

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION									
<u>Test Lab</u>	Applicant Information								
CELLTECH LABS INC. Testing and Engineering Services 1955 Moss Court Kelowna, B.C. Canada V1Y 9L3 Phone: 250-448-7047 Fax: 250-448-7046 e-mail: info@celltechlabs.com web site: www.celltechlabs.com	KENWOOD USA CORPORATION 3975 John Creek Court, Suite 300 Suwanee, GA 30024								
Test Procedure(s):FDevice Classification:LDevice Type:FFCC IDENTIFER:AModel(s):TModulation:FTx Frequency Range:4Max. RF Output Power Measured:3Antenna Type(s) Tested:S	CC 47 CFR §2.1093; IC RSS-102 Issue 1 (Provisional) CC OET Bulletin 65, Supplement C (Edition 01-01) icensed Non-Broadcast Transmitter Held to Face (TNF) Portable FM UHF PTT Radio Transceiver ALH36923130 K-3200 M (UHF) 50 - 470 MHz 3.16 dBm - Conducted (460 MHz) Stubby (P/N: KRA-17M) Stubby (P/N: KRA-23M) Vhip (P/N: KRA-27M)								
N Body-Worn Accessories Tested: P S	liMH 7.5 V, 1500 mAh (P/N: KNB-29N) liCd 7.5 V, 1100 mAh (P/N: KNB-30A) Plastic Belt-Clip Speaker-Microphone (P/N: KMC-21)								
Max. SAR Levels Measured: F	leadset Boom-Microphone (P/N: KHS-21) Face-held: 1.97 W/kg (50% Duty Cycle) Body-worn: 2.75 W/kg (50% Duty Cycle)								

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102 Issue 1 (Provisional) for the Occupational / Controlled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

mall W. Pupe

Russell W. Pipe Senior Compliance Technologist Celltech Labs Inc.

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

TABLE OF CONTENTS						
1.0	INTRODUCTION	3				
2.0	DESCRIPTION OF DUT	3				
3.0	SAR MEASUREMENT SYSTEM	4				
4.0	MEASUREMENT SUMMARY	5-7				
5.0	DETAILS OF SAR EVALUATION	8				
6.0	EVALUATION PROCEDURES	8				
7.0	SYSTEM PERFORMANCE CHECK	9				
8.0	SIMULATED EQUIVALENT TISSUES	10				
9.0	SAR SAFETY LIMITS	10				
10.0	ROBOT SYSTEM SPECIFICATIONS	11				
11.0	PROBE SPECIFICATION	12				
12.0	PLANAR PHANTOM	12				
13.0	VALIDATION PHANTOM	12				
14.0	DEVICE HOLDER	12				
15.0	TEST EQUIPMENT LIST	13				
16.0	MEASUREMENT UNCERTAINTIES	14-15				
17.0	REFERENCES	16				
APPENI	DIX A - SAR MEASUREMENT DATA	17				
	DIX B - SYSTEM PERFORMANCE CHECK DATA	18				
	DIX C - SYSTEM VALIDATION PROCEDURES	19				
		20				
	DIX E - MEASURED FLUID DIELECTRIC PARAMETERS DIX F - SAR TEST SETUP & DUT PHOTOGRAPHS	21 22				

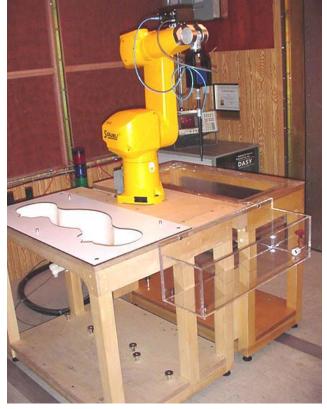
Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

1.0 INTRODUCTION

This measurement report demonstrates compliance of the Kenwood USA Corporation Model: TK-3200 Portable FM UHF PTT Radio Transceiver FCC ID: ALH36923130 with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]), and Health Canada's Safety Code 6 (see reference [2]) for the Occupational / Controlled Exposure environment. The measurement procedures described in FCC OET Bulletin 65, Supplement C (Edition 01-01) (see reference [3]) and IC RSS-102 Issue 1 (Provisional) (see reference [4]), were employed. A description of the product, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)

FCC Rule Part(s)	47 CFR §2.1093						
IC Rule Part(s)	RSS-102 Issue 1 (Provisional)						
Test Procedure(s)	FCC OET Bulletin 65, Supplement C (Edition 01-01)						
Device Classification	Licensed No	Licensed Non-Broadcast Transmitter Held to Face (TNF)					
Device Type	Porta	ble FM UHF PTT Radio Tra	nsceiver				
FCC IDENTIFIER		ALH36923130					
Model(s)	TK-3200						
Serial No.	U9 (Identical Prototype)						
Modulation	FM (UHF)						
Tx Frequency Range		450 - 470 MHz					
Max. RF Output Power Measured	33.16 dBm	Conducted	460 MHz				
	Stubby	Length: 79 mm	P/N: KRA-17M				
Antenna Type(s) Tested	Stubby	Length: 84 mm	P/N: KRA-23M				
	Whip	Length: 153 mm	P/N: KRA-27M				
Battery Type(s) Tested	NiMH	7.5 V, 1500 mAh	P/N: KNB-29N				
Dattery Type(5) Testeu	NiCd 7.5 V, 1100 mAh P/N: KNE						
	Plastic Belt-Clip						
Body-Worn Accessories Tested	Speaker-Microphone (P/N: KMC-21)						
	Headset Boom-Microphone (P/N: KHS-21)						


Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR Measurement System with validation phantom

DASY4 SAR Measurement System with Plexiglas planar phantom

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

4.0 MEASUREMENT SUMMARY

				FACE	-HELD SA	AR EVALUA	TION RESU	ILTS				
Freq. (MHz) Chan.	Test Mode	Antenna Type	Antenna Part No.	Battery Type	Separation Distance to Planar	Conducted Power Before	Measur 1g (V Duty (V/kg)	SAR Drift During	1g (ed SAR W/kg) Cycle	
					Phantom (cm)	Test (dBm)	100%	50%	Test (dB)	100%	50%	
460	Mid	CW	Stubby	KRA-17M	NiMH	2.5	33.02	3.62	1.81	-0.375	3.95	1.97
460	Mid	CW	Stubby	KRA-17M	NiCd	2.5	33.01	3.57	1.79	-0.394	3.91	1.95
460	Mid	CW	Stubby	KRA-23M	NiMH	2.5	33.06	2.51	1.26	-0.306	2.69	1.35
460	Mid	CW	Stubby	KRA-23M	NiCd	2.5	33.00	2.53	1.27	-0.329	2.73	1.36
460	Mid	CW	Whip	KRA-27M	NiMH	2.5	33.06	3.49	1.75	-0.332	3.77	1.88
460	Mid	CW	Whip	KRA-27M	NiCd	2.5	33.03	3.39	1.70	-0.364	3.69	1.84
	ANSI / IEEE C95.1 1999 - SAFETY LIMIT BRAIN: 8.0 W/kg (averaged over 1 gram) Spatial Peak - Controlled Exposure / Occupational											

Test Date		05/1	7/04	Relative Humidity	40	%
Measured Fluid Type	450 MHz Brain			Atmospheric Pressure	102.1	kPa
Dielectric Constant	IEEE -	Target	Measured	Ambient Temperature	23.6	°C
ε _r	43.5	<u>+</u> 5%	44.9	Fluid Temperature	23.4	°C
Conductivity	IEEE Target Measured		Measured	Fluid Depth	≥ 15 cm	cm
σ (mho/m)	0.87	<u>+</u> 5%	0.91	ρ (Kg/m³)	1000	

Note(s):

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3dB below the SAR limit, SAR evaluation for the low and high channels was optional per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]).
- The power drifts measured by the DASY system for the duration of the SAR evaluations were >5% from the start
 power. The power drifts were subsequently added to the measured SAR levels to report scaled SAR results as
 shown in the above table.
- 4. A SAR versus time power drift evaluation was performed for the duration of the area scan measurement in the test configuration that reported the maximum scaled SAR level. See Appendix A (SAR Test Plots) for SAR versus Time power drift evaluation plot.
- 5. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 7. The SAR evaluations were performed within 24 hours of the system performance check.

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

MEASUREMENT SUMMARY (Cont.)

	BODY-WORN SAR EVALUATION RESULTS												
Freq. (MHz)	Chan.	Test Mode	Antenna Type	Antenna Part No.	Battery Body-worn Type Accessories		Separation Distance to Planar Phantom (cm)	stance Power Planar Before antom Test		Measured SAR 1g (W/kg) Duty Cycle 100% 50%		1g (V	d SAR V/kg) Cycle 50%
460	Mid	CW	Stubby	KRA-17M	NiMH	Belt-Clip Speaker-Mic	1.2	33.07	4.40	2.20	-0.395	4.82	2.41
460	Mid	CW	Stubby	KRA-17M	NiMH	Belt-Clip Headset-Mic	1.2	33.06	5.04	2.52	-0.374	5.49	2.75
460	Mid	CW	Stubby	KRA-23M	NiMH	Belt-Clip Speaker-Mic	1.2	33.11	2.70	1.35	-0.438	2.99	1.49
460	Mid	CW	Stubby	KRA-23M	NiMH	Belt-Clip Headset-Mic	1.2	33.16	3.27	1.64	-0.351	3.55	1.77
460	Mid	CW	Whip	KRA-27M	NiMH	Belt-Clip Speaker-Mic	1.2	33.08	4.27	2.14	-0.274	4.55	2.27
460	Mid	CW	Whip	KRA-27M	NiMH	Belt-Clip Headset-Mic	1.2	33.07	4.45	2.23	-0.252	4.72	2.36
				Spa	BODY:	IEEE C95.1 1 8.0 W/kg (av - Controlled	eraged over	1 gram)	1				
	Test	Date			05/17/	'04	R	elative Humidi	ty		34		%
N	leasured	Fluid Ty	pe		450 MHz	Body	Atm	ospheric Pres	sure		102.1		kPa
	Dielectric Constant			IEEE T	arget	Measured	Aml	bient Tempera	ture	24.3			°C
	٤r		56.7	<u>+</u> 5%	57.6	Fluid Temperature		ire	21.2			°C	
		uctivity		IEEE T	arget	Measured		Fluid Depth			≥ 15 cm		cm
	σ (m	ho/m)		0.94	0.94 <u>+</u> 5%			ρ (Kg/m ³)		1000			

Note(s):

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3dB below the SAR limit, SAR evaluation for the low and high channels was optional per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]).
- The power drifts measured by the DASY system for the duration of the SAR evaluations were >5% from the start
 power. The power drifts were subsequently added to the measured SAR levels to report scaled SAR results as
 shown in the above table.
- 4. A SAR versus time power drift evaluation was performed for the duration of the area scan measurement in the test configuration that reported the maximum scaled SAR level. See Appendix A (SAR Test Plots) for SAR versus Time power drift evaluation plot.
- 5. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 7. The SAR evaluations were performed within 24 hours of the system performance check.

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

MEASUREMENT SUMMARY (Cont.)

	BODY-WORN SAR EVALUATION RESULTS													
Freq. (MHz)	Chan.	an. Test Mode	Antenna Type	Antenna Part No.	Battery Type	Body-worn Accessories	Separation Distance to Planar Phantom	Conducted Power Before	Measured SAR 1g (W/kg) Duty Cycle		SAR Drift During Test	1g (V	Scaled SAR 1g (W/kg) Duty Cycle	
							(cm)	Test (dBm)	100%	50%	(dB)	100%	50%	
460	Mid	CW	Stubby	KRA-17M	NiCd	Belt-Clip Speaker-Mic	1.2	33.03	4.37	2.19	-0.439	4.83	2.42	
460	Mid	CW	Stubby	KRA-17M	NiCd	Belt-Clip Headset-Mic	1.2	33.02	4.58	2.29	-0.324	4.93	2.47	
460	Mid	CW	Stubby	KRA-23M	NiCd	Belt-Clip Speaker-Mic	1.2	33.12	2.88	1.44	-0.356	3.13	1.56	
460	Mid	CW	Stubby	KRA-23M	NiCd	Belt-Clip Headset-Mic	1.2	33.06	3.17	1.59	-0.379	3.46	1.73	
460	Mid	CW	Whip	KRA-27M	NiCd	Belt-Clip Speaker-Mic	1.2	33.12	3.77	1.89	-0.319	4.06	2.03	
460	Mid	CW	Whip	KRA-27M	NiCd	Belt-Clip Headset-Mic	1.2	33.09	4.34	2.17	-0.317	4.67	2.33	
	ANSI / IEEE C95.1 1999 - SAFETY LIMIT BODY: 8.0 W/kg (averaged over 1 gram) Spatial Peak - Controlled Exposure / Occupational													
	Test	Date			05/18/	04	R	elative Humidi	ity		34		%	
N	leasured	Fluid Ty	pe		450 MHz	Body	Atm	ospheric Pres	sure		102.1		kPa	
	Dielectric	: Consta	nt	IEEE Target Measu		Measured	Ambient Temperature			23.1			°C	
	ε _r		56.7	<u>+</u> 5%	58.7	FI	Fluid Temperature		21.8			°C		
	Conductivity IEEE Target Meas		Measured		Fluid Depth			≥ 15 cm						
	σ (mho/m) 0.94 ± 5% 0.95			ρ (Kg/m³)			1000							

Note(s):

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the SAR levels measured at the mid channel were ≥ 3dB below the SAR limit, SAR evaluation for the low and high channels was optional per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]).
- The power drifts measured by the DASY system for the duration of the SAR evaluations were >5% from the start
 power. The power drifts were subsequently added to the measured SAR levels to report scaled SAR results as
 shown in the above table.
- 4. A SAR versus time power drift evaluation was performed for the duration of the area scan measurement in the test configuration that reported the maximum scaled SAR level. See Appendix A (SAR Test Plots) for SAR versus Time power drift evaluation plot.
- 5. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 7. The SAR evaluations were performed within 24 hours of the system performance check.

