	2806.000	44.74	-6.93	37.81	74.00	-36.19	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1248.000	47.10	-12.84	34.26	74.00	-39.74	peak
2	1722.000	47.08	-11.41	35.67	74.00	-38.33	peak
3	2104.000	46.22	-9.52	36.70	74.00	-37.30	peak
4	2282.000	45.73	-7.47	38.26	74.00	-35.74	peak
5	2582.000	45.40	-8.20	37.20	74.00	-36.80	peak
6	2862.000	43.91	-6.66	37.25	74.00	-36.75	peak

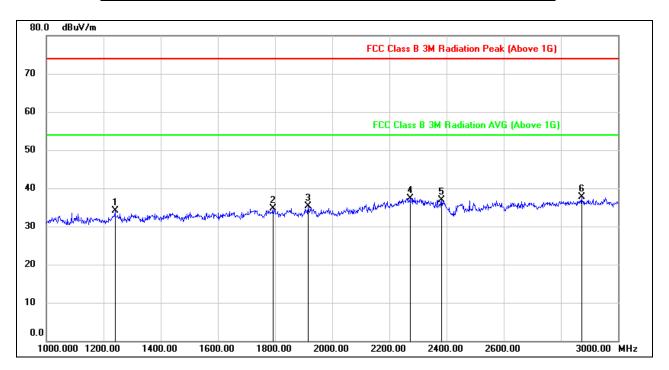
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1374.000	46.33	-12.42	33.91	74.00	-40.09	peak
2	1718.000	46.83	-11.43	35.40	74.00	-38.60	peak
3	1930.000	45.67	-10.80	34.87	74.00	-39.13	peak
4	2278.000	45.06	-7.37	37.69	74.00	-36.31	peak
5	2682.000	45.11	-7.73	37.38	74.00	-36.62	peak
6	2812.000	44.51	-6.90	37.61	74.00	-36.39	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

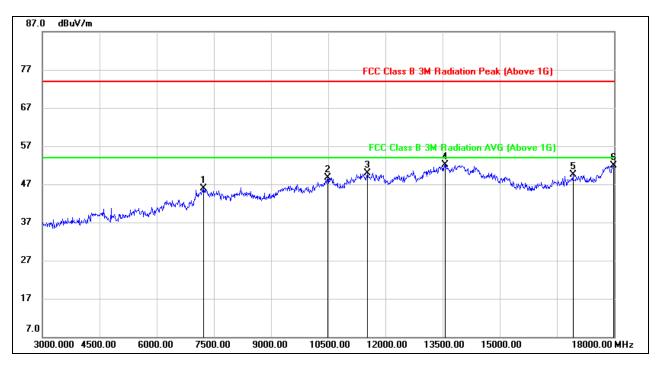


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1228.000	46.49	-12.93	33.56	74.00	-40.44	peak
2	1476.000	46.07	-12.23	33.84	74.00	-40.16	peak
3	1710.000	46.42	-11.47	34.95	74.00	-39.05	peak
4	2178.000	45.25	-8.57	36.68	74.00	-37.32	peak
5	2480.000	47.91	-8.38	39.53	74.00	-34.47	peak
6	2856.000	44.65	-6.67	37.98	74.00	-36.02	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1240.000	46.99	-12.81	34.18	74.00	-39.82	peak
2	1792.000	45.93	-11.16	34.77	74.00	-39.23	peak
3	1916.000	46.13	-10.82	35.31	74.00	-38.69	peak
4	2272.000	44.72	-7.42	37.30	74.00	-36.70	peak
5	2382.000	44.79	-7.88	36.91	74.00	-37.09	peak
6	2872.000	44.29	-6.62	37.67	74.00	-36.33	peak

