

# **RF Test Report**

### For

Applicant Name: SHENZHEN TOUMEI TECHNOLOGY CO., LTD

Address: 502 Building A, Jinke Industrial Park, Luhu Community Guanhu St.,

Longhua District, Shenzhen, China

EUT Name: Smart Projector

Brand Name: TOUMEI Model Number: C900

Series Model Number: Refer to section 2

**Issued By** 

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou

Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: BTF230712R00303 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

FCC ID: 2BCE6-AKSERIES

Test Date: 2023-07-07 to 2023-07-25

Date of Issue: 2023-07-28

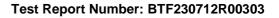
Prepared By: Elma Kang

Elma. Yang / Project Engineer

Date: 2023-07-28

Approved By:

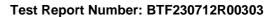
Ryan CJ / EMC Manager


Date: 2023-07-28

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.






| Revision History                                                                   |            |                   |
|------------------------------------------------------------------------------------|------------|-------------------|
| Version                                                                            | Issue Date | Revisions Content |
| R_V0                                                                               | 2023-07-28 | Original          |
|                                                                                    |            |                   |
| Note: Once the revision has been made, then previous versions reports are invalid. |            |                   |





## **Table of Contents**

| 1 | IIIII      | DDUCTION                                                               | o    |
|---|------------|------------------------------------------------------------------------|------|
|   | 1.1<br>1.2 | Identification of Testing Laboratory                                   | 5    |
|   | 1.3        | Announcement                                                           |      |
| 2 | PROI       | DUCT INFORMATION                                                       |      |
|   | 2.1        | Application Information                                                |      |
|   | 2.2        | Manufacturer Information                                               |      |
|   | 2.3<br>2.4 | Factory Information  General Description of Equipment under Test (EUT) |      |
|   | 2.4        | Technical Information                                                  |      |
| 3 |            | MARY OF TEST RESULTS                                                   |      |
|   | 3.1        | Test Standards                                                         |      |
|   | 3.2        | Uncertainty of Test                                                    |      |
|   | 3.3        | Summary of Test Result                                                 | 8    |
| 4 | TEST       | CONFIGURATION                                                          | 9    |
|   | 4.1        | Test Equipment List                                                    |      |
|   | 4.2        | Test Auxiliary Equipment                                               |      |
|   | 4.3        | Test Modes                                                             |      |
| 5 | EVAL       | UATION RESULTS (EVALUATION)                                            |      |
|   | 5.1        | Antenna requirement                                                    |      |
|   |            | 5.1.1 Conclusion:                                                      |      |
| 6 | RADI       | O SPECTRUM MATTER TEST RESULTS (RF)                                    |      |
|   | 6.1        | Conducted Emission at AC power line                                    |      |
|   |            | 6.1.1 E.U.T. Operation:                                                |      |
|   |            | 6.1.2 Test Setup Diagram: 6.1.3 Test Data:                             |      |
|   | 6.2        | Duty Cycle                                                             |      |
|   | 0.2        | 6.2.1 E.U.T. Operation:                                                |      |
|   |            | 6.2.2 Test Data:                                                       |      |
|   | 6.3        | Maximum conducted output power                                         |      |
|   |            | 6.3.1 E.U.T. Operation:                                                |      |
|   |            | 6.3.2 Test Data:                                                       | . 22 |
|   | 6.4        | Power spectral density                                                 | . 23 |
|   |            | 6.4.1 E.U.T. Operation:                                                |      |
|   |            | 6.4.2 Test Data:                                                       |      |
|   | 6.5        | Emission bandwidth and occupied bandwidth                              |      |
|   |            | 6.5.1 E.U.T. Operation: 6.5.2 Test Data:                               |      |
|   | 6.6        | Band edge emissions (Radiated)                                         |      |
|   | 0.0        | 6.6.1 E.U.T. Operation:                                                |      |
|   |            | 6.6.2 Test Setup Diagram:                                              |      |
|   |            | 6.6.3 Test Data:                                                       |      |
|   | 6.7        | Undesirable emission limits (below 1GHz)                               | . 33 |
|   |            | 6.7.1 E.U.T. Operation:                                                |      |
|   |            | 6.7.2 Test Setup Diagram:                                              |      |
|   | <b>.</b> . | 6.7.3 Test Data:                                                       |      |
|   | 6.8        | Undesirable emission limits (above 1GHz)                               | . აგ |





|   | 6.8.1     | E.U.T. Operation:              | 39 |
|---|-----------|--------------------------------|----|
|   |           | Test Data:                     |    |
| 7 | TEST SETU | P PHOTOS                       | 46 |
|   |           | RUCTIONAL DETAILS (EUT PHOTOS) |    |
|   |           | ,                              |    |



#### 1 Introduction

### 1.1 Identification of Testing Laboratory

| Company Name: | BTF Testing Lab (Shenzhen) Co., Ltd.                                                                                                |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Address:      | F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China |
| Phone Number: | +86-0755-23146130                                                                                                                   |
| Fax Number:   | +86-0755-23146130                                                                                                                   |

#### 1.2 Identification of the Responsible Testing Location

| Company Name:            | BTF Testing Lab (Shenzhen) Co., Ltd.                                   |
|--------------------------|------------------------------------------------------------------------|
| Address:                 | F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou |
| Address.                 | Community, Songgang Street, Bao'an District, Shenzhen, China           |
| Phone Number:            | +86-0755-23146130                                                      |
| Fax Number:              | +86-0755-23146130                                                      |
| FCC Registration Number: | 518915                                                                 |
| Designation Number:      | CN1330                                                                 |

#### 1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.



#### 2 **Product Information**

# 2.1 Application Information

| Company Name: | SHENZHEN TOUMEI TECHNOLOGY CO., LTD                                                                 |
|---------------|-----------------------------------------------------------------------------------------------------|
| Address:      | 502 Building A, Jinke Industrial Park, Luhu Community Guanhu St., Longhua District, Shenzhen, China |

#### 2.2 Manufacturer Information

| Company Name: | SHENZHEN TOUMEI TECHNOLOGY CO., LTD                                                                 |
|---------------|-----------------------------------------------------------------------------------------------------|
| Address:      | 502 Building A, Jinke Industrial Park, Luhu Community Guanhu St., Longhua District, Shenzhen, China |

## 2.3 Factory Information

| Company Name: | SHENZHEN TOUMEI TECHNOLOGY CO., LTD                                                                 |
|---------------|-----------------------------------------------------------------------------------------------------|
| Address:      | 502 Building A, Jinke Industrial Park, Luhu Community Guanhu St., Longhua District, Shenzhen, China |

#### **General Description of Equipment under Test (EUT)** 2.4

| EUT Name:                                  | Smart Projector                                                                                                                                                                                                 |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Model Number:                         | C900                                                                                                                                                                                                            |
| Series Model Number:                       | C1000, C2000, C3000, K1, K2, K5, K9, M1, M2, M3, M5, M6, M7, M8, M9, V5, V6, V7, V8, V9, V7Pro, V8Battery, Q1, Q2, Q3, Q5, X1, X2, X3, X5, X6, X7, X8, S1, S2, S3, S5, S6, S8, S9, A3, A5, A6, A7, A8, A9       |
| Description of Model name differentiation: | Since according to the declaration from the applicant, the electrical circuit design, layout, components used, internal wiring and functions were identical for the above models, with only different on color. |
| Hardware Version:                          | MTK9269                                                                                                                                                                                                         |
| Software and Firmware Version:             | C.4TY20230517en2                                                                                                                                                                                                |
| Sample No.:                                | BTFSN230712E003-1/1                                                                                                                                                                                             |

#### 2.5 Technical Information

| Power Supply:        | DC 7.4V by battery and recharged by an adapter                                                                                                                                                                                                                                          |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Adaptor:       | Adapter Model: TEKA-TE120200US Adapter Input: 100-240V, 50/60Hz, 0.7A Max Adapter Output: 12V 2A Adapter Model: TEKA-TE120300US Adapter Input: 100-240V, 50/60Hz, 1.2A Max Adapter Output: 12V 3A                                                                                       |
| Operation Frequency: | 802.11a/n(HT20)/ac(VHT20)/ax(HE20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz;  802.11n(HT40)/ac(VHT40)/ax(HE40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz;  802.11ac(VHT80)/ax(HE80): U-NII Band 1: 5210MHz; U-NII Band 3: 5775MHz; |
| Number of Channels:  | 802.11a/n(HT20)/ac(VHT20)/ax(HE20):<br>U-NII Band 1: 4;<br>U-NII Band 3: 5;                                                                                                                                                                                                             |



|                  | 802.11 n(HT40)/ac(VHT40)/ax(HE40):                          |
|------------------|-------------------------------------------------------------|
|                  | U-NII Band 1: 2;                                            |
|                  | U-NII Band 3: 2;                                            |
|                  | 802.11 ac(VHT80)/ax(HE80):                                  |
|                  | U-NII Band 1: 1;                                            |
|                  | U-NII Band 3: 1;                                            |
|                  | 802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM);                    |
| Madulatian Type  | 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);                   |
| Modulation Type: | 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);          |
|                  | 802.11ax: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM); |
| Antonno Turnos   | ANT1: PIFA Antenna                                          |
| Antenna Type:    | ANT2: PIFA Antenna                                          |
|                  | For U-NII Band 1:                                           |
| Antenna Gain#:   | ANT1: 4.01dBi, ANT2: 4.01dBi;                               |
| Antenna Gaili".  | For U-NII Band 3:                                           |
|                  | ANT1: 3.28dBi, ANT2: 3.28dBi;                               |

#### Note:

<sup>#:</sup> The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

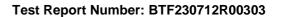


# 3 Summary of Test Results

#### 3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices


#### 3.2 Uncertainty of Test

| Item                                | Measurement Uncertainty |
|-------------------------------------|-------------------------|
| Conducted Emission (150 kHz-30 MHz) | ±2.64dB                 |

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

#### 3.3 Summary of Test Result

| Item                                                    | Standard        | Requirement                                                                                                                                                                             | Result |
|---------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Antenna requirement                                     | 47 CFR Part 15E | Part 15.203                                                                                                                                                                             | Pass   |
| Conducted Emission at AC power line                     | 47 CFR Part 15E | 47 CFR Part 15.207(a)                                                                                                                                                                   | Pass   |
| Maximum conducted output power                          | 47 CFR Part 15E | 47 CFR Part 15.407(a)(1)(i)<br>47 CFR Part 15.407(a)(1)(ii)<br>47 CFR Part 15.407(a)(1)(iii)<br>47 CFR Part 15.407(a)(1)(iv)<br>47 CFR Part 15.407(a)(2)<br>47 CFR Part 15.407(a)(3)(i) | Pass   |
| Power spectral density                                  | 47 CFR Part 15E | 47 CFR Part 15.407(a)(1)(i)<br>47 CFR Part 15.407(a)(1)(ii)<br>47 CFR Part 15.407(a)(1)(iii)<br>47 CFR Part 15.407(a)(1)(iv)<br>47 CFR Part 15.407(a)(2)<br>47 CFR Part 15.407(a)(3)(i) | Pass   |
| Emission bandwidth and occupied bandwidth               | 47 CFR Part 15E | U-NII 1, U-NII 2A, U-NII 2C:<br>No limits, only for report use.<br>47 CFR Part 15.407(e)                                                                                                | Pass   |
| Channel Availability Check Time                         | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)(ii)                                                                                                                                                            | Pass   |
| U-NII Detection Bandwidth                               | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)                                                                                                                                                                | Pass   |
| Statistical Performance Check                           | 47 CFR Part 15E | KDB 935210 D02, Clause 5.1<br>Table 2                                                                                                                                                   | Pass   |
| Channel Move Time, Channel<br>Closing Transmission Time | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)(iii)                                                                                                                                                           | Pass   |
| Non-Occupancy Period Test                               | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)(iv)                                                                                                                                                            | Pass   |
| DFS Detection Thresholds                                | 47 CFR Part 15E | KDB 905462 D02, Clause 5.2<br>Table 3                                                                                                                                                   | Pass   |
| Band edge emissions (Radiated)                          | 47 CFR Part 15E | 47 CFR Part 15.407(b)(1)<br>47 CFR Part 15.407(b)(2)<br>47 CFR Part 15.407(b)(4)<br>47 CFR Part 15.407(b)(10)                                                                           | Pass   |
| Undesirable emission limits (below 1GHz)                | 47 CFR Part 15E | 47 CFR Part 15.407(b)(9)                                                                                                                                                                | Pass   |
| Undesirable emission limits (above 1GHz)                | 47 CFR Part 15E | 47 CFR Part 15.407(b)(1)<br>47 CFR Part 15.407(b)(2)<br>47 CFR Part 15.407(b)(4)<br>47 CFR Part 15.407(b)(10)                                                                           | Pass   |





