

InterLab Final Report on SARA-N410-02B NB-IoT Module FCC ID: XPY2AGQN4NNN IC: 8595A-2AGQN4NNN

Report Reference:	MDE_UBLOX_1818_FCCa
Date:	June 05, 2018

According to:

Designation	Description
FCC47CFRChI PART22 PUBLIC MOBILE SERVICES	Part 22, Subpart H - Cellular Radiotelephone Service
FCC47CFRChI PART24 PERSONAL COMMUNICATIONS SERVICES	Part 24, Subpart E - Broadband PCS
FCC47CFRChI PART27 MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES	Part 27, Subpart C - Technical Standards

Test Laboratory: 7layers GmbH Borsigstraße 11 40880 Ratingen Germany

Note: The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 *www.7layers.com*

Geschäftsführer / Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard Registergericht registered in: Düsseldorf, HRB 75554 USt-IdNr VAT No.: DE203159652 TAX No. 147/5869/0385 *A Bureau Veritas Group Company*

1 Administrative Data

1.1 Project Data

Project Responsible:	Patrick Lomax
Date Of Test Report:	2018/06/05
Date of first test:	2018/05/11
Date of last test:	2018/05/15

1.2 Applicant Data

Company Name:	u-blox AG
Street:	Zürcherstrasse 68,
Country:	Switzerland
Contact Person:	Mr. Giulio Comar
Function:	Certification Manager
Department:	Cellular Product Certification
Phone:	+41 44 722 7462
Fax:	+41 44 722 7447
E-Mail:	giulio.comar@u-blox.com

1.3 Test Laboratory Data

The following list shows all places and laboratories involved for test result generation:

7 layers DE

3	
Company Name :	7layers GmbH
Street :	Borsigstrasse 11
City :	40880 Ratingen
Country :	Germany
Contact Person :	Mr. Michael Albert
Phone :	+49 2102 749 201
Fax :	+49 2102 749 444
E Mail :	Michael.Albert@7Layers.com

Laboratory Details

Lab ID	Identification	Responsible	Accreditation Info
Lab 1	Radiated Emissions	Mr. Marco Kullik Mr. Jens Dörwald	DAkkS-Registration no. D-PL-12140-01-00 ISEDC OATS registration number 3699A-1 FCC accreditation registration number 929146
Lab 2	Radio Lab	Mr. Dobrin Dobrinov Mr. Daniel Gall	DAkkS-Registration no. D-PL-12140-01-00 ISEDC OATS registration number 3699A-1 FCC accreditation registration number 929146

lay

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

1.4 Signature of the Testing Responsible

Patrick Lomax responsible for tests performed in: Lab 1, Lab 2

1.5 Signature of the Accreditation Responsible

[M. Kullik]

Accreditation scope responsible person responsible for Lab 1, Lab 2

2 Test Object Data

2.1 General OUT Description

The following section lists all OUTs (Object's Under Test) involved during testing.

OUT: SARA-N410-02B

Type / Model / Family:	SARA-N410-02B NB-IoT Module FCC ID: XPY2AGQN4NNN IC: 8595A-2AGQN4NNN
<i>Manufacturer:</i> Company Name:	see applicant data
Contact Person:	see applicant data
Parameter List:	

Parameter name	Value	
AC Power Supply	120V / 60Hz (V)	
DC Power Supply	12V via AC/DC Adapter (V)	
LTE_Operating Frequencies	See Annex	

2.2 Detailed Description of OUT Samples

Sample : AB01

OUT Identifier	SARA-N410-02B
Sample Description	RF Sample
Serial No.	357404090011357
HW Status	306BA0
SW Status	L0.0.00.00.07.01

2.3 Auxiliary Equipment

AE No.	Type Designation	Serial No.	HW Status	SW Status	Description
AE AE01	EVB-WL3		NO_EVK_CS_19 1A00		Evaluation test board
AE AE02	UUX324-1215	H05-0345103			AC/DC converter

2.4 Setups used for Testing

For each setup a relation is given to determine if and which samples and auxiliary equipment is used. The left side list all OUT samples and the right side lists all auxiliary equipment for the given setup.

Setup No.	List of OUT samp	les	List of auxilia	ry equipment
Sample	e No.	Sample Description	AE No.	AE Description
ab01 (a	ab01)			
Sample	e: AB01	RF Sample	AE AE01	Evaluation test board
			AE AE02	AC/DC converter

3 Results

3.1 General

Documentation of tested devices:	Available at the test laboratory.
Interpretation of the test results:	The results of the inspection are described on the following pages, where 'Conformity' or 'Passed' means that the certification criteria were verified and that the tested device is conform to the applied standard.
	In cases where 'Declaration' is printed, the required documents are available in the manufacturers product documentation.
	In cases where 'not applicable' is printed, the test case requirements are not relevant to the specific equipment implementation.
Note:	1. All tests are performed under environmental conditions within the requirements of the specifications. Environmental conditions are available at the laboratory.
	2. The SARA-N410-02B module is a NB-IoT module This repot is related only to the NB-IoT bands 2, 4,5, 12 and 13.
	3. The SARA-N410-02B is based on the SARA-R410M-02B (FCC ID: XPY2AGQN4NNN, IC: 8595A-2AGQN4NNN) which has already been certified. The SARA-R410-02B additionally has LTE CATM1 mode enabled. The SARA-N410-02B has LTE CATM1 disabled via a SW fuse only. As such, this is only a partical test report to show that the disabling of the CAT M1 mode as not degraded the performance of the module pursuent to a Class 2 permissive change.

3.2 List of the Applicable Body

(Bodies for Scope: FCC_v2)

Designation

Description

FCC47CFRChIPART22PUBLIC MOBILE Part 22, Subpart H - Cellular Radiotelephone Service SERVICES

FCC47CFRChIPART24PERSONAL Part 24, Subpart E - Broadband PCS COMMUNICATIONS SERVICES

FCC47CFRChIPART27MISCELLANEOUSPart 27, Subpart C - Technical Standards WIRELESS COMMUNICATIONS SERVICES

3.3 List of Test Specification

Test Specification:	FCC part 2 and 22
Version	10-1-15 Edition
Title:	PART 2 - GENERAL RULES AND REGULATIONS
	PART 22 - PUBLIC MOBILE SERVICES
Test Specification:	FCC part 2 and 24
Date / Version	2015/10/01 Version: 10-1-15 Edition
Title:	PART 2 - GENERAL RULES AND REGULATIONS
	PART 24 - PERSONAL COMMUNICATIONS SERVICES
Test Specification:	FCC part 2 and 27
Version	10-1-13 Edition
Title:	PART 2 - GENERAL RULES AND REGULATIONS
	PART 27 - MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