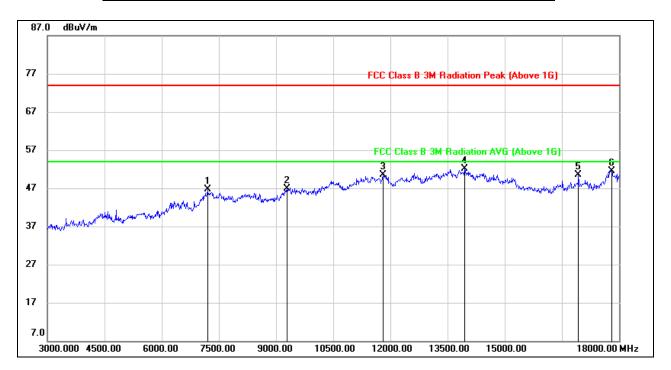

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

7.4. SPURIOUS EMISSIONS (3~18GHz)

7.4.1. GFSK MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

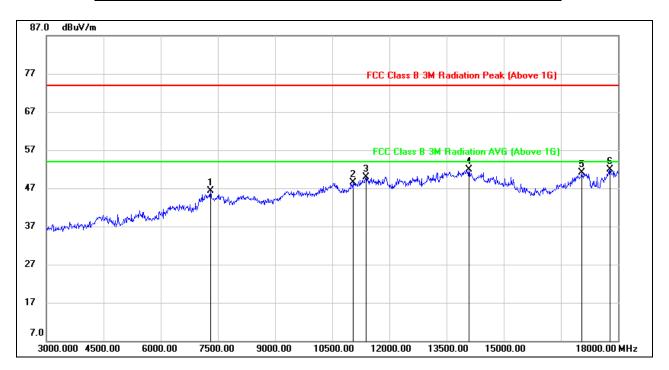
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7230.000	38.17	7.81	45.98	74.00	-28.02	peak
2	10485.000	35.13	13.62	48.75	74.00	-25.25	peak
3	11535.000	34.21	15.77	49.98	74.00	-24.02	peak
4	13575.000	31.62	20.43	52.05	74.00	-21.95	peak
5	16920.000	28.35	21.20	49.55	74.00	-24.45	peak
6	17985.000	24.88	27.05	51.93	74.00	-22.07	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

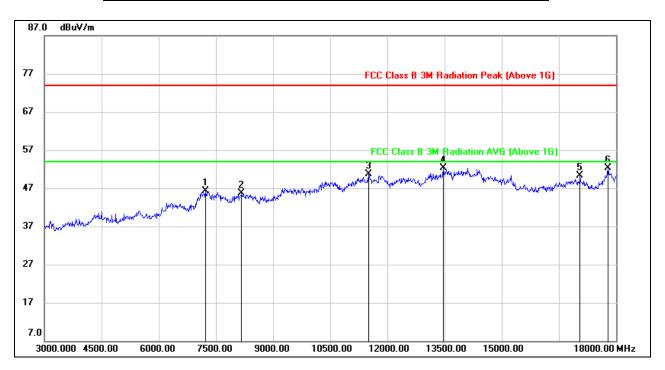
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7200.000	38.92	7.85	46.77	74.00	-27.23	peak
2	9285.000	36.17	10.75	46.92	74.00	-27.08	peak
3	11805.000	33.96	16.55	50.51	74.00	-23.49	peak
4	13950.000	31.23	20.78	52.01	74.00	-21.99	peak
5	16935.000	29.01	21.47	50.48	74.00	-23.52	peak
6	17805.000	24.79	26.80	51.59	74.00	-22.41	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

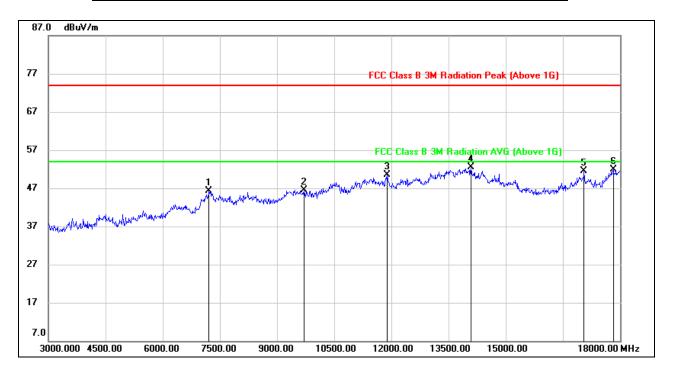
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7305.000	38.44	7.80	46.24	74.00	-27.76	peak
2	11055.000	33.80	14.69	48.49	74.00	-25.51	peak
3	11385.000	34.53	15.46	49.99	74.00	-24.01	peak
4	14085.000	31.17	20.66	51.83	74.00	-22.17	peak
5	17040.000	29.01	22.11	51.12	74.00	-22.88	peak
6	17790.000	25.56	26.36	51.92	74.00	-22.08	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