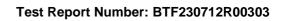
# **Test Configuration**

# **Test Equipment List**

| Conducted Emission at AC power line |                   |             |              |            |              |  |
|-------------------------------------|-------------------|-------------|--------------|------------|--------------|--|
| Equipment                           | Manufacturer      | Model No    | Inventory No | Cal Date   | Cal Due Date |  |
| Pulse Limiter                       | SCHWARZBECK       | VTSD 9561-F | 00953        | 2022-11-24 | 2023-11-23   |  |
| Coaxial Switcher                    | SCHWARZBECK       | CX210       | CX210        | 2022-11-24 | 2023-11-23   |  |
| V-LISN                              | SCHWARZBECK       | NSLK 8127   | 01073        | 2022-11-24 | 2023-11-23   |  |
| LISN                                | AFJ               | LS16/110VAC | 16010020076  | 2023-02-23 | 2024-02-22   |  |
| EMI Receiver                        | ROHDE&SCHWA<br>RZ | ESCI3       | 101422       | 2022-11-24 | 2023-11-23   |  |

| <b>Duty Cycle</b>                                      |                                                             |           |              |            |              |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |
| RFTest software                                        | 1                                                           | V1.00     | 1            | /          | /            |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |

| Maximum conducted output power                         |                                                             |           |              |            |              |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                        | 1                                                           | V1.00     | 1            | /          | /            |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |



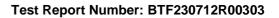



| Power spectral density                                 |                                                             |           |              |            |              |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                        | /                                                           | V1.00     | 1            | /          | /            |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |

| Emission bandwidth and occupied bandwidth              |                                                             |           |              |            |              |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |
| RFTest software                                        | 1                                                           | V1.00     | 1            | /          | /            |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |

| Channel Availability Check Time                        |                                                             |           |              |            |              |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                        | /                                                           | V1.00     | 1            | 1          | /            |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |





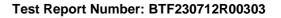

| MXA Signal Analyzer KEYSIGHT | N9020A | MY50410020 | 2022-11-24 | 2023-11-23 |
|------------------------------|--------|------------|------------|------------|
|------------------------------|--------|------------|------------|------------|

| U-NII Detection Band                                   | width                                                       |           |              |            |              |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |
| RFTest software                                        | 1                                                           | V1.00     | 1            | 1          | 1            |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |

| Statistical Performance Check                          |                                                             |           |              |            |              |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                        | /                                                           | V1.00     | 1            | 1          | /            |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |

| Channel Move Time, Channel Closing Transmission Time   |                                                             |           |              |            |              |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                        | /                                                           | V1.00     | 1            | /          | /            |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |

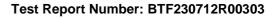





| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER | Rohde & Schwarz | CMW500 | 161997     | 2022-11-24 | 2023-11-23 |
|--------------------------------------------|-----------------|--------|------------|------------|------------|
| MXA Signal Analyzer                        | KEYSIGHT        | N9020A | MY50410020 | 2022-11-24 | 2023-11-23 |

| Non-Occupancy Period Test                              |                                                             |                            |             |            |              |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|----------------------------|-------------|------------|--------------|--|--|
| Equipment                                              | Manufacturer                                                | Manufacturer Model No Inve |             | Cal Date   | Cal Due Date |  |  |
| RFTest software                                        | 1                                                           | V1.00                      | 1           | 1          | /            |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1                   | 1           | 2022-11-24 | 2023-11-23   |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2                   | 1           | 2022-11-24 | 2023-11-23   |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A                    | 20210928007 | 2022-11-24 | 2023-11-23   |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c                  | 20211026123 | 2022-11-24 | 2023-11-23   |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500                     | 161997      | 2022-11-24 | 2023-11-23   |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A                     | MY50410020  | 2022-11-24 | 2023-11-23   |  |  |

| DFS Detection Thresholds                               |                                                             |           |              |            |              |  |  |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|--|
| Equipment                                              | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |  |
| RFTest software                                        | 1                                                           | V1.00     | 1            | /          | /            |  |  |
| RF Control Unit                                        | Techy                                                       | TR1029-1  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| RF Sensor Unit                                         | Techy                                                       | TR1029-2  | 1            | 2022-11-24 | 2023-11-23   |  |  |
| Programmable constant temperature and humidity box     | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2022-11-24 | 2023-11-23   |  |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2022-11-24 | 2023-11-23   |  |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997       | 2022-11-24 | 2023-11-23   |  |  |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020   | 2022-11-24 | 2023-11-23   |  |  |


| Band edge emissions (Radiated) |              |                     |              |            |              |  |  |
|--------------------------------|--------------|---------------------|--------------|------------|--------------|--|--|
| Equipment                      | Manufacturer | Model No            | Inventory No | Cal Date   | Cal Due Date |  |  |
| Coaxial cable Multiflex 141    | Schwarzbeck  | N/SMA 0.5m          | 517386       | 2023-03-24 | 2024-03-23   |  |  |
| Preamplifier                   | SCHWARZBECK  | BBV9744             | 00246        | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                       | REBES Talent | UF1-SMASMAM-1<br>0m | 21101566     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                       | REBES Talent | UF2-NMNM-10m        | 21101570     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                       | REBES Talent | UF1-SMASMAM-1<br>m  | 21101568     | 2022-11-24 | 2023-11-23   |  |  |





| RE Cable                    | REBES Talent      | UF2-NMNM-1m   | 21101576 | 2022-11-24 | 2023-11-23 |
|-----------------------------|-------------------|---------------|----------|------------|------------|
| RE Cable                    | REBES Talent      | UF2-NMNM-2.5m | 21101573 | 2022-11-24 | 2023-11-23 |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB      | 1        | /          | 1          |
| Horn Antenna                | SCHWARZBECK       | BBHA9170      | 01157    | 2021-11-28 | 2023-11-27 |
| EMI TEST RECEIVER           | ROHDE&SCHWA<br>RZ | ESCI7         | 101032   | 2022-11-24 | 2023-11-23 |
| SIGNAL ANALYZER             | ROHDE&SCHWA<br>RZ | FSQ40         | 100010   | 2022-11-24 | 2023-11-23 |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB      | 1        | /          | 1          |
| Broadband<br>Preamplilifier | SCHWARZBECK       | BBV9718D      | 00008    | 2023-03-24 | 2024-03-23 |
| Horn Antenna                | SCHWARZBECK       | BBHA9120D     | 2597     | 2022-05-22 | 2024-05-21 |
| EZ_EMC                      | Frad              | FA-03A2 RE+   | 1        | /          | 1          |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB      | 1        | 1          | 1          |
| Log periodic antenna        | SCHWARZBECK       | VULB 9168     | 01328    | 2021-11-28 | 2023-11-27 |

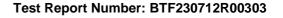
| Undesirable emission limits (below 1GHz) |                   |                     |              |            |              |  |  |  |
|------------------------------------------|-------------------|---------------------|--------------|------------|--------------|--|--|--|
| Equipment                                | Manufacturer      | Model No            | Inventory No | Cal Date   | Cal Due Date |  |  |  |
| Coaxial cable Multiflex 141              | Schwarzbeck       | N/SMA 0.5m          | 517386       | 2023-03-24 | 2024-03-23   |  |  |  |
| Preamplifier                             | SCHWARZBECK       | BBV9744             | 00246        | 2022-11-24 | 2023-11-23   |  |  |  |
| RE Cable                                 | REBES Talent      | UF1-SMASMAM-1<br>0m | 21101566     | 2022-11-24 | 2023-11-23   |  |  |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-10m        | 21101570     | 2022-11-24 | 2023-11-23   |  |  |  |
| RE Cable                                 | REBES Talent      | UF1-SMASMAM-1<br>m  | 21101568     | 2022-11-24 | 2023-11-23   |  |  |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-1m         | 21101576     | 2022-11-24 | 2023-11-23   |  |  |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-2.5m       | 21101573     | 2022-11-24 | 2023-11-23   |  |  |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | 1            | 1          | 1            |  |  |  |
| Horn Antenna                             | SCHWARZBECK       | BBHA9170            | 01157        | 2021-11-28 | 2023-11-27   |  |  |  |
| EMI TEST RECEIVER                        | ROHDE&SCHWA<br>RZ | ESCI7               | 101032       | 2022-11-24 | 2023-11-23   |  |  |  |
| SIGNAL ANALYZER                          | ROHDE&SCHWA<br>RZ | FSQ40               | 100010       | 2022-11-24 | 2023-11-23   |  |  |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | 1            | 1          | 1            |  |  |  |
| Broadband<br>Preamplilifier              | SCHWARZBECK       | BBV9718D            | 00008        | 2023-03-24 | 2024-03-23   |  |  |  |
| Horn Antenna                             | SCHWARZBECK       | BBHA9120D           | 2597         | 2022-05-22 | 2024-05-21   |  |  |  |
| EZ_EMC                                   | Frad              | FA-03A2 RE+         | 1            | /          | /            |  |  |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | 1            | 1          | 1            |  |  |  |
| Log periodic antenna                     | SCHWARZBECK       | VULB 9168           | 01328        | 2021-11-28 | 2023-11-27   |  |  |  |





| Undesirable emission limits (above 1GHz) |                   |                     |              |            |              |  |  |
|------------------------------------------|-------------------|---------------------|--------------|------------|--------------|--|--|
| Equipment                                | Manufacturer      | Model No            | Inventory No | Cal Date   | Cal Due Date |  |  |
| Coaxial cable Multiflex 141              | Schwarzbeck       | N/SMA 0.5m          | 517386       | 2023-03-24 | 2024-03-23   |  |  |
| Preamplifier                             | SCHWARZBECK       | BBV9744             | 00246        | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                                 | REBES Talent      | UF1-SMASMAM-1<br>0m | 21101566     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-10m        | 21101570     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                                 | REBES Talent      | UF1-SMASMAM-1<br>m  | 21101568     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-1m         | 21101576     | 2022-11-24 | 2023-11-23   |  |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-2.5m       | 21101573     | 2022-11-24 | 2023-11-23   |  |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | 1            | 1          | /            |  |  |
| Horn Antenna                             | SCHWARZBECK       | BBHA9170            | 01157        | 2021-11-28 | 2023-11-27   |  |  |
| EMI TEST RECEIVER                        | ROHDE&SCHWA<br>RZ | ESCI7               | 101032       | 2022-11-24 | 2023-11-23   |  |  |
| SIGNAL ANALYZER                          | ROHDE&SCHWA<br>RZ | FSQ40               | 100010       | 2022-11-24 | 2023-11-23   |  |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | 1            | 1          | /            |  |  |
| Broadband<br>Preamplilifier              | SCHWARZBECK       | BBV9718D            | 00008        | 2023-03-24 | 2024-03-23   |  |  |
| Horn Antenna                             | SCHWARZBECK       | BBHA9120D           | 2597         | 2022-05-22 | 2024-05-21   |  |  |
| EZ_EMC                                   | Frad              | FA-03A2 RE+         | /            | 1          | /            |  |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | 1            | 1          | 1            |  |  |
| Log periodic antenna                     | SCHWARZBECK       | VULB 9168           | 01328        | 2021-11-28 | 2023-11-27   |  |  |




# 4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

#### 4.3 Test Modes

| No. | Test Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Description                                                                                                                                                                                                                                                            |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| TM1 | 802.11a mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.               |  |  |  |  |
| TM2 | Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and rates has been tested and found the data rate @ MCS0 is the worst Only the data of worst case is recorded in the report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                        |  |  |  |  |
| TM3 | Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and rates has been tested and found the data rate @ MCS0 is the worst continuously transmitting mode with 802.11ac modulation type. All bandwidth and rates has been tested and found the data rate @ MCS0 is the worst continuously transmitting mode with 802.11ac modulation type. All bandwidth and rates has been tested and found the data rate @ MCS0 is the worst continuously transmitting mode with 802.11ac modulation type. All bandwidth and rates has been tested and found the data rate @ MCS0 is the worst continuously transmitting mode with 802.11ac modulation type. All bandwidth and rates has been tested and found the data rate @ MCS0 is the worst continuously transmitting mode with 802.11ac modulation type. |                                                                                                                                                                                                                                                                        |  |  |  |  |
| TM4 | 802.11ax mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. |  |  |  |  |
| TM5 | Normal Operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Keep the EUT works in normal operating mode and connect to companion device                                                                                                                                                                                            |  |  |  |  |

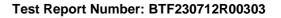
Note: All the power adaptor model have been tested, only record the worst case (adapter model: TEKA-TE120300US) in the report.