3.4 Summary

Test Case Identifier / Name			Lab	
Test (condition)	Result	Date of Test	Ref.	Setup
Test Specification: FCC part 2 and 22	2			
22.1 RF Power Output §2.1046, §22.913 22.1; _RF Power Output Summary §2.1046, §22.913	Passed	2018/05/14	Lab 2	ab01
22.4 Field strength of spurious radiation §2 22.4; Field strength of spurious radiation Summary §2.1053, §22.917	2.1053, §22.917 Passed	2018/05/11	Lab 1	ab01
Test Specification: FCC part 2 and 24	L			
24.1 RF Power Output §2.1046, §24.232 24.1; RF Power Output Summary §2.1046, §24.232	Passed	2018/05/15	Lab 2	ab01
24.4Field strength of spurious radiation §224.4;Field strength of spurious radiationSummary §2.1053, §24.238	2.1053, §24.238 Passed	2018/05/11	Lab 1	ab01
Test Specification: FCC part 2 and 27	,			
27.1 RF Power Output §2.1046, §27.250 27.1; RF Power Output Summary §2.1046, §27.250	Passed	2018/05/15	Lab 2	ab01
27.4Field strength of spurious radiation §227.4; Field strength of spurious radiation	2.1053, §27.53 Passed	2018/05/11	Lab 1	ab01

3.5 Detailed Results

3.5.1 22.1 RF Power Output §2.1046, §22.913

Test: 22.1; _RF Power Output Summary §2.1046, §22.913

Result:	Passed
Setup No.:	ab01
Date of Test:	2018/05/14 12:29
Body:	FCC47CFRChIPART22PUBLIC MOBILE SERVICES
Test Specification:	FCC part 2 and 22

Detailed Results:

Date: 14.MAY.2018 12:53:19

Date: 14.MAY.2018 12:52:26

Date: 14.MAY.2018 12:51:42

3.5.2 22.4 Field strength of spurious radiation §2.1053, §22.917

Test: 22.4; Field strength of spurious radiation Summary §2.1053, §22.917

Result:	Passed
Setup No.:	ab01
Date of Test:	2018/05/11 15:46
Body:	FCC47CFRChIPART22PUBLIC MOBILE SERVICES
Test Specification:	FCC part 2 and 22

Detailed Results:

Test Report

Common Information

Test Description: Test Standard Operating Conditions: Operator Name: Comment:

Final Result

						_	_			
Frequency	RMS	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Corr.	Comment
(MHz)	(dBm	(dBm	n	Time	h	t		h	(dB)	
))	(dB)	(ms)	(kHz)	(cm)		(deg)		

EMI Auto Test Template: FCC22_30M-1G_eFDD5_5MHz_CH20525

Hardware Setup: Measurement Type: Frequency Range: Graphics Level Range:	FCC_30M-1G_ERP Open-Area-Test-Site 30 MHz - 1 GHz -80 dBm - 0 dBm
Preview Measurements: Sweep Test Template:	FCC22.4_LTE_eFDD5_5MHz_20525_PRE
Adjustment: Template for Single Meas.:	FCC22_eFDD5_Adjustment
Final Measurements: Template for Single Meas.:	FCC22_eFDD5_Final

TCH 20525 eFDD5

Critical Freqs

Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB)

Final_Result

Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB)

TCH 20525 eFDD5

3.5.3 24.1 RF Power Output §2.1046, §24.232

Test: 24.1; RF Power Output Summary §2.1046, §24.232

Result:	Passed
Setup No.:	ab01
Date of Test:	2018/05/15 12:33
Body:	FCC47CFRChIPART24PERSONAL COMMUNICATIONS SERVICES
Test Specification:	FCC part 2 and 24

Date: 14.MAY.2018 11:12:42

Date: 14.MAY.2018 11:02:39

Date: 14.MAY.2018 10:55:30

Date: 14.MAY.2018 10:59:33

3.5.4 24.4 Field strength of spurious radiation §2.1053, §24.238

Test: 24.4; Field strength of spurious radiation Summary §2.1053, §24.238

Result:	Passed
Setup No.:	ab01
Date of Test:	2018/05/11 15:47
Body:	FCC47CFRChIPART24PERSONAL COMMUNICATIONS SERVICES
Test Specification:	FCC part 2 and 24

Detailed Results:

Test Report

Common Information

Test Description: Test Standard Operating Conditions: Operator Name: Comment:

Final Result

						_				
Frequency	RMS	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Corr.	Comment
(MHz)	(dBm	(dBm	n	Time	h	t		h	(dB)	
))	(dB)	(ms)	(kHz)	(cm)		(deg)		

EMI Auto Test Template: FCC24_30M-1G_eFDD2_5MHz_CH18900

Hardware Setup: Measurement Type: Frequency Range: Graphics Level Range:	FCC_30M-1G_ERP Open-Area-Test-Site 30 MHz - 1 GHz -80 dBm - 0 dBm
Preview Measurements: Sweep Test Template:	FCC24.4_LTE_eFDD2_5MHz_18900_PRE
Adjustment: Template for Single Meas.:	FCC24_eFDD2_Adjustment
Final Measurements: Template for Single Meas.:	FCC24_eFDD2_Final

TCH 18900 eFDD2 QPSK

Critical Freqs

Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB)

Final_Result

Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB)

TCH 18900 eFDD2 QPSK

3.5.5 27.1 RF Power Output §2.1046, §27.250

Test: 27.1; RF Power Output Summary §2.1046, §27.250

Result:	Passed
Setup No.:	ab01
Date of Test:	2018/05/15 12:50
Body:	FCC47CFRChIPART27MISCELLANEOUS WIRELESS COMMUNICATIONS SERV
Test Specification:	FCC part 2 and 27

Detailed Results:

Radio Technology	Reference Test Frequencies	Channel	Sub- carrier	Parent RMS Conducted Power (dBm)	N410 RMS Conducted Power (dBm)	FCC / IC EIRP Limit (W)	Maximum Antenna Gain (dBi)
NB-IoT eFDD 12 QPSK	standalone	23095	12	21.04	20.92	1	9.08
NB-IoT eFDD 12 QPSK	standalone	23095	6	21.97	21.88	1	8.12
NB-IoT eFDD 12 QPSK	standalone	23095	3	22.39	22.1	1	7.9
NB-IoT eFDD 12 QPSK	standalone	23095	1	21.12	21.07	1	8.93
NB-IoT eFDD 12 BPSK	standalone	23095	1	21.52	21.41	1	8.59
NB-IoT eFDD 13 QPSK	standalone	23230	12	20.66	20.83	3	13.94
NB-IoT eFDD 13 QPSK	standalone	23230	6	21.52	21.71	3	13.06
NB-IoT eFDD 13 QPSK	standalone	23230	3	23.58	22.05	3	12.72
NB-IoT eFDD 13 QPSK	standalone	23230	1	22.65	20.96	3	13.81
NB-IoT eFDD 13 BPSK	standalone	23230	1	21.12	20.92	3	13.85
NB-IoT eFDD 4 QPSK	standalone	20175	12	21.04	21.03	1	8.97
NB-IoT eFDD 4 QPSK	standalone	20175	6	22.12	22.34	1	7.66
NB-IoT eFDD 4 QPSK	standalone	20175	3	22.93	22.71	1	7.29
NB-IoT eFDD 4 QPSK	standalone	20175	1	22.13	22.64	1	7.36
NB-IoT eFDD 4 BPSK	standalone	20175	1	21.86	22.68	1	7.32