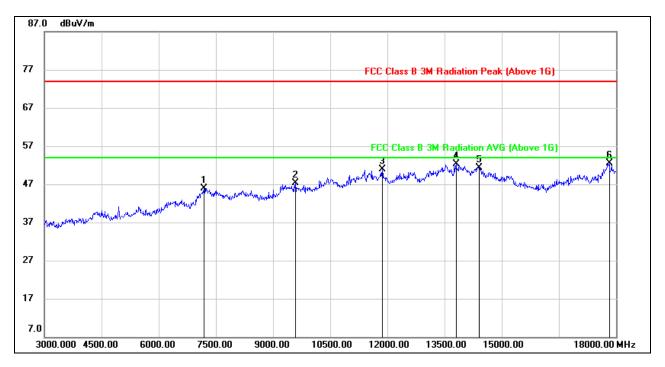
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7230.000	38.60	7.79	46.39	74.00	-27.61	peak
2	8175.000	36.95	8.75	45.70	74.00	-28.30	peak
3	11505.000	34.43	16.26	50.69	74.00	-23.31	peak
4	13470.000	32.08	20.23	52.31	74.00	-21.69	peak
5	17055.000	27.56	22.68	50.24	74.00	-23.76	peak
6	17790.000	25.57	26.76	52.33	74.00	-21.67	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

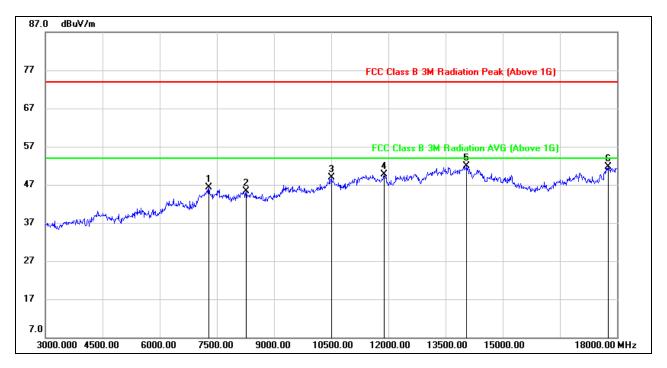
HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7215.000	38.44	7.78	46.22	74.00	-27.78	peak
2	9705.000	35.07	11.46	46.53	74.00	-27.47	peak
3	11895.000	33.39	17.04	50.43	74.00	-23.57	peak
4	14085.000	31.76	20.66	52.42	74.00	-21.58	peak
5	17055.000	29.27	22.17	51.44	74.00	-22.56	peak
6	17820.000	25.46	26.48	51.94	74.00	-22.06	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

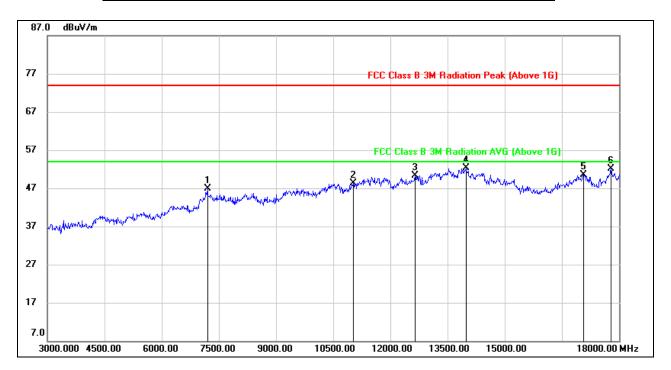

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7185.000	38.04	7.83	45.87	74.00	-28.13	peak
2	9585.000	35.97	11.30	47.27	74.00	-26.73	peak
3	11865.000	34.18	16.64	50.82	74.00	-23.18	peak
4	13800.000	31.12	21.21	52.33	74.00	-21.67	peak
5	14415.000	31.14	20.18	51.32	74.00	-22.68	peak
6	17820.000	26.00	26.56	52.56	74.00	-21.44	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