# 5 Evaluation Results (Evaluation)

### 5.1 Antenna requirement


Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

#### 5.1.1 Conclusion:

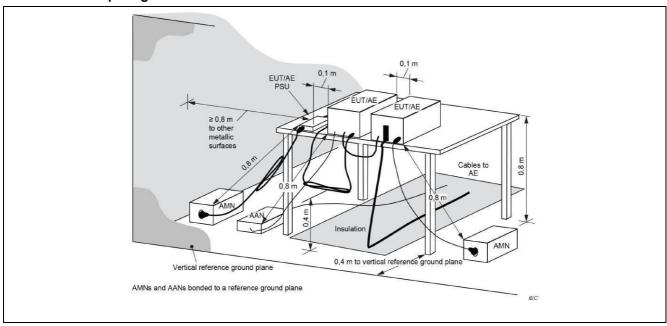


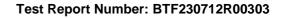
WIFI antenna port Port2 Port1





#### 6 Radio Spectrum Matter Test Results (RF)


# **Conducted Emission at AC power line**


| Test Requirement: | 47 CFR Part 15.207(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                            |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------|--|--|--|--|
| Test Method:      | Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                            |  |  |  |  |
| Test Limit:       | Frequency of emission (MHz)  0.15-0.5  0.5-5  5-30  *Decreases with the logarithm of the second content of the | Conducted limit (dBµ<br>Quasi-peak<br>66 to 56*<br>56<br>60<br>he freguency. | V) Average 56 to 46* 46 50 |  |  |  |  |

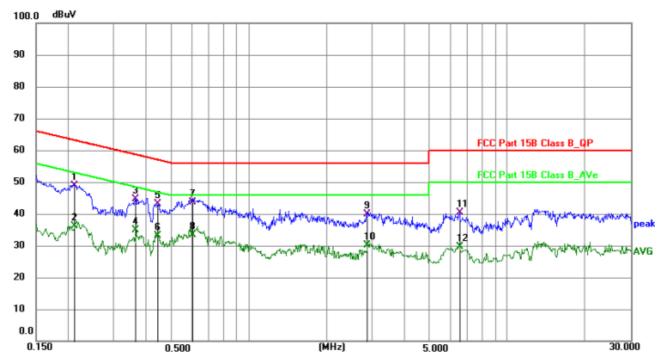
#### 6.1.1 E.U.T. Operation:

| Operating Environment: |           |  |  |
|------------------------|-----------|--|--|
| Temperature:           | 25.6 °C   |  |  |
| Humidity:              | 50.7 %    |  |  |
| Atmospheric Pressure:  | 1010 mbar |  |  |

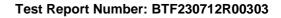
#### 6.1.2 Test Setup Diagram:



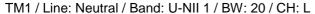


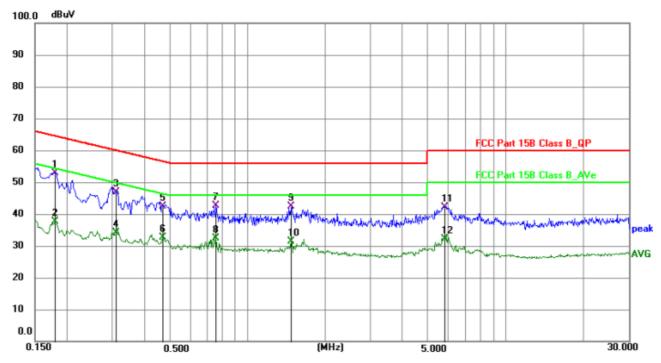



#### 6.1.3 Test Data:

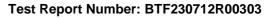

Note: Level = Reading level + Factor

Only the worst data (with adapter model TEKA-TE120300US) was recorded.


TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L




| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|----------------|----------------|-----------------|-----------------|----------------|----------|-----|--------|
| 1   | 0.2120             | 28.76          | 20.10          | 48.86           | 63.13           | -14.27         | QP       | Р   |        |
| 2   | 0.2120             | 16.06          | 20.10          | 36.16           | 53.13           | -16.97         | AVG      | Р   |        |
| 3   | 0.3650             | 24.50          | 20.13          | 44.63           | 58.61           | -13.98         | QP       | Р   |        |
| 4   | 0.3650             | 14.83          | 20.13          | 34.96           | 48.61           | -13.65         | AVG      | Р   |        |
| 5   | 0.4430             | 22.95          | 20.15          | 43.10           | 57.01           | -13.91         | QP       | Р   |        |
| 6   | 0.4430             | 13.10          | 20.15          | 33.25           | 47.01           | -13.76         | AVG      | Р   |        |
| 7 * | 0.6050             | 23.32          | 20.19          | 43.51           | 56.00           | -12.49         | QP       | Р   |        |
| 8   | 0.6050             | 13.21          | 20.19          | 33.40           | 46.00           | -12.60         | AVG      | Р   |        |
| 9   | 2.8809             | 19.41          | 20.42          | 39.83           | 56.00           | -16.17         | QP       | Р   |        |
| 10  | 2.8809             | 9.81           | 20.42          | 30.23           | 46.00           | -15.77         | AVG      | Р   |        |
| 11  | 6.5490             | 19.90          | 20.48          | 40.38           | 60.00           | -19.62         | QP       | Р   |        |
| 12  | 6.5490             | 9.15           | 20.48          | 29.63           | 50.00           | -20.37         | AVG      | Р   |        |







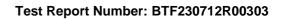



| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|----------------|----------------|-----------------|-----------------|----------------|----------|-----|--------|
| 1 * | 0.1800             | 32.77          | 20.09          | 52.86           | 64.49           | -11.63         | QP       | Р   |        |
| 2   | 0.1800             | 17.50          | 20.09          | 37.59           | 54.49           | -16.90         | AVG      | Р   |        |
| 3   | 0.3110             | 26.70          | 20.12          | 46.82           | 59.94           | -13.12         | QP       | Р   |        |
| 4   | 0.3110             | 14.09          | 20.12          | 34.21           | 49.94           | -15.73         | AVG      | Р   |        |
| 5   | 0.4690             | 22.11          | 20.15          | 42.26           | 56.53           | -14.27         | QP       | Р   |        |
| 6   | 0.4690             | 12.45          | 20.15          | 32.60           | 46.53           | -13.93         | AVG      | Р   |        |
| 7   | 0.7570             | 22.52          | 20.23          | 42.75           | 56.00           | -13.25         | QP       | Р   |        |
| 8   | 0.7570             | 12.08          | 20.23          | 32.31           | 46.00           | -13.69         | AVG      | Р   |        |
| 9   | 1.4819             | 22.05          | 20.33          | 42.38           | 56.00           | -13.62         | QP       | Р   |        |
| 10  | 1.4819             | 11.16          | 20.33          | 31.49           | 46.00           | -14.51         | AVG      | Р   |        |
| 11  | 5.8200             | 21.68          | 20.43          | 42.11           | 60.00           | -17.89         | QP       | Р   |        |
| 12  | 5.8200             | 11.75          | 20.43          | 32.18           | 50.00           | -17.82         | AVG      | Р   |        |





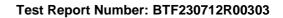
# 6.2 Duty Cycle


| Test Requirement: | All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.                                                                                                                                                                                             |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10-2013 section 12.2 (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Limit:       | No limits, only for report use.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Procedure:        | <ul> <li>i) Set the center frequency of the instrument to the center frequency of the transmission.</li> <li>ii) Set RBW &gt;= EBW if possible; otherwise, set RBW to the largest available value.</li> <li>iii) Set VBW &gt;= RBW.</li> <li>iv) Set detector = peak.</li> <li>v) The zero-span measurement method shall not be used unless both RBW and VBW are &gt; 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.</li> </ul> |

#### 6.2.1 E.U.T. Operation:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.6 °C   |
| Humidity:              | 50.7 %    |
| Atmospheric Pressure:  | 1010 mbar |

#### 6.2.2 Test Data:


Please Refer to Appendix for Details.





## 6.3 Maximum conducted output power

| 6.3 Maximum cond  | ucted output power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement: | 47 CFR Part 15.407(a)(1)(i)<br>47 CFR Part 15.407(a)(1)(ii)<br>47 CFR Part 15.407(a)(1)(iii)<br>47 CFR Part 15.407(a)(1)(iv)<br>47 CFR Part 15.407(a)(2)<br>47 CFR Part 15.407(a)(3)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test Method:      | ANSI C63.10-2013, section 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test Limit:       | For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).                                                                                                |
|                   | conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.  If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                       |
|                   | For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.  Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.                                                                                                                                                                                                                                                                                                            |
|                   | For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.  Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. |
|                   | For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                           |
|                   | For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                       |

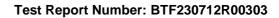




|             | For the band 5.725-5.850 GHz, the maximum conducted output power over the              |
|-------------|----------------------------------------------------------------------------------------|
|             | frequency band of operation shall not exceed 1 W.                                      |
|             | If transmitting antennas of directional gain greater than 6 dBi are used, the          |
|             | maximum conducted output power shall be reduced by the amount in dB that the           |
|             | directional gain of the antenna exceeds 6 dBi.                                         |
|             | However, fixed point-to-point U-NII devices operating in this band may employ          |
|             | transmitting antennas with directional gain greater than 6 dBi without any             |
|             | corresponding reduction in transmitter conducted power. Fixed, point-to-point          |
|             | operations exclude the use of point-to-multipoint systems, omnidirectional             |
|             | applications, and multiple collocated transmitters transmitting the same               |
|             | information. The operator of the U-NII device, or if the equipment is professionally   |
|             | installed, the installer, is responsible for ensuring that systems employing high gain |
|             | directional antennas are used exclusively for fixed, point-to-point operations.        |
|             | Method SA-1                                                                            |
|             | a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.                |
|             | b) Set RBW = 1 MHz.                                                                    |
|             | c) Set VBW >= 3 MHz.                                                                   |
|             | d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing       |
|             | <= RBW / 2, so                                                                         |
|             | that narrowband signals are not lost between frequency bins.)                          |
|             | e) Sweep time = auto.                                                                  |
|             | f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample         |
|             | detector mode.                                                                         |
|             | g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to     |
|             | enable triggering                                                                      |
|             | only on full power pulses. The transmitter shall operate at maximum power control      |
|             | level for the                                                                          |
| Procedure:  | entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF   |
| 1 Toccadic. | intervals) or                                                                          |
|             | at duty cycle >= 98%, and if each transmission is entirely at the maximum power        |
|             | control level.                                                                         |
|             | then the trigger shall be set to "free run."                                           |
|             | h) Trace average at least 100 traces in power averaging (rms) mode.                    |
|             | i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW           |
|             | of the signal                                                                          |
|             |                                                                                        |
|             | using the instrument's band power measurement function, with band limits set           |
|             | equal to the                                                                           |
|             | EBW or OBW band edges. If the instrument does not have a band power function,          |
|             | then sum the                                                                           |
|             | spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB         |
|             | EBW or 99%                                                                             |
|             | OBW of the spectrum.                                                                   |

#### 6.3.1 E.U.T. Operation:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.6 °C   |
| Humidity:              | 50.7 %    |
| Atmospheric Pressure:  | 1010 mbar |


#### 6.3.2 Test Data:

Please Refer to Appendix for Details.