Summary Table

eFDD4_QPSK_STANDALONE_SUB1_CH20175

Reference: MDE_UBLOX_1818_FCCa

eFDD4_QPSK_STANDALONE_SUB3_CH20175

eFDD4_QPSK_STANDALONE_SUB6_CH20175

eFDD4_QPSK_STANDALONE_SUB12_CH20175

eFDD12_BPSK_STANDALONE_SUB1_CH23095

eFDD12_QPSK_STANDALONE_SUB1_CH23095

eFDD12_QPSK_STANDALONE_SUB3_CH23095

eFDD12_QPSK_STANDALONE_SUB6_CH23095

eFDD12_QPSK_STANDALONE_SUB12_CH23095

eFDD13_BPSK_STANDALONE_SUB1_CH23230

eFDD13_QPSK_STANDALONE_SUB1_CH23230

eFDD13_QPSK_STANDALONE_SUB3_CH23230

eFDD13_QPSK_STANDALONE_SUB6_CH23230

eFDD13_QPSK_STANDALONE_SUB12_CH23230

3.5.6 27.4 Field strength of spurious radiation §2.1053, §27.53

Test: 27.4; Field strength of spurious radiation Summary §2.1053, §27.53

Result:	Passed
Setup No.:	ab01
Date of Test:	2018/05/11 15:49
Body:	FCC47CFRChIPART27MISCELLANEOUS WIRELESS COMMUNICATIONS SERV
Test Specification:	FCC part 2 and 27

Detailed Results:

Test Report

Common Information

Test Description: Test Standard Operating Conditions: Operator Name: Comment:

Final Result

Frequency	RMS	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Corr.	Comment
(MHz)	(dBm	(dBm	n	Time	h	t		h	(dB)	
))	(dB)	(ms)	(kHz)	(cm)		(deg)		

EMI Auto Test Template: FCC27_30M-1G_eFDD4_5MHz_CH20175

Hardware Setup: Measurement Type: Frequency Range: Graphics Level Range:	FCC_30M-1G_ERP Open-Area-Test-Site 30 MHz - 1 GHz -80 dBm - 0 dBm
Preview Measurements: Sweep Test Template:	FCC27.4_LTE_eFDD4_5MHz_20175_PRE
Adjustment: Template for Single Meas.:	FCC27_eFDD4_Adjustment
Final Measurements: Template for Single Meas.:	FCC27_eFDD4_Final

TCH 23095 eFDD12 QPSK

Critical Freqs

Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB)

Final_Result

Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB)

TCH 23095 eFDD12 QPSK

Test Report

Common Information

Test Description: Test Standard Operating Conditions: Operator Name: Comment:

Final_Result

Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Corr. (dB)	Comment

EMI Auto Test Template: FCC27_30M-1G_eFDD4_5MHz_CH20175

Hardware Setup: Measurement Type: Frequency Range: Graphics Level Range:	FCC_30M-1G_ERP Open-Area-Test-Site 30 MHz - 1 GHz -80 dBm - 0 dBm
Preview Measurements: Sweep Test Template:	FCC27.4_LTE_eFDD4_5MHz_20175_PRE
Adjustment: Template for Single Meas.:	FCC27_eFDD4_Adjustment
Final Measurements: Template for Single Meas.:	FCC27_eFDD4_Final

TCH 23230 eFDD13 QPSK

Critical Freqs

Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB)

Final_Result

Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB)

TCH 23230 eFDD13 QPSK

Test Report

Common Information

Test Description: Test Standard Operating Conditions: Operator Name: Comment:

Final_Result

Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Corr. (dB)	Comment

EMI Auto Test Template: FCC27_30M-1G_eFDD4_5MHz_CH20175

Hardware Setup: Measurement Type: Frequency Range: Graphics Level Range:	FCC_30M-1G_ERP Open-Area-Test-Site 30 MHz - 1 GHz -80 dBm - 0 dBm
Preview Measurements: Sweep Test Template:	FCC27.4_LTE_eFDD4_5MHz_20175_PRE
Adjustment: Template for Single Meas.:	FCC27_eFDD4_Adjustment
Final Measurements: Template for Single Meas.:	FCC27_eFDD4_Final

TCH 20175 eFDD4 QPSK

Critical Freqs

Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB)

Final_Result

Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB)

TCH 20175 eFDD4 QPSK

4 Test Equipment Details

4.1 List of Used Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:	Lab 1
Description:	Anechoic Chamber for radiated testing

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	none	
Anechoic Chamber	8.8m x 4.6m x 4.05 m	B83117-S40-X191	Albatross Projects GmbH
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	
EMC camera Nr.2	CCD-400E	0005033	
Filter ISDN	B84312-C110-E1		
Filter Universal 1A	BB4312-C30-H3	-	

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID:	Lab 1
Description:	Equipment for emission measurements
Serial Number:	see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/11920 513	Maturo GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	
Biconical dipole	VUBA 9117	9117-108	
Broadband Amplifier 1 GHz - 4 GHz	AFS4-01000400-1Q-10P-4	-	
Broadband Amplifier 18 GHz - 26 GHz	JS4-18002600-32-5P	849785	
Broadband Amplifier 30 MHz - 18 GHz	JS4-00101800-35-5P	896037	
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01- 2+W38.01-2	
Cable "ESI to Horn Antenna"	SucoFlex	W18.02- 2+W38.02-2	
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH &
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2015/06/23 2018/06/22
Double-ridged horn	HF 907	102444	Rohde & Schwarz GmbH & Co. KG

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Double-ridged horn- duplicated 2015-07- 15 10:47:55	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
High Pass Filter	4HC1600/12750-1.5-KK	9942011	
High Pass Filter	5HC2700/12750-1.5-KK	9942012	
High Pass Filter	5HC3500/18000-1.2-KK	200035008	
High Pass Filter	WHKX 7.0/18G-8SS	09	
Horn Antenna Schwarzbeck 15-26.5 GHz BBHA 9170	BBHA 9170	BBHA9170262	
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
Logper. Antenna (upgraded)	HL 562 Ultralog new biconicals	830547/003	Rohde & Schwarz GmbH & Co. KG Last Execution Next Exec.
	Standard Calibration		2015/06/30 2018/06/29
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
Standard Gain / Pyramidal Horn Antenna 40 GHz	3160-10	00086675	
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/379070 9	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID:	Lab 1, Lab 2
Description:	Single Devices for various Test Equipment
Type:	various
Serial Number:	none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divider N (Aux)	1506A / 93459	LM390	
Broadband Power Divider SMA	WA1515	A855	
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	
Digital Multimeter 13 (Clamp Meter)	Fluke 325	31270091WS	FLUKE
	Calibration Details		Last Execution Next Exec.
	DAkkS-Calibration		2016/02/04 2019/02/28
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	
Isolating Transformer	LTS 604	1888	
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG
Spectrum Analyser	FSU26	200418	
Spectrum Analyzer	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	DKD calibration		2015/06/23 2018/06/22
Vector Signal Generator	SMIQ 03B	832492/061	

Test Equipment Digital Signalling Devices

Lab ID:	Lab 1, Lab 2
Description:	Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer
CMW500	CMW500	107500	
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co. KG