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

5.0 DETAILS OF SAR EVALUATION

The Kenwood USA Corporation Model: TK-3200 Portable FM UHF PTT Radio Transceiver FCC ID: ALH36923130 was compliant for localized Specific Absorption Rate (Occupational / Controlled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix F.

- 1. The DUT was evaluated in a face-held configuration with the front of the radio placed parallel to the outer surface of the planar phantom. A 2.5 cm separation distance was maintained between the front side of the DUT and the outer surface of the planar phantom for the duration of the tests.
- 2. The DUT was evaluated in a body-worn configuration with the back of the radio placed parallel to the outer surface of the planar phantom. The attached plastic belt-clip was touching the planar phantom and provided a 1.2 cm separation distance between the back of the DUT and the outer surface of the planar phantom. The DUT was tested for body-worn SAR with the speaker-microphone and headset boom-microphone accessories.
- 3. The conducted power levels were measured before each test using a Gigatronics 8652A Universal Power Meter according to the procedures described in FCC 47 CFR §2.1046.
- 4. The power drifts measured by the DASY system during the SAR evaluations were >5% from the start power. The power drifts were subsequently added to the measured SAR levels to report scaled SAR results as shown in the test data tables (pages 5-7).
- 5. A SAR versus time power drift evaluation was performed for the duration of the area scan measurement in the test configuration that reported the maximum scaled SAR level. See Appendix A (SAR Test Plots) for SAR versus Time power drift evaluation plot.
- 6. The area scan evaluation was performed with a fully charged battery. After the area scan was completed the radio was cooled down to room temperature and the battery was replaced with a fully charged battery prior to the zoom scan evaluation.
- 7. The DUT was tested in unmodulated continuous transmit operation (Continuous Wave mode at 100% duty cycle) with the transmit key constantly depressed. For a push-to-talk device the 50% duty cycle compensation reported assumes a transmit/receive cycle of equal time base.
- 8. The SAR evaluations were performed using a Plexiglas planar phantom.
- 9. A stack of low-density, low-loss dielectric foamed polystyrene was used in place of the device holder.

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away form the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix D). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a system check was performed using a planar phantom with a 450MHz dipole (see Appendix C for system validation procedure). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters). A forward power of 250mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ (see Appendix B for system performance check test plot).

	SYSTEM PERFORMANCE CHECK												
Test Date 450MHz Equiv. Tissue	SAR 1g (W/kg)		Dielectric Constant ϵ_r		Conductivity σ (mho/m)		ρ	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.	
		IEEE Target	Measured	IEEE Target	Measured	IEEE Target	Measured	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
05/17/04	Brain	1.23 (±10%)	1.26 (+2.4%)	43.5 ±5%	44.9	0.87 ±5%	0.91	1000	22.8	23.4	≥ 15	39	102.3

Note(s):

1. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.

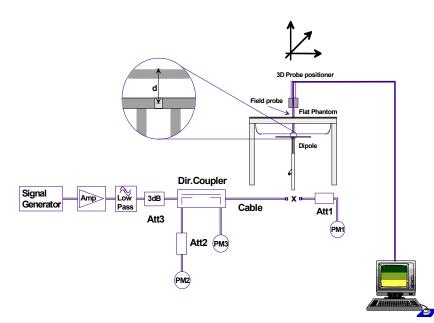


Figure 1. System Performance Check Setup Diagram

450MHz Dipole Setup

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

8.0 SIMULATED EQUIVALENT TISSUES

The 450MHz brain and body simulated tissue mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide is added and visual inspection is made to ensure air bubbles are not trapped during the mixing process. The fluid was prepared and measured for dielectric parameters (permittivity and conductivity) according to standardized procedures.

SIMULATED TISSUE MIXTURES					
INGREDIENT	450MHz Brain (System Check & DUT Evaluation)	450MHz Body (DUT Evaluation)			
Water	38.56 %	52.00 %			
Sugar	56.32 %	45.65 %			
Salt	3.95 %	1.75 %			
HEC	0.98 %	0.50 %			
Bactericide	0.19 %	0.10 %			

9.0 SAR SAFETY LIMITS

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1g of tissue)	1.60	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10g)	4.0	20.0			

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

0,00011	<u>cations</u>	
	POSITIONER:	Stäubli Unimation Corp. Robot Model: RX60L
	Repeatability:	0.02 mm
	No. of axis:	6
Data A	cquisition Electronic (DA	E) System
	Cell Controller	
	Processor:	AMD Athlon XP 2400+
	Clock Speed:	2.0 GHz
	Operating System:	Windows XP Professional
	Data Converter	
	Features:	Signal Amplifier, multiplexer, A/D converter, and control logic
	Software:	DASY4 software
	Connecting Lines:	Optical downlink for data and status info.
		Optical uplink for commands and clock
DACVA	Maaaumamant Camuun	
<u>DA514</u>	Measurement Server	Deal first data such attack for field measurements and surface data tion
	Function: Hardware:	Real-time data evaluation for field measurements and surface detection PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
	Connections:	COM1, COM2, DAE, Robot, Ethernet, Service Interface
<u>E-Field</u>	Probe	
<u>E-Field</u>	<u>Probe</u> Model:	ET3DV6
<u>E-Field</u>		ET3DV6 1387
<u>E-Field</u>	Model:	
<u>E-Field</u>	Model: Serial No.:	1387
<u>E-Field</u>	Model: Serial No.: Construction:	1387 Triangular core fiber optic detection system
	Model: Serial No.: Construction: Frequency: Linearity:	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz
<u>E-Field</u> Phanto	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u>	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz
	Model: Serial No.: Construction: Frequency: Linearity: <u>em(s)</u> <u>Evaluation Phantom</u>	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz)
	Model: Serial No.: Construction: Frequency: Linearity: <u>em(s)</u> <u>Evaluation Phantom</u> Type:	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material:	 1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material: Bottom Thickness:	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas 2.0 mm ± 0.1 mm
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material:	 1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material: Bottom Thickness:	 1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas 2.0 mm ± 0.1 mm 75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H)
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material: Bottom Thickness: Outer Dimensions:	 1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas 2.0 mm ± 0.1 mm 75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H)
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material: Bottom Thickness: Outer Dimensions: <u>Validation Phantom (≤ 4</u>	 1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas 2.0 mm ± 0.1 mm 75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H)
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material: Bottom Thickness: Outer Dimensions: <u>Validation Phantom (≤ 4</u> Type:	1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas 2.0 mm ± 0.1 mm 75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H) ISOMHz) Planar Phantom
	Model: Serial No.: Construction: Frequency: Linearity: <u>om(s)</u> <u>Evaluation Phantom</u> Type: Shell Material: Bottom Thickness: Outer Dimensions: <u>Validation Phantom (< 4</u> Type: Shell Material:	 1387 Triangular core fiber optic detection system 10 MHz to 6 GHz ±0.2 dB (30 MHz to 3 GHz) Planar Phantom Plexiglas 2.0 mm ± 0.1 mm 75.0 cm (L) x 22.5 cm (W) x 20.5 cm (H); Back Plane: 25.7 cm (H) ISOMHz Planar Phantom Plexiglas

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

11.0 PROBE SPECIFICATION (ET3DV6)

Construction:	Symmetrical design with triangular core Built-in shielding against static charges	
Calibration:	PEEK enclosure material (resistant to organic solvents, e.g. glycol) In air from 10 MHz to 2.5 GHz In brain simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy \pm 8%)	
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)	
Directivity:	\pm 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation normal to probe axis)	
Dynamic Range:	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB	- 17
Surface Detection:	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces	
Dimensions:	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm	
Application:	General dosimetry up to 3 GHz Compliance tests of mobile phone	ET3

ET3DV6 E-Field Probe

12.0 PLANAR PHANTOM

The planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of handheld and body-worn radio transceivers. The planar phantom is mounted on the side of the DASY4 compact system table.

Planar Phantom

13.0 VALIDATION PLANAR PHANTOM

The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for system validations at 450MHz and below. The validation planar phantom is mounted in the table of the DASY4 compact system.

14.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

15.0 TEST EQUIPMENT LIST

TEST EQUIPMENT	SERIAL NO.	CALIBRATION DATE
Schmid & Partner DASY4 System	-	-
DASY4 Measurement Server	1078	N/A
-Robot	599396-01	N/A
DAE3	353	Dec 2003
DAE3	370	May 2004
-ET3DV6 E-Field Probe	1387	Mar 2004
-ET3DV6 E-Field Probe	1590	May 2004
-300MHz Validation Dipole	135	Oct 2003
-450MHz Validation Dipole	136	Nov 2003
-835MHz Validation Dipole	411	Mar 2004
-900MHz Validation Dipole	054	June 2003
-1800MHz Validation Dipole	247	June 2003
-2450MHz Validation Dipole	150	Sept 2003
-SAM Phantom V4.0C	1033	N/A
-Barski Planar Phantom	03-01	N/A
-Plexiglas Planar Phantom	161	N/A
-Validation Planar Phantom	137	N/A
HP 85070C Dielectric Probe Kit	N/A	N/A
Gigatronics 8651A Power Meter	8650137	April 2004
Gigatronics 8652A Power Meter	1835267	April 2004
Power Sensor 80701A	1833535	April 2004
Power Sensor 80701A	1833542	April 2004
Power Sensor 80701A	1834350	April 2004
HP E4408B Spectrum Analyzer	US39240170	Dec 2003
HP 8594E Spectrum Analyzer	3543A02721	April 2004
HP 8753E Network Analyzer	US38433013	April 2004
HP 8648D Signal Generator	3847A00611	April 2004
Amplifier Research 5S1G4 Power Amplifier	26235	N/A

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

16.0 MEASUREMENT UNCERTAINTIES

UNCERTAINTY BUDGET FOR DEVICE EVALUATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	Vi Or V _{eff}
Measurement System						
Probe calibration	± 4.8	Normal	1	1	± 4.8	x
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	∞
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	x
Readout electronics	± 1.0	Normal	1	1	± 1.0	∞
Response time	± 0.8	Rectangular	√3	1	± 0.5	∞
Integration time	± 1.4	Rectangular	√3	1	± 0.8	∞
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	x
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	x
Test Sample Related						
Device positioning	± 6.0	Normal	√3	1	± 6.7	12
Device holder uncertainty	± 5.0	Normal	√3	1	± 5.9	8
Power drift	± 5.0	Rectangular	√3		± 2.9	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Combined Standard Uncertaint	У				± 13.3	
Expanded Uncertainty (k=2)					± 26.6	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

MEASUREMENT UNCERTAINTIES (Cont.)

UNCERTAINTY BUDGET FOR SYSTEM VALIDATION						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	Vi Or V _{eff}
Measurement System						
Probe calibration	± 4.8	Normal	1	1	± 4.8	8
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	x
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	x
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	x
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	8
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	x
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	8
Readout electronics	± 1.0	Normal	1	1	± 1.0	x
Response time	± 0.8	Rectangular	√3	1	± 0.5	8
Integration time	± 1.4	Rectangular	√3	1	± 0.8	x
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	8
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	x
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	8
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	∞
Dipole						
Dipole Axis to Liquid Distance	± 2.0	Rectangular	√3	1	± 1.2	8
Input Power	± 4.7	Rectangular	√3	1	± 2.7	8
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	8
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	x
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	œ
Combined Standard Uncertaint	у				± 9.9	
Expanded Uncertainty (k=2)					± 19.8	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

17.0 REFERENCES

[1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.

