Shenzhen Huatongwei International Inspection Co., Ltd. 1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn # **FCC REPORT** **Report Reference No.....: TRE1511007601** R/C........ 46077 FCC ID.....: 2ABOSGCSKYFUEGO50D Applicant's name.....: Sky Phone LLC Manufacturer...... DongGuan Tenexon Communication Technology Co., Ltd. Address..... L1 - L3, Block A, Building B, KeYuan 9th Road No. 1, Tangxia Town, Dongguan City, Guangdong China. Test item description: Smart Phone Trade Mark SKY Model/Type reference...... Fuego 5.0D Listed Model(s) W509 Standard FCC Part 22: PUBLIC MOBILE SERVICES FCC Part 24: PERSONAL COMMUNICATIONS SERVICES Candy Line Cron Car Date of receipt of test sample............ Nov. 16, 2015 Result.....: Pass Compiled by (position+printed name+signature)..: File administrators Candy Liu Supervised by (position+printed name+signature)..: Project Engineer Lion Cai Approved by (position+printed name+signature)..: Manager Hans Hu Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd Gongming, Shenzhen, China Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Report No: TRE1511007601 Page: 2 of 56 Issued: 2015-11-26 # Contents | <u>1.</u> | TEST STANDARDS AND TEST DESCRIPTION | 3 | |-----------|--|----| | | | | | 1.1. | Test Standards | 3 | | 1.2. | Test Description | 3 | | <u>2.</u> | SUMMARY | 4 | | | | _ | | 2.1. | Client Information | 4 | | 2.2. | Product Description | 4 | | 2.3. | EUT operation mode | 5 | | 2.4. | EUT configuration | 5 | | 2.5. | Modifications | 5 | | <u>3.</u> | TEST ENVIRONMENT | 6 | | 3.1. | Address of the test laboratory | 6 | | 3.2. | Test Facility | 6 | | 3.3. | Environmental conditions | 7 | | 3.4. | Statement of the measurement uncertainty | 7 | | 3.5. | Equipments Used during the Test | 8 | | <u>4.</u> | TEST CONDITIONS AND RESULTS | 9 | | 4.1. | Conducted Emissions Test | 9 | | 4.2. | Conducted Peak Output Power | 12 | | 4.3. | Occupy Bandwidth | 13 | | 4.4. | Out of band emission at antenna terminals | 20 | | 4.5. | Band Edge compliance | 31 | | 4.6. | Radiated Power Measurement | 36 | | 4.7. | Radiated Spurious Emssion | 39 | | 4.8. | Frequency stability V.S. Temperature measurement | 45 | | 4.9. | Frequency stability V.S. Voltage measurement | 47 | | 4.10. | Peak-Average Ratio | 48 | | <u>5.</u> | TEST SETUP PHOTOS OF THE EUT | 49 | | 6. | EXTERNAL AND INTERNAL PHOTOS OF THE EUT | 51 | Report No: TRE1511007601 Page: 3 of 56 Issued: 2015-11-26 # 1. TEST STANDARDS AND TEST DESCRIPTION #### 1.1. Test Standards The tests were performed according to following standards: FCC Part 22 (10-1-13 Edition): PRIVATE LAND MOBILE RADIO SERVICES. FCC Part 24(10-1-13 Edition): PUBLIC MOBILE SERVICES TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards. 47 CFR FCC Part 15 Subpart B: - Unintentional Radiators FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS <u>KDB971168 v02r02:2014-10-17</u> Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems ANSI C63.4:2014 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz ### 1.2. Test Description | Test Item | Section in CFR 47 | Result | | |--|----------------------|---------|--| | AC Power Conducted Emission | Part 15.207 | Pass | | | | Part 2.1046 | | | | RF Output Power | Part 22.913 (a)(2) | Pass | | | | Part 24.232 (c) | | | | Modulation Characteristics | Part 2.1047 | Pass | | | | Part 2.1049 | | | | 99% & -26 dB Occupied Bandwidth | Part 22.917 | Pass | | | | Part 24.238 | | | | | Part 2.1051 | | | | Spurious Emissions at Antenna Terminal | Part 22.917 (a) | Pass | | | | Part 24.238 (a) | | | | | Part 2.1053 | | | | Field Strength of Spurious Radiation | Part 22.917 (a) | Pass | | | | Part 24.238 (a) | | | | Out of hand emission, Rand Edge | Part 22.917 (a) | Pass | | | Out of band emission, Band Edge | Part 24.238 (a) | F d 5 5 | | | Frequency stability vs. temperature | Part 2.1055(a)(1)(b) | Pass | | | Frequency stability vs. voltage | Part 2.1055(d)(1)(2) | Pass | | | Peak-Average Ratio | Part 24.232 (d) | Pass | | Remark: The measurement uncertainty is not included in the test result. Report No: TRE1511007601 Page: 4 of 56 Issued: 2015-11-26 # 2. **SUMMARY** # 2.1. Client Information | Applicant: | Sky Phone LLC | |--|--| | Address: 1348 Washington Av. #350, Miami Beach FL. 33139 | | | Manufacturer: | DongGuan Tenexon Communication Technology Co., Ltd. | | Address: | L1 - L3, Block A, Building B, KeYuan 9th Road No. 1, Tangxia Town, Dongguan City ,Guangdong China. | # 2.2. Product Description | Name of EUT | Smart Phone | |---------------------------|--| | Trade Mark: | SKY | | Model No.: | Fuego 5.0D | | Listed Model(s): | W509 | | IMEI1: | 358228054952654 | | IMEI2: | 358228054958748 | | Power supply: | DC 3.8V From internal battery | | Adapter information: | Model:Fuego 5.0D
Input:AC 100-240V 50/60Hz 0.2A
Output: 5Vd.c., 1.0A | | 2G: | | | Support Network: | GSM, GPRS, EGPRS | | Support Band: | GSM850, DCS1900 | | Modulation: | GSM/GPRS: GMSK
EGPRS: GMSK | | Transmit Frequency: | GSM850: 824.20MHz-848.80MHz
PCS1900: 1850.20MHz-1909.80MHz | | Receive Frequency: | GSM850: 869.20MHz-893.80MHz
PCS1900: 1930.20MHz-1989.80MHz | | GPRS Class: | 12 | | EGPRS Class: | 12 | | Antenna type: | Intergal Antenna | | Antenna gain: | GSM850:1.0dBi
PCS1900:1.0dBi | | Hardware version: | FS706-MB-V0.1 | | Software version: | zh988_d10_trx_l402_fwvga_64g8g_R08_20151209_release.tar.gz | | 3G: | | | Operation Band: | FDD Band II and FDD Band V | | Power Class: | Power Class 3 | | Modilation Type: | QPSK for WCDMA/HSUPA/HSDPA | | WCDMA Release Version: | Release 7 | | HSDPA Release Version: | Category 14 | | HSUPA Release Version: | Category 6 | | DC-HSUPA Release Version: | Not Supported | Report No: TRE1511007601 Page: 5 of 56 Issued: 2015-11-26 | Antenna type: | Intergal Antenna | |---------------|-----------------------------| | Antenna gain: | Band II:1.0, Band V: 1.0dBi | Remark: Test model and list model are not different, except model name. #### Test Frequency: | GSM 850 | | PCS1900 | | | |---------|-----------------|---------|-----------------|--| | Channel | Frequency (MHz) | Channel | Frequency (MHz) | | | 128 | 824.20 | 512 | 1850.20 | | | 190 | 836.60 | 661 | 1880.00 | | | 251 | 848.80 | 810 | 1909.80 | | | FDD Band II | | FDD Band V | | | |-------------|-----------------|------------|---------------------------|--| | Channel | Frequency (MHz) | Channel | Frequency (MHz)
826.40 | | | 9262 | 1852.4 | 4132 | 826.40 | | | 9400 | 1880.0 | 4183 | 836.60 | | | 9538 | 1907.6 | 4233 | 846.60 | | # 2.3. EUT operation mode - 1. The EUT has been tested under typical operating condition. The Applicant provides software to control the EUT for staying in continous transmitting and receiving mode for testing. - 2.All the tests are performed at each SIM card mode, the datum recorded is the worst case for all the mode at SIM1 Card mode. ### 2.4. EUT configuration The following peripheral devices and interface cables were connected during the measurement: - supplied by the manufacturer - O supplied by the lab | Length (m): | / | |---------------|---| | Shield: | / | | Detachable : | / | | Manufacturer: | / | | Model No. : | / | #### 2.5. Modifications No modifications were implemented to meet testing criteria. Report No: TRE1511007601 Page: 6 of 56 Issued: 2015-11-26 # 3. TEST ENVIRONMENT ### 3.1. Address of the test laboratory Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089 #### 3.2. Test Facility The test facility is recognized, certified, or accredited by the following organizations: #### CNAS-Lab Code: L1225 Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Labo ratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018. #### A2LA-Lab Cert. No. 3902.01 Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for tec hnical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016. #### FCC-Registration No.: 317478 Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FC C is maintained in our