#### 6.4 Power spectral density

| 6.4 Power spectral | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                    | 47 CFR Part 15.407(a)(1)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                    | 47 CFR Part 15.407(a)(1)(ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Test Requirement:  | 47 CFR Part 15.407(a)(1)(iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Toot requirement.  | 47 CFR Part 15.407(a)(1)(iv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                    | 47 CFR Part 15.407(a)(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Test Method:       | 47 CFR Part 15.407(a)(3)(i) ANSI C63.10-2013, section 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| rest ivietnou.     | For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                    | power spectral density shall not exceed 17 dBm in any 1 megahertz band.  If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                    | For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                    | For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Test Limit:        | Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. |  |  |  |
|                    | For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.  If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                    | For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                    | For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.  If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter                                                                                                                                                                                                                                                                                                       |  |  |  |

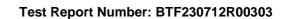




|            | conducted power.                                                                                                                                           |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Fixed, point-to-point operations exclude the use of point-to-multipoint systems,                                                                           |
|            | omnidirectional applications, and multiple collocated transmitters transmitting the                                                                        |
|            | same information. The operator of the U-NII device, or if the equipment is                                                                                 |
|            | professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, |
|            | point-to-point operations.                                                                                                                                 |
|            | a) Create an average power spectrum for the EUT operating mode being tested by                                                                             |
|            | following the instructions in 12.3.2 for measuring maximum conducted output power using a                                                                  |
|            | spectrum                                                                                                                                                   |
|            | analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their                                                          |
|            | respective alternatives) and apply it up to, but not including, the step labeled, "Compute                                                                 |
|            | power" (This procedure is required even if the maximum conducted output                                                                                    |
|            | measurement was performed using the power meter method PM.)                                                                                                |
|            | b) Use the peak search function on the instrument to find the peak of the spectrum.                                                                        |
|            | c) Make the following adjustments to the peak value of the spectrum, if applicable:                                                                        |
|            | 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.                                    |
|            | 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7,                                                                           |
|            | add                                                                                                                                                        |
| Procedure: | 1 dB to the final result to compensate for the difference between linear averaging                                                                         |
|            | and power averaging.                                                                                                                                       |
|            | d) The result is the PPSD.                                                                                                                                 |
|            | e) The procedure in item a) through item c) requires the use of 1 MHz resolution                                                                           |
|            | bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory                                                                          |
|            | authorities.This                                                                                                                                           |
|            | requirement also permits use of resolution bandwidths less than 1 MHz "provided that the                                                                   |
|            | measured power is integrated to show the total power over the measurement bandwidth" (i.e.,                                                                |
|            | 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated                                                                  |
|            | over 1 MHz bandwidth, the following adjustments to the procedures apply:                                                                                   |
|            | 1) Set RBW >= 1 / T, where T is defined in 12.2 a).                                                                                                        |
|            | 2) Set VBW >= [3 × RBW].                                                                                                                                   |
|            | 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.         |
|            | of containable framework of the controlled appears for duty cycle.                                                                                         |

#### 6.4.1 E.U.T. Operation:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.6 °C   |
| Humidity:              | 50.7 %    |
| Atmospheric Pressure:  | 1010 mbar |


#### 6.4.2 Test Data:

Please Refer to Appendix for Details.

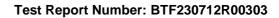


# 6.5 Emission bandwidth and occupied bandwidth

| Took Dominions suct | U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.                                                                                   |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:   | U-NII 3, U-NII 4: 47 CFR Part 15.407(e)                                                                                                        |
| T ( ) ( )           | ANSI C63.10-2013, section 6.9.3 & 12.4                                                                                                         |
| Test Method:        | KDB 789033 D02, Clause C.2                                                                                                                     |
|                     | U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.                                                                                   |
| Test Limit:         | U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz. |
|                     | Emission bandwidth:                                                                                                                            |
|                     | a) Set RBW = approximately 1% of the emission bandwidth.                                                                                       |
|                     | b) Set the VBW > RBW.                                                                                                                          |
|                     | c) Detector = peak.                                                                                                                            |
|                     | d) Trace mode = max hold.                                                                                                                      |
|                     | e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.                                                 |
|                     | Compare this with the RBW setting of the instrument. Readjust RBW and repeat                                                                   |
|                     | measurement as needed until the RBW/EBW ratio is approximately 1%.                                                                             |
|                     | Occupied bandwidth:                                                                                                                            |
|                     | a) The instrument center frequency is set to the nominal EUT channel center                                                                    |
|                     | frequency. The                                                                                                                                 |
|                     | frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.                                                     |
|                     | b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,                                                    |
|                     | and VBW shall be approximately three times the RBW, unless otherwise specified by the                                                          |
|                     | applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from                                      |
| Procedure:          | exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral                                             |
|                     | envelope<br>shall be more than [10 log (OBW/RBW)] below the reference level. Specific<br>guidance is given                                     |
|                     | in 4.1.5.2.                                                                                                                                    |
|                     | d) Step a) through step c) might require iteration to adjust within the specified                                                              |
|                     | range. e) Video averaging is not permitted. Where practical, a sample detection and single                                                     |
|                     | sweep mode                                                                                                                                     |
|                     | shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be                                               |
|                     | used.                                                                                                                                          |
|                     | f) Use the 99% power bandwidth function of the instrument (if available) and report the measured                                               |
|                     | bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace                                                   |
|                     | data points are                                                                                                                                |
|                     | recovered and directly summed in linear power terms. The recovered amplitude data points,                                                      |
|                     | beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;                                             |
|                     | that frequency is recorded as the lower frequency. The process is repeated until                                                               |



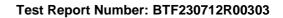



99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. c) Detector = Peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

#### 6.5.1 E.U.T. Operation:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.6 °C   |
| Humidity:              | 50.7 %    |
| Atmospheric Pressure:  | 1010 mbar |

#### 6.5.2 Test Data:

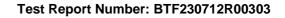

Please Refer to Appendix for Details.





# 6.6 Band edge emissions (Radiated)

|                   | issions (Radiated)                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                   |                       |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|-----------------------|--|
|                   | 47 CFR Part 15.407(b)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                   |                       |  |
| Toot Doguiroment  | 47 CFR Part 15.407(b)(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                   |                       |  |
| Test Requirement: | 47 CFR Part 15.407(b)(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                   |                       |  |
|                   | 47 CFR Part 15.407(b)(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                       |  |
| Test Method:      | ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                   |                       |  |
|                   | For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the                                                                                                                                                                                                                                                                                                                                                                                       |                           |                   |                       |  |
|                   | 5.15-5.35 GHz band sh                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O .                       |                   |                       |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                   |                       |  |
|                   | For transmitters operat                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ing in the 5.25-5.35 GH   | Hz band: All emis | ssions outside of the |  |
|                   | 5.15-5.35 GHz band sh                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                   |                       |  |
|                   | 0.10 0.00 GHZ Band Si                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iaii not execca an e.i.i. | p. 01 27 abiii/iv | II IZ.                |  |
|                   | For transmitters operat                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ing solely in the 5 725-  | 5 850 GHz band    | Į.                    |  |
|                   | All emissions shall be li                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                       |  |
|                   | or below the band edge                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                   |                       |  |
|                   | below the band edge, a                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                   |                       |  |
|                   | linearly to a level of 15.                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                   |                       |  |
|                   | from 5 MHz above or b                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                   |                       |  |
|                   | dBm/MHz at the band                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | neasing inleany   | to a level of 21      |  |
|                   | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                  | MHz               | CH-                   |  |
|                   | ···· · <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MHz                       |                   | GHz                   |  |
|                   | 0.090-0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.42-16.423              | 399.9-410         | 4.5-5.15              |  |
|                   | ¹0.495-0.505                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.69475-16.69525         |                   | 5.35-5.46             |  |
|                   | 2.1735-2.1905                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.80425-16.80475         |                   | 7.25-7.75             |  |
|                   | 4.125-4.128                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.5-25.67                | 1300-1427         | 8.025-8.5             |  |
|                   | 4.17725-4.17775                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.5-38.25                | 1435-1626.5       | 9.0-9.2               |  |
|                   | 4.20725-4.20775                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73-74.6                   | 1645.5-1646.      | 9.3-9.5               |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 5                 |                       |  |
|                   | 6.215-6.218                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.8-75.2                 | 1660-1710         | 10.6-12.7             |  |
| <b>-</b>          | 6.26775-6.26825                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108-121.94                | 1718.8-1722.<br>2 | 13.25-13.4            |  |
| Test Limit:       | 6.31175-6.31225                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 123-138                   | 2200-2300         | 14.47-14.5            |  |
|                   | 8.291-8.294                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 149.9-150.05              | 2310-2390         | 15.35-16.2            |  |
|                   | 8.362-8.366                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 156.52475-156.525         | 2483.5-2500       | 17.7-21.4             |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                        |                   |                       |  |
|                   | 8.37625-8.38675                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 156.7-156.9               | 2690-2900         | 22.01-23.12           |  |
|                   | 8.41425-8.41475                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 162.0125-167.17           | 3260-3267         | 23.6-24.0             |  |
|                   | 12.29-12.293                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 167.72-173.2              | 3332-3339         | 31.2-31.8             |  |
|                   | 12.51975-12.52025                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 240-285                   | 3345.8-3358       | 36.43-36.5            |  |
|                   | 12.57675-12.57725                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 322-335.4                 | 3600-4400         | ( <sup>2</sup> )      |  |
|                   | 13.36-13.41                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 022 000. <del>4</del>     | 3000 4400         | ( )                   |  |
|                   | 13.30-13.41                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |                       |  |
|                   | <sup>1</sup> Until February 1, 1999                                                                                                                                                                                                                                                                                                                                                                                                                                      | , this restricted band s  | hall be 0.490-0.5 | 510 MHz.              |  |
|                   | <sup>2</sup> Above 38.6                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                   |                       |  |
|                   | The Collection of Co                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                   |                       |  |
|                   | The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § |                           |                   |                       |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                   |                       |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                   |                       |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                   |                       |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                   |                       |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                   |                       |  |
|                   | 15.35apply to these me                                                                                                                                                                                                                                                                                                                                                                                                                                                   | easurements.              |                   |                       |  |
|                   | <b> _</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |                       |  |
|                   | Except as provided else                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ewnere in this subpart,   | the emissions fr  | rom an intentional    |  |

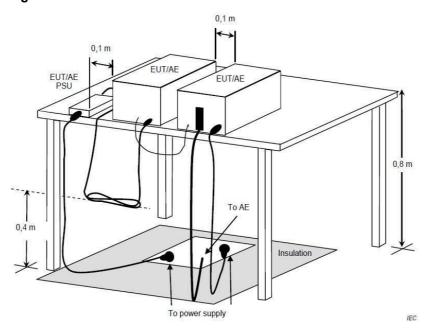





| radiator shall not exceed the field str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | radiator shall not exceed the field strength levels specified in the following table: |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Frequency (MHz) Field st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rolts/meter) distance                                                                 |  |  |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (meters)                                                                              |  |  |
| 0.009-0.490 2400/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , ,                                                                                   |  |  |
| 0.490-1.705 24000/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       |  |  |
| 1.705-30.0 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                                    |  |  |
| 30-88 100 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                     |  |  |
| 88-216 150 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                     |  |  |
| 216-960 200 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                     |  |  |
| Above 960 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                     |  |  |
| Above 1GHz:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |  |  |
| a. For above 1GHz, the EUT was pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | aced on the top of a rotating table 1.5 meters                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anechoic chamber. The table was rotated 360                                           |  |  |
| degrees to determine the position of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rom the interference-receiving antenna, which                                         |  |  |
| was mounted on the top of a variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e-height antenna tower.                                                               |  |  |
| c. The antenna height is varied from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | one meter to four meters above the ground to                                          |  |  |
| determine the maximum value of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e field strength. Both horizontal and vertical                                        |  |  |
| polarizations of the antenna are set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to make the measurement.                                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EUT was arranged to its worst case and then                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | om 1 meter to 4 meters (for the test frequency                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ned to heights 1 meter) and the rotatable table                                       |  |  |
| was turned from 0 degrees to 360 deg |                                                                                       |  |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | to Peak Detect Function and Specified                                                 |  |  |
| Bandwidth with Maximum Hold Mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | peak mode was 10dB lower than the limit                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ped and the peak values of the EUT would be                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nat did not have 10dB margin would be                                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | average method as specified and then reported                                         |  |  |
| Procedure: in a data sheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | el, the middle channel, the Highest channel.                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | performed in X, Y, Z axis positioning for                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | axis positioning which it is the worst case. frequencies measured was complete.       |  |  |
| Remark:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nequencies measured was complete.                                                     |  |  |
| 1. Level= Read Level+ Cable Loss+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Antenna Factor- Preamn Factor                                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | disturbance above 18GHz was very low. The                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e highest emissions could be found when                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en displayed. The amplitude of spurious                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | re attenuated more than 20dB below the limit                                          |  |  |
| need not be reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | encies above 1GHz, the field strength limits                                          |  |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er, the peak field strength of any emission shall                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | average limits specified above by more than 20                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n. For the emissions whose peak level is lower                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | measurement is shown in the report.                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ere very low and the harmonics were the                                               |  |  |
| highest point could be found when to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | esting, so only the above harmonics had been                                          |  |  |
| displayed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |  |  |

