Report No: HCT-SR-2311-FC001 #### DASY5 Validation Report for Head TSL Date: 17.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d015 Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.37$ S/m; $\epsilon_e = 38.5$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.63, 8.63, 8.63) @ 1800 MHz; Calibrated: 10.01.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.2 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.42 W/kg; SAR(10 g) = 4.92 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.8% Maximum value of SAR (measured) = 14.5 W/kg 0 dB = 14.5 W/kg = 11.61 dBW/kg Certificate No: D1800V2-2d015\_May23 Page 5 of 6 Report No: HCT-SR-2311-FC001 ### Impedance Measurement Plot for Head TSL Certificate No: D1800V2-2d015\_May23 Page 6 of 6 Report No: HCT-SR-2311-FC001 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client HCT (Dymstec) Certificate No: D1900V2-5d061\_Jan23 | Object | D1900V2 - SN:56 | 1061 | | |---------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------| | Calibration procedure(s) | QA CAL-05.v12<br>Calibration Proce | edure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | January 23, 2023 | | | | The measurements and the uncert | ainties with confidence p | coal standards, which realize the physical uni-<br>robability are given on the following pages an<br>ry facility: environment temperature $(22\pm3)^{\circ}0$ | d are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | 5N: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | D4-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349 Jan23) | Jan-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093316 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-08 | SN: 100972 | 15-Jun-15 (In house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | Tall- | | | | | | | Approved by: | Sven Kühn | Technical Manager | Sila | | Approved by: | Sven Kühn | Technical Manager | Issued: January 24, 2023 | # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d061\_Jan23 Page 2 of 6 Report No: HCT-SR-2311-FC001 FCC ID: A3LSMA155M #### **Measurement Conditions** | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | 10 | | Frequency | 1900 MHz ± 1 MHz | | | | | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.6 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW Input power | 9.77 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 38.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.08 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.3 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d061\_Jan23 Page 3 of 6 Report No: HCT-SR-2311-FC001 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.2 Ω + 6.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24,1 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.193 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | AMORTON AND AND AND AND AND AND AND AND AND AN | The state of s | |------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Manufactured by | SPEAG | Certificate No: D1900V2-5d061\_Jan23 Page 4 of 6 #### DASY5 Validation Report for Head TSL Date: 23.01.2023 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d061 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\epsilon_r = 38.6$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 10.01.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx-5mm, dy-5mm, dz-5mm Reference Value = 109.1 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 9.77 W/kg; SAR(10 g) = 5.09 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.6% Maximum value of SAR (measured) = 15.1 W/kg 0 dB = 15.1 W/kg = 11.79 dBW/kg Certificate No: D1900V2-5d061\_Jan23 Page 5 of 6 Report No: HCT-SR-2311-FC001 ### Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d061\_Jan23 Page 6 of 6 Report No: HCT-SR-2311-FC001 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client HCT Certificate No. D2450V2-1049\_Apr23 | CALIBRATION C | ERTIFICAT | E | | |-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------| | Object | D2450V2 - SN:1 | 049 | | | Calibration procedure(s) | QA CAL-05.v12 | Vol. 18 SEVERINVIOLED S | | | | Calibration Proce | edure for SAR Validation Source: | s between 0.7-3 GHz | | Calibration date: | April 25, 2023 | | | | | | | | | This calibration certificate document | nts the traceability to nati | ional standards, which realize the physical un | its of measurements (SI). | | The measurements and the uncert | ainties with confidence p | robability are given on the following pages ar | d are part of the certificate. | | | | | | | All calibrations have been conducts | ed in the closed laborator | ry facility: environment temperature (22 ± 3)% | C and humidity < 70% | | | | | | | Calibration Equipment used (M&TE | critical for calibration) | | | | | THE PARTY OF P | | | | Primary Standards | ID # | Cai Date (Certificate No.) | Scheduled Calibration | | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-291 | SN; 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349 Jan23) | Jan-24 | | DAE4 | SN: 601 | 19-Dec-22 (No: DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | | | Power meter E4419B | SN: G839512475 | 30-Oct-14 (in house check Oct-22) | Scheduled Check | | ower sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Ower sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24<br>In house check: Oct-24 | | | Name | - | | | allbrated by: | Michael Weber | Function | Signature: | | principality of | WILCOMES WEDGE | Laboratory Technician | Millese | | approved by: | Sven Kühn | | 1111 | | graph wholes, Mg/s | Over Kurin | Technical Manager | h. bollol | | | | | Issued: April 26, 2023 | | his calibration certificate shall not t | be reproduced except in | full without written approval of the japoratory, | 15 A 21 A A | | | | / | 2 12: | | ertificate No: D2450V2-1049_A | pr23 | Page 1 of 7 기계 | 0 - 1/0 | | | | | | | | | 7479 D | / १५११ दि । स्था | F-TP22-03 (Rev.00) 163 / 186 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienat Service suisse d'étaionnage Servizio svizzero di tarature Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-1049\_Apr23 Page 2 of 7 # Measurement Conditions DASY system configuration, as | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.7 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-1049\_Apr23 Page 3 of 7 Report No: HCT-SR-2311-FC001 Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.1 Ω + 8.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.0 dB | | # General Antenna Parameters and Design | Elec | trical Delay (one direction) | 1.160 ns | |------|------------------------------|----------| | _ | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2450V2-1049\_Apr23 Page 4 of 7 #### **DASY5 Validation Report for Head TSL** Date: 25.04.