[2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6.

[3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

[4] Industry Canada, "Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields", Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.

[5] IEEE Std 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX A - SAR MEASUREMENT DATA

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Face-Held SAR - NiMH Battery - Stubby Antenna (P/N: KRA-17M)

Date tested: 05/17/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 23.6 °C; Fluid Temp: 23.4 °C; Barometric Pressure: 102.1 kPa; Humidity: 40%

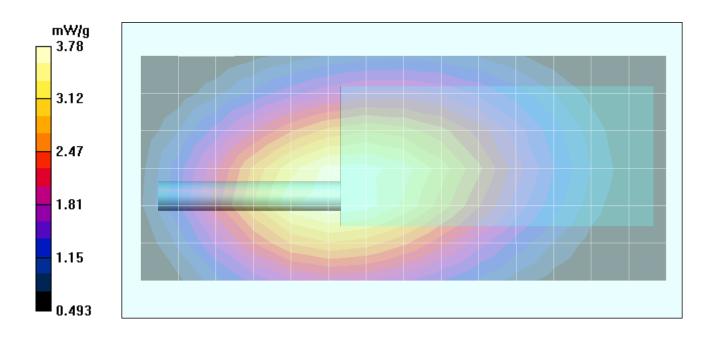
Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.02 dBm (Conducted) 7.5 V 1500mAh NiMH Battery Pack (P/N: KNB-29N) Medium: HSL450 (σ = 0.91 mho/m; ϵ_r = 44.9; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

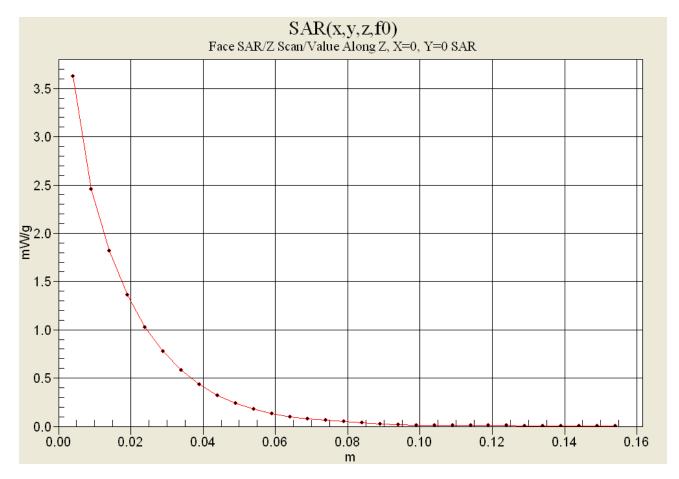
- Phantom: Planar; Type: Plexiglas; Serial: 161


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Face-Held - 2.5 cm Separation Distance - Mid Channel/Area Scan (7x15x1):

Measurement grid: dx=15mm, dy=15mm

Face-Held - 2.5 cm Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 63.5 V/m; Power Drift = -0.375 dB Peak SAR (extrapolated) = 5.77 W/kg SAR(1 g) = 3.62 mW/g; SAR(10 g) = 2.55 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Face-Held SAR - NiCd Battery - Stubby Antenna (P/N: KRA-17M)

Date tested: 05/17/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 23.6 °C; Fluid Temp: 23.4 °C; Barometric Pressure: 102.1 kPa; Humidity: 40%

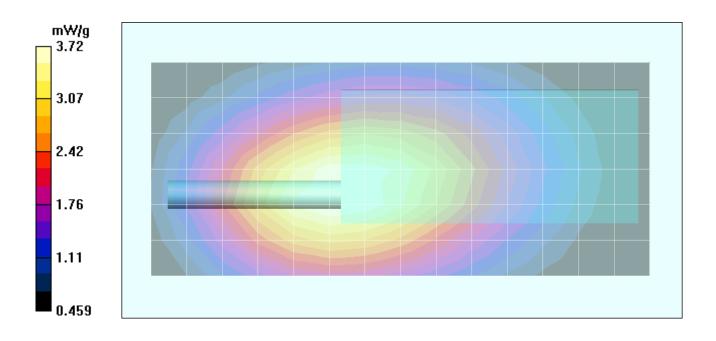
Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.01 dBm (Conducted) 7.5 V 1100mAh NiCd Battery Pack (P/N: KNB-30A) Medium: HSL450 (σ = 0.91 mho/m; ϵ_r = 44.9; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

- Phantom: Planar; Type: Plexiglas; Serial: 161


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Face-Held - 2.5 cm Separation Distance - Mid Channel/Area Scan (7x15x1):

Measurement grid: dx=15mm, dy=15mm

Face-Held - 2.5 cm Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 63.1 V/m; Power Drift = -0.394 dB Peak SAR (extrapolated) = 5.67 W/kg SAR(1 g) = 3.57 mW/g; SAR(10 g) = 2.51 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Face-Held SAR - NiMH Battery - Stubby Antenna (P/N: KRA-23M)

Date tested: 05/17/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 23.6 °C; Fluid Temp: 23.4 °C; Barometric Pressure: 102.1 kPa; Humidity: 40%

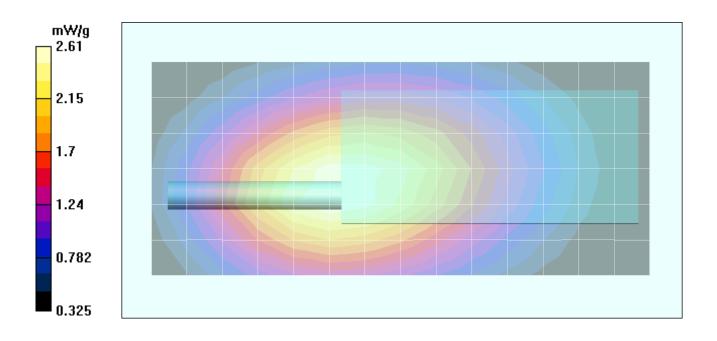
Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.06 dBm (Conducted) 7.5 V 1500mAh NiMH Battery Pack (P/N: KNB-29N) Medium: HSL450 (σ = 0.91 mho/m; ϵ_r = 44.9; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

- Phantom: Planar; Type: Plexiglas; Serial: 161


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Face-Held - 2.5 cm Separation Distance - Mid Channel/Area Scan (7x15x1):

Measurement grid: dx=15mm, dy=15mm

Face-Held - 2.5 cm Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 53.1 V/m; Power Drift = -0.306 dB Peak SAR (extrapolated) = 3.99 W/kg SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.78 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Face-Held SAR - NiCd Battery - Stubby Antenna (P/N: KRA-23M)

Date tested: 05/17/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 23.6 °C; Fluid Temp: 23.4 °C; Barometric Pressure: 102.1 kPa; Humidity: 40%

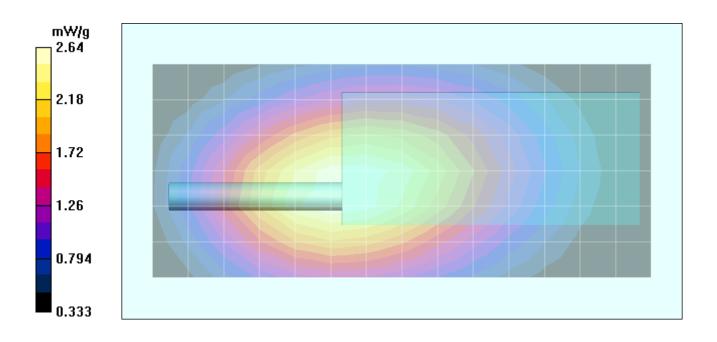
Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.00 dBm (Conducted) 7.5 V 1100mAh NiCd Battery Pack (P/N: KNB-30A) Medium: HSL450 (σ = 0.91 mho/m; ϵ_r = 44.9; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

- Phantom: Planar; Type: Plexiglas; Serial: 161


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Face-Held - 2.5 cm Separation Distance - Mid Channel/Area Scan (7x15x1):

Measurement grid: dx=15mm, dy=15mm

Face-Held - 2.5 cm Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.9 V/m; Power Drift = -0.329 dB Peak SAR (extrapolated) = 4.03 W/kg SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.78 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Face-Held SAR - NiMH Battery - Whip Antenna (P/N: KRA-27M)

Date tested: 05/17/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 23.6 °C; Fluid Temp: 23.4 °C; Barometric Pressure: 102.1 kPa; Humidity: 40%

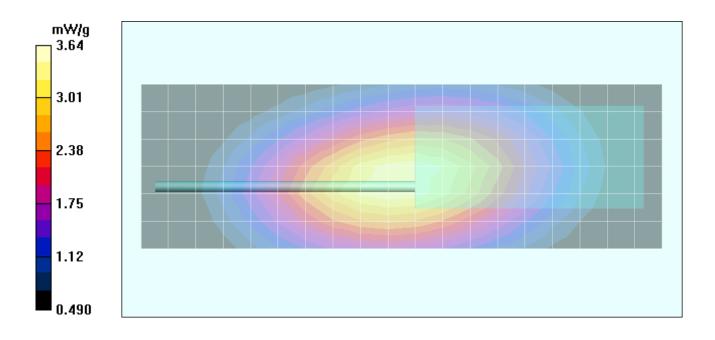
Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.06 dBm (Conducted) 7.5 V 1500mAh NiMH Battery Pack (P/N: KNB-29N) Medium: HSL450 (σ = 0.91 mho/m; ϵ_r = 44.9; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

- Phantom: Planar; Type: Plexiglas; Serial: 161


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Face-Held - 2.5 cm Separation Distance - Mid Channel/Area Scan (7x20x1):

Measurement grid: dx=15mm, dy=15mm

Face-Held - 2.5 cm Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 62.2 V/m; Power Drift = -0.332 dB Peak SAR (extrapolated) = 5.5 W/kg SAR(1 g) = 3.49 mW/g; SAR(10 g) = 2.47 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Face-Held SAR - NiCd Battery - Whip Antenna (P/N: KRA-27M)

Date tested: 05/17/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 23.6 °C; Fluid Temp: 23.4 °C; Barometric Pressure: 102.1 kPa; Humidity: 40%

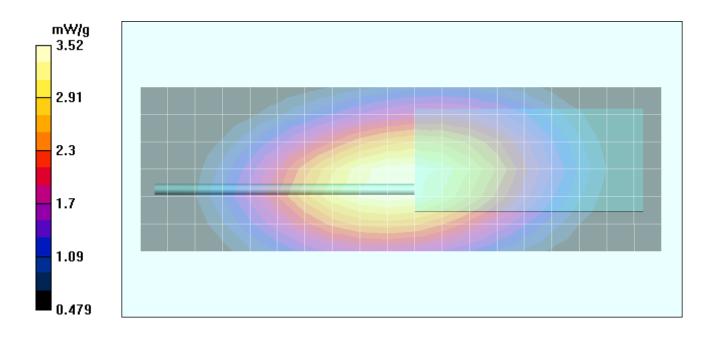
Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.03 dBm (Conducted) 7.5 V 1100mAh NiCd Battery Pack (P/N: KNB-30A) Medium: HSL450 (σ = 0.91 mho/m; ϵ_r = 44.9; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

- Phantom: Planar; Type: Plexiglas; Serial: 161


- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Face-Held - 2.5 cm Separation Distance - Mid Channel/Area Scan (7x20x1):

Measurement grid: dx=15mm, dy=15mm

Face-Held - 2.5 cm Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 61.2 V/m; Power Drift = -0.364 dB Peak SAR (extrapolated) = 5.32 W/kg SAR(1 g) = 3.39 mW/g; SAR(10 g) = 2.4 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - NiMH Battery - Stubby Antenna (P/N: KRA-17M)

Date Tested: 05/17/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 24.3 °C; Fluid Temp: 21.2 °C; Barometric Pressure: 102.1 kPa; Humidity: 34%