#### 6.6.1 E.U.T. Operation:

| Operating Environment: |         |
|------------------------|---------|
| Temperature:           | 25.8 °C |
| Humidity:              | 50.9 %  |






Atmospheric Pressure:

1010 mbar

#### 6.6.2 Test Setup Diagram:





#### 6.6.3 Test Data:

Note: Level = Reading level + Factor

#### UNII-1 20M 5180MHz Horizontal

|     | ·_ <b>=</b> • · · · · · · · |                   |                  |                   |                   |                |          |     |
|-----|-----------------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| No. | Frequency<br>(MHz)          | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1   | 5136.422                    | 85.99             | -32.27           | 53.72             | 68.20             | -14.48         | peak     | Р   |
| 2   | 5150.000                    | 85.85             | -32.23           | 53.62             | 68.20             | -14.58         | peak     | Р   |

#### UNII-1\_20M\_5180MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5135.746           | 84.28             | -32.16           | 52.12             | 68.20             | -16.08         | peak     | Р   |
| 2   | 5150.000           | 86.18             | -32.12           | 54.06             | 68.20             | -14.14         | peak     | Р   |

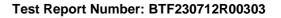
#### UNII-1 20M 5320MHz Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5350.000           | 87.76             | -32.05           | 55.71             | 68.20             | -12.49         | peak     | Р   |
| 2   | 5460.000           | 86.92             | -32.01           | 54.91             | 68.20             | -13.29         | peak     | Р   |

#### UNII-1\_20M\_5320MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor (dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|---------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5350.000           | 88.55             | -32.05        | 56.50             | 68.20             | -11.70         | peak     | Р   |
| 2   | 5460.000           | 86.31             | -32.01        | 54.30             | 68.20             | -13.90         | peak     | Р   |

#### UNII-3\_20M\_5745MHz\_Horizontal


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5650.000           | 88.03             | -31.87           | 56.16             | 68.20             | -12.04         | peak     | Р   |
| 2   | 5700.000           | 94.76             | -31.98           | 62.78             | 105.60            | -42.82         | peak     | Р   |
| 3   | 5720.000           | 95.27             | -32.04           | 63.23             | 110.80            | -47.57         | peak     | Р   |

#### UNII-3\_20M\_5745MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5650.000           | 87.23             | -31.87           | 55.36             | 68.20             | -12.84         | peak     | Р   |
| 2   | 5700.000           | 94.69             | -31.98           | 62.71             | 105.60            | -42.89         | peak     | Р   |
| 3   | 5720.000           | 96.55             | -32.04           | 64.51             | 110.80            | -46.29         | peak     | Р   |

#### UNII-3\_20M\_5825MHz\_Horizontal

|   | 61111 6_2611_6626111112_11611261161 |                    |                   |                  |                   |                   |                |          |     |
|---|-------------------------------------|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
|   | No.                                 | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| Ī | 1                                   | 5850.000           | 89.53             | -31.78           | 57.75             | 122.20            | -64.45         | peak     | Р   |
| Ī | 2                                   | 5875.000           | 95.36             | -31.89           | 63.47             | 110.80            | -47.33         | peak     | Р   |
| ĺ | 3                                   | 5925.000           | 96.44             | -31.95           | 64.49             | 68.20             | -3.71          | peak     | Р   |





| CHIMIL | 2014  | 5825MHz   | \/artical |
|--------|-------|-----------|-----------|
| UINII3 | /UIVI | 5875IVIH7 | vertical  |

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5850.000           | 90.78             | -31.78           | 59.00             | 122.20            | -63.20         | peak     | Р   |
| 2   | 5875.000           | 96.80             | -31.89           | 64.91             | 110.80            | -45.89         | peak     | Р   |
| 3   | 5925.000           | 95.06             | -31.95           | 63.11             | 68.20             | -5.09          | peak     | Р   |

#### UNII-1\_40M\_5190MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5134.322           | 88.11             | -31.73           | 56.38             | 68.20             | -11.82         | peak     | Р   |
| 2   | 5150.000           | 84.92             | -31.69           | 53.23             | 68.20             | -14.97         | peak     | Р   |

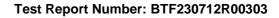
#### UNII-1\_40M\_5190MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5135.422           | 87.82             | -31.84           | 55.98             | 68.20             | -12.22         | peak     | Р   |
| 2   | 5150.000           | 83.37             | -31.8            | 51.57             | 68.20             | -16.63         | peak     | Р   |

#### UNII-1 40M 5310MHz Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5350.000           | 87.74             | -32.05           | 55.69             | 68.20             | -12.51         | peak     | Р   |
| 2   | 5460.000           | 84.40             | -32.01           | 52.39             | 68.20             | -15.81         | peak     | Р   |

#### UNII-1\_40M\_5310MHz\_Vertical


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5350.000           | 88.54             | -32.05           | 56.49             | 68.20             | -11.71         | peak     | Р   |
| 2   | 5460.000           | 84.46             | -32.01           | 52.45             | 68.20             | -15.75         | peak     | Р   |

#### UNII-3\_40M\_5755MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5650.000           | 88.90             | -31.87           | 57.03             | 68.20             | -11.17         | peak     | Р   |
| 2   | 5700.000           | 95.33             | -31.98           | 63.35             | 105.60            | -42.25         | peak     | Р   |
| 3   | 5720.000           | 96.46             | -32.04           | 64.42             | 110.80            | -46.38         | peak     | Р   |

#### UNII-3 40M 5755MHz Vertical

|     | <u>o_                                    </u> | · · · · · · · · · · · · · · · · · |                  |                   |                   |                |          |     |
|-----|-----------------------------------------------|-----------------------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| No. | Frequency<br>(MHz)                            | Reading<br>(dBuV)                 | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1   | 5650.000                                      | 88.96                             | -31.87           | 57.09             | 68.20             | -11.11         | peak     | Р   |
| 2   | 5700.000                                      | 95.92                             | -31.98           | 63.94             | 105.60            | -41.66         | peak     | Р   |
| 3   | 5720.000                                      | 95.23                             | -32.04           | 63.19             | 110.80            | -47.61         | peak     | Р   |





#### UNII-3\_40M\_5795MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5850.000           | 88.05             | -31.78           | 56.27             | 122.20            | -65.93         | peak     | Р   |
| 2   | 5875.000           | 95.28             | -31.89           | 63.39             | 110.80            | -47.41         | peak     | Р   |
| 3   | 5925.000           | 95.22             | -31.95           | 63.27             | 68.20             | -4.93          | peak     | Р   |

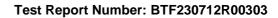
#### UNII-3\_40M\_5795MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5850.000           | 88.58             | -31.78           | 56.80             | 122.20            | -65.40         | peak     | Р   |
| 2   | 5875.000           | 95.58             | -31.89           | 63.69             | 110.80            | -47.11         | peak     | Р   |
| 3   | 5925.000           | 96.24             | -31.95           | 64.29             | 68.20             | -3.91          | peak     | Р   |

#### UNII-1 80M 5210MHz Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5136.164           | 85.92             | -32.24           | 53.68             | 68.20             | -14.52         | peak     | Р   |
| 2   | 5150.000           | 84.94             | -32.23           | 52.71             | 68.20             | -15.49         | peak     | Р   |
| 3   | 5350.000           | 86.67             | -32.05           | 54.62             | 68.20             | -13.58         | peak     | Р   |
| 4   | 5460.000           | 85.56             | -32.01           | 53.55             | 68.20             | -14.65         | peak     | Р   |

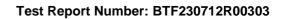
#### UNII-1\_80M\_5210MHz\_Vertical


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5136.212           | 84.48             | -32.29           | 52.19             | 68.20             | -16.01         | peak     | Р   |
| 2   | 5150.000           | 85.25             | -32.23           | 53.02             | 68.20             | -15.18         | peak     | Р   |
| 3   | 5350.000           | 86.73             | -32.05           | 54.68             | 68.20             | -13.52         | peak     | Р   |
| 4   | 5460.000           | 84.65             | -32.01           | 52.64             | 68.20             | -15.56         | peak     | Р   |

#### UNII-3 80M 5775MHz Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5720.000           | 95.59             | -32.04           | 63.55             | 110.80            | -47.25         | peak     | Р   |
| 2   | 5850.000           | 87.34             | -31.55           | 55.79             | 122.20            | -66.41         | peak     | Р   |
| 3   | 5875.000           | 94.17             | -31.66           | 62.51             | 110.80            | -48.29         | peak     | Р   |
| 4   | 5925.000           | 94.71             | -31.72           | 62.99             | 68.20             | -5.21          | peak     | Р   |

#### UNII-3\_80M\_5775MHz\_Vertical

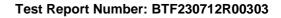

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5720.000           | 94.14             | -32.04           | 62.10             | 110.80            | -48.70         | peak     | Р   |
| 2   | 5850.000           | 88.54             | -31.55           | 56.99             | 122.20            | -65.21         | peak     | Р   |
| 3   | 5875.000           | 94.57             | -31.66           | 62.91             | 110.80            | -47.89         | peak     | Р   |
| 4   | 5925.000           | 95.54             | -31.72           | 63.82             | 68.20             | -4.38          | peak     | Р   |





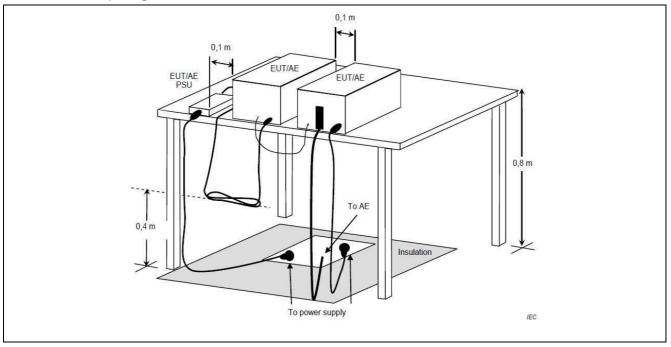
## 6.7 Undesirable emission limits (below 1GHz)

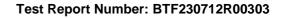
| Test Requirement: | 17 Of 11 are 10:107 (B)(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:      | 47 CFR Part 15.407(b)(9) ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Tool Moulou.      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 GHz must comply with the ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | neral field strength                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Test Limit:       | Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table. Frequency (MHz)         Field strength (microvolts/meter)         Measurement distance (meters)           0.009-0.490         2400/F(kHz)         300           0.490-1.705         24000/F(kHz)         30           1.705-30.0         30         30           30-88         100 **         3           88-216         150 **         3           216-960         200 **         3           Above 960         500         3                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Procedure:        | above the ground at a 3 medegrees to determine the pob. The EUT was set 3 or 10 which was mounted on the c. The antenna height is varied determine the maximum varipolarizations of the antenna d. For each suspected emisting the antenna was tuned to he of below 30MHz, the antenna was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum H. If the emission level of the specified, then testing could reported. Otherwise the emire-tested one by one using data sheet.  g. Test the EUT in the lowes h. The radiation measuremed Transmitting mode, and four i. Repeat above procedures Remark:  1. Level= Read Level+ Cab 2. Scan from 9kHz to 30MH points marked on above plot testing, so only above point emissions from the radiator need not be reported.  3. The disturbance below 16 | T was placed on the top of a rotal ster semi-anechoic chamber. The position of the highest radiation. The position of the highest radiation. The position of the highest radiation. The provided from the highest radiation are set to make the measurements of the field strength. Both how are set to make the measurements of the field strength. Both how are set to make the measurements of the field strength of the field strength. The field strength of the field st | e table was rotated 360 nce-receiving antenna, tower. rs above the ground to rizontal and vertical ent. ts worst case and then (for the test frequency and the rotatable table num reading. In and Specified ower than the limit is of the EUT would be argin would be and then reported in a he Highest channel. Is positioning for the tist he worst case. In Factor was very low. The all be found when itude of spurious a 20dB below the limit onics were the highest |  |  |  |  |  |  |






- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.