7.4.2. 8DPSK MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

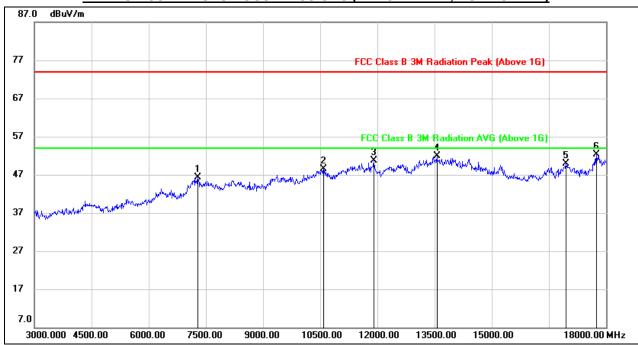
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7290.000	38.44	7.86	46.30	74.00	-27.70	peak
2	8265.000	36.87	8.48	45.35	74.00	-28.65	peak
3	10500.000	35.13	13.71	48.84	74.00	-25.16	peak
4	11880.000	32.88	16.74	49.62	74.00	-24.38	peak
5	14055.000	31.34	20.64	51.98	74.00	-22.02	peak
6	17760.000	25.70	25.99	51.69	74.00	-22.31	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

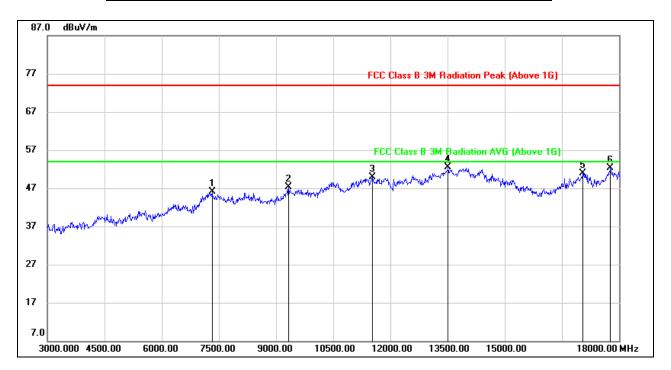


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7200.000	38.97	7.85	46.82	74.00	-27.18	peak
2	11025.000	33.60	14.69	48.29	74.00	-25.71	peak
3	12645.000	32.95	17.43	50.38	74.00	-23.62	peak
4	13980.000	31.53	20.73	52.26	74.00	-21.74	peak
5	17070.000	27.80	22.73	50.53	74.00	-23.47	peak
6	17790.000	25.44	26.76	52.20	74.00	-21.80	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

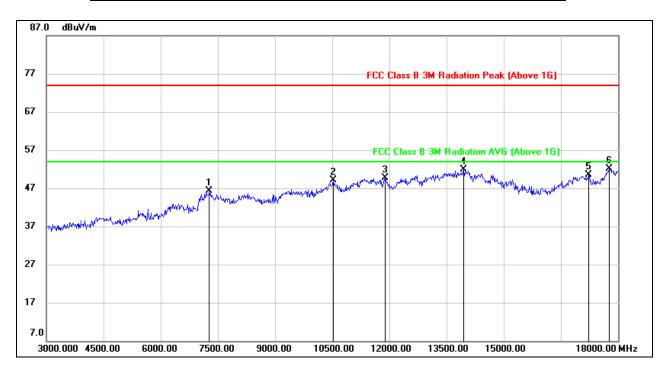
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7290.000	38.41	7.86	46.27	74.00	-27.73	peak
2	10590.000	34.79	13.63	48.42	74.00	-25.58	peak
3	11910.000	33.81	16.98	50.79	74.00	-23.21	peak
4	13560.000	31.55	20.37	51.92	74.00	-22.08	peak
5	16950.000	28.32	21.50	49.82	74.00	-24.18	peak
6	17745.000	26.38	25.86	52.24	74.00	-21.76	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

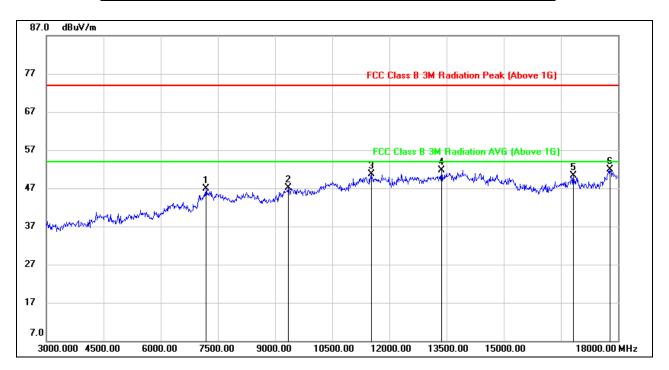
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7320.000	38.46	7.67	46.13	74.00	-27.87	peak
2	9330.000	36.30	10.91	47.21	74.00	-26.79	peak
3	11535.000	33.70	16.23	49.93	74.00	-24.07	peak
4	13515.000	31.74	20.67	52.41	74.00	-21.59	peak
5	17055.000	28.32	22.68	51.00	74.00	-23.00	peak
6	17775.000	25.74	26.57	52.31	74.00	-21.69	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

