Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.9 ± 6 % | 1.85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.9 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.3 Ω + 4.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.3 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.162 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |---------------------------------------|-------| | · · · · · · · · · · · · · · · · · · · | | Certificate No: D2450V2-853_Jul22 Page 4 of 6 ## **DASY5 Validation Report for Head TSL** Date: 20.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.29 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.6% Maximum value of SAR (measured) = 22.2 W/kg 0 dB = 22.2 W/kg = 13.47 dBW/kg ## Impedance Measurement Plot for Head TSL Certificate No: D2450V2-853_Jul22 Page 6 of 6 # **5GHz Dipole Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Multilateral Agreement for the recognition of calibration ce Certificate No: D5GHzV2-1060_Jul22 | Object | D5GHzV2 - SN:1 | 060 | | |--|--|--|---| | Calibration procedure(s) | QA CAL-22.v6
Calibration Proce | edure for SAR Validation Sources | between 3-10 GHz | | Calibration date: | July 05, 2022 | | | | This calibration certificate documen | nts the traceability to nation | onal standards, which realize the physical uni | ts of measurements (SI) | | | | robability are given on the following pages and | SECRETARY OF SECRETARY OF THE PROPERTY | | | | | | | All calibrations have been conducted | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | | | | | | Calibration Equipment used (M&TE | E critical for calibration) | | | | | | | | | | 1.5 # | 0.15.4.45.45.44.4 | | | | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power meter NRP
Power sensor NRP-Z91 | SN: 104778
SN: 103244 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524) | Apr-23
Apr-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 | SN: 104778
SN: 103244
SN: 103245 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525) | Apr-23
Apr-23
Apr-23 | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k) | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527) | Apr-23
Apr-23
Apr-23
Apr-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k) | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527) | Apr-23
Apr-23
Apr-23
Apr-23 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
08-Mar-22 (No. EX3-3503_Mar22) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23
Mar-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
08-Mar-22 (No. EX3-3503_Mar22)
02-May-22 (No. DAE4-601_May22) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (In house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23
Mar-23
May-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Prower sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID#
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477
Name | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Prower sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID#
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID#
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477
Name | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) Thurstion | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | Certificate No: D5GHzV2-1060_Jul22 Page 1 of 13 ## Calibration Laboratory of Schmid & Partner **Engineering AG** Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1060_Jul22 Page 2 of 13 #### **Measurement Conditions** | ASY system configuration, as far as no | t given on page 1. | | |--|--|----------------------------------| | DASY Version | DASY52 | V52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5750 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 4.50 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.84 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jul22 ## Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.55 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.87 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.7 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 $\rm cm^3$ (10 g) of Head TSL | condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jul22 Page 4 of 13 ## Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.80 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.60 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 4.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jul22 Page 5 of 13 #### Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.1 ± 6 % | 5.05 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 5.10 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jul22 Page 6 of 13 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 49.4 Ω - 6.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.7 dB | | ## Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 47.7 Ω - 5.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.3 dB | | #### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 46.2 Ω - 3.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.8 dB | ## Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 50.0 Ω - 3.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 30.1 dB | | ## Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | $53.6 \Omega + 0.5 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 29.2 dB | | Certificate No: D5GHzV2-1060_Jul22 Page 7 of 13 #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 51.9 Ω - 1.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 32.1 dB | | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 51.2 Ω - 3.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.5 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.202 ns | | |----------------------------------|----------|--| | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D5GHzV2-1060_Jul22 Page 8 of 13 ## **DASY5 Validation Report for Head TSL** Date: 05.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.50 \text{ S/m}$; $\varepsilon_r = 34.9$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5250 MHz; $\sigma = 4.55$ S/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.60 \text{ S/m}$; $\varepsilon_r = 34.7$; $\rho = 1000 \text{ kg/m}^3$. Medium parameters used: f = 5500 MHz; $\sigma = 4.80 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 4.90 \text{ S/m}$; $\varepsilon_r = 34.3$; $\rho = 1000 \text{ kg/m}^3$. Medium parameters used: f = 5750 MHz; $\sigma = 5.05 \text{ S/m}$; $\varepsilon_r = 34.1$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5800 MHz; σ = 5.10 S/m; ϵ_r = 34.0; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 08.03.2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.05.