files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017. #### IC-Registration No.: 5377A&5377B The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016. Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017. #### **ACA** Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Aust ralian C-Tick mark as a result of our A2LA accreditation. #### VCCI The 3m Semi- anechoic chamber (12.2m×7.95m×6.7m) of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2484. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 29, 2015. Radiated disturbance above 1GHz measurement of Shenzhen Huatongwei International Inspection Co., Ltd. h as been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2013. Valid time is until Dec. 23, 2016. Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015. Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016. #### DNV Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of D NV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Di rectives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the D NV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016. Report No: TRE1511007601 Page: 7 of 56 Issued: 2015-11-26 #### 3.3. Environmental conditions During the measurement the environmental conditions were within the listed ranges: | Normal Temperature/Tnor: | 15~35°C | |--------------------------|--------------| | lative Humidity | 30~60 % | | Air Pressure | 950-1050 hPa | #### 3.4. Statement of the measurement uncertainty The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1" and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurementof mobile radio equipment characteristics;Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported: | Test Items | Measurement Uncertainty | Notes | |--|-------------------------|-------| | Frequency stability | 25 Hz | (1) | | Transmitter power conducted | 0.57 dB | (1) | | Transmitter power Radiated | 2.20 dB | (1) | | Conducted spurious emission 9KHz-12.75 GHz | 1.60 dB | (1) | | Conducted Emission 9KHz-30MHz | 3.39 dB | (1) | | Radiated Emission 30~1000MHz | 4.24 dB | (1) | | Radiated Emissio 1~18GHz | 5.16 dB | (1) | | Radiated Emissio 18-40GHz | 5.54 dB | (1) | | Occupied Bandwidth | | (1) | | Emission Mask | | (1) | | Modulation Characteristic | | (1) | | Transmitter Frequency Behavior | | (1) | ⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96. Report No: TRE1511007601 Page: 8 of 56 Issued: 2015-11-26 # 3.5. Equipments Used during the Test | AC Po | AC Power Conducted Emission | | | | | | |-------|-------------------------------|---------------|-------------|------------|-----------|--| | No. | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | | | 1 | Artificial Mains | Rohde&Schwarz | ESH2-Z5 | 100028 | 2015/11/2 | | | 2 | EMI Test Receiver | Rohde&Schwarz | ESCS 30 | 100038 | 2015/11/2 | | | 3 | Pulse Limiter | Rohde&Schwarz | ESHSZ2 | 100044 | 2015/11/2 | | | 4 | EMI Test Software | Rohde&Schwarz | ES-K1 V1.71 | N/A | N/ | | | 5 | UNIVERSAL RADIO COMMUNICATION | Rohde&Schwarz | CMU200 | 112012 | 2015/11/2 | | | Output Power(Conducted) & Occupied Bandwidth & Emission Bandwidth & Band Edge Compliance | | | | | | | | |--|---|---------------|--------|--------|-----------|--|--| | & Cond | lucted Spurious