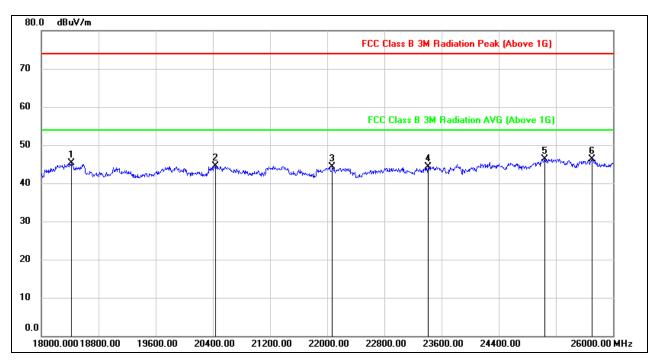


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7275.000	38.35	7.86	46.21	74.00	-27.79	peak
2	10530.000	35.37	13.76	49.13	74.00	-24.87	peak
3	11895.000	32.74	17.04	49.78	74.00	-24.22	peak
4	13950.000	31.23	20.68	51.91	74.00	-22.09	peak
5	17235.000	27.78	22.72	50.50	74.00	-23.50	peak
6	17760.000	26.12	25.99	52.11	74.00	-21.89	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7185.000	39.17	7.83	47.00	74.00	-27.00	peak
2	9345.000	36.22	10.93	47.15	74.00	-26.85	peak
3	11520.000	34.41	16.25	50.66	74.00	-23.34	peak
4	13365.000	32.03	19.62	51.65	74.00	-22.35	peak
5	16830.000	29.40	20.82	50.22	74.00	-23.78	peak
6	17790.000	25.10	26.76	51.86	74.00	-22.14	peak


- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.

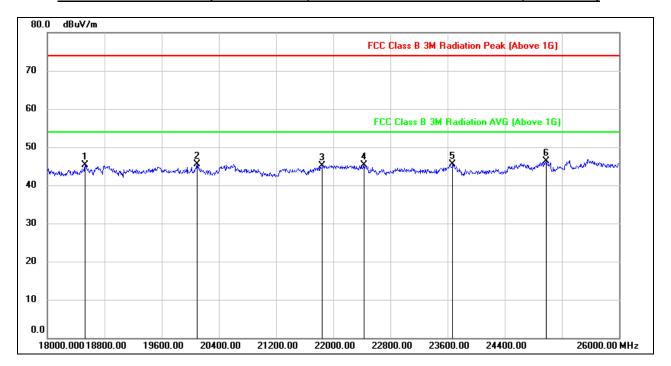
7.5. SPURIOUS EMISSIONS 18G ~ 26GHz

7.5.1. GFSK MODE

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18416.000	50.73	-5.35	45.38	74.00	-28.62	peak
2	20432.000	49.99	-5.42	44.57	74.00	-29.43	peak
3	22072.000	48.77	-4.41	44.36	74.00	-29.64	peak
4	23408.000	47.61	-3.22	44.39	74.00	-29.61	peak
5	25040.000	48.31	-2.03	46.28	74.00	-27.72	peak
6	25704.000	47.09	-0.83	46.26	74.00	-27.74	peak

Note: 1. Peak Result= Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

REPORT No.: 4788704908.1-2

Page 93 of 103

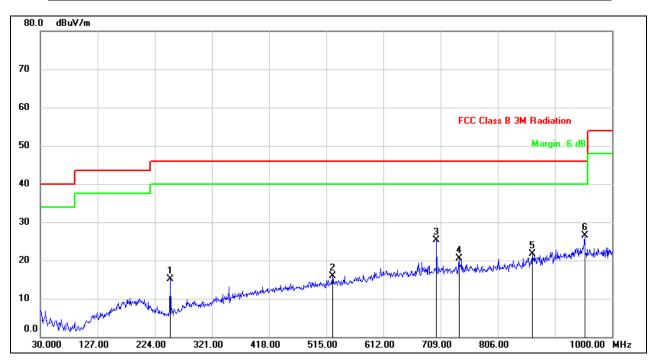
SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18528.000	50.61	-5.26	45.35	74.00	-28.65	peak
2	20096.000	51.10	-5.51	45.59	74.00	-28.41	peak
3	21848.000	49.58	-4.39	45.19	74.00	-28.81	peak
4	22432.000	49.26	-3.97	45.29	74.00	-28.71	peak
5	23672.000	48.67	-3.18	45.49	74.00	-28.51	peak
6	24976.000	48.46	-2.11	46.35	74.00	-27.65	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Note: All the modulation and channels had been tested, but only the worst data recorded in the report.