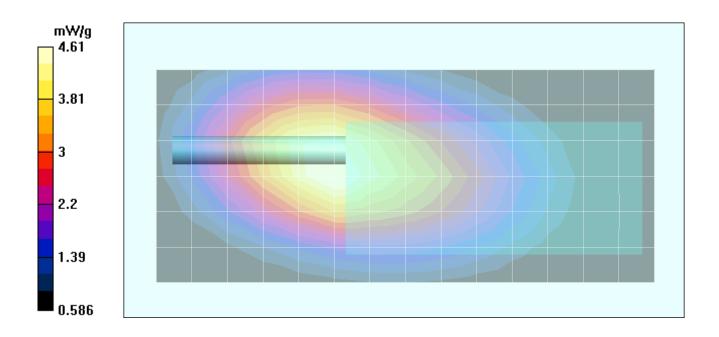
Body-Worn Accessories: Plastic Belt-Clip, Speaker-Microphone (P/N: KMC-21)

Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.07 dBm (Conducted) 7.5 V 1500mAh NiMH Battery Pack (P/N: KNB-29N) Medium: M450 (σ = 0.94 mho/m; ϵ_r = 57.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.6, 7.6, 7.6); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 69.6 V/m; Power Drift = -0.395 dB Peak SAR (extrapolated) = 6.94 W/kg SAR(1 g) = 4.40 mW/g; SAR(10 g) = 3.07 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - NiMH Battery - Stubby Antenna (P/N: KRA-17M)

Date Tested: 05/17/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 24.3 °C; Fluid Temp: 21.2 °C; Barometric Pressure: 102.1 kPa; Humidity: 34%

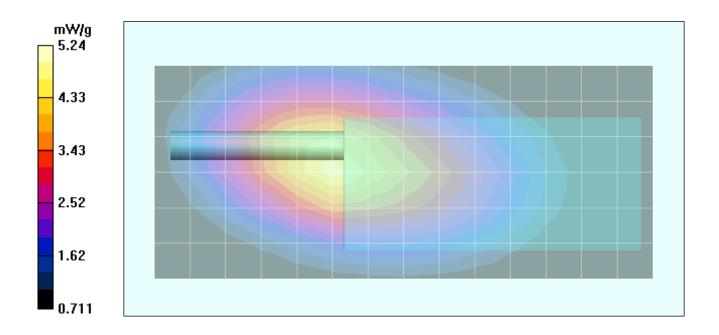
Body-Worn Accessories: Plastic Belt-Clip, Headset Boom-Microphone (P/N: KHS-21)

Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.06 dBm (Conducted) 7.5 V 1500mAh NiMH Battery Pack (P/N: KNB-29N) Medium: M450 (σ = 0.94 mho/m; ϵ_r = 57.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.6, 7.6, 7.6); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

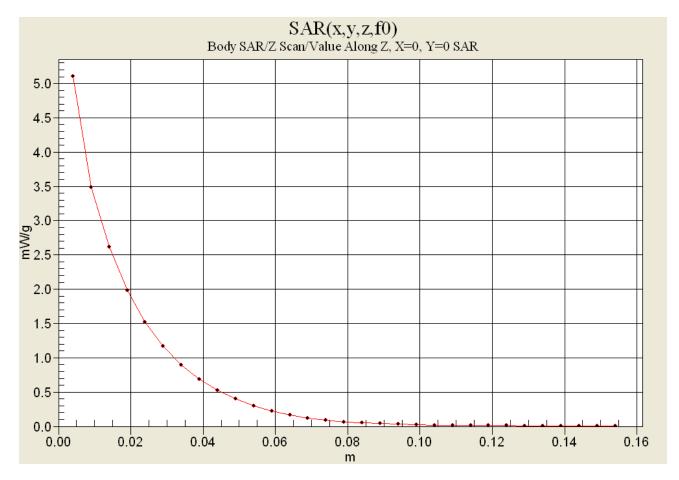
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

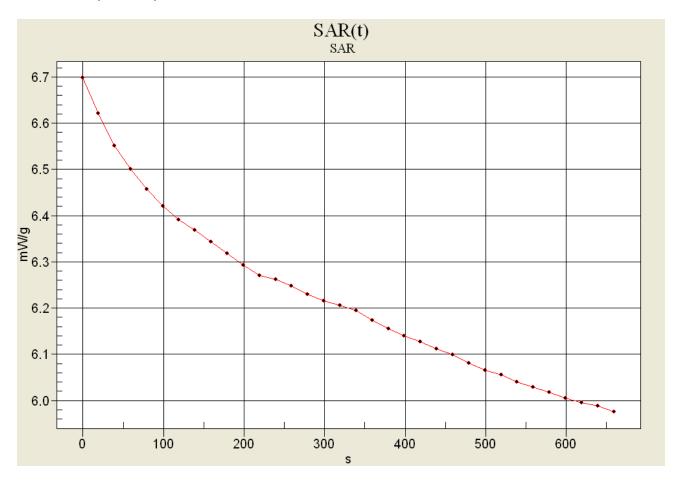
Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 75.7 V/m; Power Drift = -0.374 dB Peak SAR (extrapolated) = 8 W/kg SAR(1 g) = 5.04 mW/g; SAR(10 g) = 3.54 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan



Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

SAR-versus-Time Power Drift Evaluation

DUT with Belt-Clip & Headset Boom-Microphone NiMH Battery (P/N: KNB-29N) Stubby Antenna (P/N: KRA-17M) Mid Channel (460 MHz)

Initial SAR: 6.695 mW/g Final SAR: 5.973 mW/g (-0.496 dB) SAR after 340s: 6.193 mW/g (-0.338 dB) (340s: Zoom Scan Duration)

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - NiMH Battery - Stubby Antenna (P/N: KRA-23M)

Date Tested: 05/17/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 24.3 °C; Fluid Temp: 21.2 °C; Barometric Pressure: 102.1 kPa; Humidity: 34%

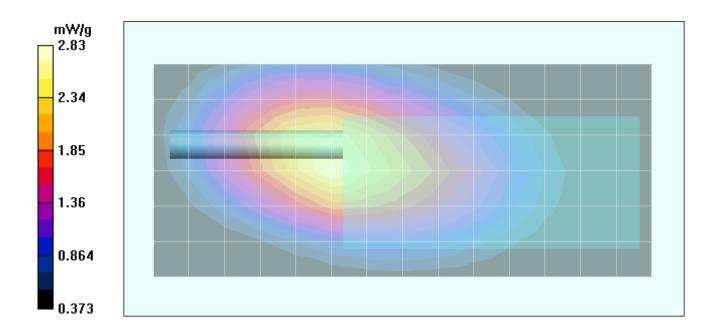
Body-Worn Accessories: Plastic Belt-Clip, Speaker-Microphone (P/N: KMC-21)

Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.11 dBm (Conducted) 7.5 V 1500mAh NiMH Battery Pack (P/N: KNB-29N) Medium: M450 (σ = 0.94 mho/m; ϵ_r = 57.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.6, 7.6, 7.6); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 54.7 V/m; Power Drift = -0.438 dB Peak SAR (extrapolated) = 4.28 W/kg SAR(1 g) = 2.70 mW/g; SAR(10 g) = 1.88 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - NiMH Battery - Stubby Antenna (P/N: KRA-23M)

Date Tested: 05/17/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 24.3 °C; Fluid Temp: 21.2 °C; Barometric Pressure: 102.1 kPa; Humidity: 34%

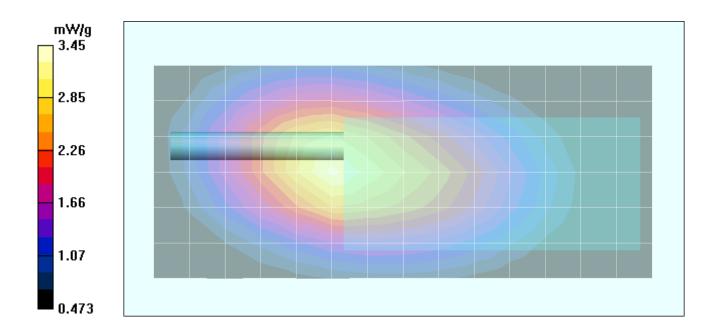
Body-Worn Accessories: Plastic Belt-Clip, Headset Boom-Microphone (P/N: KHS-21)

Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.16 dBm (Conducted) 7.5 V 1500mAh NiMH Battery Pack (P/N: KNB-29N) Medium: M450 (σ = 0.94 mho/m; ϵ_r = 57.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.6, 7.6, 7.6); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 61 V/m; Power Drift = -0.351 dB Peak SAR (extrapolated) = 5.14 W/kg SAR(1 g) = 3.27 mW/g; SAR(10 g) = 2.29 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - NiMH Battery - Whip Antenna (P/N: KRA-27M)

Date Tested: 05/17/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 24.3 °C; Fluid Temp: 21.2 °C; Barometric Pressure: 102.1 kPa; Humidity: 34%

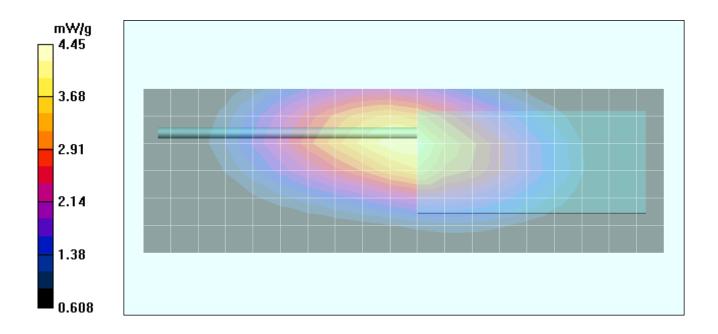
Body-Worn Accessories: Plastic Belt-Clip, Speaker-Microphone (P/N: KMC-21)

Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.08 dBm (Conducted) 7.5 V 1500mAh NiMH Battery Pack (P/N: KNB-29N) Medium: M450 (σ = 0.94 mho/m; ϵ_r = 57.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.6, 7.6, 7.6); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (7x20x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 68.9 V/m; Power Drift = -0.274 dB Peak SAR (extrapolated) = 6.66 W/kg SAR(1 g) = 4.27 mW/g; SAR(10 g) = 3.02 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - NiMH Battery - Whip Antenna (P/N: KRA-27M)

Date Tested: 05/17/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 24.3 °C; Fluid Temp: 21.2 °C; Barometric Pressure: 102.1 kPa; Humidity: 34%

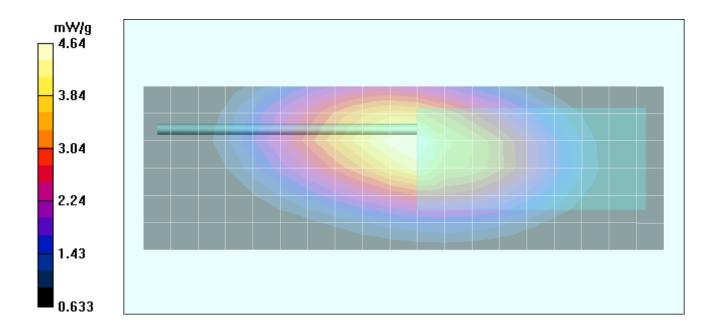
Body-Worn Accessories: Plastic Belt-Clip, Headset Boom-Microphone (P/N: KHS-21)

Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.07 dBm (Conducted) 7.5 V 1500mAh NiMH Battery Pack (P/N: KNB-29N) Medium: M450 (σ = 0.94 mho/m; ϵ_r = 57.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.6, 7.6, 7.6); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (7x20x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 70.8 V/m; Power Drift = -0.252 dB Peak SAR (extrapolated) = 7.01 W/kg SAR(1 g) = 4.45 mW/g; SAR(10 g) = 3.13 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - NiCd Battery - Stubby Antenna (P/N: KRA-17M)

Date Tested: 05/18/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 23.1 °C; Fluid Temp: 21.8 °C; Barometric Pressure: 102.1 kPa; Humidity: 34%

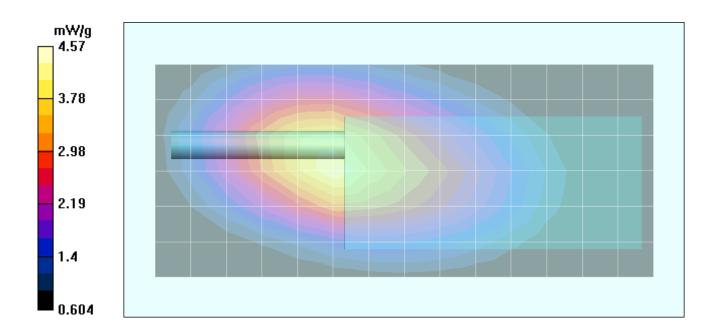
Body-Worn Accessories: Plastic Belt-Clip, Speaker-Microphone (P/N: KMC-21)

Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.03 dBm (Conducted) 7.5 V 1100mAh NiCd Battery Pack (P/N: KNB-30A) Medium: M450 (σ = 0.95 mho/m; ϵ_r = 58.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.6, 7.6, 7.6); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 69.4 V/m; Power Drift = -0.439 dB Peak SAR (extrapolated) = 6.86 W/kg SAR(1 g) = 4.37 mW/g; SAR(10 g) = 3.06 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - NiCd Battery - Stubby Antenna (P/N: KRA-17M)

Date Tested: 05/18/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 23.1 °C; Fluid Temp: 21.8 °C; Barometric Pressure: 102.1 kPa; Humidity: 34%

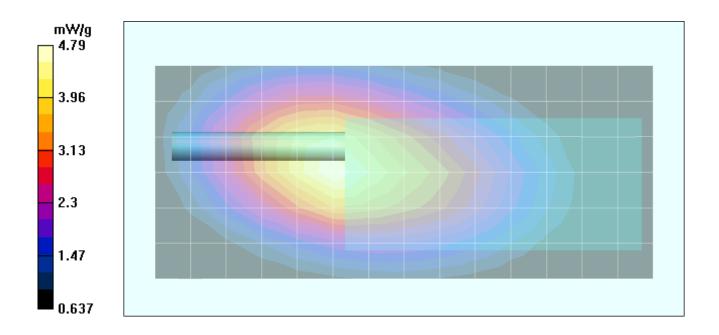
Body-Worn Accessories: Plastic Belt-Clip, Headset Boom-Microphone (P/N: KHS-21)

Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.02 dBm (Conducted) 7.5 V 1100mAh NiCd Battery Pack (P/N: KNB-30A) Medium: M450 (σ = 0.95 mho/m; ϵ_r = 58.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.6, 7.6, 7.6); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

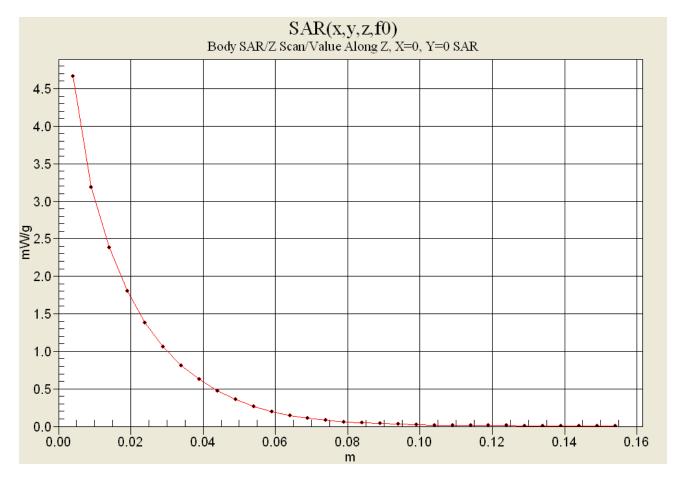
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 71.3 V/m; Power Drift = -0.324 dB Peak SAR (extrapolated) = 7.26 W/kg SAR(1 g) = 4.58 mW/g; SAR(10 g) = 3.2 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - NiCd Battery - Stubby Antenna (P/N: KRA-23M)

Date Tested: 05/18/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 23.1 °C; Fluid Temp: 21.8 °C; Barometric Pressure: 102.1 kPa; Humidity: 34%

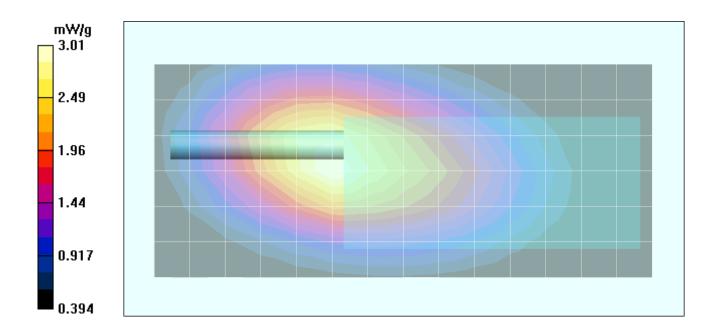
Body-Worn Accessories: Plastic Belt-Clip, Speaker-Microphone (P/N: KMC-21)

Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.12 dBm (Conducted) 7.5 V 1100mAh NiCd Battery Pack (P/N: KNB-30A) Medium: M450 (σ = 0.95 mho/m; ϵ_r = 58.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.6, 7.6, 7.6); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.4 V/m; Power Drift = -0.356 dB Peak SAR (extrapolated) = 4.55 W/kg SAR(1 g) = 2.88 mW/g; SAR(10 g) = 2.01 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - NiCd Battery - Stubby Antenna (P/N: KRA-23M)

Date Tested: 05/18/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 23.1 °C; Fluid Temp: 21.8 °C; Barometric Pressure: 102.1 kPa; Humidity: 34%

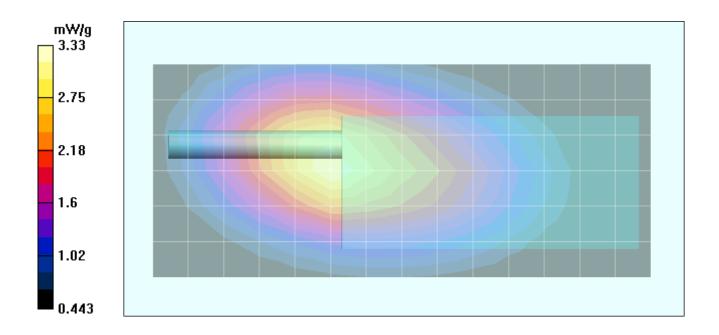
Body-Worn Accessories: Plastic Belt-Clip, Headset Boom-Microphone (P/N: KHS-21)

Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.06 dBm (Conducted) 7.5 V 1100mAh NiCd Battery Pack (P/N: KNB-30A) Medium: M450 (σ = 0.95 mho/m; ϵ_r = 58.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.6, 7.6, 7.6); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 59.8 V/m; Power Drift = -0.379 dB Peak SAR (extrapolated) = 5 W/kg SAR(1 g) = 3.17 mW/g; SAR(10 g) = 2.21 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - NiCd Battery - Whip Antenna (P/N: KRA-27M)

Date Tested: 05/18/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 23.1 °C; Fluid Temp: 21.8 °C; Barometric Pressure: 102.1 kPa; Humidity: 34%

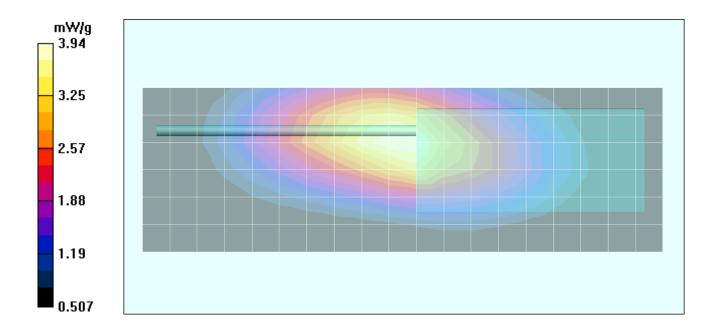
Body-Worn Accessories: Plastic Belt-Clip, Speaker-Microphone (P/N: KMC-21)

Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.12 dBm (Conducted) 7.5 V 1100mAh NiCd Battery Pack (P/N: KNB-30A) Medium: M450 (σ = 0.95 mho/m; ϵ_r = 58.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.6, 7.6, 7.6); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (7x20x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 63 V/m; Power Drift = -0.319 dB Peak SAR (extrapolated) = 5.94 W/kg SAR(1 g) = 3.77 mW/g; SAR(10 g) = 2.65 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Body-Worn SAR - NiCd Battery - Whip Antenna (P/N: KRA-27M)

Date Tested: 05/18/04

DUT: Kenwood Model: TK-3200; Type: Portable FM UHF PTT Radio Transceiver; Serial: U9

Ambient Temp: 23.1 °C; Fluid Temp: 21.8 °C; Barometric Pressure: 102.1 kPa; Humidity: 34%

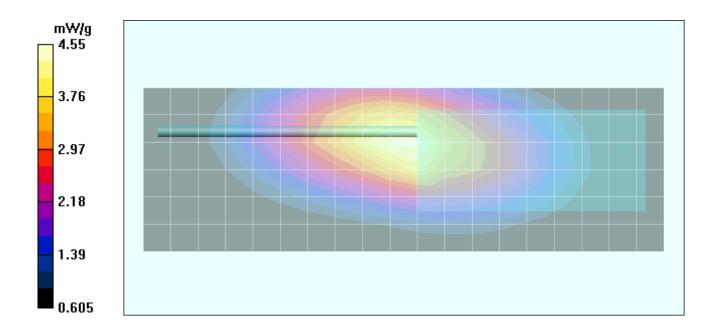
Body-Worn Accessories: Plastic Belt-Clip, Headset Boom-Microphone (P/N: KHS-21)

Communication System: FM UHF Frequency: 460 MHz; Duty Cycle: 1:1 RF Output Power: 33.09 dBm (Conducted) 7.5 V 1100mAh NiCd Battery Pack (P/N: KNB-30A) Medium: M450 (σ = 0.95 mho/m; ϵ_r = 58.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.6, 7.6, 7.6); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003


- Phantom: Planar; Type: Plexiglas; Serial: 161

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (7x20x1): Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.2 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 68.5 V/m; Power Drift = -0.317 dB Peak SAR (extrapolated) = 6.81 W/kg SAR(1 g) = 4.34 mW/g; SAR(10 g) = 3.06 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

System Performance Check - 450 MHz Dipole

Date Tested: 05/17/04

DUT: Dipole 450 MHz; Model: D450V2; Type: System Performance Check; Serial: 136

Ambient Temp: 22.8 °C; Fluid Temp: 23.4 °C; Barometric Pressure: 102.3 kPa; Humidity: 39%

Communication System: CW Forward Conducted Power: 250mW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450 (σ = 0.91 mho/m; ϵ_r = 44.9; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

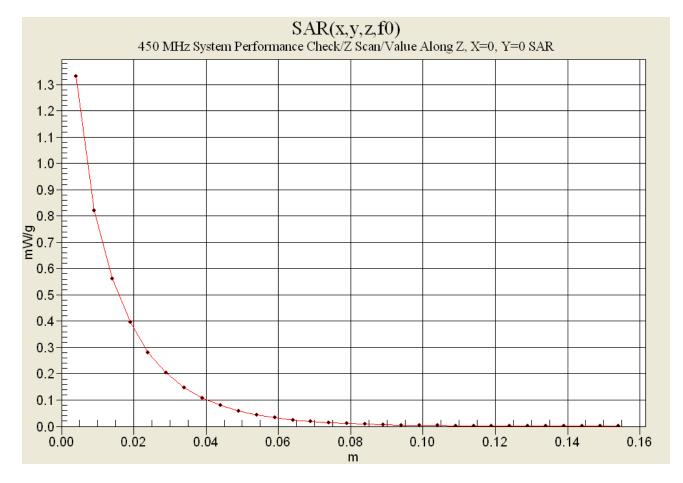
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137

- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

450 MHz System Performance Check/Area Scan (6x11x1):

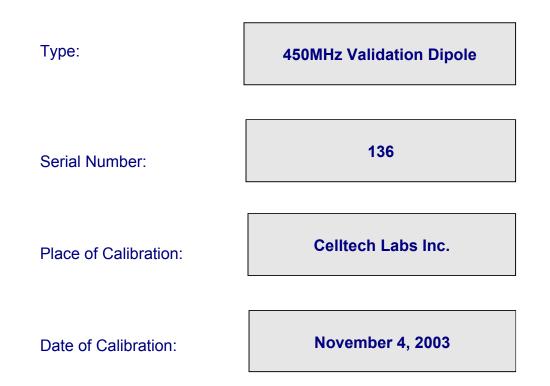
Measurement grid: dx=15mm, dy=15mm

450 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 38.4 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 2.23 W/kg SAR(1 g) = 1.26 mW/g; SAR(10 g) = 0.805 mW/g

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan



Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX C - SYSTEM VALIDATION

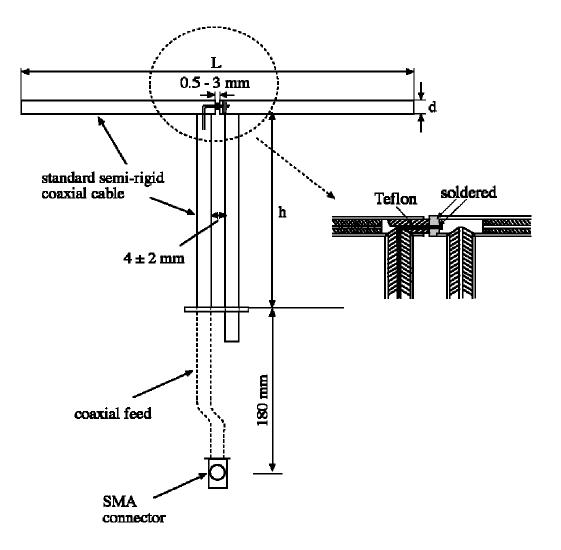
450MHz SYSTEM VALIDATION DIPOLE

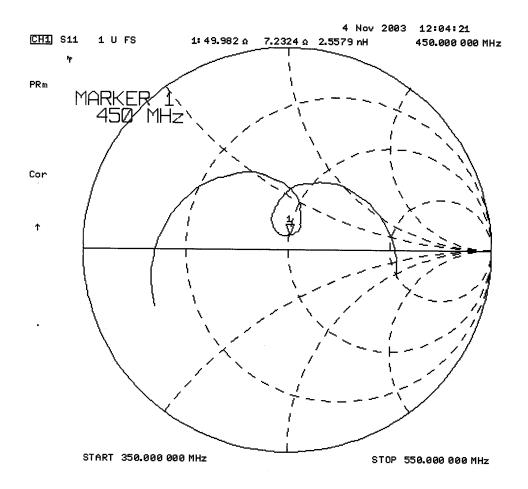
Celltech Labs Inc. hereby certifies that this device has been calibrated on the date indicated above.