Emission | | | | | | | | No. | No. Equipment Manufacturer Model No. Serial No. Last Cal. | | | | | | | | 1 | UNIVERSAL RADIO COMMUNICATION | Rohde&Schwarz | CMU200 | 112012 | 2015/11/2 | | | | 2 | Spectrum Analyzer | Rohde&Schwarz | FSU26 | 201141 | 2015/11/2 | | | | 3 | Splitter | Mini-Circuit | ZAPD-4 | 400059 | 2015/11/2 | | | | Freque | Frequency Stability | | | | | | | | | |--------|-------------------------------|---------------|-----------|------------|-----------|--|--|--|--| | No. | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | | | | | | 1 | UNIVERSAL RADIO COMMUNICATION | Rohde&Schwarz | CMU200 | 112012 | 2015/11/2 | | | | | | 2 | Spectrum Analyzer | Rohde&Schwarz | FSU26 | 201141 | 2015/11/2 | | | | | | 3 | Climate Chamber | ESPEC | EL-10KA | 05107008 | 2015/11/2 | | | | | | 4 | Splitter | Mini-Circuit | ZAPD-4 | 400059 | 2015/11/2 | | | | | | Outpu | t Power (Radiated) & Radia | ted Spurious Emissio | n | | | |-------|-------------------------------|------------------------------|-----------|-------------|-----------| | No. | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | | 1 | UNIVERSAL RADIO COMMUNICATION | Rohde&Schwarz | CMU200 | 112012 | 2015/11/2 | | 2 | Spectrum Analyzer | Rohde&Schwarz | FSU26 | 201141 | 2015/11/2 | | 3 | HORN ANTENNA | ShwarzBeck | 9120D | 1012 | 2015/11/2 | | 4 | HORN ANTENNA | ShwarzBeck | 9120D | 1011 | 2015/11/2 | | 5 | Ultra-Broadband Antenna | ShwarzBeck | VULB9163 | 538 | 2015/11/2 | | 6 | Ultra-Broadband Antenna | ShwarzBeck | VULB9163 | 539 | 2015/11/2 | | 7 | TURNTABLE | MATURO | TT2.0 | | N/A | | 8 | ANTENNA MAST | MATURO | TAM-4.0-P | | N/A | | 9 | EMI Test Software | Audix | E3 | N/A | N/A | | 10 | EMI Test Receiver | Rohde&Schwarz | ESIB 26 | 100009 | 2015/11/2 | | 11 | RF Test Panel | Rohde&Schwarz | TS / RSP | 335015/0017 | 2015/11/2 | | 12 | High pass filter | Compliance Direction systems | BSU-6 | 34202 | 2015/11/2 | | 13 | Splitter | Mini-Circuit | ZAPD-4 | 400059 | 2015/11/2 | | 14 | Horn Antenna | SCHWARZBECK | BBHA9170 | 25841 | 2015/11/2 | | 15 | Horn Antenna | SCHWARZBECK | BBHA9170 | 25842 | 2015/11/2 | | 16 | Preamplifier | ShwarzBeck | BBV 9718 | BBV 9718 | 2015/11/2 | | 17 | Broadband Preamplifier | ShwarzBeck | BBV743 | 9743-0079 | 2015/11/2 | | 18 | Signal Generator | Rohde&Schwarz | SMF100A | 101932 | 2015/11/2 | | 19 | Amplifer | Compliance Direction systems | PAP1-4060 | 120 | 2015/11/2 | | 20 | TURNTABLE | ETS | 2088 | 2149 | 2015/11/2 | | 21 | ANTENNA MAST | ETS | 2075 | 2346 | 2015/11/2 | | 22 | HORN ANTENNA | Rohde&Schwarz | HF906 | 100068 | 2015/11/2 | | 23 | HORN ANTENNA | Rohde&Schwarz | HF906 | 100039 | 2015/11/2 | The calibration interval was one year. Report No: TRE1511007601 Page: 9 of 56 Issued: 2015-11-26 # 4. TEST CONDITIONS AND RESULTS #### 4.1. Conducted Emissions Test #### LIMIT: | Frequency of Emission (MHz) | Conducted | Limit (dBuV) | |-----------------------------|------------|--------------| | Frequency of Emission (MHZ) | Quasi-peak | Average | | 0.15-0.5 | 66 to 56 * | 56 to 46 * | | 0.5-5 | 56 | 46 | | 5-30 | 60 | 50 | ^{*} Decreasing linearly with the logarithm of the frequency #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2014. - 2 Support equipment, if needed, was placed as per ANSI C63.4-2014. - 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2014. - 4 If a EUT received DC power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane. - 5 All support equipments received AC power from a second LISN, if any. - The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two
scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver. - 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. - 8 During the above scans, the emissions were maximized by cable manipulation. #### **TEST RESULTS** Note: We tested all modes and recorded the worst case at GSM900 Report No: TRE1511007601 Page: 10 of 56 Issued: 2015-11-26 #### **GSM850** Test mode: GSM850 Polarization L #### SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M Voltage ### MEASUREMENT RESULT: "GM1125528 fin" | 1 | 1/25/2015 3: | 48PM | | | | | | | |---|------------------|---------------|--------------|---------------|--------------|----------|------|-----| | | Frequency
MHs | Level
dBµV | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | | | 0.150000 | 50.50 | 10.2 | 66 | 15.5 | QP | Ll | GND | | | 0.190500 | 49.70 | 10.2 | 64 | 14.3 | QP | L1 | GND | | | 0.240000 | 45.70 | 10.2 | 62 | 16.4 | QP | L1 | GND | | | 0.289500 | 41.00 | 10.2 | 61 | 19.5 | QP | L1 | GND | | | 0.388500 | 38.60 | 10.2 | 58 | 19.5 | QP | L1 | GND | | | 0.762000 | 39.60 | 10.2 | 56 | 16.4 | QP | L1 | GND | ## MEASUREMENT RESULT: "GM1125528 fin2" | 11/25/2015 3: | 48PM | | | | | | | |------------------|---------------|--------------|---------------|--------------|----------|------|-----| | Frequency
MHs | Level
dBµV | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | | 0.186000 | 31.90 | 10.2 | 54 | 22.3 | AV | L1 | GND | | 0.190500 | 34.80 | 10.2 | 54 | 19.2 | AV | L1 | GND | | 0.244500 | 28.90 | 10.2 | 52 | 23.0 | AV | L1 | GND | | 0.766500 | 27.20 | 10.2 | 46 | 18.8 | AV | L1 | GND | | 0.775500 | 27.10 | 10.2 | 46 | 18.9 | AV | L1 | GND | | 0.834000 | 26.10 | 10.2 | 46 | 19.9 | ΑV | L1 | GND | Report No: TRE1511007601 Page: 11 of 56 Issued: 2015-11-26 Test mode: GSM850 Polarization Ν SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M Voltage ### MEASUREMENT RESULT: "GM1125529 fin" | 11/25/2015 3: | 5.5PM | | | | | | | |------------------|---------------|--------------|---------------|--------------|----------|------|-----| | Frequency
MHz | Level
dBµV | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | | 0.415500 | 40.10 | 10.2 | 58 | 17.4 | QP | N | GND | | 0.546000 | 37.00 | 10.2 | 56 | 19.0 | QP | N | GND | | 0.640500 | 38.40 | 10.2 | 56 | 17.6 | QP | N | GND | | 0.645000 | 40.60 | 10.2 | 56 | 15.4 | QP | N | GND | | 0.780000 | 43.90 | 10.2 | 56 | 12.1 | QP | N | GND | | 0.829500 | 39.30 | 10.2 | 56 | 16.7 | QP | N | GND | #### MEASUREMENT RESULT: "GM1125529 fin2" | 1 | 1/25/2015 3:
Frequency | | Transd | Limit | Margin | Detector | Line | PE | |---|---------------------------|-------|--------|-------|--------|----------|------|-----| | | MHz | dΒμV | dB | dΒμV | dB | | | | | | 0.190500 | 22.60 | 10.2 | 54 | 31.4 | AV | N | GND | | | 0.550500 | 24.80 | 10.2 | 46 | 21.2 | AV | N | GND | | | 0.640500 | 24.00 | 10.2 | 46 | 22.0 | AV | N | GND | | | 0.775500 | 27.80 | 10.2 | 46 | 18.2 | AV | N | GND | | | 0.834000 | 20.90 | 10.2 | 46 | 25.1 | AV | N | GND | Report No: TRE1511007601 Page: 12 of 56 Issued: 2015-11-26 # 4.2. Conducted Peak Output Power # **TEST CONFIGURATION** Note: Measurement setup for testing on Antenna connector #### **TEST PROCEDURE** - 1. The transmitter output port was connected to base station. - 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement. - 3. Set EUT at maximum power through base station. - 4. Select lowest, middle, and highest channels for each band and different modulation. - 5. Measure the maximum burst average power. #### **TEST RESULTS** | EUT Mode | Channel | Frequency (MHz) | Power (dBm) | |---------------------------|---------|-----------------|-------------| | | 128 | 824.20 | 32.87 | | GSM 850
(GMSK) | 190 | 836.60 | 32.98 | | (Simort) | 251 | 848.80 | 33.08 | | 2222 | 128 | 824.20 | 32.85 | | GPRS850
(GMSK,1Slot) | 190 | 836.60 | 33.01 | | (Giviert, Foliot) | 251 | 848.80 | 33.10 | | E000000 | 128 | 824.20 | 32.90 | | EGPRS850