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 1049 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_c = 37.7$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 10.01.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.0 V/m; Power Drift = 0.01 dB Reference Value = 117.0 V/m; Power Drift = 0.01 Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.23 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.1% Maximum value of SAR (measured) = 22.4 W/kg 0 dB = 22.4 W/kg = 13.50 dBW/kg Certificate No: D2450V2-1049\_Apr23 Page 5 of 7 Report No: HCT-SR-2311-FC001 ## Impedance Measurement Plot for Head TSL Certificate No: D2450V2-1049\_Apr23 Page 6 of 7 Report No: HCT-SR-2311-FC001 # Appendix: Transfer Calibration at Four Validation Locations on SAM Head<sup>1</sup> # **Evaluation Condition** | Phantom | SAM Head Phantom | For the particular and | į | |-------------|------------------|-----------------------------|---| | Filalitotti | SAM Read Phantom | For usage with cSAR3DV2-R/L | | # SAR result with SAM Head (Top ≅ C0) | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 56.2 W/kg ± 17.5 % (k=2) | | | | | | | | | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | # SAR result with SAM Head (Mouth ≅ F90) | SAR averaged over 1 cm3 (1 g) of Head TSL. | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 57.3 W/kg ± 17.5 % (k=2) | | | | | | | | | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | # SAR result with SAM Head (Neck = H0) | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 54.0 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | # SAR result with SAM Head (Ear ≅ D90) | SAR averaged over 1 cm <sup>2</sup> (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 34.6 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | Certificate No: D2450V2-1049\_Apr23 Page 7 of 7 <sup>&</sup>lt;sup>1</sup> Additional assessments outside the current scope of SCS 0108 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client HCT Certificate No. D2600V2-1106 May23 | CALIBRATION C | ERTIFICATI | | | |---------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------| | Disject | D2600V2 - SN:1 | 106 | | | Calibration procedure(s) | QA CAL-05,v12<br>Calibration Proce | edure for SAR Validation Source | es between 0.7-3 GHz | | alibration date: | May 24, 2023 | | | | he measurements and the uncert | ainties with confidence p | onal standards, which realize the physical robability are given on the following pages by facility: environment temperature (22 $\pm$ 3 | and are part of the certificate. | | rimary Standards | ID # | Cal Date (Certificate No.) | Rehard dead Codh and an | | ower meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Scheduled Calibration<br>Mar-24 | | ower sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | ower sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | eference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | ype-N mismatch combination | SN: 310962 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | leference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349_Jan23) | Jan-24 | | AE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | econdary Standards | ID# | Check Date (in house) | Scheduled Check | | ower meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | ower sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | ower sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | F generator R&S SMT-06 | SN; 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | etwork Analyzer Agilent EB358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | allbrated by: | Paulo Pina | Laboratory Technicien | 7 - 6 | | pproved by: | Sven Kühn | Technical Manager | SL | | his calibration certificate shall not | be reproduced except in | full without written approval of the isoprate | issued: May 24, 2023<br>제상 당 자 - 화 인 자 | | | | 12 | 21 h. | | rtificate No: D2600V2-1106_N | fay23 | Page 1 of 6 | 0 6 KN | | | | | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 #### Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1106\_May23 Page 2 of 6 Report No: HCT-SR-2311-FC001 #### Measurement Conditions | DASY52 | V52.10.4 | |------------------------|------------------------------------------------------------------------| | Advanced Extrapolation | | | Modular Flat Phantom | | | 10 mm | with Spacer | | dx, dy, dz = 5 mm | | | 2600 MHz ± 1 MHz | | | | Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy, dz = 5 mm | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.1 ± 6 % | 2.00 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | # SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.1 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1106\_May23 Report No: HCT-SR-2311-FC001 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.9 Ω - 6.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23,1 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.149 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data Certificate No: D2600V2-1106\_May23 Page 4 of 6 ### **DASY5 Validation Report for Head TSL** Date: 24.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1106 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2 \text{ S/m}$ ; $\varepsilon_r = 37.1$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.68, 7.68, 7.68) @ 2600 MHz; Calibrated: 10.01.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.6 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.37 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 51.4% Maximum value of SAR (measured) = 23.0 W/kg 0 dB = 23.0 W/kg = 13.62 dBW/kg Certificate No: D2600V2-1106\_May23 Page 5 of 6 Report No: HCT-SR-2311-FC001 ### Impedance Measurement Plot for Head TSL Certificate No: D2600V2-1106\_May23 Page 6 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client HCT Gyeonggi-do, Republic of Korea Certificate No. D5GHzV2-1317\_May23 # **CALIBRATION CERTIFICATE** D5GHzV2 - SN:1317 Object QA CAL-22.v7 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 3-10 GHz May 17, 2023 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 08327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 3503 | 07-Mar-23 (No. EX3-3503_Mar23) | Mar-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID-W | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | 8N: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | M. Weber | | Approved by: | Sven Kühn | Technical Manager | C/6 | Certificate No: D5GHzV2-1317\_May23 Page 1 of 11 DL Philip S C #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accredited no.