Test Equipment Emission measurement devices

Lab ID:	Lab 1
Description:	Equipment for emission measurements
Serial Number:	see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer	
EMI Receiver / Spectrum Analyzer	ESR 7	101424		
	Calibration Details		Last Execution Next Exec.	
	DKD Calibration		2016/11/29 2018/11/28	
Personal Computer	Dell	30304832059		
Power Meter	NRVD	828110/016		
	Calibration Details		Last Execution Next Exec.	
	Standard calibration		2017/05/17 2018/05/16	
Sensor Head A	NRV-Z1	827753/005		
	Calibration Details		Last Execution Next Exec.	
	Standard calibration		2017/05/18 2018/05/17	
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG	
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG	
	HW/SW Status		Date of Start Date of End	
	Firmware-Update 4.34.4 from 3	3.45 during calibration	2009/12/03	
Spectrum Analyzer	FSW 43	103779		
	Calibration Details		Last Execution Next Exec.	
	DKD calibration		2016/12/02 2018/12/01	

Test Equipment Multimeter 03

Lab ID:	Lab 1, Lab 2
Description:	Fluke 177
Serial Number:	86670383

Single Devices for Multimeter 03

Single Device Name	Туре	Serial Number	Manufacturer

Digital Multimeter 03 Fluke 177 (Multimeter)

86670383

Test Equipment Radio Lab Test Equipment

Lab ID: Description:	Lab 2 Radio Lab Test Equipment					
Single Devices for F	Radio Lab Test Equipment					
Single Device Name	Туре	Serial Number	Manufacturer			
Broadband Power Divider SMA	WA1515	A856				
Coax Attenuator 10dB SMA 2W	4T-10	F9401				
Coax Attenuator 10dB SMA 2W	56-10	W3702				
Coax Attenuator 10dB SMA 2W	56-10	W3711				
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner			
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2				
Power Meter	NRVD Calibration Details	828110/016	Last Execution Next Exec.			
	Standard calibration		2017/05/17 2018/05/16			
RF Step Attenuator RSP	RSP	833695/001				
Rubidium Frequency Standard	Datum, Model: MFS	5489/001				
	Calibration Details		Last Execution Next Exec.			
	Standard calibration		2017/07/11 2018/07/10			
Sensor Head A	NRV-Z1 Calibration Details	827753/005	Last Execution Next Exec.			
	Standard calibration		2017/05/18 2018/05/17			
Signal Generator SME	SME03	827460/016				
Signal Generator SMP	SMP02	833286/0014	Rohde & Schwarz GmbH & Co. KG			
	Calibration Details		Last Execution Next Exec.			
	Standard calibration		2016/05/24 2019/05/23			
Spectrum Analyzer FSIQ26 840061/005 Rohde & Schwarz Co. KG						

Test Equipment T/A Logger 13

Lab ID:	Lab 1, Lab 2
Description:	Lufft Opus10 TPR
Type:	Opus10 TPR
Serial Number:	13936

Single Devices for T/A Logger 13

Single Device Name	Туре	Serial Number	Manufacturer
ThermoAirpressure Datalogger 13 (Environ)	Opus10 TPR (8253.00)	13936	
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2017/04/10 2019/04/09

Test Equipment T/H Logger 03

Lab ID: Description: Serial Number:	Lab 2 Lufft Opus10 7482			
Single Devices for	T/H Logger 03			
Single Device Name	Туре	Serial Number	Manufacturer	
ThermoHygro Datalogger 03 (Environ)	Opus10 THI (8152.00)	7482		

Calibration Details	Last Execution Next Exec.
Customized calibration	2017/03/30 2019/03/29

Test Equipment T/H Logger 12

Lab ID:	Lab 1
Description:	Lufft Opus10
Serial Number:	12482
Single Devices for	or T/H Logger 12

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalogger 12 (Environ)	Opus10 THI (8152.00)	12482	
. ,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2017/03/30 2019/03/29

Test Equipment Temperature Chamber 05

Lab ID:	Lab 2
Description:	Temperature Chamber VT4002
Туре:	Vötsch
Serial Number:	see single devices

Single Devices for Temperature Chamber 05

Single Device Name	Туре	Serial Number	Manufacturer
Temperature Chamber Vötsch 05	VT 4002	58566080550010	
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2018/04/26 2020/04/25

- 5 Annex
- 5.1 Additional Information for Report

Summary of Test Results

The EUT complied with all performed tests as listed in the summary section of this report.

Technical Report Summary

Type of Authorization :

Certification for a GSM/WCDMA/CDMA2000 cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 6^c subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

§ 2.1046 Measurement required: RF power output § 2.1053 Measurement required: Field strength of spurious radiation

Part 22, Subpart C – Operational and Technical Requirements

§ 22.355 Frequency tolerance

Part 22, Subpart H – Cellular Radiotelephone Service

§ 22.913 Effective radiated power limits§ 22.917 Emission limitations for cellular equipment

additional documents

ANSI C63.26-2015

Description of Methods of Measurements

RF Power Output

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §2.1046

Test Description (conducted measurement procedure)

1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Re "Setup Drawings".

2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct 1 from the Spectrum Analyser and the Digital Communication Tester.

3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester. Important Settings:

- Channel (Frequency): please refer to the detailed results

4) The transmitted power of the EUT was recorded by using a spectrum analyser.

Test Description (radiated measurement procedure)

1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Communication Tester which was located outside the chamber via a small signalling antenna.

2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

3) A substitution procedure is used so that the readings from the spectrum analyser are corrected and represent equivalent radiated power (related to a lamda/2 dipole).

4) The output power was measured in both vertical and horizontal antenna polarisation during the call is establish channel, mid channel and on the highest channel. To find the worst case power all orientations (X, Y, Z) of the E measured.

5) The test procedure according to ANSI C63.26-2015 has been considered.

Test Requirements / Limits

§2.1046 Measurements Required: RF Power Output

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, pow be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedu values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of terminals when this test is made shall be stated.

§22.913 Effective radiated power limits

(a) (2) Maximum ERP. ... The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

Field strength of spurious radiation

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §2.1053

Test Description

1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Communication Tester which was located outside the chamber via a small signalling antenna.

2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

3) A pre-calibration procedure is used so that the readings from the spectrum analyser are corrected and represe equivalent radiated power (related to a lamda/2 dipole).

4) All spurious radiation measurements were made with spectrum analyser and the appropriate calibrated antenn frequency range of 30 MHz to 10 GHz (up to the 10th harmonic of the transmit frequency). The frequency range MHz has been examined during the conducted spurious emission measurements.

5) Important Analyser Settings

- [Resolution Bandwidth / Video Bandwidth]:

a) [3 kHz / 10 kHz] in the Span of 1 MHz directly below and above the Band,

b) [10 kHz / 30 kHz] in case the curve of the analyser IF-Filter leads to an exceeding of the limit, in this case a w correction factor of 20 dB (1 MHz -> 10 kHz) was used

c) [1 MHz / 3 MHz] otherwise

- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth

6) The spurious emissions peaks were measured in both vertical and horizontal antenna polarization during the calon the lowest channel, mid channel and on the highest channel. To find the worst case peaks all orientations (X, have been measured.