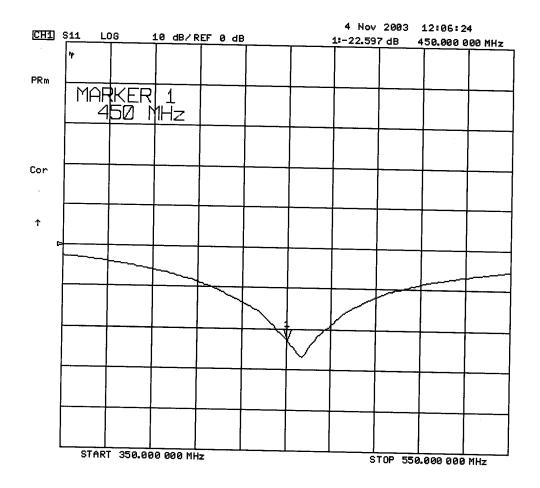
Calibrated by:

Spencer Water

Approved by:


Kussell W. Piepe




1. Dipole Construction & Electrical Characteristics

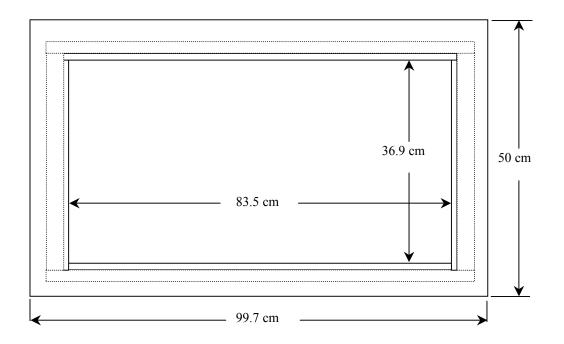
The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

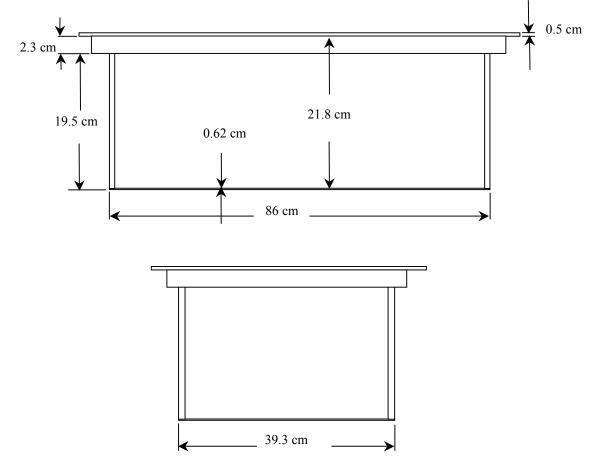
Feed point impedance at 450MHz	Re{Z} = 49.982Ω
	lm{Z} = 7.2324Ω
Return Loss at 450MHz	-22.597dB

2. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

3. Validation Phantom


The validation phantom was constructed using relatively low-loss tangent Plexiglas material. The inner dimensions of the phantom are as follows:


Length:	83.5 cm
Width:	36.9 cm
Height:	21.8 cm

The bottom section of the validation phantom is constructed of 6.2 ± 0.1 mm Plexiglas.

4. Dimensions of Plexiglas Planar Phantom

5. 450MHz System Validation Setup

450MHz System Validation Setup

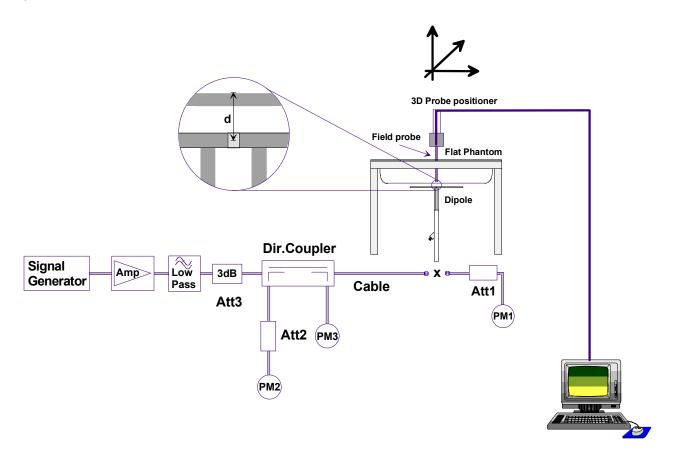
6. Measurement Conditions

The planar phantom was filled with brain simulating tissue having the following parameters at 450MHz:

Relative Permittivity:	43.7
Conductivity:	0.88 mho/m
Fluid Temperature:	22.0 °C
Fluid Depth:	≥ 15.0 cm

Environmental Conditions:

Ambient Temperature:	22.1 °C
Humidity:	49 %
Barometric Pressure:	102.8 kPa


The 450MHz simulated brain tissue mixture consists of the following ingredients:

Ingredient	Percentage by weight
Water	38.56%
Sugar	56.32%
Salt	3.95%
HEC	0.98%
Dowicil 75	0.19%
450MHz Target Dielectric Parameters at 22 °C	ε _r = 43.5 σ = 0.87 S/m

7. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

8. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	1.29	5.16	0.810	3.24	2.28
Test 2	1.31	5.24	0.827	3.31	2.31
Test 3	1.30	5.20	0.823	3.29	2.29
Test 4	1.30	5.20	0.822	3.29	2.29
Test 5	1.29	5.16	0.819	3.28	2.28
Test 6	1.30	5.20	0.826	3.30	2.28
Test 7	1.31	5.24	0.826	3.30	2.30
Test 8	1.31	5.24	0.829	3.32	2.30
Test 9	1.30	5.20	0.822	3.29	2.28
Test 10	1.31	5.24	0.822	3.29	2.33
Average Value	1.30	5.21	0.823	3.29	2.29

The results have been normalized to 1W (forward power) into the dipole.

IEEE Target over 1cm³ (1g) of tissue: 1.23 mW/g (+/- 10%)

Averaged over 1cm (1g) of tissue: 5.21 mW/g

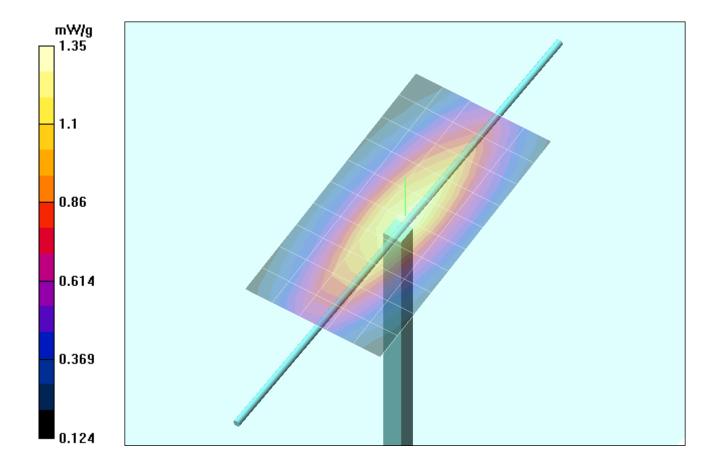
Averaged over 10cm (10g) of tissue: 3.29 mW/g

Test Date: 11/04/03

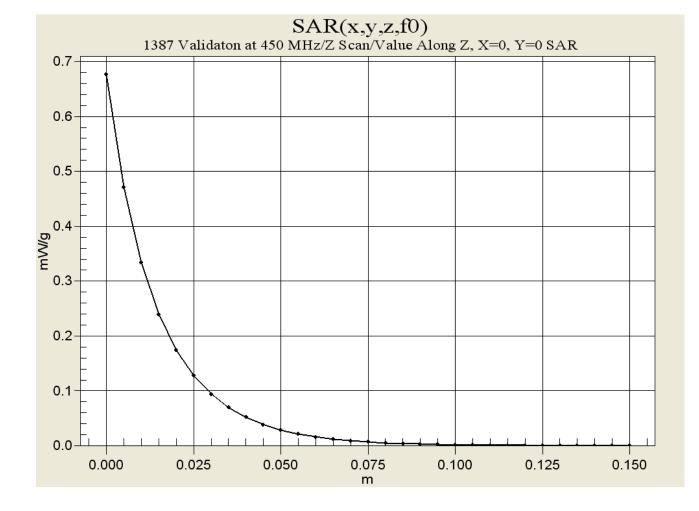
DUT: Dipole 450MHz; Model: D450V2; Type: System Performance Check; Serial: 136

Ambient Temp: 22.1°C; Fluid Temp: 22.0°C; Barometric Pressure: 102.8 kPa; Humidity: 49%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1 Medium: HSL450 (σ = 0.88 mho/m, ϵ_r = 43.7, ρ = 1000 kg/m³)


- Probe: ET3DV6 - SN1387; ConvF(7.5, 7.5, 7.5); Calibrated: 26/02/2003

- Sensor-Surface: 4mm (Mechanical Surface Detection)


- Electronics: DAE3 Sn370; Calibrated: 19/05/2003
- Phantom: Validation Planar; Type: Plexiglas; Serial: 137
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

450 MHz Validation/Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 39 V/m Power Drift = -0.08 dB Maximum value of SAR = 1.3 mW/g

450 MHz Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 2.28 W/kg **SAR(1 g) = 1.3 mW/g; SAR(10 g) = 0.822 mW/g** Reference Value = 39 V/m Power Drift = 0.08 dB

450MHz System Validation Measured Fluid Dielectric Parameters (Brain) November 04, 2003

Frequency	e'	e"
350.000000 MHz	46.2660	40.8224
360.000000 MHz	45.9937	40.0986
370.000000 MHz	45.7556	39.4543
380.000000 MHz	45.5625	38.7387
390.000000 MHz	45.2820	38.1140
400.000000 MHz	45.0146	37.4981
410.000000 MHz	44.7508	36.9734
420.000000 MHz	44.5046	36.4917
430.000000 MHz	44.2494	35.9460
440.000000 MHz	43.9621	35.5647
<mark>450.000000 MHz</mark>	<mark>43.7384</mark>	<mark>35.2106</mark>
460.000000 MHz	43.5513	34.7930
470.000000 MHz	43.2846	34.3970
480.000000 MHz	43.0654	33.9576
490.000000 MHz	42.8566	33.6391
500.000000 MHz	42.6744	33.2270
510.000000 MHz	42.5036	32.8459
520.000000 MHz	42.3492	32.5261
530.000000 MHz	42.1783	32.1727
540.000000 MHz	41.9985	31.7385
550.000000 MHz	41.8097	31.4862

