Report on the FCC and IC Testing of the Continental Advanced Antenna GmbH

Model: 2032V00ME1

In accordance with FCC 47 CFR Part 15 C and ISED RSS-210 and ISED RSS-GEN

Prepared for:	Continental Advanced Antenna GmbH Römerring 1 31137 Hildesheim
	Germany

 FCC ID:
 2ACC72032V00ME1

 IC:
 11980A-2032V00ME1

COMMERCIAL-IN-CONFIDENCE

Date: 2024-09-25

Document Number: TR-0713332778-01 | Revision: 1

/	_		
	U SUI	V	
	001		

Product Service

Add value. Inspire trust.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Michael Ingerl	2024-09-25	M. 2005 SIGN-ID 966014
Authorised Signatory	Markus Biberger	2024-09-25	SIGN-ID 966067

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules. **Engineering Statement:**

These measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15 C and ISED RSS-210 and RSS-GEN.

The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE		SIGNATURE
Testing	Michael Ingerl		2024-09-2	25	M. 2005 SIGN-ID 966015
Laboratory Accreditation DAkkS Reg. No. D-PL-113 DAkkS Reg. No. D-PL-113		Laboratory recognition Registration No. BNetzA-CAB-	-16/21-15	Industry Canac 3050A-2	la test site registration

Executive Statement:

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15 C:2021 and ISED RSS-210:2020 and RSS-GEN:2021

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2024 TÜV SÜD Product Service.

Trade Register Munich HRB 85742 VAT ID No. DE129484267 Information pursuant to Section 2(1) DL-InfoV (Germany) at www.tuvsud.com/imprint Managing Directors: Walter Reithmaier (CEO) Patrick van Welij Phone: +49 (0) 9421 56 82-0 Fax: +49 (0) 9421 56 82-199 www.tuvsud.com TÜV SÜD Product Service GmbH

Äußere Frühlingstraße 45 94315 Straubing Germany

TÜV SÜD Product Service

Content

1 Re	eport Summary	2
1.1	Modification Report	2
1.2	Introduction	2
1.3	Brief Summary of Results	3
1.4	Product Information	4
1.5	EUT Modifications Record	5
1.6	Test Location	5
2 Te	est Details	6
2.1	Bandwidth of Momentary Signals	6
2.2	Periodic Operation Requirement	
2.3	Temperature Stability	
2.4	Radiated emissions	
2.5	Antenna requirement	
3 M	leasurement Uncertainty	

Annex to Test Report TR-0713332778-01 | Revision: 0

1 Report Summary

1.1 Modification Report

Alternations and additions of this report will be issued to the holders of each copy in the form of a complete document.

Revision	Description of changes	Date of Issue
0	First Issue 2024-08-13	
1	Added chapter 2.5, 2024-09-25	
	Changed result at chapter 2.2,	
	Added power results at chapter 2.4	

Table 1: Report of Modifications

1.2 Introduction

Continental Advanced Continental Advanced Parque Industrial Cons 5000-082 Vila Real Portugal	Antenna Sociedade Unipessoal Lda
2032V00ME1	
Radiated sample:	000639 (0x27h CW 433.47 MHz CH1) 000617 (0x27h CW 434.37 MHz CH2) 000622 (0x27h FCC Application)
03612494B03 V11.33	Ϋ́Υ, Ϋ́Υ`, Υ``, Υ``, Υ``, Υ``, Υ``, Υ``, Υ``,
•	2 0004
ISED RSS-210, Issue ISED RSS-GEN, Issue	2: 2021 10, Amendment 1: 2020 95, Amendment 1: 2019 and
 4500048317 2024-03-13	
2024-06-10 2024-06-10 2024-07-04 Michael Ingerl ANSI C63.4: 2014 ANSI C63.10: 2013 FCC 47 CFR Part 2 J: KDB 558074 D01 V05 ISED RSS-102, Issue KDB 447498 D04 Inter	iR02
	Continental Advanced Parque Industrial Cons 5000-082 Vila Real Portugal 2032V00ME1 Radiated sample: Radiated sample: Conducted sample: 03612494B03 V11.33 1 FCC 47 CFR Part 15 C ISED RSS-210, Issue ISED RSS-GEN, Issue ISED RSS-GEN, Issue Amendment 2: 2021 4500048317 2024-06-10 2024-06-10 2024-06-10 2024-06-10 2024-06-10 2024-07-04 Michael Ingerl ANSI C63.4: 2014 ANSI C63.10: 2013 FCC 47 CFR Part 2 J: KDB 558074 D01 V05 ISED RSS-102, Issue

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15 C, ISED RSS-210 and ISED RSS-GEN is shown below.