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1317\_May23 Page 2 of 11 Report No: HCT-SR-2311-FC001 #### Measurement Conditions | AS r system configuration, as far as fix | ot given on page 1. | | |------------------------------------------|------------------------------------------------------------------------------|----------------------------------| | DASY Version | DASY52 | V52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz<br>5800 MHz ± 1 MHz | | # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.94 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1317\_May23 Page 3 of 11 Report No: HCT-SR-2311-FC001 ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|-----------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.97 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 13 <del>-113</del> ,5 | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5750 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) "C | 34.4 ± 6 % | 5.08 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | # SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1317\_May23 Page 4 of 11 Report No: HCT-SR-2311-FC001 # Head TSL parameters at 5800 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 5.11 mha/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | Serve II | | # SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.75 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 76.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1317\_May23 Page 5 of 11 Report No: HCT-SR-2311-FC001 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 44.6 Ω - 2.0 μΩ | |--------------------------------------|-----------------| | Return Loss | - 24.3 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 48.0 Ω - 0.3 μΩ | |--------------------------------------|-----------------| | Return Loss | - 33.6 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 47.2 Ω + 1.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30,0 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 46.0 Ω + 0.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.4 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.191 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | process and the second | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | Manufactured by | SPEAG | Certificate No: D5GHzV2-1317\_May23 Page 5 of 11 #### DASY5 Validation Report for Head TSL Date: 17.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1317 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; σ = 4.6 S/m; $ε_r = 34.8$ ; ρ = 1000 kg/m<sup>3</sup> Medium parameters used: f = 5600 MHz; σ = 4.97 S/m; $ε_r = 34.6$ ; ρ = 1000 kg/m<sup>3</sup> Medium parameters used: f = 5750 MHz; σ = 5.08 S/m; $ε_r = 34.4$ ; ρ = 1000 kg/m<sup>3</sup> Medium parameters used: f = 5800 MHz; σ = 5.11 S/m; $ε_r = 34.3$ ; ρ = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 07.03.2023 - Sensor-Surface; 1.4mm (Mechanical Surface Detection) - · Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.29 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 71.8% Maximum value of SAR (measured) = 17.6 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.66 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 68.8% Maximum value of SAR (measured) = 18.8 W/kg Certificate No: D5GHzV2-1317\_May23 Page 7 of 11 Report No: HCT-SR-2311-FC001 ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.14 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.8 W/kg SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.23 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.1% Maximum value of SAR (measured) = 18.2 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.84 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 30.2 W/kg SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.2 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.5% Maximum value of SAR (measured) = 18.3 W/kg 0 dB = 18.8 W/kg = 12.74 dBW/kg Report No: HCT-SR-2311-FC001 # Impedance Measurement Plot for Head TSL Certificate No: D5GHzV2-1317\_May23 Page 9 of 11 Report No: HCT-SR-2311-FC001 ### Appendix: Transfer Calibration at Four Validation Locations on SAM Head1 ### Evaluation Conditions (f=5250 MHz) | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------| | The state of s | | | # SAR result with SAM Head (Top) | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 84.3 W/kg ± 20.3 % (k=2) | | | | | | | | | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | ### SAR result with SAM Head (Mouth) | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 83.5 W/kg ± 20.3 % (k=2) | | | | | | | | | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | #### SAR result with SAM Head (Neck) | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 81.7 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm <sup>2</sup> (10 g) of Head TSL | condition | | # SAR result with SAM Head (Ear) | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 52.8 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | | | | | Certificate No: D5GHzV2-1317\_May23 Page 10 of 11 Additional assessments outside the current scope of SCS 0108 Report No: HCT-SR-2311-FC001 # Appendix: Transfer Calibration at Four Validation Locations on SAM Head<sup>2</sup> # Evaluation Conditions (f=5800 MHz) | | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | |--|---------|------------------|-----------------------------| |--|---------|------------------|-----------------------------| # SAR result with SAM Head (Top) | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for riominal Head TSL parameters | normalized to 1W | 79.9 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | ### SAR result with SAM Head (Mouth) | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 86.4 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | ### SAR result with SAM Head (Neck) | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 77.1 W/kg ± 20.3 % (k=2) | | | | | | | | | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | # SAR result with SAM Head (Ear) | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |---------------------------------------------------------|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 54.9 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | | SAU sacraded over 10 cm. (10 d) or used 19F | Gornation | | Certificate No: D5GHzV2-1317\_May23 Page 11 of 11 Additional assessments outside the current scope of SCS 0108.