#### 6.7.1 E.U.T. Operation:

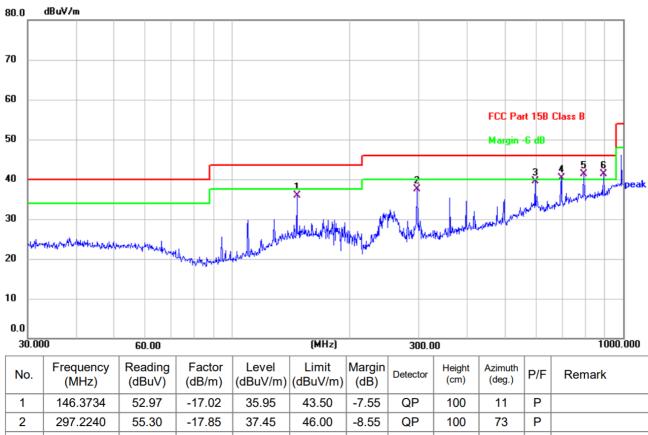

| Operating Environment: | Operating Environment: |  |  |  |  |  |  |  |
|------------------------|------------------------|--|--|--|--|--|--|--|
| Temperature:           | 25.9 °C                |  |  |  |  |  |  |  |
| Humidity:              | 50.6 %                 |  |  |  |  |  |  |  |
| Atmospheric Pressure:  | 1010 mbar              |  |  |  |  |  |  |  |



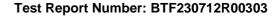


## 6.7.2 Test Setup Diagram:









#### 6.7.3 Test Data:

Note: All the mode have been tested, and only the worst case mode are in the report Only the worst data (with adapter model TEKA-TE120300US) was recorded. Level = Reading level + Factor

TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L



| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Height<br>(cm) | Azimuth (deg.) | P/F | Remark |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|----------------|----------------|-----|--------|
| 1   | 146.3734           | 52.97             | -17.02           | 35.95             | 43.50             | -7.55          | QP       | 100            | 11             | Р   |        |
| 2   | 297.2240           | 55.30             | -17.85           | 37.45             | 46.00             | -8.55          | QP       | 100            | 73             | Р   |        |
| 3   | 595.1326           | 51.37             | -11.77           | 39.60             | 46.00             | -6.40          | QP       | 100            | 244            | Р   |        |
| 4 ! | 694.4174           | 50.23             | -9.89            | 40.34             | 46.00             | -5.66          | QP       | 300            | 73             | Р   |        |
| 5 * | 793.3960           | 50.18             | -8.81            | 41.37             | 46.00             | -4.63          | QP       | 200            | 124            | Р   |        |
| 6!  | 890.7277           | 49.29             | -7.98            | 41.31             | 46.00             | -4.69          | QP       | 100            | 122            | Р   |        |





6 \*

890.7277

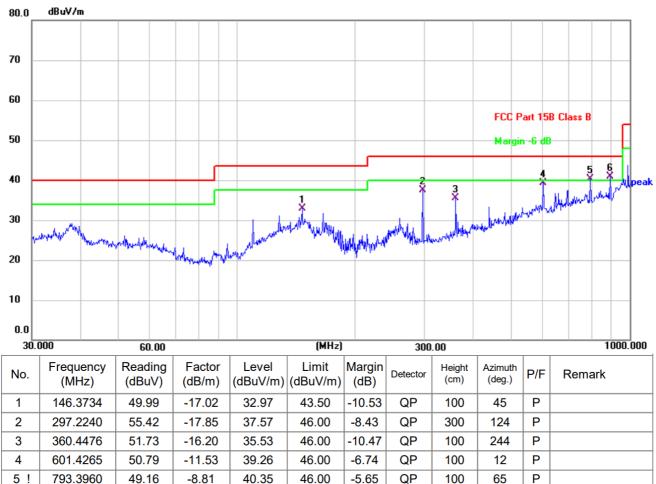
48.79

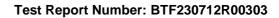
-7.98

40.81

46.00

-5.19

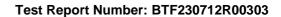

QP


200

124

Р










## 6.8 Undesirable emission limits (above 1GHz)

| 0.6 Undestrable en | iissioii iiiiits (abov                                                    | <u> </u>                    |                           |                       |  |  |  |  |
|--------------------|---------------------------------------------------------------------------|-----------------------------|---------------------------|-----------------------|--|--|--|--|
|                    | 47 CFR Part 15.407(b)                                                     | (1)                         |                           |                       |  |  |  |  |
| Toot Dominosonti   | 47 CFR Part 15.407(b)                                                     | (2)                         |                           |                       |  |  |  |  |
| Test Requirement:  | 47 CFR Part 15.407(b)                                                     |                             |                           |                       |  |  |  |  |
|                    | 47 CFR Part 15.407(b)                                                     | · /                         |                           |                       |  |  |  |  |
| Test Method:       | ANSI C63.10-2013, sec                                                     |                             | 7.6                       |                       |  |  |  |  |
| rest wethou.       | For transmitters operat                                                   |                             |                           | ssions outside of the |  |  |  |  |
|                    | 5.15-5.35 GHz band sh                                                     |                             |                           |                       |  |  |  |  |
|                    | For transmitters operat                                                   |                             |                           |                       |  |  |  |  |
|                    | 5.15-5.35 GHz band sh                                                     |                             |                           |                       |  |  |  |  |
|                    | 3.13-3.33 GHZ band si                                                     | iali fiot exceed all e.i.i. | ρ. οι –2 <i>1</i> ασιτ/ίν | II IZ.                |  |  |  |  |
|                    | For transmitters operat                                                   | ing solely in the 5 725.    | 5 850 GHz hand            |                       |  |  |  |  |
|                    | All emissions shall be li                                                 |                             |                           |                       |  |  |  |  |
|                    | or below the band edge                                                    |                             |                           |                       |  |  |  |  |
|                    | below the band edge, a                                                    |                             |                           |                       |  |  |  |  |
|                    |                                                                           |                             |                           |                       |  |  |  |  |
|                    | linearly to a level of 15.                                                |                             |                           |                       |  |  |  |  |
|                    | from 5 MHz above or b                                                     |                             | creasing linearly         | to a level of 21      |  |  |  |  |
|                    | dBm/MHz at the band e                                                     | •                           | N 41 1-                   | 011-                  |  |  |  |  |
|                    | MHz                                                                       | MHz                         | MHz                       | GHz                   |  |  |  |  |
|                    | 0.090-0.110                                                               | 16.42-16.423                | 399.9-410                 | 4.5-5.15              |  |  |  |  |
|                    | ¹0.495-0.505                                                              | 16.69475-16.69525           |                           | 5.35-5.46             |  |  |  |  |
|                    | 2.1735-2.1905                                                             | 16.80425-16.80475           | 960-1240                  |                       |  |  |  |  |
|                    | 4.125-4.128                                                               | 25.5-25.67                  | 1300-1427                 |                       |  |  |  |  |
|                    | 4.17725-4.17775                                                           | 37.5-38.25                  | 1435-1626.5               | 9.0-9.2               |  |  |  |  |
|                    | 4.20725-4.20775                                                           | 73-74.6                     | 1645.5-1646.              | 9.3-9.5               |  |  |  |  |
|                    |                                                                           |                             | 5                         |                       |  |  |  |  |
|                    | 6.215-6.218                                                               | 74.8-75.2                   | 1660-1710                 | 10.6-12.7             |  |  |  |  |
|                    | 6.26775-6.26825                                                           | 108-121.94                  | 1718.8-1722.              | 13.25-13.4            |  |  |  |  |
|                    |                                                                           |                             | 2                         |                       |  |  |  |  |
| Test Limit:        | 6.31175-6.31225                                                           | 123-138                     | 2200-2300                 | 14.47-14.5            |  |  |  |  |
| Test Littit.       | 8.291-8.294                                                               | 149.9-150.05                | 2310-2390                 | 15.35-16.2            |  |  |  |  |
|                    | 8.362-8.366                                                               | 156.52475-156.525           | 2483.5-2500               | 17.7-21.4             |  |  |  |  |
|                    |                                                                           | 25                          |                           |                       |  |  |  |  |
|                    | 8.37625-8.38675                                                           | 156.7-156.9                 | 2690-2900                 | 22.01-23.12           |  |  |  |  |
|                    | 8.41425-8.41475                                                           | 162.0125-167.17             | 3260-3267                 | 23.6-24.0             |  |  |  |  |
|                    | 12.29-12.293                                                              | 167.72-173.2                | 3332-3339                 | 31.2-31.8             |  |  |  |  |
|                    | 12.51975-12.52025                                                         | 240-285                     | 3345.8-3358               | 36.43-36.5            |  |  |  |  |
|                    | 12.57675-12.57725                                                         | 322-335.4                   | 3600-4400                 | (2)                   |  |  |  |  |
|                    | 13.36-13.41                                                               | 0 000                       |                           | ( )                   |  |  |  |  |
|                    |                                                                           |                             |                           |                       |  |  |  |  |
|                    | <sup>1</sup> Until February 1, 1999                                       | , this restricted band sl   | hall be 0.490-0.5         | 510 MHz.              |  |  |  |  |
|                    | <sup>2</sup> Above 38.6                                                   |                             |                           |                       |  |  |  |  |
|                    |                                                                           |                             |                           |                       |  |  |  |  |
|                    | The field strength of en                                                  |                             |                           |                       |  |  |  |  |
|                    | exceed the limits show                                                    | •                           | •                         |                       |  |  |  |  |
|                    | MHz, compliance with t                                                    |                             |                           |                       |  |  |  |  |
|                    | measurement instrume                                                      |                             |                           |                       |  |  |  |  |
|                    | 1000 MHz, compliance                                                      | with the emission limit     | s in § 15.209sha          | all be demonstrated   |  |  |  |  |
|                    | based on the average value of the measured emissions. The provisions in § |                             |                           |                       |  |  |  |  |
|                    | 15.35apply to these measurements.                                         |                             |                           |                       |  |  |  |  |
|                    | Except as provided else                                                   | ewhere in this subpart,     | the emissions fr          | om an intentional     |  |  |  |  |
|                    | radiator shall not excee                                                  |                             |                           |                       |  |  |  |  |
|                    | Frequency (MHz)                                                           | Field strength              | •                         | Measurement           |  |  |  |  |
|                    | 1 //                                                                      |                             |                           |                       |  |  |  |  |





|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (microvolts/meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (meters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 0.009-0.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2400/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | 0.490-1.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24000/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | 1.705-30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 30-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 88-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 216-960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Procedure: | above the ground at a 3 medegrees to determine the pb. The EUT was set 3 meter was mounted on the top of c. The antenna height is varied determine the maximum varied polarizations of the antenna d. For each suspected emisting the antenna was tuned to hof below 30MHz, the antenna was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum Handwidth with Handwid | T was placed on the top of a rotal eter fully-anechoic chamber. The osition of the highest radiation. Its away from the interference-real a variable-height antenna tower. The field from one meter to four meter to four meter to the field strength. Both how are set to make the measurement of the field strength. Both how are set to make the measurement of the field strength of the field strength of the field strength. The field strength of | table was rotated 360 ceiving antenna, which rs above the ground to rizontal and vertical ent. ts worst case and then (for the test frequency and the rotatable table num reading. and Specified  ower than the limit s of the EUT would be hargin would be cified and then reported the Highest channel. s positioning for t is the worst case. was complete.  ap Factor Hz was very low. The uld be found when itude of spurious 20dB below the limit e field strength limits th of any emission shall above by more than 20 lose peak level is lower in the report. The monics were the |

### 6.8.1 E.U.T. Operation:

| Operating Environment: |           |  |  |  |  |
|------------------------|-----------|--|--|--|--|
| Temperature:           | 25.9 °C   |  |  |  |  |
| Humidity:              | 50.6 %    |  |  |  |  |
| Atmospheric Pressure:  | 1010 mbar |  |  |  |  |

displayed.