Section	Specification	Test Description	Result
	Clause		
Transmittin	g continuously		
2.1	15.231(c)	Bandwidth of momentary signals	Pass
2.2	15.231(a)/	Periodic operation requirement	Declaration
	15.231(3)		
2.4	15.231(a)	Radiated Emissions	Pass
	15.205, 15.209		
2.5	15.203	Antenna requirement	Pass
N/A	15.207	Conducted Emissions on Mains Terminals	Not applicable,
			battery supply

Table 2: Results according to FCC 47 CFR Part 15 C

Section	Specification	Test Description	Result
	Clause		
Transmittin	g continuously		
2.1	A1.3	Bandwidth of momentary signals	Pass
2.2	A.1.1	Periodic operation requirement Declaration	
2.4	A.1.1	Radiated Emissions	Pass

Table 3: Results according to ISED RSS-210

Section	Specification	Test Description	Result
	Clause		
Transmittin	g continuously		
2.1	6.7	Bandwidth of momentary signals	Pass
2.4	8.9, 8.10	Spurious Emissions	Pass
2.3	6.11	Temperature Stability	Pass
2.5	6.8	Antenna requirement	Pass
N/A	8.8	Conducted Emissions on Mains Terminals	Not applicable,
			battery supply

Table 4: Results according to RSS-Gen

1.4 Product Information

1.4.1 Technical Description

The product incorporates an AM/FM/DAB Amplifier for automotive use. The amplifier will be connected to the audio broadcast receiver and to car integrated glass antenna.

The product incorporates a transceiver operating in the 433 MHz band additionally. The transceiver is used for remote operations with the car key.

Temperature range:

Working temperature:

-40 ...+105 °C

RF-Part

Multi channel Transmitter:

Frequencies:

433.47 / 433.92 / 434.37 MHz

1.5 EUT Modifications Record

The table below details modifications made to the EUT during the test program. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT As supplied by the customer	Modification Fitted By Not Applicable	Fitted Not Applicable
0		Not Applicable	Not Applicable

Table 5

1.6 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing test laboratory:

Test Name	Name of Engineer(s)
Transmitting continuously	
Bandwidth of momentary signals	Michael Ingerl
Periodic operation requirement	Michael Ingerl
Radiated Emissions	Michael Ingerl
Temperature Stability	Michael Ingerl
Antenna requirement	Michael Ingerl

Office Address: Äußere Frühlingstraße 45 94315 Straubing Germany

2 Test Details

2.1 Bandwidth of Momentary Signals

2.1.1 Specification Reference

FCC 47 CFR Part 15 C, Clause 15.231(c) ISED RSS-210, Clause A.1.3 ISED RSS-Gen, Clause 6.7

2.1.2 Equipment under Test and Modification State

2032V00ME1, S/N: 000622 (0x27h FCC Application) - Modification State 0

2.1.3 Date of Test

2024-07-04

2.1.4 Environmental Conditions

Ambient Temperature	24 °C
Relative Humidity	49 %

2.1.5 Specification Limits

FCC 47 CFR, clause 15.231(c)

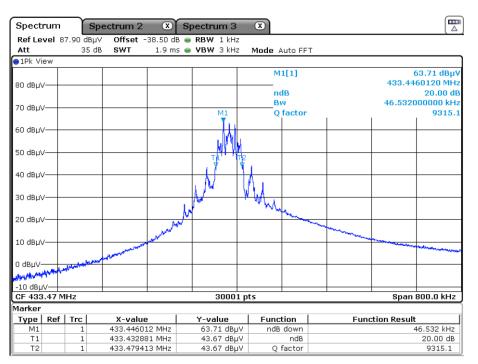
The bandwidth of the emission shall be no wider than 0.25 % of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5 % of the center frequency. Bandwidth is determined at the points 20 dB down from the modulation carrier.

ISED RSS-210 Issue 10, Amd. 1; clause A1.3

The occupied bandwidth of the momentary devices shall be less than or equal to 0.25 % of the center frequency for devices operating between 70 MHz and 900 MHz. For devices operating above 900 MHz, the occupied bandwidth shall be less than or equal to 0.5 % of the center frequency.

2.1.6 Test Method

The test was performed according to ANSI C63.10, clauses 6.9 See section 2.4.6 of this test report for details.



2.1.7 Test Results

Transmitting continuously on 433.47 MHz

Center frequency	20 dB Bandwidth	Limit	
433.47 MHz	46.532 kHz	1083.675 kHz	

Table 6: 20 dB Bandwidth

Transmitting continuously on 433.47 MHz

Centre Frequency	99% Bandwidth	Limit	
433.47 MHz	74.158 kHz	1083.675 kHz	

Table 7: 99% Bandwidth

Spectrum	\neg	Spectrum 2	× Spectrum	3 X			
Ref Level 8 Att			OdB 👄 RBW 1 k 9 ms 👄 VBW 3 k		Auto FF	т	(
⊜1Pk View							
80 dBµV					11[1] CC Bw		63.81 dBµ 433.4461070 MH 74.157528082 kH
70 dBµV			M1				
60 dBµV			<u> </u>				
50 dBµV			N	M			
40 dBµV			t				
30 dBµV			L.M.	+ When			
20 dBµV			wheel the		- And a comment		
10 dBµV							
0 dBµV	ALVY-Stor	prover the second se					
-10 dBµV							
CF 433.47 M	1Hz	1 1	300	01 pts	1	I	Span 800.0 kHz
Marker							
	Trc	X-value	Y-value	Fund	tion	Fund	tion Result
M1 T1	1	433.446107 MI 433.4212816 MI			CC BW		74.157528082 kHz
T2	1	433.4954392 MI	Hz 39.87 di	ЗµУ			