(GMSK,1Slot) | 190 | 836.60 | 32.98 | | (OWOIX, TOIOI) | 251 | 848.80 | 33.09 | | | 512 | 1850.20 | 30.09 | | PCS1900
(GMSK) | 661 | 1880.00 | 30.04 | | (Simorty | 810 | 1909.80 | 30.01 | | | 512 | 1850.20 | 30.10 | | GPRS1900
(GMSK,1Slot) | 661 | 1880.00 | 30.06 | | (Civiorx, rolot) | 810 | 1909.80 | 29.98 | | E00004000 | 512 | 1850.20 | 30.08 | | EGPRS1900
(GMSK,1Slot) | 661 | 1880.00 | 30.03 | | (OWOIX, TOIOL) | 810 | 1909.80 | 29.98 | | | 9262 | 1852.40 | 20.90 | | WCDMA Band II | 9400 | 1880.00 | 20.97 | | | 9538 | 1907.60 | 20.95 | | | 4132 | 826.40 | 22.40 | | WCDMA Band V | 4183 | 836.60 | 22.37 | | | 4233 | 846.60 | 22.30 | Report No: TRE1511007601 Page: 13 of 56 Issued: 2015-11-26 # 4.3. Occupy Bandwidth #### **TEST CONFIGURATION** Note: Measurement setup for testing on Antenna connector # **TEST PROCEDURE** - 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer - 2. RBW was set to about 1% of emission BW, VBW= 3 times RBW. - 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace. #### **TEST RESULTS** | EUT Mode | Channel | Frequency (MHz) 99% Occupy bandwidth (KHz) | | -26dB bandwidth
(KHz) | |---------------------------|---------|--|---------|--------------------------| | | 128 | 824.20 | 247.33 | 318.19 | | GSM 850
(GMSK) | 190 | 836.60 | 249.11 | 320.95 | | (Gillert) | 251 | 848.80 | 246.00 | 319.84 | | | 128 | 824.20 | 247.33 | 310.72 | | GPRS850
(GMSK,1Slot) | 190 | 836.60 | 247.99 | 322.60 | | (Gillert, Felety | 251 | 848.80 | 249.11 | 309.49 | | E000000 | 128 | 824.20 | 251.24 | 319.76 | | EGPRS850
(GMSK,1Slot) | 190 | 836.60 | 248.80 | 319.34 | | (OWOR, FOICE) | 251 | 848.80 | 248.54 | 317.86 | | | 512 | 1850.20 | 250.52 | 328.91 | | PCS1900
(GMSK) | 661 | 1880.00 | 241.42 | 321.47 | | (Gillion) | 810 | 1909.80 | 243.57 | 323.53 | | | 512 | 1850.20 | 246.69 | 320.98 | | GPRS1900
(GMSK,1Slot) | 661 | 1880.00 | 241.07 | 319.66 | | (Ginera, relety | 810 | 1909.80 | 243.14 | 318.03 | | | 512 | 1850.20 | 247.81 | 316.65 | | EGPRS1900
(GMSK,1Slot) | 661 | 1880.00 | 244.43 | 322.13 | | (Giviert, relet) | 810 | 1909.80 | 241.71 | 316.85 | | | 9262 | 1852.4 | 4149.60 | 4695.00 | | WCDMA Band II | 9400 | 1880.0 | 4145.60 | 4707.00 | | | 9538 | 1907.6 | 4158.60 | 4717.00 | | | 4132 | 826.4 | 4149.70 | 4700.00 | | WCDMA Band V | 4183 | 836.6 | 4174.90 | 4698.00 | | | 4233 | 846.6 | 4123.50 | 4691.00 | Report No: TRE1511007601 Page: 14 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 15 of 56 Issued: 2015-11-26 99% Occupy bandwidth&-26dB bandwidth 99% Occupy bandwidth&-26dB bandwidth Agilent R T Freq/Channel 848 8 MHz #Atten 20 dB Ref 36 dBm Log 10 dB/ CF Step 100.0000000 kHz Man Offst 27 dB <u>Auto</u> Freq Offset 0.00000000 Hz Span 1 MHz Center 848.8 MHz #VRW 30 kHz #Res BW 10 kHz Sweep 10.36 ms (401 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % x dB -26.00 dB 249.1084 kHz Scale Type Lin Transmit Freq Error -1.019 kHz x dB Bandwidth 309 485 kHz Channel 251 EGPRS850 For GMSK Moudlation 99% Occupy bandwidth&-26dB bandwidth 99% Occupy bandwidth&-26dB bandwidth R T Freq/Channel R T Freq/Channel . Agilent Ch Freq 824.2 MHz Center Freq 836.600000 MHz Center Freq 824.200000 MHz ccupied Bandwidth ccupied Bandwidth Start Freq 836.100000 MHz Start Freq 823.700000 MHz Ref 36 dBm #Peak Ref 36 dBm #Atten 20 dB Stop Freq 837.100000 MHz #Peak Stop Freq 824.700000 MHz Log dB/ CF Step Offst 27 dB dB/ 100.000000 kHz Auto Man CF Step Offst 100.0000000 kHz Auto <u>Man</u> <u>Auto</u> Freq Offset 0.00000000 Hz dB Center 836.6 MHz #Res BW 10 kHz Span 1 MHz Sweep 10.36 ms (401 pts) Freq Offset 0.00000000 Hz #VBW 30 kHz Center 824.2 MHz Span 1 MHz Signal Track #VBW 30 kHz Occupied Bandwidth Sween 10.36 ms (401 nts) 99.00 % #Res BW 10 kHz Occ BW % Pwr x dB -26.00 dB Signal Track 248.7994 kHz Occupied Bandwidth Occ BW % Pwr 99.00 % Scale Type -26.00 dB Transmit Freq Error -2.892 kHz 319.344 kHz x dB 251.2419 kHz x dB Bandwidth Scale Type Lin -1.259 kHz Transmit Freg Error x dB Bandwidth Log Channel 128 Channel 190 Agilent R T Freq/Channel Center Freq 848.800000 MHz ccupied Bandwidth Start Freq 848.300000 MHz Report No: TRE1511007601 Page: 16 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 17 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 18 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 19 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 20 of 56 Issued: 2015-11-26 #### 4.4. Out of band emission at antenna terminals #### LIMIT Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. - 2. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th
harmonic. - 3. For the out of band: Set the RBW= 1MHz, VBW = 3MHz, Start=30MHz, Stop= 10th harmonic. #### **TEST RESULTS** Report No: TRE1511007601 Page: 21 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 22 of 56 Issued: 2015-11-26 7.5GHz~10GHz 2.5GHz~7.5GHz Report No: TRE1511007601 Page: 23 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 24 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 25 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 26 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 27 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 28 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 29 of 56 Issued: 2015-11-26 M1 S2 S3 FC AA Start 1 GHz #Res BW 1 MHz #VBW 3 MHz 1GHz~2.5GHz Freq Offset 0.00000000 Hz Signal Track Scale Type On Log Stop 2.5 GHz Sweep 4 ms Freq Offset 0.00000000 Hz Signal Track Scale Type Lin On Log Stop 1 GHz Sweep 4 ms M1 S2 S3 FC Start 30 MHz #Res BW 1 MHz #VBW 3 MHz 30MHz~1GHz Report No: TRE1511007601 Page: 30 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 31 of 56 Issued: 2015-11-26 # 4.5. Band Edge compliance #### <u>LIMIT</u> Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. - 2. For the bandedge: 2G:Set the RBW=10KHz, VBW = 30KHz, Sweep time= Auto 3G: Set the RBW=100KHz, VBW = 300KHz, Sweep time= Auto #### **TEST RESULTS** | Report No: | TRE1511007601 | 1 Page: | 32 of 56 | Issued: 2015 | -11-26 | |---------------|-----------------|---------------------------|------------------------|-----------------|-----------| | | | GSN | Л 850 | | | | Channel | Frequency | Measuremei | nt Results | Limit | Manaliat | | Number | (MHz) | Frequency (MHz) | Values (dBm) | (dBm) | Verdict | | 128 | 824.20 | 824.00 | -21.04 | -13.00 | Pass | | 251 | 848.80 | 849.00 | -21.97 | -13.00 | Pass | | | | CDD | S850 | | | | Channal | | Measuremei | | Limeit | I | | Channel | Frequency | | | Limit | Verdict | | Number
128 | (MHz)
824.20 | Frequency (MHz)
823.99 | Values (dBm)
-21.37 | (dBm)
-13.00 | Pass | | | | | | | | | 251 | 848.80 | 849.00 | -19.38 | -13.00 | Pass | | | | EGPF | RS850 | | | | Channel | Frequency | Measuremei | nt Results | Limit | Manuff at | | Number | (MHz) | Frequency (MHz) | Values (dBm) | (dBm) | Verdict | | 128 | 824.20 | 823.99 | -21.99 | -13.00 | Pass | | 251 | 848.80 | 849.01 | -20.67 | -13.00 | Pass | | | | | | | | | | | PCS | 1900 | | | | Channel | Frequency | Measuremei | nt Results | Limit | Verdict | | Number | (MHz) | Frequency (MHz) | Values (dBm) | (dBm) | verdict | | 512 | 1850.20 | 1850.00 | -18.62 | -13.00 | Pass | | 810 | 1909.80 | 1910.00 | -19.8 | -13.00 | Pass | | | | CDDS | S1900 | | | | Channel | Frequency | Measuremei | | Limit | | | Number | (MHz) | Frequency (MHz) | Values (dBm) | (dBm) | Verdict | | 512 | 1850.20 | 1850.00 | -18.76 | -13.00 | Pass | | 810 | 1909.80 | 1910.00 | -21.72 | -13.00 | Pass | | 010 | 