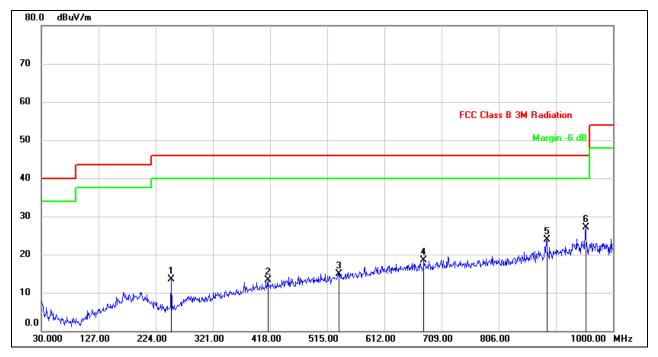


REPORT No.: 4788704908.1-2 Page 94 of 103

7.6. SPURIOUS EMISSIONS 30M ~ 1 GHz

7.6.1. GFSK MODE

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	250.1900	32.76	-17.70	15.06	46.00	-30.94	peak
2	525.6700	26.49	-10.61	15.88	46.00	-30.12	peak
3	702.2100	33.15	-7.83	25.32	46.00	-20.68	peak
4	740.0400	28.09	-7.62	20.47	46.00	-25.53	peak
5	864.2000	27.62	-5.82	21.80	46.00	-24.20	peak
6	953.4400	31.21	-4.73	26.48	46.00	-19.52	peak

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

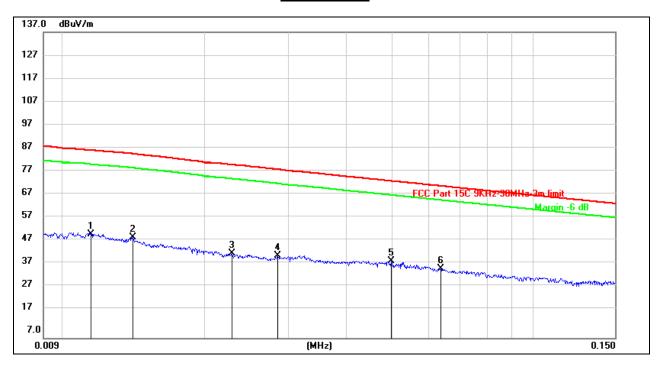
SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	250.1900	31.27	-17.70	13.57	46.00	-32.43	peak
2	414.1200	25.49	-12.15	13.34	46.00	-32.66	peak
3	534.4000	25.36	-10.47	14.89	46.00	-31.11	peak
4	678.9300	26.54	-8.07	18.47	46.00	-27.53	peak
5	887.4800	29.37	-5.54	23.83	46.00	-22.17	peak
6	953.4400	31.78	-4.73	27.05	46.00	-18.95	peak

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto

Note: All the modulation and channels had been tested, but only the worst data recorded in the report.