Transmitting continuously on 434.37 MHz

Center frequency	20 dB Bandwidth	Limit	
434.37 MHz	46.425 kHz	1085.925 kHz	

Table 8: 20 dB Bandwidth

Spectrum		Spectrum 2 🛛 🛛	Spectrum 3	×		
Ref Level Att	87.90 di	3μV Offset -38.50	dB 🖷 RBW 1 kHz ns 🖶 VBW 3 kHz	Mode Auto FF	т	
⊖1Pk View						
80 dBµV				M1[1]		64.95 dΒμV 434.3460810 MHz 20.00 dB
70 dBµV			MI	Bw Q factor		46.425000000 kHz 9355.8
60 dBµV						
50 dBµV				¥		
40 dBµV			, N	<u>X.</u>		
30 dBµV			M	W WAN		
20 dBµV		and the second second	w ^r			
10 dBµV	and the second					and the second and a second and the
0 dBµV						
-10 dBµV	MU 2		30001	ntc		Span 800.0 kHz
Marker	-172		55001	p(3		3pan 000.0 KHz
	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	434.346081 MHz	64.95 dBµ\			46.425 kHz
T1 T2	1	434.332828 MHz 434.379253 MHz	45.00 dBµ\ 44.91 dBµ\			20.00 dB 9355.8

Transmitting continuously on 434.37 MHz

Centre Frequency	99% Bandwidth	Limit	
434.37 MHz	74.318 kHz	1085.925 kHz	

Table 9: 99% Bandwidth

Spectrum	s	pectrum 2 🛛 🗴	Spectrum 3	X		
Ref Level 8 Att	7.90 dBµ 35 c		iB ● RBW 1 kHz ns ● VBW 3 kHz	Mode Auto FF	г	
●1Pk View						
80 dBµV				M1[1]		64.96 dBμV 434.3460810 MHz 74.317522749 kHz
70 dBµV			гм			
60 dBµV						
50 dBµV			M_M_			
40 dBµV			₩	k .		
30 dвµV				Walnum.		
20 dBµV				- marken	~	
10 dBµV	and the second second					
0 dвµV						Remaining and the second
-10 dBµV						
CF 434.37 M	1Hz		30001 p	ts		Span 800.0 kHz
Marker Type Ref	Trc	X-value	Y-value	Function	Fund	ction Result
M1 T1	1	434.346081 MHz 434.3180551 MHz	64.96 dBµV 39.37 dBµV	Occ Bw		74.317522749 kHz
T2	1	434.3923726 MHz	35.91 dBµV			

2.1.8 Test Location and Test Equipment

The test was carried out in a non-shielded room:

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Spectrum and signal analyser	Rohde & Schwarz	FSV40	20219	24	2026-03-31

2.2 Periodic Operation Requirement

2.2.1 Specification Reference

FCC 47 CFR Part 15 C, Clause 15.231(a) ISED RSS-210, Clause A.1.1

2.2.2 Specification Limits

FCC 47 CFR 15.231(a) and ISED RSS-210 A1.1

- 1. A manually operated transmitter shall employ a push-to-operate switch that will automatically deactivate the transmitter within not more than5 s of being released.
- 2. A transmitter activated automatically shall cease transmission within 5 s after activation.
- 3. Periodic transmissions at regular predetermined intervals are not permitted (except as defined in FCC 47 CFR 15.231(e) and ISED RSS-210 A1.1.4). However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour (2 s/h) for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed 2 s/h.
- 4. Intentional radiators which are employed for radio control purposes during emergencies involving fire, security of goods (e.g. burglar alarms), and safety-of-life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

FCC 47 CFR 15.231(e) and ISED RSS-210 A1.1.4

In additions, devices operated under these sections shall be capable of automatically limiting their operation so that the duration of each transmission is not greater than 1 s and the silent period between transmission is at least 30 times the duration of the transmission, but not less than 10 s und all circumstances.

2.2.3 Test Results

General information on transmitter:

The transmitter is used for

- □ Security or safety applications
- \boxtimes other applications

The transmitter is operated

- □ manually
- ⊠ automatically

Periodic operation according to

- CFR 47 Part 15, clause 15.231(a)
- ISED RSS-210, Issue 10, Amd. 1, section A1.1
- Only control signals are sent and there is no continuous transmission.
- □ A manually operated transmitter employs a switch that will automatically deactivate the transmitter within not more than 5 s of being released.
- A transmitter activated automatically ceased transmission within 5 s after activation
- □ Periodic transmissions at regular predetermined intervals are:
 - □ not performed
 - performed with total time of two seconds per hour or less (for polling or supervision transmissions to determine system integrity of transmitters used in security or safety applications)

- $\hfill\square$ Declared by applicant
- Declared by applicant
- □ Declared by applicant ¹
- Declared by applicant
- Declared by applicant
- □ Test performed
- Passed
- ☑ Test performed
- \boxtimes Passed
- Declared by applicant
- Declared by applicant
- □ Test performed
- Passed

¹ Please refer to external photos in annex for details.