7) After this initial test, a final test according to ANSI C63.26-2015 Unwanted Emissions is performed on signals v

identified as being close to the limit. For any emissions found to be within 10 dB of the limit, a specific signal sub: measurement is performed at the frequency of the emission to determine the exact e.i.r.p. value.

Test Requirements / Limits

§ 2.1053 Measurements required: Field strength of spurious radiation.

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalen supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, ind sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) o as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, v measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical c make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accept equipment as installed. Such measurements must be accompanied by a description of the site where the measurem and showing the location of any possible source of reflections which might distort the field strength measureme submitted shall include the relative radiated power of each spurious emission with reference to the rated power o transmitter, assuming all emissions are radiated from halfwave dipole antennas.

(b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:

(2) All equipment operating on frequencies higher than 25 MHz.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown belc (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 4 whichever is lower.

(b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages checked.

(c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need (d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bane

§ 22.917 Emission limitations for cellular equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below th power (P) by a factor of at least $43 + 10 \log(P) dB$.

This is calculated to be -13 dBm (effective radiated power) which corresponds to 84.6 dB μ V/m (field strength) in m.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bank kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwic one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narro bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission k defined as the width of the signal between two points, one below the carrier center frequency and one above the frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band ϵ specified geographical areas [...].

(d) If any emission from a transmitter operating in this service results in interference to users of another radio se may require a greater attenuation of that emission than specified in this section.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Summary of Test Results

The EUT complied with all performed tests as listed in the summary section of this report.

Type of Authorization :

Certification for a GSM/WCDMA/CDMA2000 cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 69. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

§ 2.1046 Measurement required: RF power output § 2.1053 Measurement required: Field strength of spurious radiation

Part 24, Subpart E - Broadband PCS

§ 24.232 Power and antenna height limits
§ 24.236 Field strength limits
§ 24.238 Emission limitations for Broadband PCS equipment

additional documents

ANSI C63.26-2015

Description of Methods of Measurements

RF Power Output

Standard: FCC Part 24, Subpart E

The test was performed according to: FCC §2.1046

Test Description (conducted measurement procedure)

1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Re "Setup Drawings".

2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct 1 from the Spectrum Analyser and the Digital Communication Tester.

3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Channel (Frequency): please refer to the detailed results

4) The transmitted power of the EUT was recorded by using a spectrum analyser.

Test Description (radiated measurement procedure)

The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Communication Tester which was located outside the chamber via a small signalling antenna.
 A call was established on a Traffic Channel between the EUT and the Digital Communication Tester. Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

3) A substitution procedure is used so that the readings from the spectrum analyser are corrected and represent equivalent radiated power (related to a lamda/2 dipole).

4) The output power was measured in both vertical and horizontal antenna polarisation during the call is establish channel, mid channel and on the highest channel. To find the worst case power all orientations (X, Y, Z) of the E measured.

5) The test procedure according to ANSI C63.26-2015 has been considered.

Test Requirements / Limits

§2.1046 Measurements Required: RF Power Output

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, pow be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedu values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of terminals when this test is made shall be stated.

§24.232 Power and antenna height limits

(c) Mobile/portable stations are limited to 2 watts EIRP peak power and the equipment must employ means to lin the minimum necessary for successful communications.

(e) Peak transmit power must be measured over any interval of continuous transmission using instrumentation caterms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limita detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sens as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

Field strength of spurious radiation

Standard: FCC Part 24, Subpart E

The test was performed according to: FCC §2.1053

Test Description

1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Communication Tester which was located outside the chamber via a small signalling antenna.

2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

3) A pre-calibration procedure is used so that the readings from the spectrum analyser are corrected and represe equivalent radiated power (related to a lamda/2 dipole).

4) All spurious radiation measurements were made with spectrum analyser and the appropriate calibrated antenn frequency range of 30 MHz to 20 GHz (up to the 10th harmonic of the transmit frequency). The frequency range MHz has been examined during the conducted spurious emission measurements.

5) Important Analyser Settings

- [Resolution Bandwidth / Video Bandwidth]:

a) [3 kHz / 10 kHz] in the Span of 1 MHz directly below and above the Band,

b) [10 kHz / 30 kHz] in case the curve of the analyser IF-Filter leads to an exceeding of the limit, in this case a w correction factor of 20 dB (1 MHz -> 10 kHz) was used

c) [1 MHz / 3 MHz] otherwise

- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth

6) The spurious emissions peaks were measured in both vertical and horizontal antenna polarisation during the car on the lowest channel, mid-channel and on the highest channel. To find the worst case peaks all orientations (X, have been measured.

7) After this initial test, a final test according to ANSI C63.26-2015 Unwanted Emissions is performed on signals videntified as being close to the limit. For any emissions found to be within 10 dB of the limit, a specific signal submeasurement is performed at the frequency of the emission to determine the exact e.i.r.p. value.

Test Requirements / Limits

§ 2.1053 Measurements required: Field strength of spurious radiation.

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalen

supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, ind sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) o as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, v measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical c make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accept equipment as installed. Such measurements must be accompanied by a description of the site where the measurem made showing the location of any possible source of reflections which might distort the field strength measureme submitted shall include the relative radiated power of each spurious emission with reference to the rated power o transmitter, assuming all emissions are radiated from halfwave dipole antennas.

(b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:

(2) All equipment operating on frequencies higher than 25 MHz.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown belc (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 4 whichever is lower.

(b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages checked.

(c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need (d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution ban.

§ 24.238 Emission limitations for Broadband PCS equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below th power (P) by a factor of at least 43 + 10 log(P) dB. This is calculated to be -13 dBm (effective radiated power) which corresponds to 84.6 dBµV/m (field strength) in

This is calculated to be -13 dBm (effective radiated power) which corresponds to 84.6 dB μ V/m (field strength) in m.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution base or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution baleast one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emis is defined as the width of the signal between two points, one below the carrier center frequency and one above th frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. (c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band ϵ

specified geographical areas [...].

(d) If any emission from a transmitter operating in this service results in interference to users of another radio se may require a greater attenuation of that emission than specified in this section.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Summary of Test Results

The EUT complied with all performed tests as listed in the summary section of this report.

Technical Report Summary

Type of Authorization :

Certification for a GSM/WCDMA/CDMA2000 cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 6^c subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

§ 2.1046 Measurement required: RF power output § 2.1053 Measurement required: Field strength of spurious radiation

Part 22, Subpart C – Operational and Technical Requirements

§ 22.355 Frequency tolerance

Part 22, Subpart H – Cellular Radiotelephone Service

§ 22.913 Effective radiated power limits§ 22.917 Emission limitations for cellular equipment

additional documents

ANSI C63.26-2015

Description of Methods of Measurements

RF Power Output

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §2.1046

Test Description (conducted measurement procedure)

1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Re "Setup Drawings".

2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct 1 from the Spectrum Analyser and the Digital Communication Tester.

3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester. Important Settings:

- Channel (Frequency): please refer to the detailed results

4) The transmitted power of the EUT was recorded by using a spectrum analyser.

Test Description (radiated measurement procedure)

1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Communication Tester which was located outside the chamber via a small signalling antenna.