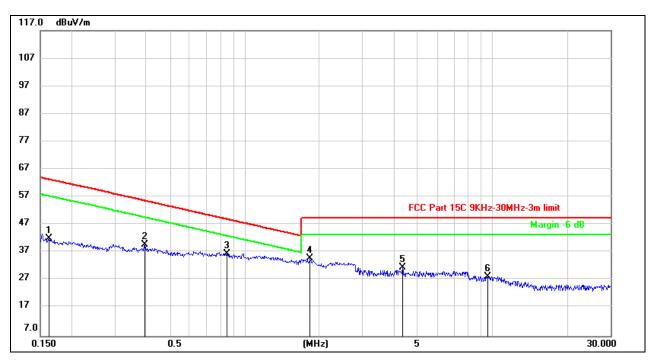

REPORT No.: 4788704908.1-2 Page 96 of 103

7.7. SPURIOUS EMISSIONS BELOW 30M

7.7.1. GFSK MODE

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

9kHz~ 150kHz

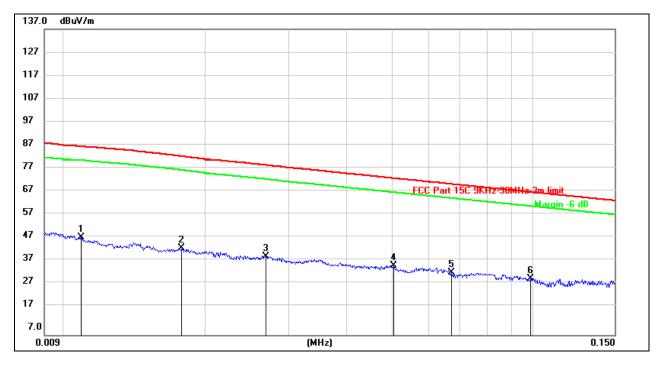

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(KHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0114	30.93	20.22	51.15	86.76	-35.61	peak
2	0.0140	29.47	20.25	49.72	85.19	-35.47	peak
3	0.0228	22.47	20.31	42.78	80.59	-37.81	peak
4	0.0285	21.56	20.31	41.87	78.59	-36.72	peak
5	0.0497	19.51	20.31	39.82	73.68	-33.86	peak
6	0.0636	16.14	20.31	36.45	71.56	-35.11	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

150kHz ~ 30M

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1621	21.56	20.41	41.97	63.41	-21.44	peak
2	0.3955	19.49	20.27	39.76	55.67	-15.91	peak
3	0.8483	16.30	20.36	36.66	49.05	-12.39	peak
4	1.8386	14.16	20.67	34.83	49.54	-14.71	peak
5	4.3376	10.61	20.98	31.59	49.54	-17.95	peak
6	9.5518	7.31	21.04	28.35	49.54	-21.19	peak


Note: 1. Measurement = Reading Level + Correct Factor.

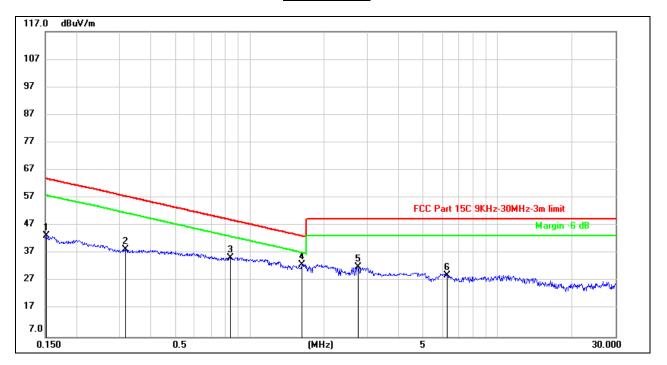
2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

9kHz~ 150kHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(KHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0108	28.16	20.22	48.38	87.12	-38.74	peak
2	0.0177	23.46	20.29	43.75	82.96	-39.21	peak
3	0.0269	20.10	20.31	40.41	79.15	-38.74	peak
4	0.0504	16.21	20.31	36.52	73.56	-37.04	peak
5	0.0670	13.31	20.31	33.62	71.10	-37.48	peak
6	0.0990	10.80	20.22	31.02	67.69	-36.67	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

REPORT No.: 4788704908.1-2

Page 99 of 103

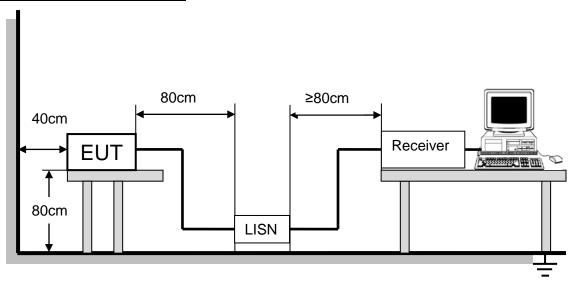
150kHz ~ 30M

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1516	22.92	20.42	43.34	63.99	-20.65	peak
2	0.3165	18.07	20.30	38.37	57.65	-19.28	peak
3	0.8346	15.14	20.36	35.50	49.19	-13.69	peak
4	1.6270	12.51	20.60	33.11	43.38	-10.27	peak
5	2.7355	11.19	20.85	32.04	49.54	-17.50	peak
6	6.2519	8.34	20.89	29.23	49.54	-20.31	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

Note: All the modulation and channels had been tested, but only the worst data recorded in the report.