MultiView B Spectr	rum 🔆 🖷 RBW 2 MHz				SGL
	SWT 2.5 s • VBW 2 MHz				SGL
1 Zero Span				 1 AF 	P Clrw
vr #0 dBm	3 6 3 8				
TRG -49.500					
-60 dBm					
a80. dbm store strength the strength to the					tone for total
Unanomulatorida da altera a CF 433.92 MHz	ere webneeldende, die ook en oor ook in die	e, dib 11, i hitoban <mark>echinika biana, deriteta</mark> era Lehi 100001 pts	warda anrobilalida Alkala katura karaanan 1	likina a sa kina kikina a kina kikina a sa kina kikina sa kina kikina sa kina kikina sa kina kina kina kina kin 250	<u>പ്പം</u> .0 ms/
2 Marker Table		100001 pt3		230	, o may
Type Ref Trc	X-Value	Y-Value	Function	Function Result	
M1 1 D2 M1 1	0.0 s 13.5183 ms	-46.91 dBm -0.03 dB			
M3 1	249.2562 ms	-46.98 dBm			
D4 M3 1	13.5222 ms	0.03 dB			
M5 1	499.1958 ms	-46.92 dBm -0.00 dB			
D6 M5 1 M7 1	13.5895 ms 801.8708 ms	-47.07 dBm			
D8 M7 1	13.5433 ms	0.18 dB			
M9 1	1.0485609 s	-46.91 dBm			
		0.02 dB			
D10 M9 1	13.5933 ms				
D10 M9 1 M11 1 D12 M11 1	1.2885637 s 1.3.5183 ms	-46.57 dBm 0.05 dB			

Note: The repetitions are only performed up to 5 times. After that, every attempt at communication ends

2.3 Temperature Stability

2.3.1 Specification Reference

ISED RSS-Gen, Clause 6.11, 8.11

2.3.2 Equipment under Test and Modification State

2032V00ME1, S/N: 000622 (0x27h FCC Application) - Modification State 0

2.3.3 Date of Test

2024-07-04

2.3.4 Environmental Conditions

Ambient Temperature	24 °C
Relative Humidity	49 %

2.3.5 Specification Limits

If the stability of the license-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80 % of its permitted operating frequency band in order to minimize the possibility of out-of-band operation. In additions, its occupied bandwidth shall be entirely outside the restricted bands and the prohibited TV bands of 85 MHz - 72 MHz, 76 MHz - 88 MHz, 174 MHz - 216 MHz, and 470 MHz - 602 MHz, unless otherwise indicated.

2.3.6 Test Method

External power source EUT Wooden support U Wooden Support

The test was performed according to ANSI C63.10, section 6.8.

The frequency tolerance of the carrier signal is measured over a temperature variation of -20 °C to +50 °C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rates supply voltage at a temperature of 20 °C. Temperature and voltage range may vary if the manufacturer states another temperature or voltage range.

If the EUT provides an antenna connector the spectrum analyzer is connected to this port. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as a DC block and appropriate (50 Ω) attenuators. In case where the EUT does not provide an antenna connector or a test fixture is used.

For battery operated equipment, the test is performed using a new battery. Alternatively, an external supply voltage can be used and is at least set to:

- The maximum battery voltage as delivered by a new battery or 115 % of the battery nominal voltage;
- The battery nominal voltage
- 85 % of the battery nominal voltage

• The battery operating end point voltage which shall be specified by the equipment manufacturer. The EUT is operating providing an unmodulated carrier for frequency error tests. The peak detector of the spectrum analyzer is selected and resolution as well as video bandwidth are set to values appropriate to shape of the spectrum of the EUT. The frequency counter mode of the spectrum analyzer is used to maximize the accuracy of the measured frequency tolerance.

If an unmodulated carrier is not available a significant and stable point of the spectrum is selected and the span is reduced to a value that delivers an accuracy which shall be better than 1 % of the maximum frequency tolerance allowed for the carrier signal. This method may be performed as long as the margin to the frequency tolerance is larger than the uncertainty of the measured frequency tolerance.

2.3.7 Test Results

Transmitting continuously on 433.47 MHz

Temperature	Supply Voltage	Tested Centre Frequency	Frequency drift
-40 °C	12 V	433.4730	3 kHz
-30 °C	12 V	433.4731	3.1 kHz
-20 °C	12 V	433.4731	3.1 kHz
-10 °C	12 V	433.4739	3.9 kHz
0°C	12 V	433.4736	3.6 kHz
10 °C	12 V	433.4739	3.9 kHz
20 °C	12 V	433.4710	1 kHz
20 °C	9 V	433.4712	1.2 kHz
20 °C	16 V	433.4712	1.2 kHz
30 °C	12 V	433.4700	0 kHz
40 °C	12 V	433.4689	-1.1 kHz
50 °C	12 V	433.4669	-3.1 kHz
60 °C	12 V	433.4646	-5.4 kHz
70 °C	12 V	433.4648	-5.2 kHz
80 °C	12 V	433.4646	-5.4 kHz
90 °C	12 V	433.4644	-5.6 kHz
100 °C	12 V	433.4644	-5.6 kHz
105 °C	12 V	433.4646	-5.4 kHz

Table 11

Temperature	Supply Voltage	Tested Centre Frequency	Frequency drift
-40 °C	12 V	434.3740	4 kHz
-30 °C	12 V	434.3744	4.4 kHz
-20 °C	12 V	434.3724	2.4 kHz
-10 °C	12 V	434.3740	4 kHz
0°C	12 V	434.3740	4 kHz
10 °C	12 V	434.3734	3.4 kHz
20 °C	12 V	434.3710	1 kHz
20°C	9 V	434.3714	1.4 kHz
20 °C	16 V	434.3712	1.2 kHz
30 °C	12 V	434.3709	0.9 kHz
40 °C	12 V	434.3683	-1.7 kHz
50 °C	12 V	434.3659	-4.1 kHz
60 °C	12 V	434.3644	-5.6 kHz
70 °C	12 V	434.3639	-6.1 kHz
80 °C	12 V	434.3641	-5.9 kHz
90 °C	12 V	434.3641	-5.9 kHz
100 °C	12 V	434.3639	-6.1 kHz
105 °C	12 V	434.3639	-6.1 kHz

Transmitting continuously on 434.37 MHz

2.3.8 Test Location and Test Equipment

The test was carried out in a non-shielded room:

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
Spectrum and signal analyser	Rohde & Schwarz	FSV40	20219	24	2026-03-31
Climatic test chamber	Espec	PL-4J	38958	18	2025-01-31

Table 13

2.4 Radiated emissions

2.4.1 Specification Reference

FCC 47 CFR Part 15 C, Clauses 15.205, 15.209 and 15.231(a) ISED RSS-210, Clause A.1.1 ISED RSS-Gen, Clauses 8.9 and 8.10

2.4.2 Equipment under Test and Modification State

2032V00ME1, S/N: 000639 (0x27h CW 433.47 MHz CH1), 000617 (0x27h CW 434.37 MHz CH2); Modification State 0

2.4.3 Date of Test

2024-06-13

2.4.4 Environmental Conditions

Ambient Temperature	21 °C
Relative Humidity	45 %

2.4.5 Specification Limits

		General radiate	d emission limits:			
Frequency Range	Test distance	Field s	strength	Field strength		
(MHz)	(<i>m</i>)	(µA/m)	(dBµA/m)	(µV/m)	(dBµV/m)	
0.009 – 0.49	300	6.37 / f	20*lg(6.37 / f)	2400 / f	20*lg(2400 / f)	
0.49 – 1.705	30	63.7 / f	20*lg(63.7 / f)	24000 / f	20*lg(24000 / f)	
1.705 - 30	30	0.08	20*lg(0.08 / f)	30	20*lg(30 / f)	
30 – 88	3			100	40	
88 – 216	3			150	43.5	
126 – 960	3			200	46	
above 960	3			500	54	
Note 1: f in kHz		•			•	

Table 14 General radiated emission limits

FCC 47 CFR Part 15 C, Clause 15.231(a); ISED RSS-210, Clause A.1.1

Frequency Range	Field strength	of fundamental	Field strength of	spurious emissions
(MHz)	(μV/m)	(dBµV/m)	(µV/m)	(dBµV/m)
40.66 - 40.70	2500	67.96	225	47.96
70 – 130	1250	61.94	125	41.94
130 – 174	1250 – 3750 *	61.94 – 71.48 *	125 – 375 *	41.94 – 51.48 *
174 – 260	3750	71.48	375	51.48
260 - 470	3750 – 12500 *	71.48 – 81.94 *	375 – 1250 *	51.48 – 61.94 *
Above 470	12500	81.94	1250	61.94

* linear interpolation

The above field strength limits are specified at a distance of 3 m. The tighter limits apply at the band edges.

Intentional radiators shall demonstrate compliance with the limits above based on the (linear) average value of the measured emissions. As an alternative, compliance with these limits may be based on the use of measurement instrumentations with a CISPR quasi-peak detector. If average emission measurements are employed, the provisions for averaging pulsed emissions and for limiting peak emissions apply.

The limits on the field strength of the spurious emissions in the table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or alternatively, CISPR quasi-peak) limits shown in this table or to the general spurious emission limits, whichever limit permits a higher field strength.

Frequency Range	Field strength	of fundamental	Field strength of spurious emissions			
(MHz)	(µV/m)	(dBµV/m)	(µV/m)	(dBµV/m)		
40.66 - 40.70	1000	60	100	40		
70 – 130	500	53.98	50	33.98		
130 – 174	500 - 1500 *	53.98 – 63.52 *	50 - 150 *	33.98 - 43.52		
174 – 260	1500	63.52	150	43.52		
260 - 470	1500 - 5000 *	63.52 – 73.98 *	150 – 500 *	43.52 – 53.98		
Above 470	5000	73.98	500	53.98		

FCC 47 CFR Part 15 C, Clause 15.231(e); ISED RSS-210, Clause A.1.4

* linear interpolation

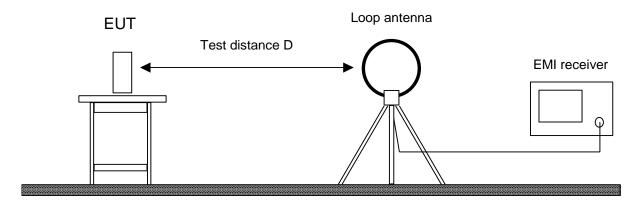
The above field strength limits are specified at a distance of 3 m. The tighter limits apply at the band edges.

Intentional radiators shall demonstrate compliance with the limits above based on the (linear) average value of the measured emissions. As an alternative, compliance with these limits may be based on the use of measurement instrumentations with a CISPR quasi-peak detector. If average emission measurements are employed, the provisions for averaging pulsed emissions and for limiting peak emissions apply.

The limits on the field strength of the spurious emissions in the table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or alternatively, CISPR quasi-peak) limits shown in this table or to the general spurious emission limits, whichever limit permits a higher field strength.

2.4.6 Test Method

The test was performed according to ANSI C63.10, sections 11.11 and 11.12

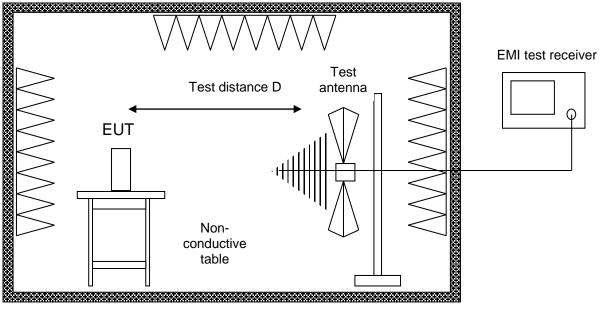

Prescans are performed in six positions of the EUT to get the full spectrum of emission caused by the EUT with the measuring antenna raised and lowered from 1 m to 4 m with vertical and horizontal polarisation to find the combination of table position, antenna height and antenna polarisation for the maximum emission levels.

Data reduction is applied to these results to select those levels having less margin than 10 dB or exceeding the limit using subranges and limited number of maximums.

Further maximisation for adjusting the maximum position is following.

Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

2.4.6.1 Frequency range 9 kHz - 30 MHz


The EUT was placed on a non-conductive table, 0.8 m above the ground.

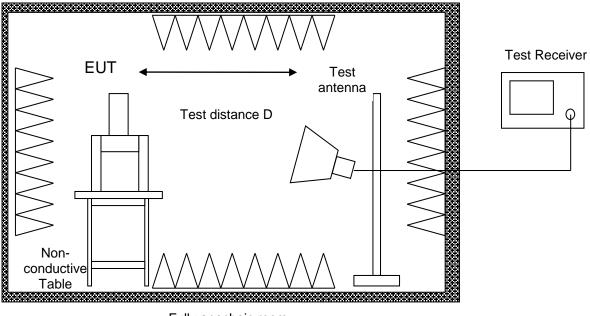
Radiated emissions in the frequency 9 kHz - 30 MHz is measured within a semi-anechoic room with an active loop antenna with the measurement detector set to peak. In addition, in the frequency range 9 kHz to 490 kHz also an average detector was used. The measurement bandwidth of the receiver was set to 300 Hz in the frequency range 9 kHz to 150 kHz and 10 kHz in the frequency range 150 kHz to 30 MHz. Prescans were performed in six positions of the EUT.

For final measurements the detector was set to CISPR quasi-peak and in addition to CISPR average in the frequency range 9 kHz to 490 kHz with a resolution bandwidth 200 Hz in the frequency range 9 kHz to 150 kHz and 9 kHz in the frequency range 150 kHz to 30 MHz. Final tests were performed immediately after a final frequency and zoom (for drifting disturbances) and maximum adjustment.

2.4.6.2 Frequency range 30 MHz – 1 GHz

Alternate test site (semi anechoic room)

The EUT was placed on a non-conductive table, 0.8 m above the ground plane


Radiated emissions in the frequency range 30 MHz - 1 GHz is measured within a semi-anechoic room with groundplane complying with the NSA requirements of ANSI C63.4. for alternative test sites. A linear polarised logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna") is used.

For prescan tests the test receiver is set to peak-detector with a bandwidth of 120 kHz.

With the measurement bandwidth of the test receiver set to 120 kHz CISPR quasi-peak detector is selected for final measurements following immediately after a final frequency zoom (for drifting disturbances) and maximum adjustment.

2.4.6.3 Frequency range above 1 GHz

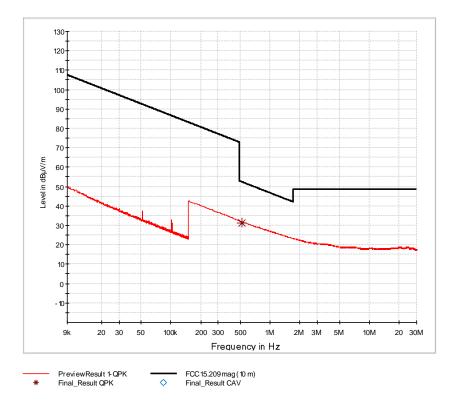
Fully anechoic room

The EUT was placed on a non-conductive table, 0.8 m above the ground plane.

Radiated emission tests above 1 GHz are performed in a fully anechoic room with the S_{VSWR} requirements of ANSI C63.4. Measurements are performed both in the horizontal and vertical planes of polarisation using a test receiver with the detector function set to peak and average and the resolution bandwidth set to 1 MHz. Testing above 1 GHz is performed with horn antennas with the EUT in boresight of the antenna.

For prescan tests the test receiver is set to peak- and average-detector with a bandwidth of 1 MHz. With the measurement bandwidth of the test receiver set to 1 MHz and peak- and CISPR average-detector is selected for final measurements following immediately after a final frequency zoom (for drifting disturbances) and maximum adjustment.

2.4.7 Test Results

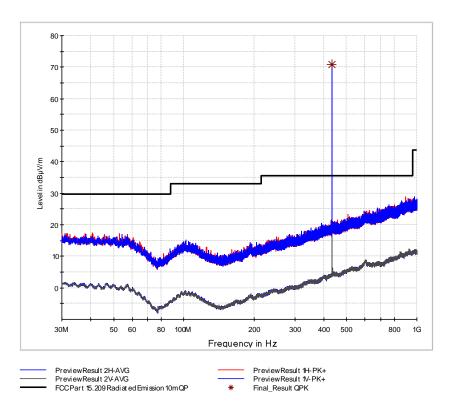

Sample calculation:

Final Value (dBµV/m) =

Reading Value (dBµV) + (Cable attenuation (dB) + Antenna Transducer (dB(1/m)))

Transmitting continuously on 433.47 MHz

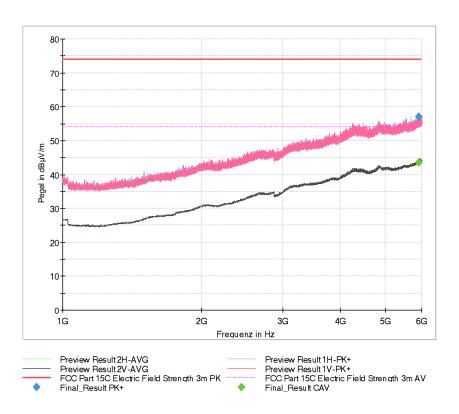
Frequency range 9 kHz – 30 MHz:



Final Results:

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Pol	Azimuth	Corr.
MHz	dBuV/m	dBuV/m	dBuV/m	dB	ms	kHz		dea	dB
0.523500	31.06		52.33	21.27	1000.0	9.000	Н	1.0	19.7

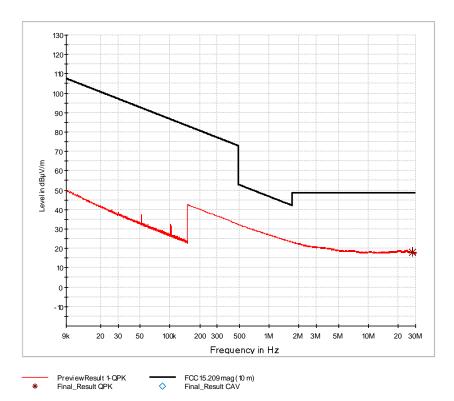
Frequency range 30 MHz – 1 GHz:


Final Results:

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
MHz	dBµV/m	dBµV/m	dB	ms	kHz	cm		deg	dB
433.470000	70.93	*	*	1000.0	120.000	200.0	V	-35.0	18.4

*: intentional radiation, not evaluated

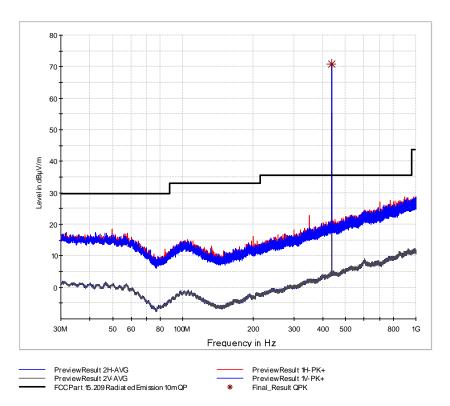
Frequency range 1 GHz – 6 GHz:


Final Results:

Frequency	Max-	CAver-	Limit	Mar-	Meas.	Band-	Height	Pol	Azi-	Corr.
	Peak	age		gin	time	width	-		muth	
MHz	dBµV/m	dBµV/m	dBµV/m	dB	ms	kHz	ст		deg	dB/m
5920.500000		43.63	53.98	10.35	1000.0	1000.000	200.0	Н	0.0	43.7
5920.500000	57.06		73.98	16.92	1000.0	1000.000	200.0	Н	0.0	43.7

Transmitting continuously on 434.37 MHz

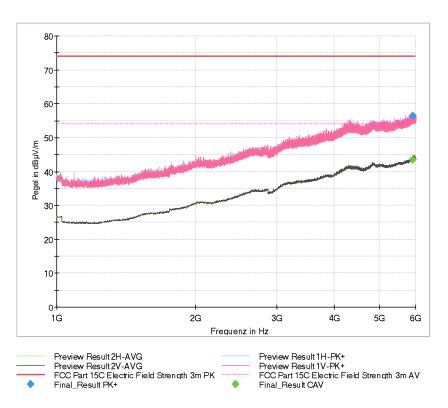
Frequency range 9 kHz – 30 MHz:



Final Results:

Frequency MHz	QuasiPeak dBµV/m	CAverage dBµV/m	Limit dBµV/m	Margin dB	Meas. Time ms	Bandwidth kHz	Pol	Azimuth deg	Corr. dB
27.982500	18.00		48.60	30.60	1000.0	9.000	Η	95.0	19.8

Frequency range 30 MHz – 1 GHz:


Final Results:

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
MHz	dBµV/m	dBµV/m	dB	ms	kHz	cm		deg	dB
434.340000	70.90	*	*	1000.0	120.000	200.0	V	-35.0	18.4

*: intentional radiation, not evaluated

Frequency range 1 GHz – 6 GHz:

Final Results:

Frequenz	Max-	CAver-	Limit	Mar-	Messzeit	Band-	Höhe	Pol	Azi-	Korr.
	Peak	age		gin		breite			mut	
MHz	dBµV/m	dBµV/m	dBµV/m	dB	ms	kHz	ст		deg	dB/m
5905.000000		43.59	53.98	10.38	1000.0	1000.000	205.0	V	95.0	43.7
5905.000000	56.37		73.98	17.61	1000.0	1000.000	205.0	V	95.0	43.7

Power Results:

Frequency (MHz)	Detector	Result (dBµV/m) @ 10 m	Limit (dBµV/m) @10 m
433.47	Average	68.03	70.37
433.92	Average	68.85	70.37
434.37	Average	64.96	70.37
433.47	Peak	85.37	90.37
433.92	Peak	86.19	90.37
434.37	Peak	82.30	90.37

Note: In an observation time window of 100 ms, only an RF signal of a length of max. 13.59ms

Duty Cycle Factor =
$$20 \cdot log\left(\frac{100ms}{13,59ms}\right) = 17,34 \ dB$$

For the Average results the Duty Cycle Factor was subtracted.

2.4.8 Test Location and Test Equipment

The test was carried out in Semi anechoic room - cabin no. 8

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
EMI test receiver	Rohde & Schwarz	ESR7	61814	12	2024-06-30
Loop antenna	Schwarzbeck	FMZB 1519 B	44334	36	2026-06-30
TRILOG Broadband Antenna	Rohde & Schwarz	VULB 9162	20116	36	2025-01-31
Double ridged horn antenna	Rohde & Schwarz	HF907	19933	24	2025-09-30
EMC measurement software	Rohde & Schwarz	EMC32 Emis- sion K8 - V10.60.20	19927		
Semi Anechoic Room	Albatross	Cabin No. 8	19917	36	2025-07-31

2.5 Antenna requirement

2.5.1 Specification Reference

FCC 47 CFR Part 15 C, Clauses 15.203 ISED RSS-Gen, Clauses 6.8

2.5.2 Equipment under Test and Modification State

2032V00ME1, S/N: 000639 (0x27h CW 433.47 MHz CH1), 000617 (0x27h CW 434.37 MHz CH2), 000622 (0x27h FCC Application) - Modification State 0

2.5.3 Date of Test

2024-06-13

2.5.4 Environmental Conditions

Ambient Temperature	21 °C
Relative Humidity	45 %

2.5.5 Specification Limits

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§ 15.211, 15.213, 15.217, 15.219, 15.221, or § 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

2.5.6 Test Results

Antenna Gain: -2.0 dBi

The antenna gain was calculated from the difference between the radiated measurement and the conducted measurement at the middle channel (433.92 MHz)

 $\begin{array}{l} P_{\text{Out Radiated}} - P_{\text{Out Conducted}} = Antenna \; Gain \\ 68.85 \; dB\mu V/m - 70.85 \; dB\mu V/m = -2.0 \; dBi \end{array}$

2.5.7 Test Location and Test Equipment

The test was carried out in Semi anechoic room - cabin no. 8 and in a non shielded room.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
EMI test receiver	Rohde & Schwarz	ESR7	61814	12	2024-06-30
TRILOG Broadband Antenna	Rohde & Schwarz	VULB 9162	20116	36	2025-01-31
EMC measurement software	Rohde & Schwarz	EMC32 Emis- sion K8 - V10.60.20	19927		
Semi Anechoic Room	Albatross	Cabin No. 8	19917	36	2025-07-31
Spectrum and signal analyser	Rohde & Schwarz	FSV40	20219	24	2026-03-31

Table 16

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

The measurement uncertainty in the laboratory is less than or equal to the maximum measurement uncertainty according to CISPR16-4-2: $2011 + A1 + A2 + Cor1 (U_{CISPR})$. This normative regulation means that the measured value is also the value to be assessed in relation to the limit value.

Radio Interference Emission Testing		
Test Name	kp	Expanded Uncertainty
Conducted Voltage Emission		
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB
100 kHz to 200 MHz (50Ω/5μH AMN)	2	± 3.6 dB
Discontinuous Conducted Emission		
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB
Conducted Current Emission		
9 kHz to 200 MHz	2	± 3.5 dB
Magnetic Fieldstrength		
9 kHz to 30 MHz (with loop antenna)	2	± 3.9 dB
9 kHz to 30 MHz (large-loop antenna 2 m)	2	± 3.5 dB
Radiated Emission		
30 MHz to 300 MHz	2	± 4.9 dB
300 MHz to 1 GHz	2	± 5.0 dB
1 GHz to 6 GHz	2	± 4.6 dB
Test distance 10 m		
30 MHz to 300 MHz	2	± 4.9 dB
300 MHz to 1 GHz	2	± 4.9 dB
The expanded uncertainty reported according to to CISPR16-4-2: $2011 + A$ on a standard uncertainty multiplied by a coverage factor of kp = 2, providin of p = 95.45%	g a level o	

Table 17 Measurement uncertainty based on CISPR 16-4-2

Test Name	kp	Expanded Uncertainty
Occupied Bandwdith	2	±5%
Conducted Power		
9 kHz ≤ f < 30 MHz	2	± 1.0 dB
30 MHz ≤ f < 1 GHz	2	± 1.5 dB
1 GHz ≤ f ≤ 40 GHz	2	± 2.5 dB
1 MS/s power sensor (TS8997)	2	± 1.5 dB
Occupied Bandwidth	2	±5%
Power Spectral Density	2	± 3.0 dB
Radiated Power		
9 kHz ≤ f < 26.5 GHz	2	± 5.6 dB
26.5 GHz ≤ f < 60 GHz	2	± 8.0 dB
60 GHz ≤ f < 325 GHz	2	± 10 dB
Conducted Spurious Emissions	2	± 3.0 dB
Radiated Spurious Emissions	2	± 6.0 dB
Voltage		
DC	2	± 1.0 %
AC	2	± 2.0 %
Time (automatic)	2	±5%
Frequency	2	± 10 ⁻⁷

Table 18 Measurement uncertainty based on ETSI TR 100 028