Test Report Number: BTF230712R00303

#### 6.8.2 Test Data:

Note: Level = Reading level + Factor

Only the worst data (with adapter model TEKA-TE120300US) was recorded.

1G~25G:

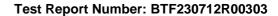
#### UNII-1 20M 5180MHz Horizontal

| _ |     |                    |                   |                  | <u> </u>          |                   |                |          |     |
|---|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
|   | No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|   | 1   | 4477.119           | 78.30             | -28.46           | 49.84             | 68.2              | -18.36         | peak     | Р   |
|   | 2   | 6454.499           | 80.78             | -29.80           | 50.99             | 68.2              | -17.21         | peak     | Р   |
|   | 3   | 9068.118           | 81.14             | -29.90           | 51.24             | 68.2              | -16.96         | peak     | Р   |
|   | 4   | 10049.886          | 82.21             | -30.50           | 51.72             | 68.2              | -16.48         | peak     | Р   |
|   | 5   | 12350.121          | 83.86             | -30.11           | 53.75             | 68.2              | -14.45         | peak     | Р   |
| ľ | 6   | 16010.049          | 84.94             | -33.07           | 51.87             | 68.2              | -16.33         | peak     | Р   |
|   |     |                    |                   |                  |                   |                   |                |          |     |

#### UNII-1\_20M\_5180MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 4475.901           | 77.65             | -28.74           | 48.91             | 68.2              | -19.29         | peak     | Р   |
| 2   | 6454.156           | 79.88             | -28.73           | 51.15             | 68.2              | -17.05         | peak     | Р   |
| 3   | 9069.806           | 81.09             | -29.57           | 51.51             | 68.2              | -16.69         | peak     | Р   |
| 4   | 10049.358          | 83.73             | -30.16           | 53.58             | 68.2              | -14.62         | peak     | Р   |
| 5   | 12350.990          | 83.26             | -31.45           | 51.82             | 68.2              | -16.38         | peak     | Р   |
| 6   | 16010.448          | 84.41             | -32.48           | 51.93             | 68.2              | -16.27         | peak     | Р   |

#### UNII-1 20M 5240MHz Horizontal


|     |                    |                   |                  |                   | _                 |                |          |     |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1   | 3465.275           | 79.91             | -28.68           | 51.23             | 68.2              | -16.97         | peak     | Р   |
| 2   | 5442.525           | 80.25             | -29.77           | 50.48             | 68.2              | -17.72         | peak     | Р   |
| 3   | 8056.475           | 82.10             | -28.30           | 53.79             | 68.2              | -14.41         | peak     | Р   |
| 4   | 9037.063           | 83.02             | -30.34           | 52.68             | 68.2              | -15.52         | peak     | Р   |
| 5   | 11338.994          | 84.19             | -30.17           | 54.02             | 68.2              | -14.18         | peak     | Р   |
| 6   | 14998.644          | 85.49             | -32.76           | 52.73             | 68.2              | -15.47         | peak     | Р   |

#### UNII-1 20M 5240MHz Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3577.471           | 78.28             | -28.39           | 49.89             | 68.2              | -18.31         | peak     | Р   |
| 2   | 5554.135           | 79.27             | -29.00           | 50.26             | 68.2              | -17.94         | peak     | Р   |
| 3   | 8169.980           | 81.35             | -29.29           | 52.06             | 68.2              | -16.14         | peak     | Р   |
| 4   | 9149.588           | 83.14             | -29.99           | 53.15             | 68.2              | -15.05         | peak     | Р   |
| 5   | 11450.209          | 83.34             | -29.02           | 54.32             | 68.2              | -13.88         | peak     | Р   |
| 6   | 15109.920          | 85.14             | -32.29           | 52.86             | 68.2              | -15.34         | peak     | Р   |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

Page 40 of 51

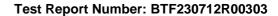




### UNII-1\_20M\_5320MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3413.698           | 79.57             | -28.96           | 50.61             | 68.2              | -17.59         | peak     | Р   |
| 2   | 5391.510           | 80.83             | -30.14           | 50.69             | 68.2              | -17.51         | peak     | Р   |
| 3   | 8007.704           | 81.74             | -29.99           | 51.76             | 68.2              | -16.44         | peak     | Р   |
| 4   | 8987.302           | 83.41             | -30.51           | 52.91             | 68.2              | -15.29         | peak     | Р   |
| 5   | 11288.980          | 84.46             | -31.71           | 52.75             | 68.2              | -15.45         | peak     | Р   |
| 6   | 14948.507          | 84.44             | -32.66           | 51.78             | 68.2              | -16.42         | peak     | Р   |

### UNII-1\_20M\_5320MHz\_Vertical


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3414.265           | 78.54             | -29.21           | 49.33             | 68.2              | -18.87         | peak     | Р   |
| 2   | 5392.667           | 80.77             | -29.18           | 51.59             | 68.2              | -16.61         | peak     | Р   |
| 3   | 8006.954           | 82.39             | -30.54           | 51.85             | 68.2              | -16.35         | peak     | Р   |
| 4   | 8987.194           | 84.75             | -30.03           | 54.73             | 68.2              | -13.47         | peak     | Р   |
| 5   | 11289.114          | 84.69             | -30.12           | 54.56             | 68.2              | -13.64         | peak     | Р   |
| 6   | 14947.330          | 86.34             | -33.17           | 53.17             | 68.2              | -15.03         | peak     | Р   |

#### UNII-3 20M 5745MHz Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3577.141           | 78.12             | -27.01           | 51.10             | 68.2              | -17.10         | peak     | Р   |
| 2   | 5553.183           | 79.84             | -27.54           | 52.30             | 68.2              | -15.90         | peak     | Р   |
| 3   | 8168.486           | 81.75             | -28.24           | 53.50             | 68.2              | -14.70         | peak     | Р   |
| 4   | 9149.865           | 84.03             | -29.50           | 54.54             | 68.2              | -13.66         | peak     | Р   |
| 5   | 11450.219          | 83.44             | -30.29           | 53.14             | 68.2              | -15.06         | peak     | Р   |

#### UNII-3 20M 5745MHz Vertical

|     |                    |                   | 011111 0_2       | OIVI_07 + 31VII I |                   |                |          |     |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1   | 3577.494           | 78.02             | -28.00           | 50.02             | 68.2              | -18.18         | peak     | Р   |
| 2   | 5553.019           | 80.74             | -27.81           | 52.92             | 68.2              | -15.28         | peak     | Р   |
| 3   | 8169.298           | 82.49             | -28.30           | 54.18             | 68.2              | -14.02         | peak     | Р   |
| 4   | 9149.401           | 83.26             | -29.98           | 53.28             | 68.2              | -14.92         | peak     | Р   |
| 5   | 11451.265          | 84.00             | -29.15           | 54.85             | 68.2              | -13.35         | peak     | Р   |
| 6   | 15110.189          | 84.30             | -32.90           | 51.40             | 68.2              | -16.80         | peak     | Р   |

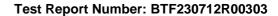




#### UNII-3 20M 5785MHz Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 4476.543           | 77.87             | -29.19           | 48.68             | 68.2              | -19.52         | peak     | Р   |
| 2   | 6453.619           | 79.20             | -30.01           | 49.19             | 68.2              | -19.01         | peak     | Р   |
| 3   | 9068.588           | 82.44             | -28.71           | 53.73             | 68.2              | -14.47         | peak     | Р   |
| 4   | 10049.150          | 82.18             | -29.57           | 52.61             | 68.2              | -15.59         | peak     | Р   |
| 5   | 12350.380          | 84.57             | -31.21           | 53.36             | 68.2              | -14.84         | peak     | Р   |
| 6   | 16010.036          | 84.23             | -33.18           | 51.05             | 68.2              | -17.15         | peak     | Р   |

### UNII-3\_20M\_5785MHz\_Vertical


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3465.535           | 79.94             | -28.50           | 51.44             | 68.2              | -16.76         | peak     | Р   |
| 2   | 5442.678           | 81.15             | -28.63           | 52.52             | 68.2              | -15.68         | peak     | Р   |
| 3   | 8056.872           | 82.70             | -28.59           | 54.11             | 68.2              | -14.09         | peak     | Р   |
| 4   | 9036.304           | 83.92             | -29.30           | 54.61             | 68.2              | -13.59         | peak     | Р   |
| 5   | 11338.849          | 83.82             | -30.17           | 53.65             | 68.2              | -14.55         | peak     | Р   |
| 6   | 14998.171          | 86.07             | -32.78           | 53.28             | 68.2              | -14.92         | peak     | Р   |

#### UNII-3 20M 5825MHz Horizontal

|     | ONI S_ZOW_SOZSIWI IZ_NONZONIAI |                   |                  |                   |                   |                |          |     |  |  |  |
|-----|--------------------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--|--|--|
| No. | Frequency<br>(MHz)             | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |  |  |  |
| 1   | 3576.950                       | 77.36             | -28.15           | 49.22             | 68.2              | -18.98         | peak     | Р   |  |  |  |
| 2   | 5554.189                       | 79.37             | -27.71           | 51.66             | 68.2              | -16.54         | peak     | Р   |  |  |  |
| 3   | 8169.088                       | 82.63             | -29.03           | 53.60             | 68.2              | -14.60         | peak     | Р   |  |  |  |
| 4   | 9149.409                       | 83.20             | -28.80           | 54.40             | 68.2              | -13.80         | peak     | Р   |  |  |  |
| 5   | 11450.750                      | 84.37             | -29.16           | 55.20             | 68.2              | -13.00         | peak     | Р   |  |  |  |
| 6   | 15110.630                      | 83.71             | -32.55           | 51.16             | 68.2              | -17.04         | peak     | Р   |  |  |  |

#### UNII-3\_20M\_5825MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |  |  |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--|--|
| 1   | 3413.691           | 79.20             | -29.23           | 49.97             | 68.2              | -18.23         | peak     | Р   |  |  |
| 2   | 5392.666           | 80.20             | -30.38           | 49.82             | 68.2              | -18.38         | peak     | Р   |  |  |
| 3   | 8007.752           | 82.25             | -29.02           | 53.23             | 68.2              | -14.97         | peak     | Р   |  |  |
| 4   | 8987.388           | 84.76             | -29.52           | 55.24             | 68.2              | -12.96         | peak     | Р   |  |  |
| 5   | 11289.359          | 83.62             | -31.26           | 52.36             | 68.2              | -15.84         | peak     | Р   |  |  |
| 6   | 14948.144          | 84.71             | -34.27           | 50.44             | 68.2              | -17.76         | peak     | Р   |  |  |

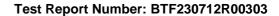




#### UNII-1 40M 5190MHz Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 4477.540           | 79.15             | -28.80           | 50.35             | 68.2              | -17.85         | peak     | Р   |
| 2   | 6453.119           | 80.01             | -29.26           | 50.75             | 68.2              | -17.45         | peak     | Р   |
| 3   | 9068.123           | 80.69             | -29.81           | 50.88             | 68.2              | -17.32         | peak     | Р   |
| 4   | 10049.988          | 83.79             | -30.83           | 52.96             | 68.2              | -15.24         | peak     | Р   |
| 5   | 12351.881          | 82.69             | -31.30           | 51.39             | 68.2              | -16.81         | peak     | Р   |
| 6   | 16009.294          | 83.68             | -32.74           | 50.94             | 68.2              | -17.26         | peak     | Р   |

#### UNII-1\_40M\_5190MHz\_Vertical


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3465.499           | 79.79             | -28.40           | 51.39             | 68.2              | -16.81         | peak     | Р   |
| 2   | 5442.729           | 81.39             | -28.36           | 53.03             | 68.2              | -15.17         | peak     | Р   |
| 3   | 8056.733           | 83.28             | -29.27           | 54.02             | 68.2              | -14.18         | peak     | Р   |
| 4   | 9037.631           | 83.89             | -29.88           | 54.01             | 68.2              | -14.19         | peak     | Р   |
| 5   | 11339.287          | 84.90             | -29.69           | 55.20             | 68.2              | -13.00         | peak     | Р   |
| 6   | 14996.762          | 85.37             | -32.84           | 52.53             | 68.2              | -15.67         | peak     | Р   |