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX D - PROBE CALIBRATION

Client Celitech

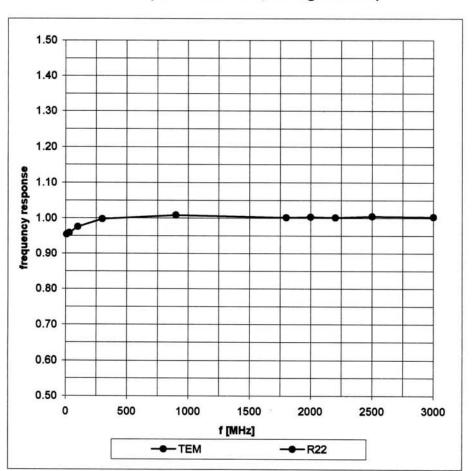
Dbject(s)	ET3DV6 - SN:	1387 5	
Calibration procedure(s)	QA CAL-01.v2 Calibration pro	2 Docedure for dosimetric E-field prob	Des
Calibration date:	March 18, 200	14	
Condition of the calibrated item	In Tolerance (according to the specific calibratio	n document)
All calibrations have been conducted	d in the closed laboratory	y facility: environment temperature 22 +/- 2 degrees C	celsius and humidity < 75%.
Calibration Equipment used (M&TE	critical for calibration)		
alibration Equipment used (M&TE	critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
alibration Equipment used (M&TE lodel Type ower meter EPM E4419B	critical for calibration) ID # GB41293874	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration Apr-04
alibration Equipment used (M&TE lodel Type ower meter EPM E4419B ower sensor E4412A	critical for calibration) ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration Apr-04 Apr-04
alibration Equipment used (M&TE lodel Type ower meter EPM E4419B ower sensor E4412A eference 20 dB Attenuator	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b)	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340)	Scheduled Calibration Apr-04 Apr-04 Apr-04
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702	critical for calibration) ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Ruke Process Calibrator Type 702 Power sensor HP 8481A	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340)	Scheduled Calibration Apr-04 Apr-04 Apr-04
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03)	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05 In house check: Oct 05
Calibration Equipment used (M&TE Model Type Power meter EPM E4419B Power sensor E4412A Reference 20 dB Attenuator Fluke Process Calibrator Type 702 Power sensor HP 8481A RF generator HP 8684C Network Analyzer HP 8753E	critical for calibration) ID # GB41293874 MY41495277 SN: 5086 (20b) SN: 6295803 MY41092180 US3642U01700 US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 2-Apr-03 (METAS, No 252-0250) 2-Apr-03 (METAS, No 252-0250) 3-Apr-03 (METAS, No. 251-0340) 8-Sep-03 (Sintrel SCS No. E-030020) 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Aug-02) 18-Oct-01 (SPEAG, in house check Oct-03) Function	Scheduled Calibration Apr-04 Apr-04 Apr-04 Sep-04 In house check: Oct 05 In house check: Aug-05 In house check: Oct 05

Probe ET3DV6

SN:1387

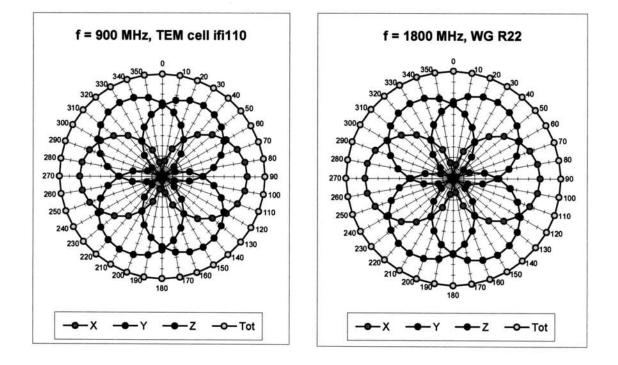
Manufactured: Last calibrated: Recalibrated: September 21, 1999 February 26, 2003 March 18, 2004

Calibrated for DASY Systems

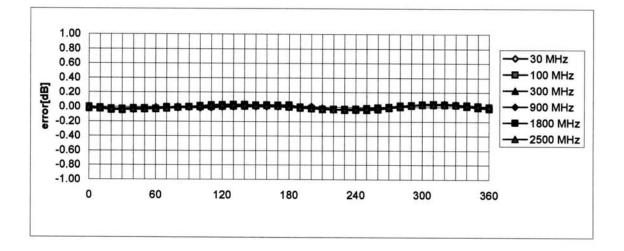

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1387

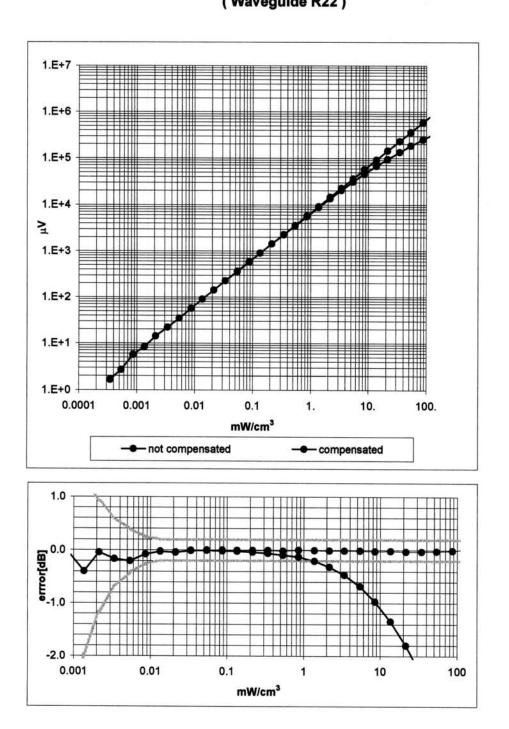
Sens	itivity in Fre	e Spac	e		Diode	Comp	ression ^A
	NormX	1.6	2 μV/(V/m) ²		DCP X	92	mV
	NormY		1 μV/(V/m) ²		DCP Y	92	mV
	NormZ		1 μV/(V/m) ²		DCP Z	92	mV
	Nonnz				001 2	JL	III V
Sens	itivity in Tis	sue Sin	nulating Liquid (Co	nversio	n Facto	ors)	
Plese	see Page 7.						
Bour	idary Effect						
Head	90	0 MHz	Typical SAR gradient:	5 % per m	m		
	Sensor Cener	to Phanto	m Surface Distance		3.7 mm	4.7 mm	
	SAR _{be} [%]	Without	Correction Algorithm		9.3	4.4	
	SAR _{be} [%]	With Co	prrection Algorithm		0.0	0.1	
Head	100	0 MHz	Tunion SAD anodiont	10 %			
neau	100		Typical SAR gradient:	10 % per i	nm		
	Sensor to Surf	ace Distar	ice		3.7 mm	4.7 mm	
	SAR _{be} [%]	Without	Correction Algorithm		14.8	10.0	
	SAR _{be} [%]	With Co	prrection Algorithm		0.2	0.0	
Sens	or Offset						
	Daths Tis to 0						
	Probe Tip to S			2.7	mm		
	Optical Surface	- Detection	n	in to	erance		


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

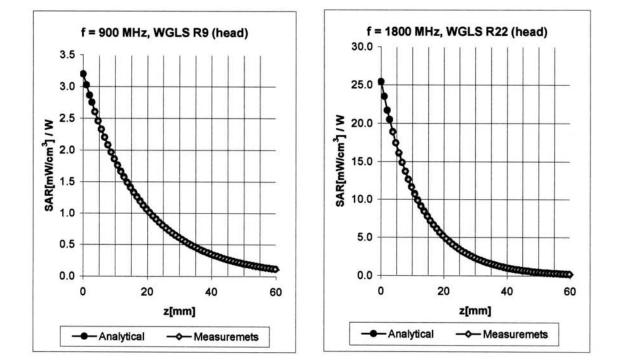
^A numerical linearization parameter: uncertainty not required



Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

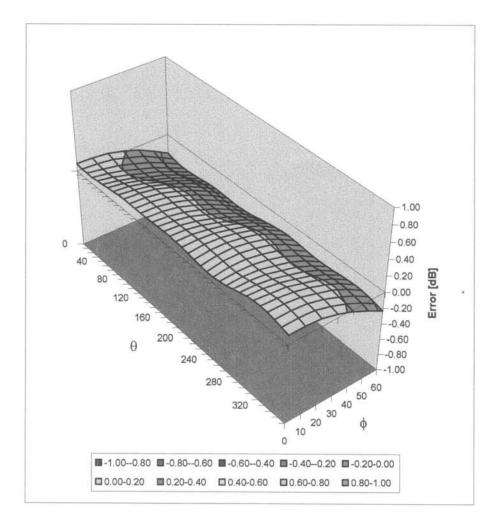
Receiving Pattern (ϕ), θ = 0°


Axial Isotropy Error < ± 0.2 dB

Dynamic Range f(SAR_{head}) (Waveguide R22)

Probe Linearity < ± 0.2 dB

Page 6 of 8


Conversion Factor Assessment

f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	750-950	Head	41.5 ± 5%	0.90 ± 5%	0.72	1.78	6.71 ± 11.9% (k=2)
1750	1700-1800	Head	40.0 ± 5%	1.40 ± 5%	0.51	2.67	5.38 ± 9.7% (k=2)
1900	1850-1950	Head	40.0 ± 5%	1.40 ± 5%	0.55	2.66	5.25 ± 9.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.99	1.89	4.77 ± 9.7% (k=2)
835	750-950	Body	55.2 ± 5%	0.97 ± 5%	0.56	2.04	6.24 ± 11.9% (k=2)
1750	1700-1800	Body	53.3 ± 5%	1.52 ± 5%	0.58	2.82	4.68 ± 9.7% (k=2)
1900	1850-1950	Body	53.3 ± 5%	1.52 ± 5%	0.62	2.77	4.57 ± 9.7% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.75	1.28	4.50 ± 9.7% (k=2)

^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (θ , ϕ), f = 900 MHz

Spherical Isotropy Error < ± 0.4 dB

Additional Conversion Factors

for Dosimetric E-Field Probe

Туре:	ET3DV6	
Serial Number:	1387	
Place of Assessment:	Zurich	
Date of Assessment:	March 22, 2004	
Probe Calibration Date:	March 18, 2004	

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Monither

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (± standard deviation)

150 MHz	ConvF	9.1 ± 8%	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\% \text{ mho/m}$ (head tissue)
300 MHz	ConvF	7.8±8%	$\epsilon_r = 45.3 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
450 MHz	ConvF	7.5±8%	$\epsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
150 MHz	ConvF	8.7±8%	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\%$ mho/m (body tissue)
450 MHz	ConvF	7.6±8%	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\%$ mho/m (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS

450 MHz System Performance Check & DUT Evaluation (Face) Measured Fluid Dielectric Parameters (Brain) May 17, 2004

Frequency	e'	e"
350.000000 MHz	47.4780	41.9020
360.000000 MHz	47.1303	41.2337
370.000000 MHz	46.8632	40.5350
380.000000 MHz	46.5615	39.8999
390.000000 MHz	46.2596	39.2443
400.000000 MHz	45.9899	38.7226
410.000000 MHz	45.7963	38.2156
420.000000 MHz	45.5496	37.7004
430.000000 MHz	45.3410	37.1741
440.000000 MHz	45.1454	36.6792
<mark>450.000000 MHz</mark>	<mark>44.9127</mark>	<mark>36.2594</mark>
460.000000 MHz	44.6834	35.8022
470.000000 MHz	44.4775	35.3792
480.000000 MHz	44.2545	34.9146
490.000000 MHz	43.9971	34.5102
500.000000 MHz	43.7796	34.1844
510.000000 MHz	43.5774	33.8021
520.000000 MHz	43.3611	33.4871
530.000000 MHz	43.1704	33.1800
540.000000 MHz	43.0115	32.7910
550.000000 MHz	42.8406	32.4812

450 MHz DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle) May 17, 2004

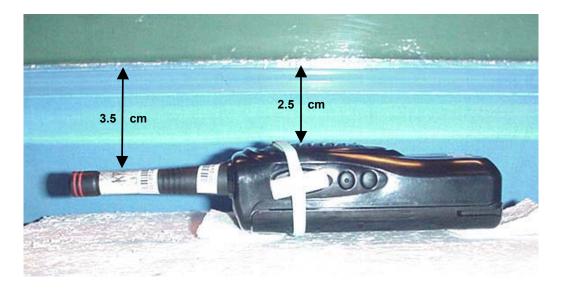
Frequency	e'	e"
350.000000 MHz	59.4111	44.0529
360.000000 MHz	59.1859	43.2006
370.000000 MHz	59.0062	42.4298
380.000000 MHz	58.8010	41.6678
390.000000 MHz	58.5355	40.8333
400.000000 MHz	58.3364	40.1974
410.000000 MHz	58.2183	39.6171
420.000000 MHz	58.0898	39.0636
430.000000 MHz	57.9785	38.4699
440.000000 MHz	57.8432	37.9344
<mark>450.000000 MHz</mark>	<mark>57.6305</mark>	<mark>37.4652</mark>
460.000000 MHz	57.5311	37.0012
470.000000 MHz	57.3451	36.5454
480.000000 MHz	57.2016	36.0439
490.000000 MHz	57.0492	35.5629
500.000000 MHz	56.8997	35.1513
510.000000 MHz	56.7423	34.7564
520.000000 MHz	56.6169	34.4018
530.000000 MHz	56.4599	34.0335
540.000000 MHz	56.4212	33.6248
550.000000 MHz	56.2495	33.3251

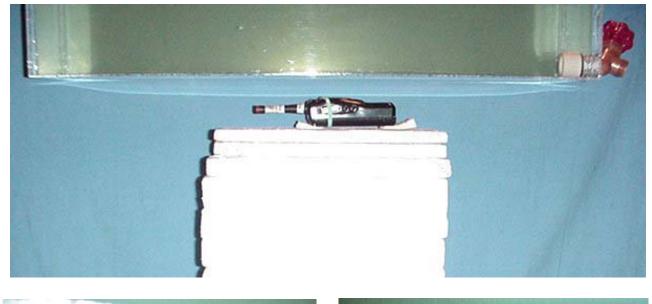
450 MHz DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle) May 18, 2004

Frequency	e'	e"
350.000000 MHz	60.3148	44.7612
360.000000 MHz	60.0857	43.9190
370.000000 MHz	59.9474	43.1500
380.000000 MHz	59.7756	42.4800
390.000000 MHz	59.6183	41.7296
400.000000 MHz	59.4916	41.1149
410.000000 MHz	59.3150	40.4322
420.000000 MHz	59.1967	39.9115
430.000000 MHz	59.0413	39.2794
440.000000 MHz	58.9015	38.6998
450.000000 MHz	<mark>58.6751</mark>	<mark>38.1906</mark>
460.000000 MHz	58.5265	37.6956
470.000000 MHz	58.3802	37.2285
480.000000 MHz	58.1708	36.7386
490.000000 MHz	57.9876	36.3334
500.000000 MHz	57.8683	35.9464
510.000000 MHz	57.7088	35.5134
520.000000 MHz	57.5851	35.1380
530.000000 MHz	57.4965	34.7502
540.000000 MHz	57.3946	34.3286
550.000000 MHz	57.2623	34.0329

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX F - SAR TEST SETUP & DUT PHOTOGRAPHS

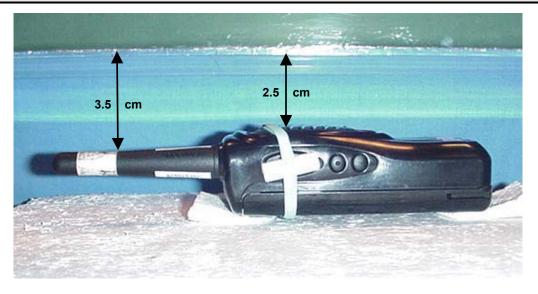



Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

FACE-HELD SAR TEST SETUP PHOTOGRAPHS

2.5 cm Separation Distance from Front of Radio to Planar Phantom

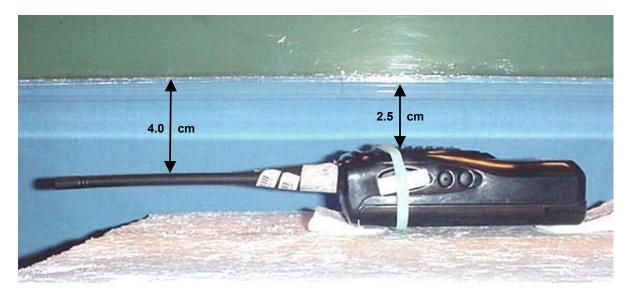
with Stubby Antenna (P/N: KRA-17M)

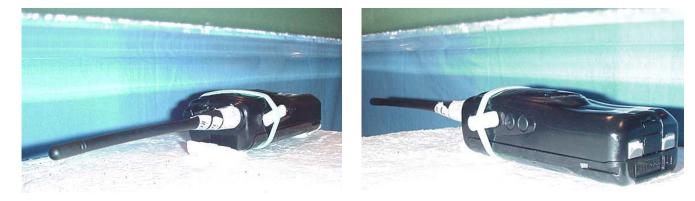

© 2004 Celltech Labs Inc.

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

FACE-HELD SAR TEST SETUP PHOTOGRAPHS

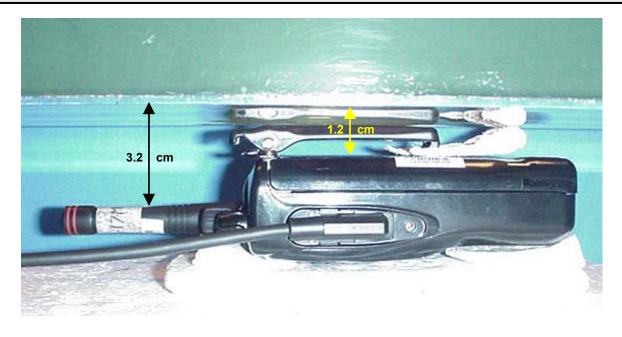
2.5 cm Separation Distance from Front of Radio to Planar Phantom with Stubby Antenna (P/N: KRA-23M)





Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

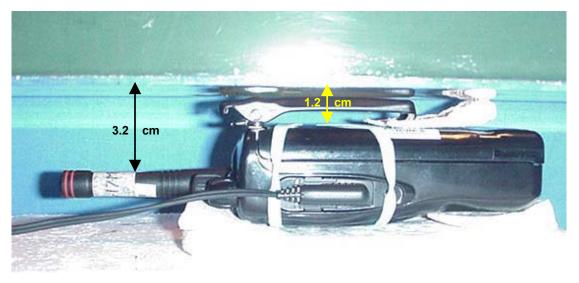
FACE-HELD SAR TEST SETUP PHOTOGRAPHS 2.5 cm Separation Distance from Front of Radio to Planar Phantom with Whip Antenna (P/N: KRA-27M)

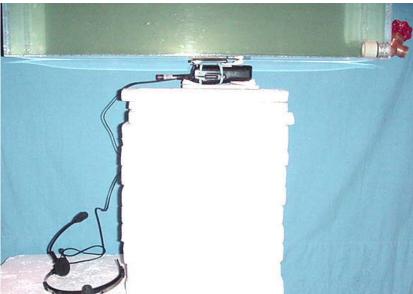


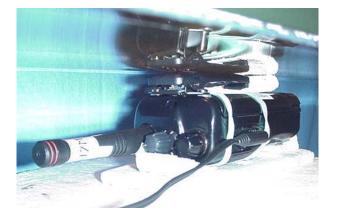
© 2004 Celltech Labs Inc.

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

1.2 cm Plastic Belt-Clip Separation Distance from Battery to Planar Phantom with Stubby Antenna (P/N: KRA-17M) & Speaker-Microphone Accessory (P/N: KMC-21)

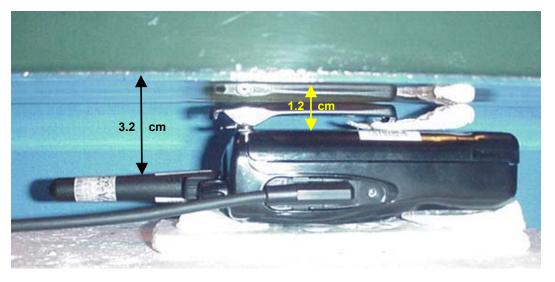



© 2004 Celltech Labs Inc.

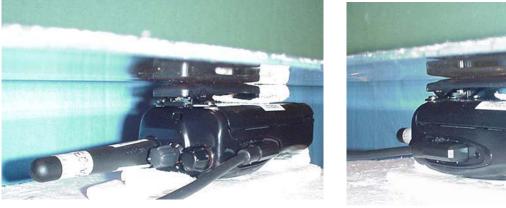


Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

1.2 cm Plastic Belt-Clip Separation Distance from Battery to Planar Phantom with Stubby Antenna (P/N: KRA-17M) & Headset Boom-Microphone Accessory (P/N: KHS-21)

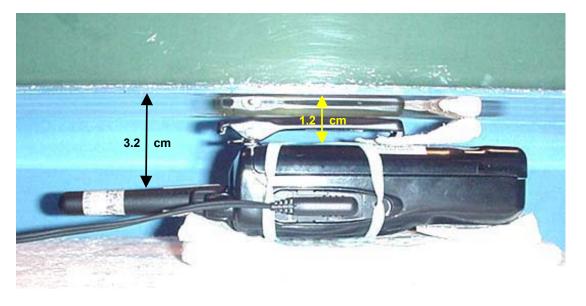


© 2004 Celltech Labs Inc.



Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

1.2 cm Plastic Belt-Clip Separation Distance from Battery to Planar Phantom with Stubby Antenna (P/N: KRA-23M) & Speaker-Microphone Accessory (P/N: KMC-21)

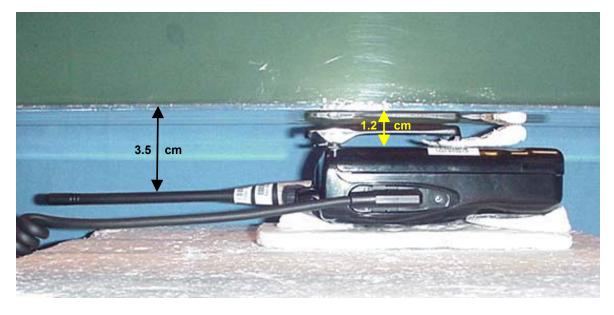


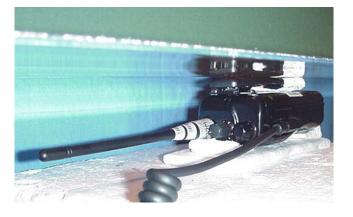
© 2004 Celltech Labs Inc.



Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

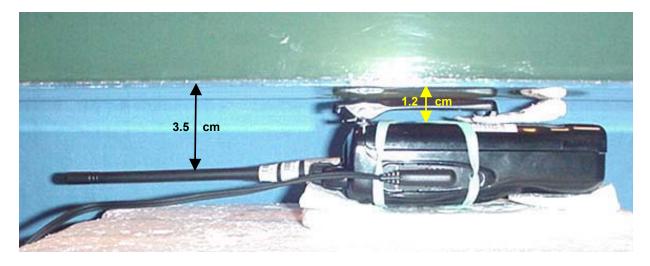
1.2 cm Plastic Belt-Clip Separation Distance from Battery to Planar Phantom with Stubby Antenna (P/N: KRA-23M) & Headset Boom-Microphone Accessory (P/N: KHS-21)


© 2004 Celltech Labs Inc.

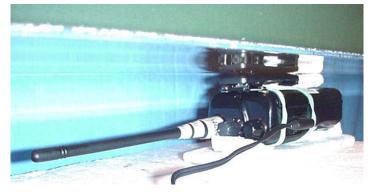

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

BODY-WORN SAR TEST SETUP PHOTOGRAPHS 2 cm Plastic Belt-Clip Separation Distance from Battery to Planar Phant

1.2 cm Plastic Belt-Clip Separation Distance from Battery to Planar Phantom with Whip Antenna (P/N: KRA-27M) & Speaker-Microphone Accessory (P/N: KMC-21)



© 2004 Celltech Labs Inc.



Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

1.2 cm Plastic Belt-Clip Separation Distance from Battery to Planar Phantom with Whip Antenna (P/N: KRA-27M) & Headset Boom-Microphone Accessory (P/N: KHS-21)

© 2004 Celltech Labs Inc.

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Front of DUT Stubby Antenna (P/N: KRA-23M)

Front of DUT Stubby Antenna (P/N: KRA-17M)

Front of DUT Whip Antenna (P/N: KRA-27M)

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Back of DUT

Back of DUT with Plastic Belt-Clip

Top End of DUT

© 2004 Celltech Labs Inc.

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Left Side of DUT with Belt-Clip

Right Side of DUT with Belt-Clip

Belt-Clip Accessory

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

DUT Battery Compartment

NiMH Battery Pack (P/N: KNB-29N)

NiCd Battery Pack (P/N: KNB-30A)

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

Stubby Antenna (P/N: KRA-17M)

Stubby Antenna (P/N: KRA-23M)

Whip Antenna (P/N: KRA-27M)

Test Report S/N:	050704-506ALH
Test Date(s):	May 17-18, 2004
Test Type:	FCC/IC SAR Evaluation

DUT with Speaker-Microphone Accessory (P/N: KMC-21)

DUT with Headset Boom-Microphone Accessory (P/N: KHS-21)