2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

3) A substitution procedure is used so that the readings from the spectrum analyser are corrected and represent equivalent radiated power (related to a lamda/2 dipole).

4) The output power was measured in both vertical and horizontal antenna polarisation during the call is establish channel, mid channel and on the highest channel. To find the worst case power all orientations (X, Y, Z) of the E measured.

5) The test procedure according to ANSI C63.26-2015 has been considered.

Test Requirements / Limits

§2.1046 Measurements Required: RF Power Output

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, pow be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedu values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of terminals when this test is made shall be stated.

§22.913 Effective radiated power limits

(a)(2) Maximum ERP. ... The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

Field strength of spurious radiation

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §2.1053

Test Description

1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Communication Tester which was located outside the chamber via a small signalling antenna.

2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

3) A pre-calibration procedure is used so that the readings from the spectrum analyser are corrected and represe equivalent radiated power (related to a lamda/2 dipole).

4) All spurious radiation measurements were made with spectrum analyser and the appropriate calibrated antenn frequency range of 30 MHz to 10 GHz (up to the 10th harmonic of the transmit frequency). The frequency range MHz has been examined during the conducted spurious emission measurements.

5) Important Analyser Settings

- [Resolution Bandwidth / Video Bandwidth]:

a) [3 kHz / 10 kHz] in the Span of 1 MHz directly below and above the Band,

b) [10 kHz / 30 kHz] in case the curve of the analyser IF-Filter leads to an exceeding of the limit, in this case a w correction factor of 20 dB (1 MHz -> 10 kHz) was used

c) [1 MHz / 3 MHz] otherwise

- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth

6) The spurious emissions peaks were measured in both vertical and horizontal antenna polarization during the calon the lowest channel, mid channel and on the highest channel. To find the worst case peaks all orientations (X, have been measured.

7) After this initial test, a final test according to ANSI C63.26-2015 Unwanted Emissions is performed on signals v

identified as being close to the limit. For any emissions found to be within 10 dB of the limit, a specific signal sub: measurement is performed at the frequency of the emission to determine the exact e.i.r.p. value.

Test Requirements / Limits

§ 2.1053 Measurements required: Field strength of spurious radiation.

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalen supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, ind sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) o as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, v measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical c make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accept equipment as installed. Such measurements must be accompanied by a description of the site where the measurem and showing the location of any possible source of reflections which might distort the field strength measureme submitted shall include the relative radiated power of each spurious emission with reference to the rated power o transmitter, assuming all emissions are radiated from halfwave dipole antennas.

(b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:

(2) All equipment operating on frequencies higher than 25 MHz.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown belc (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 4 whichever is lower.

(b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages checked.

(c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need (d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bane

§ 22.917 Emission limitations for cellular equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below th power (P) by a factor of at least $43 + 10 \log(P) dB$.

This is calculated to be -13 dBm (effective radiated power) which corresponds to 84.6 dB μ V/m (field strength) in m.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bank kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwic one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narro bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission k defined as the width of the signal between two points, one below the carrier center frequency and one above the frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band ϵ specified geographical areas [...].

(d) If any emission from a transmitter operating in this service results in interference to users of another radio se may require a greater attenuation of that emission than specified in this section.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Summary of Test Results

The EUT complied with all performed tests as listed in the summary section of this report.

Type of Authorization :

Certification for a GSM/WCDMA/CDMA2000 cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 69. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

§ 2.1046 Measurement required: RF power output § 2.1053 Measurement required: Field strength of spurious radiation

Part 24, Subpart E - Broadband PCS

§ 24.232 Power and antenna height limits
§ 24.236 Field strength limits
§ 24.238 Emission limitations for Broadband PCS equipment

additional documents

ANSI C63.26-2015

Description of Methods of Measurements

RF Power Output

Standard: FCC Part 24, Subpart E

The test was performed according to: FCC §2.1046

Test Description (conducted measurement procedure)

1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Re "Setup Drawings".

2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct 1 from the Spectrum Analyser and the Digital Communication Tester.

3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Channel (Frequency): please refer to the detailed results

4) The transmitted power of the EUT was recorded by using a spectrum analyser.

Test Description (radiated measurement procedure)

The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Communication Tester which was located outside the chamber via a small signalling antenna.
 A call was established on a Traffic Channel between the EUT and the Digital Communication Tester. Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

3) A substitution procedure is used so that the readings from the spectrum analyser are corrected and represent equivalent radiated power (related to a lamda/2 dipole).

4) The output power was measured in both vertical and horizontal antenna polarisation during the call is establish channel, mid channel and on the highest channel. To find the worst case power all orientations (X, Y, Z) of the E measured.

5) The test procedure according to ANSI C63.26-2015 has been considered.

Test Requirements / Limits

§2.1046 Measurements Required: RF Power Output

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, pow be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedu values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of terminals when this test is made shall be stated.

§24.232 Power and antenna height limits

(c) Mobile/portable stations are limited to 2 watts EIRP peak power and the equipment must employ means to lin the minimum necessary for successful communications.

(e) Peak transmit power must be measured over any interval of continuous transmission using instrumentation caterms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitadetector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sens as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

Field strength of spurious radiation

Standard: FCC Part 24, Subpart E

The test was performed according to: FCC §2.1053

Test Description

1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Communication Tester which was located outside the chamber via a small signalling antenna.

2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

3) A pre-calibration procedure is used so that the readings from the spectrum analyser are corrected and represe equivalent radiated power (related to a lamda/2 dipole).

4) All spurious radiation measurements were made with spectrum analyser and the appropriate calibrated antenn frequency range of 30 MHz to 20 GHz (up to the 10th harmonic of the transmit frequency). The frequency range MHz has been examined during the conducted spurious emission measurements.

5) Important Analyser Settings

- [Resolution Bandwidth / Video Bandwidth]:

a) [3 kHz / 10 kHz] in the Span of 1 MHz directly below and above the Band,

b) [10 kHz / 30 kHz] in case the curve of the analyser IF-Filter leads to an exceeding of the limit, in this case a w correction factor of 20 dB (1 MHz -> 10 kHz) was used

c) [1 MHz / 3 MHz] otherwise

- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth

6) The spurious emissions peaks were measured in both vertical and horizontal antenna polarisation during the car on the lowest channel, mid channel and on the highest channel. To find the worst case peaks all orientations (X, have been measured.

7) After this initial test, a final test according to ANSI C63.26-2015 Unwanted Emissions is performed on signals videntified as being close to the limit. For any emissions found to be within 10 dB of the limit, a specific signal subsequences measurement is performed at the frequency of the emission to determine the exact e.i.r.p. value.

Test Requirements / Limits

§ 2.1053 Measurements required: Field strength of spurious radiation.

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalen

supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, ind sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) o as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, v measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical c make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accept equipment as installed. Such measurements must be accompanied by a description of the site where the measurem made showing the location of any possible source of reflections which might distort the field strength measureme submitted shall include the relative radiated power of each spurious emission with reference to the rated power o transmitter, assuming all emissions are radiated from halfwave dipole antennas.