8. AC POWER LINE CONDUCTED EMISSIONS

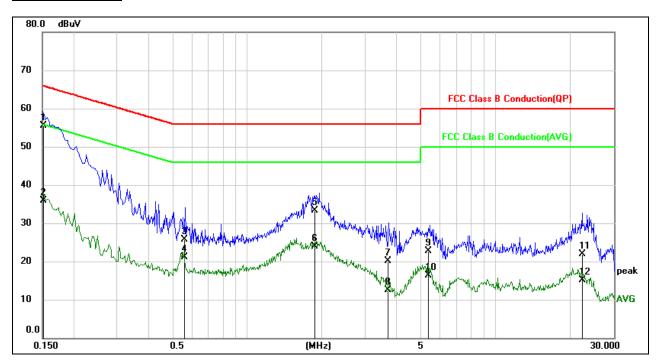
LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8.

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
FREQUENCY (IVID2)	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.50 -5.0	73.00	60.00	56.00	46.00	
5.0 -30.0	73.00	60.00	60.00	50.00	

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

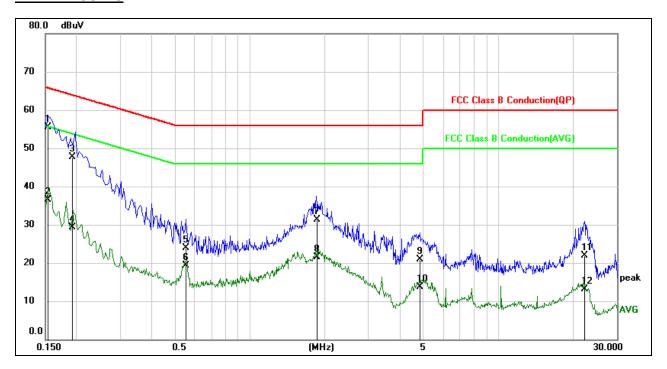

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

8.1.1. GFSK MODE

TEST RESULTS (WORST-CASE CONFIGURATION)

LINE N RESULTS

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1519	45.85	9.62	55.47	65.90	-10.43	QP
2	0.1519	26.38	9.62	36.00	55.90	-19.90	AVG
3	0.5582	16.06	9.63	25.69	56.00	-30.31	QP
4	0.5582	11.51	9.63	21.14	46.00	-24.86	AVG
5	1.8835	23.72	9.65	33.37	56.00	-22.63	QP
6	1.8835	14.27	9.65	23.92	46.00	-22.08	AVG
7	3.7092	10.49	9.69	20.18	56.00	-35.82	QP
8	3.7092	2.80	9.69	12.49	46.00	-33.51	AVG
9	5.3810	13.02	9.72	22.74	60.00	-37.26	QP
10	5.3810	6.56	9.72	16.28	50.00	-33.72	AVG
11	22.3377	12.00	9.92	21.92	60.00	-38.08	QP
12	22.3377	5.11	9.92	15.03	50.00	-34.97	AVG


Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

REPORT No.: 4788704908.1-2

Page 102 of 103

LINE L RESULTS

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1539	45.95	9.64	55.59	65.79	-10.20	QP
2	0.1539	26.77	9.64	36.41	55.79	-19.38	AVG
3	0.1935	38.14	9.63	47.77	63.88	-16.11	QP
4	0.1935	19.66	9.63	29.29	53.88	-24.59	AVG
5	0.5571	14.36	9.64	24.00	56.00	-32.00	QP
6	0.5571	9.57	9.64	19.21	46.00	-26.79	AVG
7	1.8682	21.70	9.66	31.36	56.00	-24.64	QP
8	1.8682	11.84	9.66	21.50	46.00	-24.50	AVG
9	4.8218	11.20	9.71	20.91	56.00	-35.09	QP
10	4.8218	3.95	9.71	13.66	46.00	-32.34	AVG
11	22.1811	12.03	9.88	21.91	60.00	-38.09	QP
12	22.1811	3.16	9.88	13.04	50.00	-36.96	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All the modulation and channels had been tested, but only the worst data recorded in the report.

REPORT No.: 4788704908.1-2

Page 103 of 103

9. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

END OF REPORT