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.40 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 27.9 W/kg ## SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.26 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.1% Maximum value of SAR (measured) = 17.6 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.86 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 27.1 W/kg ## SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.25 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 69.8% Maximum value of SAR (measured) = 17.4 W/kg Certificate No: D5GHzV2-1060_Jul22 Page 9 of 13 Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.09 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.9% Maximum value of SAR (measured) = 18.3 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.69 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 8.60 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.4% Maximum value of SAR (measured) = 19.8 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.44 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 31.2 W/kg SAR(1 g) = 8.39 W/kg; SAR(10 g) = 2.40 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.3% Maximum value of SAR (measured) = 19.3 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.53 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.4% Maximum value of SAR (measured) = 19.0 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.35 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.2% Maximum value of SAR (measured) = 19.4 W/kg Certificate No: D5GHzV2-1060_Jul22 Page 10 of 13 0 dB = 19.8 W/kg = 12.96 dBW/kg ## Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500, 5600 MHz) # Impedance Measurement Plot for Head TSL (5300, 5500, 5600, 5750, 5800 MHz) # **ANNEX I** Sensor Triggering Data Summary | TX ANT | Band | |--------|---| | 0 | 2.4G WiFi 802.11b/g/n
5G WiFi 802.11a/n/ac | | 1 | 2.4G WiFi 802.11b/g/n
5G WiFi 802.11a/n/ac | | | SAR sensor trigger distance | | |------------|-----------------------------|------| | Position | ANT0 | ANT1 | | Front Side | 14 | 14 | | Back Side | 16 | 16 | | Top Side | 16 | 16 | ## SAR sensor position The SAR sensor is connected to each antenna through a hardware circuit, so it obtains the antenna induction signal by itself, and the detection position is the sensor position. as the picture shows: According to the above description, this device was tested by the manufacturer to determine the SAR sensor triggering distances for the front, rear and top edge of the device. The measured power state within ± 5 mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge. To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom with the device at maximum output power without power reduction. We tested the power and got the different proximity sensor triggering distances for front, rear, and top edge. But the manufacturer has declared 14mm (Front) / 16mm (Rear) / 16mm (Top) are the most conservative triggering distance for wifi antenna .Therefore base on the most conservative triggering distances as above, additional SAR measurements were required at 13mm (Front) / 15mm (Rear) / 15mm (Top) for wifi antenna. #### Front of Wifi antenna Moving device toward the phantom: | The power state | | | | | | | | | | | | |---|--------|--------|--------|--------|--------|-----|-----|-----|-----|-----|-----| | Distance [mm] 19 18 17 16 15 14 13 12 11 10 9 | | | | | | | | | | 9 | | | Main antenna | Normal | Normal | Normal | Normal | Normal | Low | Low | Low | Low | Low | Low | ## Moving device away from the phantom: | The power state | | | | | | | | | | | | |---|-----|-----|-----|-----|-----|-----|--------|--------|--------|--------|--------| | Distance [mm] 9 10 11 12 13 14 15 16 17 18 19 | | | | | | | | | 19 | | | | Main antenna | Low | Low | Low | Low | Low | Low | Normal | Normal | Normal | Normal | Normal | ## Rear of Wifi antenna Moving device toward the phantom: | The power state | | | | | | | | | | | | | |---|--------|--------|--------|--------|--------|-----|-----|-----|-----|-----|-----|--| | Distance [mm] 20 19 18 17 16 15 14 13 12 11 1 | | | | | | | | | 10 | | | | | Main antenna | Normal | Normal | Normal | Normal | Normal | Low | Low | Low | Low | Low | Low | | ## Moving device away from the phantom: | The power state | | | | | | | | | | | | | |-----------------|-----|-----|-----|-----|-----|-----|--------|--------|--------|--------|--------|--| | Distance [mm] | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | Main antenna | Low | Low | Low | Low | Low | Low | Normal | Normal | Normal | Normal | Normal | | ## Top of Wifi antenna Moving device toward the phantom: | The power state | | | | | | | | | | | | | |--|--------|--------|--------|--------|--------|-----|-----|-----|-----|-----|-----|--| | Distance [mm] 20 19 18 17 16 15 14 13 12 11 10 | | | | | | | | | | 10 | | | | Main antenna | Normal | Normal | Normal | Normal | Normal | Low | Low | Low | Low | Low | Low | | ## Moving device away from the phantom: | The power state | | | | | | | | | | | | |-----------------|-----|-----|-----|-----|-----|-----|--------|--------|--------|--------|--------| | Distance [mm] | | | | | | | | 20 | | | | | Main antenna | Low | Low | Low | Low | Low | Low | Normal | Normal | Normal | Normal | Normal | The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0° . The rear edge evaluation The rear edge evaluation The top edge evaluation Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer. ## **ANNEX J** Accreditation Certificate United States Department of Commerce National Institute of Standards and Technology # Certificate of Accreditation to ISO/IEC 17025:2017 NVLAP LAB CODE: 600118-0 #### **Telecommunication Technology Labs, CAICT** Beijing China is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for: ## **Electromagnetic Compatibility & Telecommunications** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). 2022-10-01 through 2023-09-30 Effective Dates For the National Voluntary Laboratory Accreditation Program