(b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:

(2) All equipment operating on frequencies higher than 25 MHz.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown belc (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 4 whichever is lower.

(b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages checked.

(c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need (d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution ban.

§ 24.238 Emission limitations for Broadband PCS equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below th power (P) by a factor of at least 43 + 10 log(P) dB. This is calculated to be -13 dBm (effective radiated power) which corresponds to 84.6 dBµV/m (field strength) in

This is calculated to be -13 dBm (effective radiated power) which corresponds to 84.6 dBµV/m (field strength) in m.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution base or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution baleast one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emis is defined as the width of the signal between two points, one below the carrier center frequency and one above th frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. (c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band ϵ

specified geographical areas [...].

(d) If any emission from a transmitter operating in this service results in interference to users of another radio se may require a greater attenuation of that emission than specified in this section.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

_

Summary of Test Results

The EUT complied with all performed tests as listed in the summary section of this report.

Technical Report Summary

Type of Authorization :

Certification for a GSM cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 69. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

§ 2.1046 Measurement required: RF power output
 § 2.1053 Measurement required: Field strength of spurious radiation

Part 27, Subpart C-Technical Standards

§ 27.50 Power and antenna height limits
§ 27.53 Emissions limits
§ 27.54 Frequency stability

additional documents

ANSI C63.26-2015

Description of Methods of Measurements

RF Power Output

Standard FCC Part 27, Subpart C

The test was performed according to: FCC §2.1046

Test Description (conducted measurement procedure)

1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Re "Setup Drawings".

2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct 1 from the Spectrum Analyser and the Digital Communication Tester.

3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester. Important Settings:

- Channel (Frequency): please refer to the detailed results

4) The transmitted power of the EUT was recorded by using a spectrum analyser.

Test Description (radiated measurement procedure)

1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Communication Tester which was located outside the chamber via a small signalling antenna.

2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

3) A substitution procedure is used so that the readings from the spectrum analyser are corrected and represent equivalent radiated power (related to a lamda/2 dipole).

4) The output power was measured in both vertical and horizontal antenna polarisation during the call is establish channel, mid channel and on the highest channel. To find the worst case power all orientations (X, Y, Z) of the E measured.

5) The test procedure according to ANSI C63.26-2015 has been considered.

Test Requirements / Limits

§2.1046 Measurements Required: RF Power Output

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, pow be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedu values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of terminals when this test is made shall be stated.

§27.50 Power and antenna height limits.

(d) The following power and antenna height requirements apply to stations transmitting in the 1710–1755 MHz a MHz bands:

(2) Fixed, mobile, and portable (hand-held) stations operating in the 1710–1755 MHz band are limited to a peak Fixed stations operating in this band are limited to a maximum antenna height of 10 meters above ground, and n portable stations must employ a means for limiting power to the minimum necessary for successful communicatic

Field strength of spurious radiation

Standard FCC Part 27, Subpart C

The test was performed according to: FCC §2.1053

Test Description

1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Communication Tester which was located outside the chamber via a small signalling antenna.

2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel : please refer to the detailed results

3) A pre-calibration procedure is used so that the readings from the spectrum analyser are corrected and represe equivalent radiated power (related to a lamda/2 dipole).

4) All spurious radiation measurements were made with spectrum analyser and the appropriate calibrated antenn frequency range of 30 MHz to 18 GHz (up to the 10th harmonic of the transmit frequency). The frequency range MHz has been examined during the conducted spurious emission measurements.

5) Important Analyser Settings

- [Resolution Bandwidth / Video Bandwidth]:

a) [3 kHz / 10 kHz] in the Span of 1 MHz directly below and above the Band,

b) [10 kHz / 30 kHz] in case the curve of the analyser IF-Filter leads to an exceeding of the limit, in this case a w correction factor of 20 dB (1 MHz \rightarrow 10 kHz) was used

c) [1 MHz / 3 MHz] otherwise

- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth

6) The spurious emissions peaks were measured in both vertical and horizontal antenna polarisation during the cc on the lowest channel, mid channel and on the highest channel. To find the worst case peaks all orientations (X, ' have been measured.

7) After this initial test, a final test according to ANSI C63.26-2015 Unwanted Emissions is performed on signals videntified as being close to the limit. For any emissions found to be within 10 dB of the limit, a specific signal subsequences measurement is performed at the frequency of the emission to determine the exact e.i.r.p. value.

Test Requirements / Limits

§ 2.1053 Measurements required: Field strength of spurious radiation.

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalen supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, ind sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) o as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, v measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical c make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accept equipment as installed. Such measurements must be accompanied by a description of the site where the measurements made showing the

location of any possible source of reflections which might distort the field strength measurements. Information su include the relative radiated power of each spurious emission with reference to the rated power output of the trar assuming all emissions are radiated from halfwave dipole antennas.

(b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:

(2) All equipment operating on frequencies higher than 25 MHz.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown belc (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 4 whichever is lower.

(b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages checked.

(c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need (d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution ban.

§ 27.53 Emission limits

(h) For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licens block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log 10$ (P) dB.

Remark of the test laboratory: This is calculated to be -13 dBm (effective radiated power) which corresponds to ϵ (field strength) in a distance of 3 m.

(1) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bin megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's fremesolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmemployed. The emission bandwidth is defined as the width of the signal between two points, one below the carrie frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 d transmitter power.

(2) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's edges, both upper and lower, as the design permits.

(3) The measurements of emission power can be expressed in peak or average values, provided they are express parameters as the transmitter power.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Principle set-up for radiated measurements

<u>Remark:</u> Depending on the frequency range suitable attenuators and/or filters and/or amplifiers are used.

Principle set-up for conducted measurements under nominal conditions

Principle set-up for tests under extreme test conditions

st name – FCC	FCC reference CFR47			Test name – IC		IC reference					
	Part 2	Part 22	Part 24	Part 27		RSS- Gen	RSS- 130 SRSP- 518	RSS- 132 SRSP- 503	RSS- 133 SRSP- 510	RSS- 139 SRSP- 513	RSS- 199 SRSP- 517
					Issue:	4, 2014	1, 2013	3, 2013	6, 2013	3, 2016	3, 2016
power output	§ 2.1046	§ 22.913	§ 24.232	§ 27.50	Transmitter output power	6.12	4.4	5.4	6.4	6.5	4.4
quency stability	§ 2.1055	§ 22.355	§ 24.235	§ 27.54	Frequency stability	6.11	4.3	5.3	6.3	6.4	4.3
irious emissions at enna terminals	§ 2.1051	§ 22.917	§ 24.238	§ 27.53	Transmitter unwanted emissions conducted	6.13	4.6	5.5	6.5	6.6	4.5
	-	-	-	-	Receiver unwanted emissions conducted	5/7 *), 7.1.3	-	5.6	6.6	-	-
d strength of rious radiation	§ 2.1053	§ 22.917	§ 24.238	§ 27.53	Transmitter unwanted emissions radiated	6.13	4.6	5.5	6.5	6.6	4.5
	-	-	-	-	Receiver unwanted emissions radiated	5/7 *), 7.1.2	-	5.6	6.6	-	-
ission and :upied Bandwidth	§ 2.1049	-	-	-	Emission and Occupied Bandwidth	6.6	-	5.5	2.3; 6.5	-	-
nd edge compliance	§ 2.1053	§ 22.917	§ 24.238	§ 27.53	Band edge compliance	6.13	4.6	5.5	6.5	6.6	4.5

Correlation of measurement requirements for Cellular Equipment from FCC and IC

*) Receivers are exempted from certification besides if operating in stand-alone mode in the frequency range 30–960 MHz or if these are scanner receivers.