#### UNII-1 40M 5310MHz Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3577.116           | 78.99             | -27.98           | 51.01             | 68.2              | -17.19         | peak     | Р   |
| 2   | 5554.777           | 79.36             | -28.59           | 50.76             | 68.2              | -17.44         | peak     | Р   |
| 3   | 8168.832           | 81.24             | -29.05           | 52.18             | 68.2              | -16.02         | peak     | Р   |
| 4   | 9148.957           | 83.50             | -30.09           | 53.41             | 68.2              | -14.79         | peak     | Р   |
| 5   | 11451.196          | 84.11             | -30.19           | 53.92             | 68.2              | -14.28         | peak     | Р   |
| 6   | 15109.551          | 83.84             | -31.93           | 51.91             | 68.2              | -16.29         | peak     | Р   |

### UNII-1\_40M\_5310MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3414.567           | 79.12             | -28.86           | 50.26             | 68.2              | -17.94         | peak     | Р   |
| 2   | 5392.412           | 80.24             | -29.24           | 51.00             | 68.2              | -17.20         | peak     | Р   |
| 3   | 8007.368           | 82.78             | -29.40           | 53.38             | 68.2              | -14.82         | peak     | Р   |
| 4   | 8987.137           | 84.81             | -29.60           | 55.22             | 68.2              | -12.98         | peak     | Р   |
| 5   | 11290.050          | 84.59             | -31.68           | 52.91             | 68.2              | -15.29         | peak     | Р   |
| 6   | 14948.593          | 84.77             | -33.86           | 50.91             | 68.2              | -17.29         | peak     | Р   |

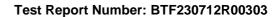




#### UNII-3 40M 5755MHz Horizontal

|     |                    |                   |                  |                   | _                 |                |          |     |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1   | 3415.523           | 78.35             | -29.17           | 49.18             | 68.2              | -19.02         | peak     | Р   |
| 2   | 5391.490           | 80.60             | -28.76           | 51.84             | 68.2              | -16.36         | peak     | Р   |
| 3   | 8007.680           | 81.73             | -29.51           | 52.23             | 68.2              | -15.97         | peak     | Р   |
| 4   | 8988.014           | 83.09             | -30.40           | 52.69             | 68.2              | -15.51         | peak     | Р   |
| 5   | 11288.399          | 84.41             | -30.78           | 53.63             | 68.2              | -14.57         | peak     | Р   |
| 6 * | 14947.757          | 85.16             | -32.90           | 52.26             | 68.2              | -15.94         | peak     | Р   |

#### UNII-3\_40M\_5755MHz\_Vertical


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3576.675           | 79.09             | -27.49           | 51.60             | 68.2              | -16.60         | peak     | Р   |
| 2   | 5553.022           | 81.07             | -27.60           | 53.47             | 68.2              | -14.73         | peak     | Р   |
| 3   | 8168.503           | 82.24             | -27.86           | 54.38             | 68.2              | -13.82         | peak     | Р   |
| 4   | 9149.751           | 83.31             | -29.07           | 54.24             | 68.2              | -13.96         | peak     | Р   |
| 5   | 11451.299          | 84.42             | -28.97           | 55.45             | 68.2              | -12.75         | peak     | Р   |
| 6   | 15110.609          | 84.10             | -32.39           | 51.71             | 68.2              | -16.49         | peak     | Р   |

### UNII-3\_40M\_5795MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3463.947           | 79.66             | -29.48           | 50.18             | 68.2              | -18.02         | peak     | Р   |
| 2   | 5442.287           | 79.81             | -29.61           | 50.20             | 68.2              | -18.00         | peak     | Р   |
| 3   | 8057.875           | 82.11             | -29.96           | 52.16             | 68.2              | -16.04         | peak     | Р   |
| 4   | 9036.923           | 84.34             | -30.95           | 53.38             | 68.2              | -14.82         | peak     | Р   |
| 5   | 11338.289          | 85.28             | -31.24           | 54.04             | 68.2              | -14.16         | peak     | Р   |
| 6   | 14998.252          | 84.78             | -32.71           | 52.06             | 68.2              | -16.14         | peak     | Р   |

#### UNII-3 40M 5795MHz Vertical

|     | <u> </u>           |                   |                  |                   |                   |                |          |     |  |  |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--|--|
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |  |  |
| 1   | 4476.307           | 78.12             | -29.09           | 49.04             | 68.2              | -19.16         | peak     | Р   |  |  |
| 2   | 6453.958           | 80.10             | -28.54           | 51.56             | 68.2              | -16.64         | peak     | Р   |  |  |
| 3   | 9069.427           | 80.87             | -29.26           | 51.61             | 68.2              | -16.59         | peak     | Р   |  |  |
| 4   | 10049.302          | 83.59             | -30.91           | 52.68             | 68.2              | -15.52         | peak     | Р   |  |  |
| 5   | 12351.903          | 83.60             | -30.14           | 53.46             | 68.2              | -14.74         | peak     | Р   |  |  |
| 6   | 16010.690          | 83.72             | -33.14           | 50.58             | 68.2              | -17.62         | peak     | Р   |  |  |

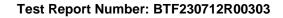




#### UNII-1\_80M\_5210MHz\_Horizontal

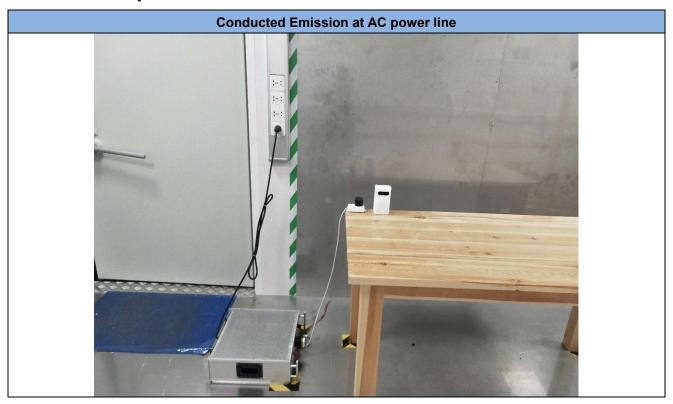
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 4475.949           | 79.13             | -28.90           | 50.23             | 68.2              | -17.97         | peak     | Р   |
| 2   | 6453.725           | 80.49             | -29.12           | 51.38             | 68.2              | -16.82         | peak     | Р   |
| 3   | 9069.220           | 80.80             | -28.97           | 51.83             | 68.2              | -16.37         | peak     | Р   |
| 4   | 10049.998          | 82.87             | -29.90           | 52.97             | 68.2              | -15.23         | peak     | Р   |
| 5   | 12350.647          | 84.04             | -30.96           | 53.08             | 68.2              | -15.12         | peak     | Р   |
| 6   | 16009.054          | 83.59             | -33.91           | 49.67             | 68.2              | -18.53         | peak     | Р   |

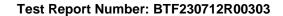
### UNII-1\_80M\_5210MHz\_Vertical


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 4303.454           | 3464.732          | 79.64            | -27.91            | 51.73             | 68.2           | peak     | Р   |
| 2   | 6280.754           | 5441.342          | 81.62            | -29.40            | 52.22             | 68.2           | peak     | Р   |
| 3   | 8895.834           | 8057.188          | 81.61            | -29.37            | 52.24             | 68.2           | peak     | Р   |
| 4   | 9876.104           | 9037.106          | 83.64            | -29.14            | 54.51             | 68.2           | peak     | Р   |
| 5   | 12177.995          | 11338.704         | 85.17            | -30.59            | 54.58             | 68.2           | peak     | Р   |
| 6   | 15836.606          | 14996.853         | 85.55            | -32.76            | 52.80             | 68.2           | peak     | Р   |

## UNII-3 80M\_5775MHz\_Horizontal

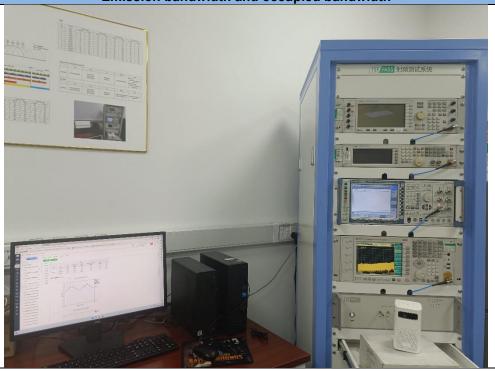
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3613.554           | 3577.584          | 77.69            | -28.16            | 49.53             | 68.2           | peak     | Р   |
| 2   | 5590.854           | 5553.530          | 80.98            | -27.58            | 53.40             | 68.2           | peak     | Р   |
| 3   | 8205.934           | 8168.532          | 82.49            | -28.80            | 53.68             | 68.2           | peak     | Р   |
| 4   | 9186.204           | 9150.237          | 82.98            | -28.16            | 54.81             | 68.2           | peak     | Р   |
| 5   | 11488.095          | 11450.941         | 83.75            | -30.59            | 53.16             | 68.2           | peak     | Р   |
| 6   | 15146.706          | 15109.634         | 85.51            | -32.01            | 53.51             | 68.2           | peak     | Р   |

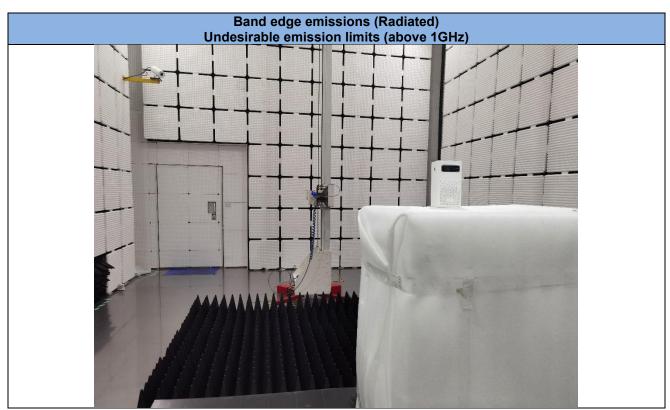

### UNII-3\_80M\_5775MHz\_Vertical

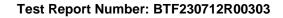

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 3414.551           | 3415.295          | 79.03            | -29.73            | 49.31             | 68.2           | peak     | Р   |
| 2   | 5391.851           | 5392.095          | 80.06            | -30.21            | 49.86             | 68.2           | peak     | Р   |
| 3   | 8006.931           | 8007.548          | 81.71            | -29.60            | 52.11             | 68.2           | peak     | Р   |
| 4   | 8987.201           | 8987.683          | 84.38            | -31.32            | 53.05             | 68.2           | peak     | Р   |
| 5   | 11289.092          | 11289.703         | 84.99            | -31.00            | 53.99             | 68.2           | peak     | Р   |
| 6   | 14947.703          | 14947.490         | 84.82            | -33.09            | 51.73             | 68.2           | peak     | Р   |



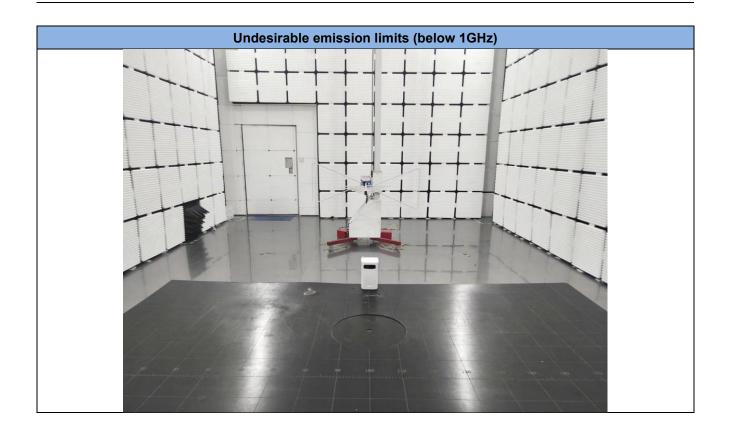


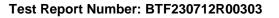

#### 7 **Test Setup Photos**





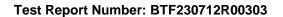


# Duty Cycle Maximum conducted output power Power spectral density Emission bandwidth and occupied bandwidth







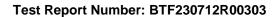







#### **EUT Constructional Details (EUT Photos)** 8


Please refer to the Appendix EUT Photos.





# **Appendix**

Please refer to the Appendix UNII\_1 WiFi 5G Test Data and UNII\_3 WiFi 5G Test Data.







BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --