

Report No.: HK230713002-1E

FCC Test Report

Test report On Behalf of Shenzhen CTV Int Cloud Technology Co., Ltd For

Security Camera Model No.: ZS-D1, ZY-D1, ZY-D2, ZY-D3, ZY-D4, ZY-D5, ZY-D6, ZY-D7, ZY-D8, ZY-D9, ZS-GX1S, ZS-GX2S, ZS-GX3S, ZS-GX4S, ZS-GX5S, ZS-GX6S, ZS-GX7S, ZS-GX8S, ZS-GQ1, ZS-GQ2, ZS-GQ3, ZS-GQ4, ZS-GQ5, ZY-C1, ZY-C2, ZY-C3, ZY-C4, ZY-C5, ZY-C7, ZY-C8, ZY-C9, ZY-Q1, ZY-Q2, ZY-Q3, ZY-Q4, ZY-Q5, ZY-Q6, ZY-Q7, ZY-Q8, ZY-Q9, ZY-E1, ZY-E2, ZY-E4, ZY-E5, ZY-E6, ZY-E7, ZY-E8, ZY-E9, ZY-F1, ZY-F2, ZY-F3, ZY-F4, ZY-F5, ZY-F6, ZY-F7, ZY-F8, ZY-F9, ZY-G1, ZY-G2, ZY-G3, ZY-G4, ZY-G5, ZY-G6, ZY-G7, ZY-G8, ZY-G9

FCC ID: 2AZL7-ZS-D1

Prepared For :

Shenzhen CTV Int Cloud Technology Co., Ltd 501, Building A, Debaoli Industrial Park, Shangxue Technology City, Xinxue Community, Bantian Street, Longgang District, Shenzhen, China

Prepared By :

Shenzhen HUAK Testing Technology Co., Ltd. 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test:	Jul. 20, 2023 ~ Aug. 25, 2023
Date of Report:	Aug. 25, 2023
Report Number:	HK230713002-1E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Result Certification

.....: Shenzhen CTV Int Cloud Technology Co., Ltd Applicant's name

> 501, Building A, Debaoli Industrial Park, Shangxue Technology City, Xinxue Community, Bantian Street, Longgang District, Shenzhen, China

Manufacture's Name...... Shenzhen CTV Int Cloud Technology Co., Ltd

501, Building A, Debaoli Industrial Park, Shangxue Technology City, Xinxue Community, Bantian Street, Longgang District, Shenzhen, China

Product description

Address

Address

Trade Mark:

Product name.

N/A Security Camera

ZS-D1, ZY-D1, ZY-D2, ZY-D3, ZY-D4, ZY-D5, ZY-D6, ZY-D7, ZY-D8, ZY-D9, ZS-GX1S, ZS-GX2S, ZS-GX3S, ZS-GX4S, ZS-GX5S, ZS-GX6S, ZS-GX7S, ZS-GX8S, ZS-GQ1, ZS-GQ2, ZS-GQ3, ZS-GQ4, ZS-GQ5, ZY-C1, ZY-C2, ZY-C3, ZY-C4, Model and/or type reference .: ZY-C5, ZY-C7, ZY-C8, ZY-C9, ZY-Q1, ZY-Q2, ZY-Q3, ZY-Q4, ZY-Q5, ZY-Q6, ZY-Q7, ZY-Q8, ZY-Q9, ZY-E1, ZY-E2, ZY-E4, ZY-E5, ZY-E6, ZY-E7, ZY-E8, ZY-E9, ZY-F1, ZY-F2, ZY-F3, ZY-F4, ZY-F5, ZY-F6, ZY-F7, ZY-F8, ZY-F9, ZY-G1, ZY-G2, ZY-G3, ZY-G4, ZY-G5, ZY-G6, ZY-G7, ZY-G8, ZY-G9 FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

Standards ...

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests:	Jul. 2
Date of Issue	Aug.
Test Result	Pass

20, 2023 ~ Aug. 25, 2023 25, 2023

Testing Engineer

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

ason Uwu

(Jason Zhou)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

NG

IK PB

Table of Contents

1.	Test Result Summary	5
	1.1. Test Procedures and Results	
	1.2. Information of the Test Laboratory	5
	1.3. Measurement Uncertainty	
2.	EUT Description	
	2.1. General Description of EUT	7
	2.2. Carrier Frequency of Channels	8
	2.3. Operation of EUT During Testing	
	2.4. Description of Test Setup	
	2.5. Description of Support Units	10
3.	Genera Information	
	3.1. Test Environment and Mode	11
4.	Test Results and Measurement Data	
	4.1. Conducted Emission	14
	4.2. Test Result	
	4.3. Maximum Conducted Output Power	18
	4.4. Emission Bandwidth	
	4.5. Power Spectral Density	
	4.6. Conducted Band Edge and Spurious Emission Measurement	31
	4.7. Radiated Spurious Emission Measurement	39
	4.8. Antenna Requirement	60
5.	Photograph of Test	61
6.	Photos of the EUT	63

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Т 691

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Aug. 25, 2023	Jason Zhou
mG	and	-mig	G THE

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HUAK TESTING

1. Test Result Summary

1.1. Test Procedures and Results

§15.203/§15.247(b)(4)	PASS
	17,00
§15.207	PASS
§15.247(b)(3)	PASS
§15.247(a)(2)	PASS
§15.247(e)	PASS
§15.247(d)	PASS
§15.205/§15.209	PASS
	§15.207 §15.247(b)(3) §15.247(a)(2) §15.247(e) §15.247(d)

Note:

1. PASS: Test item meets the requirement.

- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization :

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

FICATION

1.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2. EUT Description

HUAK TESTING

2.1. General Description of EUT

Equipment:	Security Camera
Model Name:	ZS-D1
Series Model:	ZY-D1, ZY-D2, ZY-D3, ZY-D4, ZY-D5, ZY-D6, ZY-D7, ZY-D8, ZY-D9, ZS-GX1S, ZS-GX2S, ZS-GX3S, ZS-GX4S, ZS-GX5S, ZS-GX6S, ZS-GX7S, ZS-GX8S, ZS-GQ1, ZS-GQ2, ZS-GQ3, ZS-GQ4, ZS-GQ5, ZY-C1, ZY-C2, ZY-C3, ZY-C4, ZY-C5, ZY-C7, ZY-C8, ZY-C9, ZY-Q1, ZY-Q2, ZY-Q3, ZY-Q4, ZY-Q5, ZY-Q6, ZY-Q7, ZY-Q8, ZY-Q9, ZY-E1, ZY-E2, ZY-E4, ZY-E5, ZY-E6, ZY-E7, ZY-E8, ZY-E9, ZY-F1, ZY-F2, ZY-F3, ZY-F4, ZY-F5, ZY-F6, ZY-F7, ZY-F8, ZY-F9, ZY-G1, ZY-G2, ZY-G3, ZY-G4, ZY-G5, ZY-G6, ZY-G7, ZY-G8, ZY-G9
Model Difference:	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: ZS-D1.
FCC ID:	2AZL7-ZS-D1
Antenna Type:	Internal Antenna
Antenna Gain:	3.48dBi
Operation frequency:	802.11b/g/n (HT20):2412~2462 MHz
Number of Channels:	802.11b/g/n(HT20): 11CH
Modulation Type:	CCK/OFDM/DBPSK/DAPSK
Power Source:	AC 120V
Power Rating:	AC 120V

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.2. Carrier Frequency of Channels

Channel List For 802.11b/802.11g/802.11n (HT20)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01 👝	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452	CSTNG.	

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. Operation of EUT During Testing

Operating Mode The mode is used: Transmitting mo

The mode is used: Transmitting mode for 802.11b/802.11g/802.11n(HT20) Low Channel: 2412MHz

Middle Channel: 2437MHz High Channel: 2462MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.4. Description of Test Setup

Operation of EUT during testing:

AC Main EUT

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is Z position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.5. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Trade Mark	Model/Type No.	Specification	Remark
₆ 1	Security Camera	N/A	ZS-D1	N/A	EUT
2	Power Cable	N/A	N/A	1.5m	Peripheral
3	RF Cable	N/A	N/A	0.1m	Peripheral
4	<u> </u>				

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

3. Genera Information

3.1. Test Environment and Mode

Operating Environment:			
Temperature:	25.0 °C	HAKTESTIN	UAK TE
Humidity:	56 % RH	©	0
Atmospheric Pressure:	1010 mbar	TESTING	

Test Mode:

Keep the EUT in continuous transmitting by select channel and modulations

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

VCATION

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode		Data rate	W
802.11b	and	1Mbps	aNG
802.11g	AUAKTES	6Mbps	HUAKTES
802.11n(HT20)	6.5Mbps		

Final Test Mode:

Operation mode:	Keep the EUT in continuous transmitting with modulation
-----------------	---

1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20).

3. Mode Test Duty Cycle

Mode	Duty Cycle	Duty Cycle Factor (dB)	HUPS
802.11b	0.89	-0.51	-
802.11g	0.58	-2.37	W
802.11n(HT20)	0.56	-2.52	
U			

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 13 of 63

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4. Test Results and Measurement Data

4.1. Conducted Emission

Test Specification

FCC Part15 C Section	on 15.207	AKTES O	HUAKTED
ANSI C63.10:2013		TING	
150 kHz to 30 MHz	HUAKTE	The	ESTING
RBW=9 kHz, VBW=	30 kHz, Sweep	time=auto	
Frequency range	Limit (dBuV)	
(MHz)	Quasi-peak	Average	AK TES I
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
NY TESTING	TESTING.	AK TESTING	NK TES
Refer	ence Plane	BANK.	
40cm	1		
	LISN]	
E.U.1 AC P	ower 80cm	-	
94		ter AC power	
Test table/Insulation p			
Romark			
E.U.T: Equipment Under Test			
Test table height=0.8m	ion Network		
transmitting with me	Aulation	TESTING	TES
transmitting with mo	A Pro-	AKTESTING	HUNKTES
A ME	A Pro-	ain power thro	ough a
1. The E.U.T is con	nected to the m		
1. The E.U.T is cont line impedance s	nected to the m	vork (L.I.S.N.). Thi
1. The E.U.T is cont line impedance s provides a 50ohr	nected to the m stabilization networks n/50uH coupling	vork (L.I.S.N.). Thi
1. The E.U.T is cont line impedance s provides a 50ohr measuring equipn	nected to the m stabilization network n/50uH coupling nent.	vork (L.I.S.N. g impedance). Thi for th
1. The E.U.T is con- line impedance s provides a 50ohr measuring equipn 2. The peripheral de	nected to the m stabilization netw n/50uH coupling nent. vices are also co	work (L.I.S.N. g impedance onnected to th). Thi for th e mai
 The E.U.T is contained impedance is provides a 500hr measuring equipm The peripheral de power through a 	nected to the m stabilization network n/50uH coupling nent. vices are also co LISN that prov	vork (L.I.S.N. g impedance onnected to th ides a 50ohn). Thi for th e mai n/50ul
1. The E.U.T is con- line impedance s provides a 50ohr measuring equipn 2. The peripheral de	nected to the m stabilization network n/50uH coupling nent. vices are also co LISN that prov	vork (L.I.S.N. g impedance onnected to th ides a 50ohn). Thi for th e mai n/50ul
 The E.U.T is contained impedance is provides a 500hr measuring equipm The peripheral de power through a coupling impedance 	nected to the m stabilization network n/50uH coupling nent. vices are also co LISN that prov uce with 50ohm	work (L.I.S.N. g impedance onnected to th ides a 50ohn termination. (). Thi for th e mai n/50ul Pleas
 The E.U.T is contained impedance is provides a 500hr measuring equipm The peripheral de power through a coupling impedance is provided in the block of the block	nected to the m stabilization network n/50uH coupling nent. vices are also co LISN that prov uce with 50ohm	work (L.I.S.N. g impedance onnected to th ides a 50ohn termination. (). Thi for th e mai n/50ul Pleas
 The E.U.T is contained impedance is provides a 500hr measuring equipm The peripheral de power through a coupling impedant refer to the bloct photographs). 	nected to the m stabilization network n/50uH coupling nent. vices are also co LISN that prov ice with 50ohm ck diagram of	work (L.I.S.N. g impedance onnected to th ides a 50ohn termination. (the test setu). Thi for the e mai n/50ul Please ip and
 The E.U.T is confline impedance is provides a 500hr measuring equipm The peripheral de power through a coupling impedant refer to the bloc photographs). Both sides of A. 	nected to the m stabilization network n/50uH coupling nent. vices are also co LISN that province with 50ohm ck diagram of C. line are che	vork (L.I.S.N. g impedance onnected to th ides a 50ohn termination. (the test setu ecked for ma). Thi for the n/50ul Pleas Ip and ximur
 The E.U.T is contained impedance is provides a 500hr measuring equipm The peripheral de power through a coupling impedant refer to the bloc photographs). Both sides of A. conducted interfer 	nected to the m stabilization network n/50uH coupling nent. vices are also co LISN that province with 50ohm ck diagram of C. line are che rence. In order to	work (L.I.S.N. g impedance onnected to th ides a 500hn termination. (the test setu ecked for ma to find the ma). Thi for the n/50ul Please p and ximun ximun
 The E.U.T is contained impedance is provides a 500hr measuring equipm The peripheral de power through a coupling impedant refer to the bloc photographs). Both sides of A. conducted interferemission, the relation of the relation of	nected to the m stabilization network n/50uH coupling nent. vices are also co LISN that province with 500hm ck diagram of C. line are che rence. In order to tive positions of	work (L.I.S.N. g impedance onnected to th ides a 50ohn termination. (the test setu ecked for ma co find the ma equipment an). This for the n/50ul Please p and ximun ximun d all c
 The E.U.T is contained impedance is provides a 500hr measuring equipm The peripheral de power through a coupling impedant refer to the bloc photographs). Both sides of A. conducted interfer 	nected to the m stabilization network n/50uH coupling nent. vices are also co LISN that province with 500hm ck diagram of C. line are che rence. In order to tive positions of	work (L.I.S.N. g impedance onnected to th ides a 50ohn termination. (the test setu ecked for ma co find the ma equipment an). Thi for the n/50ul Pleas p and ximur ximur d all c
 The E.U.T is contained impedance is provides a 500hr measuring equipm The peripheral de power through a coupling impedant refer to the bloc photographs). Both sides of A. conducted interferemission, the relation of the relation of	nected to the m stabilization network n/50uH coupling nent. vices are also co LISN that province with 50ohm ck diagram of C. line are cho rence. In order to tive positions of les must be ch	work (L.I.S.N. g impedance onnected to th ides a 500hn termination. (the test setu ecked for ma co find the ma equipment an anged accord). This for the e main h/50ul Please p and ximun ximun d all c ding te
	ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW= Frequency range (MHz) 0.15-0.5 0.5-5 5-30 Refer 40cm E.U.T AC p Test table/Insulation p Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilizati	ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW=30 kHz, Sweep Frequency range Limit (c (MHz) Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56 5-30 60 Reference Plane (U.T. AC power 80 cm LISN Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network	ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW=30 kHz, Sweep time=auto Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane to complete the stable / Insulation plane Remark EUT: Equipment Under Test LSN Line Impedence Stabilization Network

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

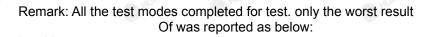
NG

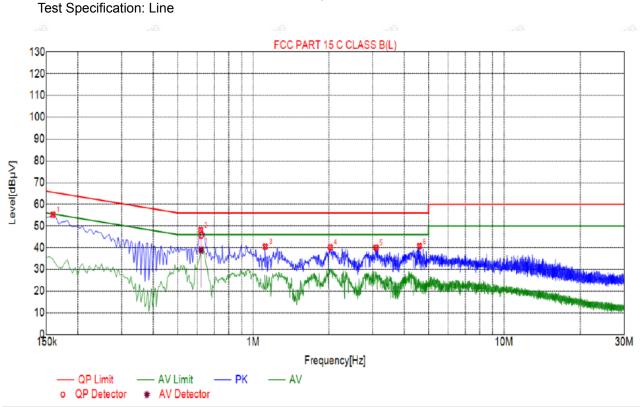
IK PB

Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Receiver	R&S	ESR-7	HKE-005	Feb. 17, 2023	Feb. 16, 2024		
LISN	R&S	ENV216	HKE-002	Feb. 17, 2023	Feb. 16, 2024		
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 17, 2023	Feb. 16, 2024		
10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	Feb. 17, 2023	Feb. 16, 2024		
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A		

Test Instruments

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 16 of 63

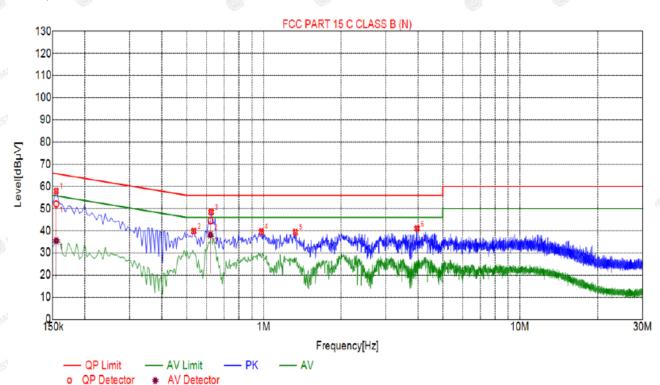
4.2. Test Result

Suspected List

NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
1	0.1590	55.13	20.01	65.52	10.39	35.12	PK	L
2	0.6180	48.03	20.05	56.00	7.97	27.98	PK	L
3	1.1175	40.45	20.08	56.00	15.55	20.37	PK	L
4	2.0310	40.15	20.15	56.00	15.85	20.00	PK	L
5	3.0885	40.03	20.22	56.00	15.97	19.81	PK	L
6	4.6005	40.65	20.25	56.00	15.35	20.40	PK	L
Final	Data List							

NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	QP Reading [dBµV]	A∨ Value [dBµV]	AV Limit [dBµV]	A∨ Margin [dB]	AV Reading [dBµV]	Туре
1	0.6201	20.05	45.77	56.00	10.23	25.72	38.94	46.00	7.06	18.89	L


Remark: Margin = Limit – Level Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 17 of 63

\sim			1.1	· ·
Sus	nor	nto/	a I	let
UU S			ᆸᆸ	131

NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
1	0.1545	57.86	20.03	65.75	7.89	37.83	PK	N
2	0.5325	39.81	20.05	56.00	16.19	19.76	PK	N
3	0.6225	48.43	20.05	56.00	7.57	28.38	PK	N
4	0.9780	39.56	20.06	56.00	16.44	19.50	PK	N
5	1.3290	39.27	20.10	56.00	16.73	19.17	PK	N
6	3.9660	40.98	20.25	56.00	15.02	20.73	PK	N

Final Data List

NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	QP Reading [dBµV]	AV Value [dBµV]	A∨ Limit [dBµV]	A∨ Margin [dB]	AV Reading [dBµV]	Туре
1	0.1545	20.03	52.06	65.75	13.69	32.03	35.41	55.75	20.34	15.38	N
2	0.6192	20.05	44.55	56.00	11.45	24.50	38.06	46.00	7.94	18.01	N

Remark: Margin = Limit – Level Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

VCATION

HUAK TESTING

4.3. Maximum Conducted Output Power

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02
Limit:	30dBm
Test Setup:	Power meter EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the Peak output power and record the results in the test report.
Test Result:	PASS

Test Instruments

ALL HU.	HD	HU.	HU.	HU.	AND HU.			
RF Test Room								
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due			
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	Feb. 16, 2024			
Power meter	Agilent	E4419B	HKE-085	Feb. 17, 2023	Feb. 16, 2024			
Power Sensor	Agilent	E9300A	HKE-086	Feb. 17, 2023	Feb. 16, 2024			
RF cable	Times	1-40G	HKE-034	Feb. 17, 2023	Feb. 16, 2024			
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	Feb. 16, 2024			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Data

Mode	Test Channel	Frequency	Maximum Peak Conducted Output Power	LIMIT
		(MHz)	(dBm)	dBm
802.11b	CH01	2412	18.15	30
802.11b	CH06	2437	15.32	30
802.11b	CH11	2462	19.62	30
802.11g	CH01	2412	17.39	30
802.11g	CH06	2437	19.19	30
802.11g	CH11	2462	18.65	30
802.11n(H20)	CH01	2412	18.71	30
802.11n(H20)	CH06	2437	19.27	30
802.11n(H20)	CH11	2462	18.70	30
	-EST		-6511	1

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.4. Emission Bandwidth

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)				
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02				
Limit:	>500kHz				
Test Setup:	Spectrum Analyzer				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 				
Test Result:	PASS				

Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	Feb. 16, 2024	
RF cable	Times	1-40G	HKE-034	Feb. 17, 2023	Feb. 16, 2024	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	Feb. 16, 2024	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

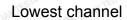
Page 21 of 63

NG

¦К

Test data

Test channel	6dB Emission Bandwidth (MHz)			
	802.11b	802.11g	802.11n(H20)	
Lowest	9.08	16.08	16.76	
Middle	8.60	15.84	16.28	
Highest	10.00	15.92	15.96	
Limit:	>500kHz			
Test Result:	PASS			
	0. 0		0	


Test plots as follows:


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

802.11b Modulation

Middle channel

Highest channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

802.11g Modulation

Lowest channel

Middle channel

Highest channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

AFICATION

802.11n (HT20) Modulation

Middle channel

Highest channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL:+86-755 2302 9901 FAX:+86-755 2302 9901 E-mail: service@cer-mark.com

4.5. Power Spectral Density

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)				
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02				
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.				
Test Setup:	Spectrum Analyzer				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows Measurement procedure 10.2 method PKPSD of FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = Peak, Sweep time = auto couple. Employ trace averaging (Peak) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 				
Test Result:	PASS				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HS HF

Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	Feb. 16, 2024
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 17, 2023	Feb. 16, 2024
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	Feb. 16, 2024
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

NG

¦К РВ

Test data

EUT Set Mode	Channel	Test Result (dBm/30kHz)	Result (dBm/3kHz)		
	Lowest	-0.58	-10.58		
802.11b	Middle	-0.17	-10.17		
	Highest	-0.38	-10.38		
	Lowest	-3.32	-13.32		
802.11g	Middle	-3.45	-13.45		
3	Highest	-4.23	-14.23		
	Lowest	-3.45	-13.45		
802.11n(H20)	Middle	-2.95	-12.95		
	Highest	-3.19	-13.19		
PSD test result (dBm/3kHz)= PSD test result (dBm/30kHz)-10					
Limit: 8dBm/3kHz					
Test Result:	PASS				

Test plots as follows:

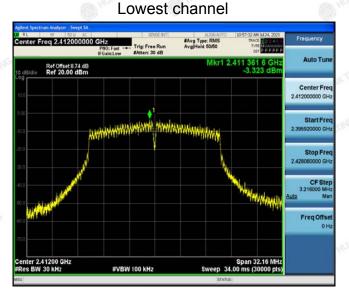
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

802.11b Modulation

Middle channel

Highest channel



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

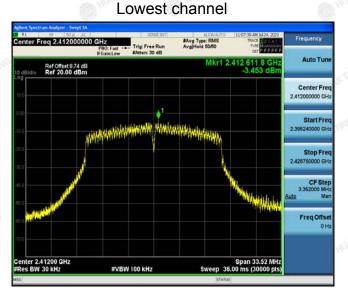
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

802.11g Modulation

Middle channel

Highest channel

 Addres Spectrum Adview
 Adview
 Adview
 Spectrum Adview
 Adview
 Adview
 Spectrum Adview
 A


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



FICATION

802.11n (HT20) Modulation

Middle channel

Highest channel

 Ref Offset8 74 dB
 State is a sign of the sign of t

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HUAK TESTING

4.6. Conducted Band Edge and Spurious Emission Measurement

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02			
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 Transmitting mode with modulation The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 			
Test Result:	PASS			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

-FIF

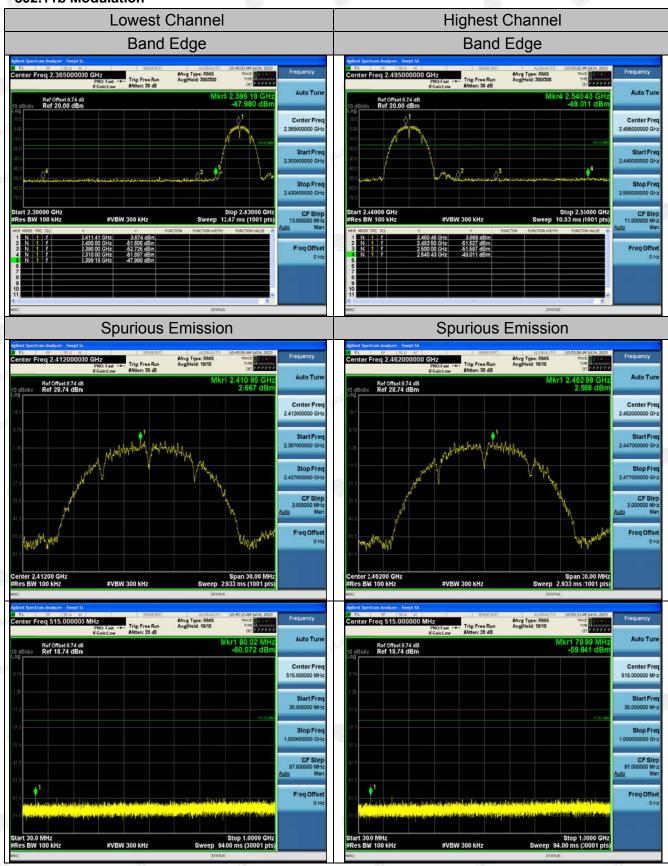
RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	Feb. 16, 2024
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 17, 2023	Feb. 16, 2024
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 17, 2023	Feb. 16, 2024
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	Feb. 16, 2024
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A

Test Instruments

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

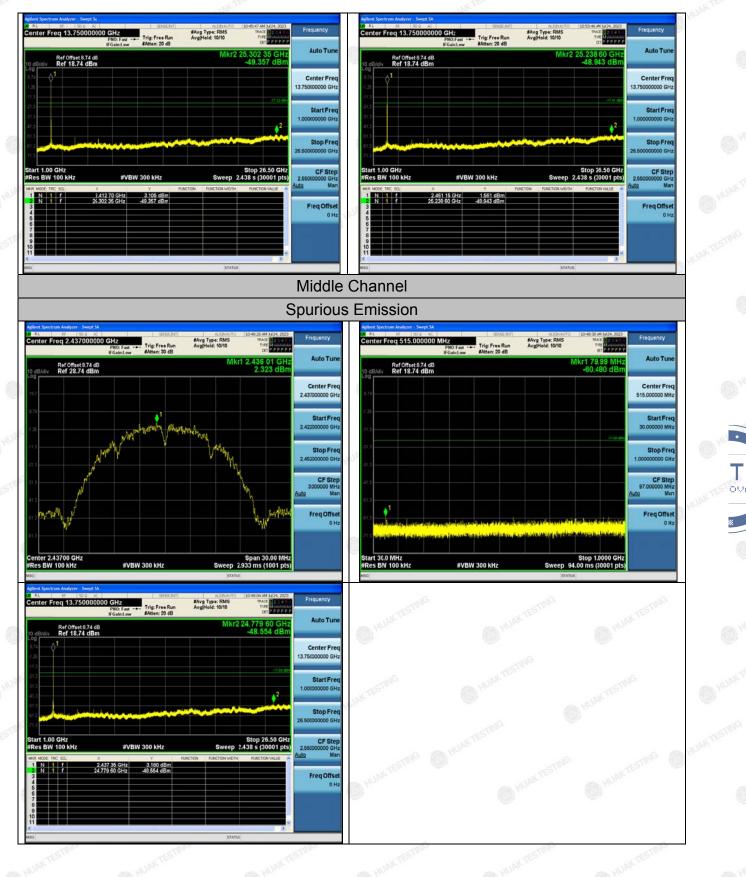
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



NG

IE.

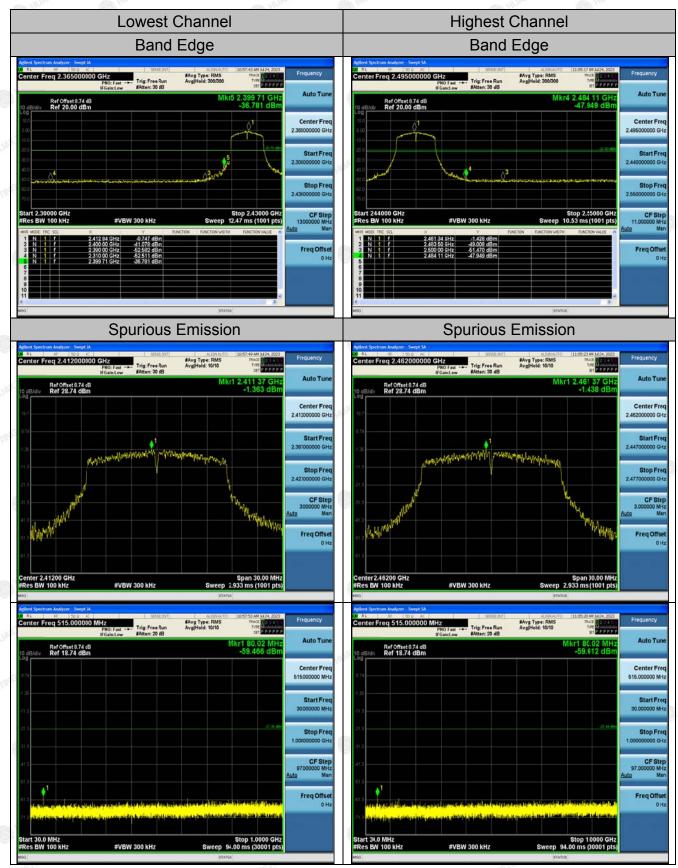
Test Data


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 34 of 63

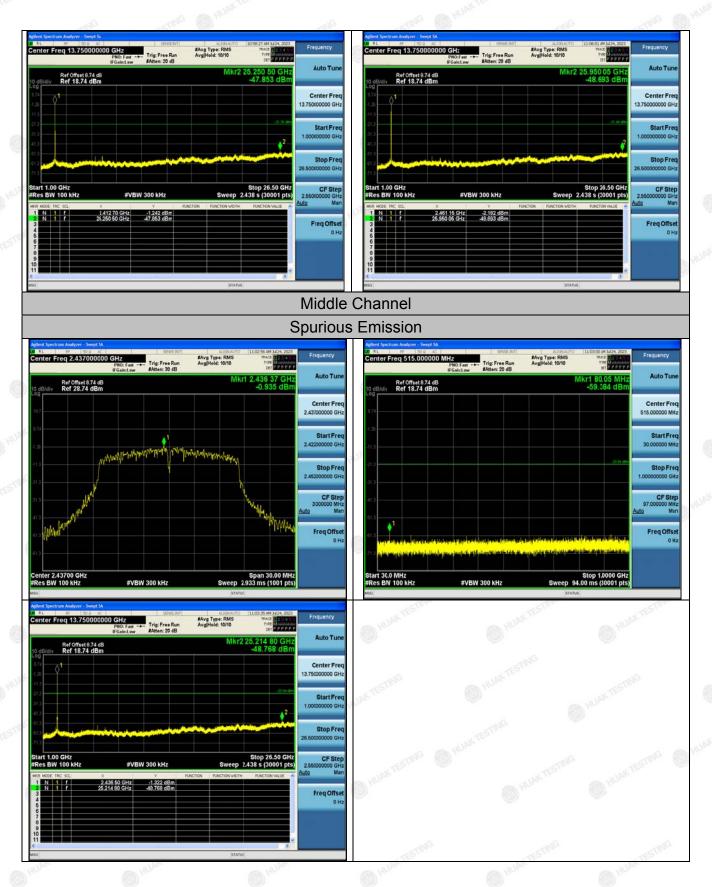
Report No.:HK230713002-1E



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

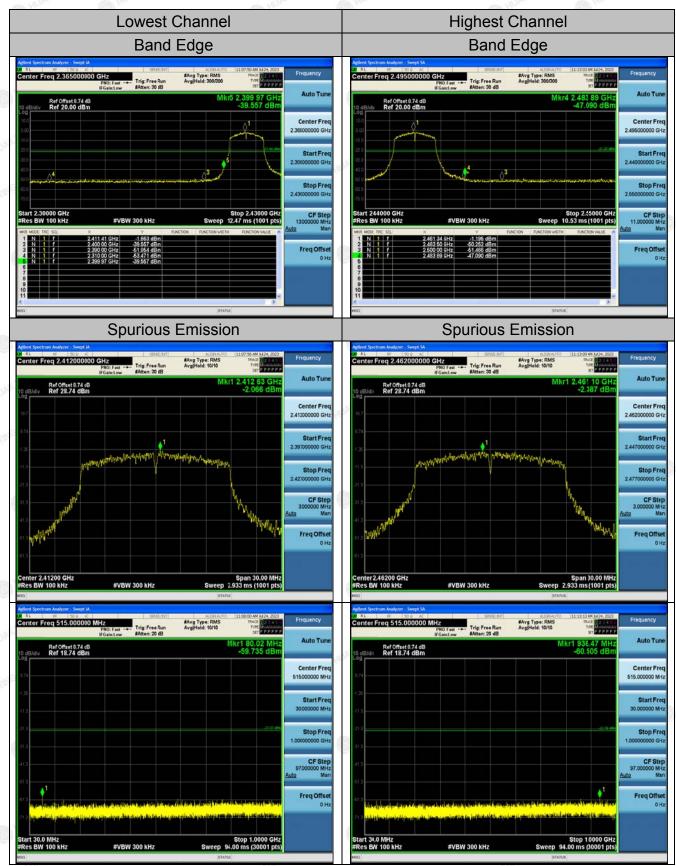
802.11g Modulation


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 36 of 63

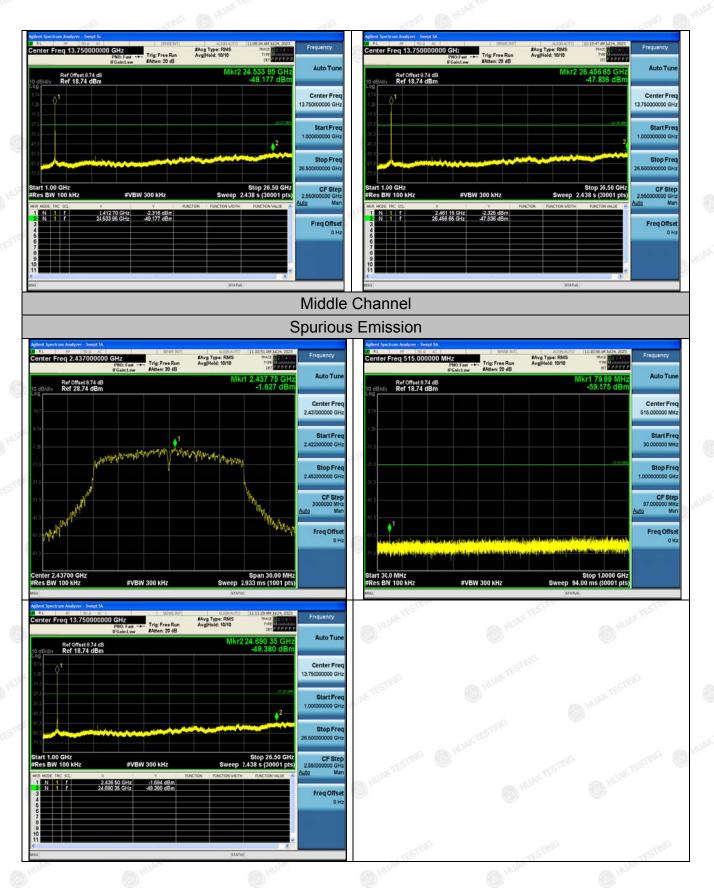
FICATION



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

802.11n (HT20) Modulation


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

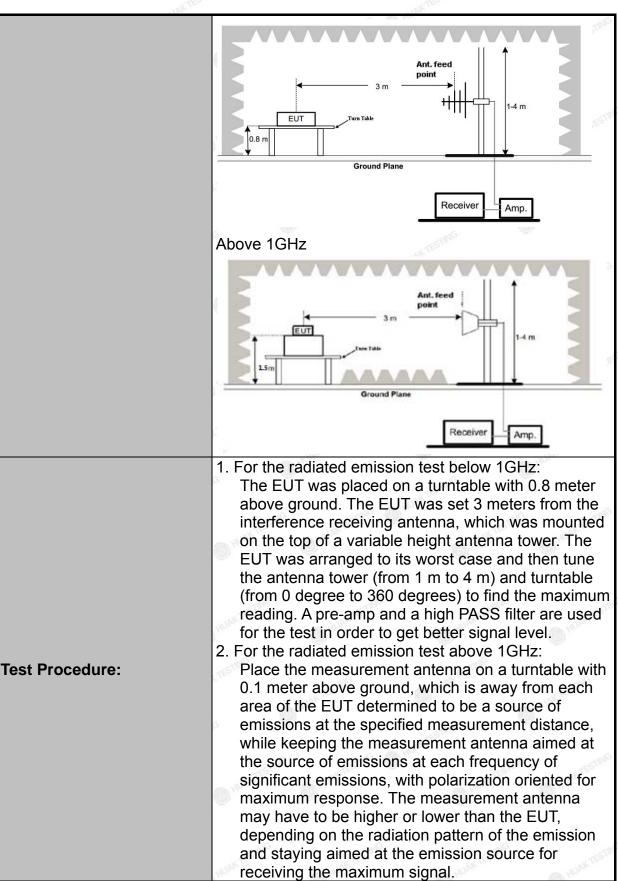
Page 38 of 63

FEST F

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.7. Radiated Spurious Emission Measurement


Test Specification

Test Requirement:	FCC Part15	C Sectio	n 1	5.209	TESTI	∦G	TES
Test Method:	ANSI C63.10	0: 2013		(HUAN		O HUAN
Frequency Range:	9 kHz to 25 (GHz			CTING		
Measurement Distance:	3 m	TESTING		(A) HU	AKTE		TESTING
Antenna Polarization:	Horizontal &	Vertical			.0	0	HUAR
Operation mode:	Transmitting	mode w	ith i	modulati	ion		
	Frequency	Detector	r	RBW	VBW	STIME	Remark
	9kHz- 150kHz	Quasi-pea	ak	200Hz	1kHz	Quas	i-peak Valu
Receiver Setup:	150kHz- 30MHz	Quasi-pea	ak	9kHz	30kHz	Quas	i-peak Valu
	30MHz-1GHz	Quasi-pea	ak	120KHz	300KHz	Quas	i-peak Value
	TING	Peak	LUNG	1MHz	3MHz		eak Value
	Above 1GHz	Peak		1MHz	10Hz		rage Value
	Frequen	(Field Strength (microvolts/meter)			Measurement Distance (meters)	
	0.009-0.4	490		2400/F(k	(Hz)		300
	0.490-1.7	705		24000/F(KHz)		30
	1.705-3			30			30
	30-88			100	11+		3
	88-216			150		Olas	3
Limit:	216-960			200	at the	SINT	3
	Above 960 500						3
	Frequency		eld Strength crovolts/meter)		Measurement Distance (meters)		Detector
	Above 1011	HUAK IL	5	00			Average
	Above 1GHz	z	5000		3		Peak
Test setup:	For radiated		- 31	m)†	
	30MHz to 10	GHz			HUAT		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 41 of 63

	100
0	The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
N HUP	3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
N.TES	4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission
and a second	measurement will be repeated using the quasi-peak detector and reported.5. Use the following spectrum analyzer settings:
	 (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold;
N HOR	 (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement.
44 ⁷⁷⁵⁵ 116	6.For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent.VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum
	power control level for the tested mode of operation.
Test results:	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

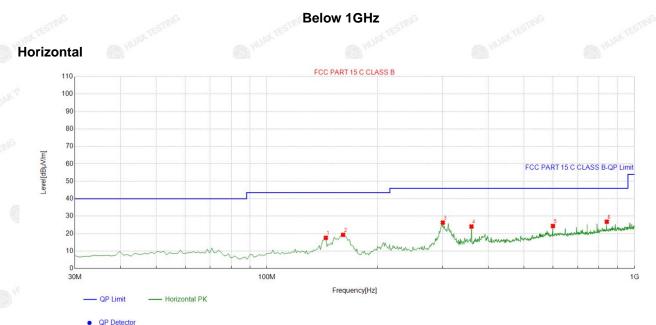
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

AFICATION

Test Instruments

	Rad	iated Emission	Test Site (96	6)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESR-7	HKE-010	Feb. 17, 2023	Feb. 16, 2024
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	Feb. 16, 2024
Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 17, 2023	Feb. 16, 2024
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 17, 2023	Feb. 16, 2024
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 17, 2023	Feb. 16, 2024
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 17, 2023	Feb. 16, 2024
Preamplifier	Agilent	83051A	HKE-016	Feb. 17, 2023	Feb. 16, 2024
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 17, 2023	Feb. 16, 2024
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 17, 2023	Feb. 16, 2024
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 17, 2023	Feb. 16, 2024
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 17, 2023	Feb. 16, 2024
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 17, 2023	Feb. 16, 2024
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
RF cable	Times	9kHz-1GHz	HKE-117	Feb. 17, 2023	Feb. 16, 2024
RF cable	Times	1-40G	HKE-034	Feb. 17, 2023	Feb. 16, 2024
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Feb. 17, 2023	Feb. 16, 2024

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

1	Suspe	cted List								
	NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
	1	144.57457	-18.38	35.97	17.59	43.50	25.91	100	80	Horizontal
	2	161.08108	-17.19	36.49	19.30	43.50	24.20	100	80	Horizontal
	3	300.90090	-11.91	38.24	26.33	46.00	19.67	100	97	Horizontal
	4	360.13013	-10.97	35.07	24.10	46.00	21.90	100	223	Horizontal
ų,	5	599.95996	-4.93	29.32	24.39	46.00	21.61	100	34	Horizontal
	6	840.76076	-1.42	28.27	26.85	46.00	19.15	100	176	Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FIF

QP Detector

Suspe	cted List								
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	37.767768	-15.62	31.25	15.63	40.00	24.37	100	299	Vertical
2	75.635636	-16.90	38.02	21.12	40.00	18.88	100	1	Vertical
3	161.08108	-17.19	41.36	24.17	43.50	19.33	100	69	Vertical
4	207.68768	-14.61	35.87	21.26	43.50	22.24	100	236	Vertical
5	360.13013	-10.97	38.63	27.66	46.00	18.34	100	154	Vertical
6	552.38238	-6.06	31.25	25.19	46.00	20.81	100	44	Vertical

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

	Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
STIND		restrike	TESTING
	TEEDNO M	TESTING	HUAA
	HUAN	111 Mar.	
	<u> </u>		STING -

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

IK PB

Above 1GHz

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

eading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
56.34	-3.64	52.7	74	-21.3	peak
43.94	-3.64	40.3	54	-13.7	AVG
53.13	-0.95	52.18	74	-21.82	peak
41.91	-0.95	40.96	54	-13.04	AVG
	(dBµV) 56.34 43.94 53.13	(dBµV) (dB) 56.34 -3.64 43.94 -3.64 53.13 -0.95	(dBµV) (dB) (dBµV/m) 56.34 -3.64 52.7 43.94 -3.64 40.3 53.13 -0.95 52.18	(dBµV) (dB) (dBµV/m) (dBµV/m) 56.34 -3.64 52.7 74 43.94 -3.64 40.3 54 53.13 -0.95 52.18 74	(dBµV) (dB) (dBµV/m) (dBµV/m) (dBµV/m) 56.34 -3.64 52.7 74 -21.3 43.94 -3.64 40.3 54 -13.7 53.13 -0.95 52.18 74 -21.82

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.46	-3.64	57.82	74	-16.18	peak
4824	43.33	-3.64	39.69	54	-14.31	AVG
7236	52.86	-0.95	51.91	74	-22.09	peak
7236	40.68	-0.95	39.73	54	-14.27	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	ju Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	56.59	-3.51	53.08	74	-20.92	peak
4874	43.65	-3.51	40.14	54	-13.86	AVG
7311	50.87	-0.82	50.05	74	-23.95	peak
7311	38.49	-0.82	37.67	54	-16.33	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.94	-3.51	52.43	74	-21.57	peak
4874	43.18	-3.51	39.67	54	-14.33	AVG
7311	52.59	-0.82	51.77	74	-22.23	peak
7311	40.36	-0.82	39.54	54	-14.46	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	57.59	-3.43	54.16	74	-19.84	peak
o ⁶⁶ 4924	45.25	-3.43	41.82	54	-12.18	AVG
7386	52.95	-0.75	52.2	74	-21.8	peak
7386	40.91	-0.75	40.16	54	-13.84	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	59.65	-3.43	56.22	74	-17.78	peak
o 4924	43.13	-3.43	39.7	54	-14.3	AVG
7386	55.15	-0.75	54.4	74	-19.6	peak
7386	42.11	-0.75	41.36	54	-12.64	AVG

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

FICATION

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Minits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	55.73	-3.64	52.09	74	-21.91	peak
4824	41.72	-3.64	38.08	54	-15.92	AVG
7236	53.83	-0.95	52.88	74	-21.12	peak
7236	38.37	-0.95	37.42	54	-16.58	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	57.13	-3.64	53.49	74	-20.51	peak
4824	43.53	-3.64	39.89	54	-14.11	AVG
7236	54.23	-0.95	53.28	74	-20.72	peak
7236	41.65	-0.95	40.7	54	-13.3	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	📈 Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	60.38	-3.51	56.87	74	-17.13	peak
4874	44.94	-3.51	41.43	54	-12.57	AVG
7311	53.91	-0.82	53.09	74	-20.91	peak
7311	40.13	-0.82	39.31	54	-14.69	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	imits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.21	-3.51	51.7	74	-22.3	peak
4874	42.86	-3.51	39.35	54	-14.65	AVG
7311	53.07	-0.82	52.25	74	-21.75	peak
7311	40.39	-0.82	39.57	54	-14.43	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	60.32	-3.43	56.89	74	-17.11	peak
4924 ⁴	45.23	-3.43	41.8	54	-12.2	AVG
7386	56.24	-0.75	55.49	74	-18.51	peak
7386	42.41	-0.75	41.66	54	-12.34	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	56.13	-3.43	52.7	74	-21.3	peak
4924	43.24	-3.43	39.81	54	-14.19	AVG
7386	54.19	-0.75	53.44	74	-20.56	peak
7386	39.02	-0.75	38.27	54	-15.73	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-∟imit.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	57.86	-3.64	54.22	74	-19.78	peak
4824	44.74	-3.64	41.1	54	-12.9	AVG
7236	52.41	-0.95	51.46	74	-22.54	peak
7236	42.06	-0.95	41.11	54	-12.89	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	© Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	53.51	-3.64	49.87	74	-24.13	peak
4824	44.33	-3.64	40.69	54	-13.31	AVG
7236	52.07	-0.95	51.12	74	-22.88	peak
7236	40.63	-0.95	39.68	54	-14.32	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	53.34	-3.51	49.83	74.00	-24.17	peak
4874	40.74	-3.51	37.23	54.00	-16.77	AVG
7311	51.46	-0.82	50.64	74.00	-23.36	peak
7311	39.57	-0.82	38.75	54.00	-15.25	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	53.72	-3.51	50.21	74.00	-23.79	peak
4874	42.28	-3.51	38.77	54.00	-15.23	AVG
7311	50.43	-0.82	49.61	74.00	-24.39	peak
7311	40.91	-0.82	40.09	54.00	-13.91	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Sime Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m) 🌘	(dB)	
4924	53.88	-3.43	50.45	74	-23.55	peak
4924	45.67	-3.43	42.24	54	-11.76	AVG
7386	52.66	-0.75	51.91	74	-22.09	peak
7386	40.21	-0.75	39.46	54	-14.54	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	O MUM JPC
4924	53.23	-3.43	49.8	74	-24.2	peak
4924	44.09	-3.43	40.66	54	-13.34	AVG
7386	51.87	-0.75	51.12	74	-22.88	peak
7386	43.09	-0.75	42.34	54	-11.66	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

VCATION.

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	55.76	-5.81	49.95	74	-24.05	peak
2310.00	41.22	-5.81	35.41	54	-18.59	AVG
2390.00	50.62	-5.84	44.78	74	-29.22	peak
2390.00	40.93	-5.84	35.09	N ^G 54	-18.91	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	HOLM
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	_ Detector Type
2310.00	58.16	-5.81	52.35	74	-21.65	peak
2310.00	40.62	-5.81	34.81	54	-19.19	AVG
2390.00	53.24	-5.84	47.4	74	-26.6	peak
2390.00	38.63	-5.84	32.79	54	-21.21	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	54.77	-5.81	48.96	74 M ⁰¹⁴	-25.04	peak
2483.50	44.55	-5.81	38.74	54	-15.26	AVG
2500.00	50.96	-6.06	44.9	74	-29.1	peak
2500.00	42.15	-6.06	36.09	54	-17.91	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits 🧶	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	55.66	-5.81	49.85	74	-24.15	peak
2483.50	43.19	-5.81	37.38	54	-16.62	AVG
2500.00	53.33	-6.06	47.27	74	-26.73	peak
2500.00	42.61	-6.06	36.55	54	-17.45	AVG
			~			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	52.05	-5.81	46.24	74 HUA	-27.76	peak
2310.00	45.43	-5.81	39.62	54	-14.38	AVG
2390.00	50.18	-5.84	44.34	74	-29.66	peak
2390.00	42.93	-5.84	37.09	54	-16.91	AVG

Vertical:

TING	TING	Th	G	NG	TING	TING
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	60.91	-5.81	55.1	74	-18.9	peak
2310.00	42.92	-5.81	37.11	54	-16.89	AVG
2390.00	55.18	-5.84	49.34	74	-24.66	peak
2390.00	39.84	-5.84	34	54	-20	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	52.83	-5.65	47.18	74	-26.82	peak
2483.50	44.79	-5.65	39.14	54	-14.86	AVG
2500.00	50.34	-5.65	44.69	74	-29.31	peak
2500.00	40.78	-5.65	35.13	54	-18.87	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
္တ (MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	57.19	-5.65	51.54	74	-22.46	peak
2483.50	43.83	-5.65	38.18	54	-15.82	AVG
2500.00	51.49	-5.65	45.84	74	-28.16	peak
2500.00	42.21	-5.65	36.56	54	-17.44	AVG

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	0
2310.00	52.59	-5.81	46.78	74	-27.22	peak
2310.00	45.13	-5.81	39.32	54	-14.68	AVG
2390.00	51.72	-5.84	45.88	74	-28.12	peak
2390.00	43.43	-5.84	37.59	54	-16.41	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	54.53	-5.81	48.72	74 HUA	-25.28	peak
2310.00	44.75	-5.81	38.94	54	-15.06	AVG
2390.00	52.42	-5.84	46.58	74	-27.42	peak
2390.00	39.11	-5.84	33.27	54	-20.73	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High (2462MHz)

Horizontal

HUAK TESTING

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	54.76	-5.65	49.11	74 was	-24.89	peak
2483.50	40.61	-5.65	34.96	54	-19.04	AVG
2500.00	52.57	-5.65	46.92	74	-27.08	peak
2500.00	39.57	-5.65	33.92	54	-20.08	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	54.13	-5.65	48.48	74	-25.52	peak
2483.50	45.42	-5.65	39.77	54	-14.23	AVG
2500.00	50.66	-5.65	45.01	74	-28.99	peak
2500.00	40.77	-5.65	35.12	54	-18.88	AVG

Remark:

1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.8. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

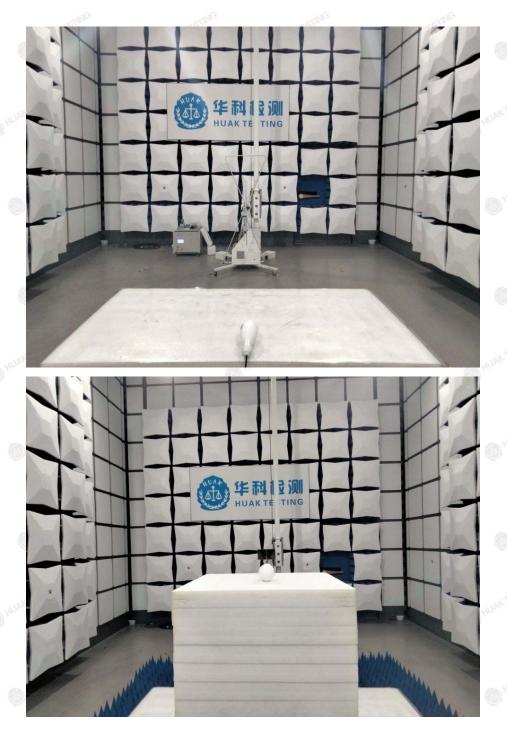
The antenna used in this product is Internal Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 3.48dBi.

WIFI ANTENNA

33

2 02 02 02 10 500 30 50 10 500 30 50 50 50 70 30 50 10 100 30 50 50 50 70 30 50 5

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com


TEL:+86-755 2302 9901 FAX:+86-755 2302 9901 E-mail: service@cer-mark.com

Page 61 of 63

5. Photograph of Test

Radiated Emissions

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 62 of 63

Report No.:HK230713002-1E

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

DAT.

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

----End of test report--

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com