		RF Channel					RF Channel		
TEST MODE	TX / RX	Low	Mid	High	TEST MODE	TX / RX	Low	Mid	High
LTE eFDD 2	TX (1.4M)	18607	18900	19193		TX (1.4M)	19957	20175	20393
		1850.7 MHz	1880 MHz	1909.3 MHz			1710.7MHz	1732.5MHz	1754.3MHz
		CH 18615	CH 18900	CH 19185			CH 19965	CH 20175	CH 20385
	TX (3M)	1851.5 MHz	1880 MHz	1908.5 MHz		TX (3M)	1711.50 MHz	1732.50 MHz	1753.50 MHz
		CH 18625	CH 18900	CH 19175			CH 19975	CH 20175	CH 20375
	TX (5M)	1852.5 MHz	1880 MHz	1907.5 MHz		TX (5M)	1712.50 MHz	1732.50 MHz	1752.50 MHz
		CH 18650	CH 18900	CH 19150			CH 20000	CH 20175	CH 20350
	TX (10)	1855 MHz	1880 MHz	1905 MHz		TX (10)	1715.00 MHz	1732.50 MHz	1750.00 MHz
		CH 18675	CH 18900	CH 19125			CH 20025	CH 20175	CH 20325
	TX (15M)	1857.5 MHz	1880 MHz	1902.5 MHz	LTE eFDD 4	TX (15M)	1717.50 MHz	1732.50 MHz	1747.50 MHz
	TX (20M)	CH 18700	CH 18900	CH 19100		TX (20M)	CH 20050	CH 20175	CH 20300
		1860 MHz	1880 MHz	1900 MHz			1720.00 MHz	1732.50 MHz	1745.00 MHz
	RX (1.4M)	CH 607	CH 900	CH 1193		RX (1.4M)	CH 1957	CH 2175	CH 2393
		1930.7 MHz	1960 MHz	1989.3 MHz			2110.70 MHz	2132.50 MHz	2154.30 MHz
		CH 615	CH 900	CH 1185			CH 1965	CH 2175	CH 2385
	RX (3M) RX (5M) RX (10M)	1931.5 MHz	1960 MHz	1988.5 MHz		RX (3M) RX (5M)	2111.50 MHz	2132.50 MHz	2153.50 MHz
		CH 625	CH 900	CH 1175			CH 1975	CH 2175	CH 2375
		1932.50 MHz	1880.00 MHz	1987.5 MHz			2112.50 MHz	2132.50 MHz	2152.50 MHz
		CH 650	CH 900	CH 1150			CH 2000	CH 2175	CH 2350
		1935.00 MHz	1960.00 MHz	1985.00 MHz		RX (10M)	2115.00 MHz	2132.50 MHz	2150.00 MHz
	RX (15M)	CH 675	CH 900	CH 1125			CH 2025	CH 2175	CH 2325
		1937.50 MHz	1960.00 MHz	1982.50 MHz		RX (15M)	2117.50 MHz	2132.50 MHz	2147.50 MHz
	RX (20M)	CH 700	CH 900	CH 1100		RX (20M)	CH 2050	CH 2175	CH 2300
		1940.00 MHz	1960.00 MHz	1980.00 MHz			2120.00 MHz	2132.50 MHz	2145.00 MHz
	RF Channel				RF Channel				
TEST MODE	TX / RX	Low	Mid	High	TEST MODE	TX / RX	Low	Mid	High
LTE eFDD 5	TX (1.4M) TX (3M)	20407	20525	20643		TX (1.4M) TX (3M) TX (5M)	CH 23017	CH 23095	CH 23173
		824.7	836.5	848.3			699.70 MHz	707.50 MHz	715.30 MHz
		CH 20415	CH 20525	CH 20635			CH 23025	CH 23095	CH 23165
		825.50 MHz	836.50 MHz	847.50 MHz			700.50 MHz	707.50 MHz	714.50 MHz
		CH 20425	CH 20525	CH 20625			CH 23035	CH 23095	CH 23155
	TX (5M)	826.50 MHz	836.50 MHz	846.50 MHz			701.50 MHz	707.50 MHz	713.50 MHz
		CH 20450	CH 20525	CH 20600			CH 23060	CH 23095	CH 23130
	TX (10)	829.00 MHz	836.50 MHz	844.00 MHz	LTE eFDD	TX (10)	704.00 MHz	707.50 MHz	711.00 MHz
		CH 2407	CH 20525	CH 2643	12		CH 5017	CH 5095	CH 5173
	RX (1.4M)	869.70 MHz	881.50 MHz	893.70 MHz		RX (1.4M)	729.70 MHz	737.50 MHz	745.30 MHz
		CH 2415	CH 20525	CH 2635			CH 5025	CH 5095	CH 5165
	RX (3M)	870.50 MHz	881.50 MHz	892.50 MHz		RX (3M)	730.50 MHz	737.50 MHz	744.50 MHz
		CH 2425	CH 2525	CH 2625			CH 5035	CH 5095	CH 5155
	RX (5M)	871.50 MHz	881.50 MHz	891.50 MHz		RX (5M)	731.50 MHz	737.50 MHz	743.50 MHz
		CH 2450	CH 2525	CH 2600			CH 5060	CH 5095	CH 5130
	RX (10M)	874.00 MHz	881.50 MHz	889.00 MHz		RX (10M)	734.00 MHz	737.50 MHz	741.00 MHz

Reference: MDE_UBLOX_1818_FCCa

6	Index	
1	Administrative Data	2
	1 Project Data	2
	2 Applicant Data	2
	3 Test Laboratory Data	2
	4 Signature of the Testing Responsible	3
	5 Signature of the Accreditation Responsible	3
2	Test Object Data	3
	1 General OUT Description	3
	2 Detailed Description of OUT Samples	3
	3 Auxiliary Equipment	4
	4 Setups used for Testing	4
3	Results	4
	1 General	4
	2 List of the Applicable Body	5
	3 List of Test Specification	5
	4 Summary	6
	3.5 Detailed Results	7
	3.5.1 22.1 RF Power Output §2.1046, §22.913	7
	3.5.2 22.4 Field strength of spurious radiation §2.1053, §22.917	13
	3.5.3 24.1 RF Power Output §2.1046, §24.232	16
	3.5.4 24.4 Field strength of spurious radiation §2.1053, §24.238	22
	3.5.5 27.1 RF Power Output §2.1046, §27.250	25
	3.5.6 27.4 Field strength of spurious radiation §2.1053, §27.53	41
4	Test Equipment Details	48
	1 List of Used Test Equipment	48
5	Annex	54
	1 Additional Information for Report	54
6	Index	73
		·