1303.00 | 1010.00 | 21.72 | 10.00 | 1 433 | | | | EGPR | S1900 | | | | Channel | Frequency | Measuremei | nt Results | Limit | Verdict | | Number | (MHz) | Frequency (MHz) | Values (dBm) | (dBm) | verdict | | 512 | 1850.20 | 1850.00 | -18.48 | -13.00 | Pass | | 810 | 1909.80 | 1910.00 | -20.57 | -13.00 | Pass | | | | | | _ | - | | | | | A Band II | | 1 | | Channel | Frequency | Measureme | | Limit | Verdict | | Number | (MHz) | Frequency (MHz) | Values (dRm) | (dRm) | I VOIGIOU | | | | WCDMA | A Band II | | | |---------|-----------|-----------------|--------------|--------|---------| | Channel | Frequency | Measureme | | Limit | Verdict | | Number | (MHz) | Frequency (MHz) | Values (dBm) | (dBm) | | | 9262 | 1852.4 | 1850.00 | -26.33 | -13.00 | Pass | | 9538 | 1907.6 | 1910.69 | -24.22 | -13.00 | Pass | | | WCDMA Band V | | | | | | | | |---------|--------------|-----------------|--------------|--------|---------|--|--|--| | Channel | Frequency | Measureme | nt Results | Limit | Verdict | | | | | Number | (MHz) | Frequency (MHz) | Values (dBm) | (dBm) | verdict | | | | | 4132 | 826.4 | 824.00 | -22.97 | -13.00 | Pass | | | | | 4233 | 846.6 | 849.09 | -21.35 | -13.00 | Pass | | | | Report No: TRE1511007601 Page: 33 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 34 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 35 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 36 of 56 Issued: 2015-11-26 # 4.6. Radiated Power Measurement #### LIMIT GSM850/WCDMA Band V: 7W ERP PCS1900/WCDMA Band II: 2W EIRP #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver. - 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (Pr). - 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the Report No: TRE1511007601 Page: 37 of 56 Issued: 2015-11-26 frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. - 6. The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga - 7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi. #### **TEST RESULTS** GSM: | Mode | Channel | Antenna Pol. | ERP | Limit (dBm) | Result | |----------|---------|--------------|-------|-------------|--------| | | 400 | V | 29.63 | | | | | 128 | Н | 27.92 | | | | GSM850 | 190 | V | 29.69 | 38.45 | Pass | | GSIVIOSU | 190 | Н | 27.85 | 30.45 | Fass | | | 251 | V | 29.84 | | | | | 231 | Н | 27.63 | | | | | 128 | V | 29.92 | | Pass | | | 120 | Н | 27.68 | 38.45 | | | GPRS850 | 190 | V | 29.73 | | | | | | Н | 27.86 | | | | | 251 | V | 27.52 | | | | | 231 | Н | 29.46 | | | | | 128 | V | 29.76 | | | | | 120 | Н | 27.52 | | | | EGPRS850 | 100 | V | 29.64 | 38.45 | Page | | | 190 | Н | 27.86 | 30.43 | Pass | | | 251 | V | 29.94 | | | | | 201 | Н | 27.25 | 1 | | Report No: TRE1511007601 Page: 38 of 56 Issued: 2015-11-26 | Mode | Channel | Antenna Pol. | EIRP | Limit (dBm) | Result | |------------|---------|--------------|-------|-------------|--------| | | 512 | V | 27.58 | | | | | 512 | Н | 25.47 | | | | PCS1900 | 661 | V | 27.96 | 33.01 | Pass | | F C S 1900 | 001 | Н | 25.86 | 33.01 | r ass | | | 810 | V | 27.94 | | | | | 010 | Н | 25.64 | | | | | 512 | V | 27.89 | | Pass | | | 012 | Н | 27.54 | 33.01 | | | GPRS1900 | 661 | V | 27.43 | | | | | | Н | 25.64 | | r ass | | | 810 | V | 27.58 | | | | | 010 | Н | 26.43 | | | | | 512 | V | 27.52 | | | | | 012 | Н | 25.36 | | | | EGPRS 1900 | 661 | V | 27.64 | 33.01 | Pass | | 201101300 | 001 | Н | 25.86 | | 1 433 | | | 810 | V | 27.38 | | | | | 010 | Н | 25.09 | | | ## WCDMA: | Mode | Channel | Antenna Pol. | EIRP | Limit (dBm) | Result | |------------------|-----------------------|--------------|-------|-------------|--------| | | 9262 | V | 18.54 | | Pass | | | | Н | 16.37 | | | | WCDMA Band II | 9400 V
H
9538 V | V | 18.76 | 33.01 | | | WCDIVIA Bariu II | | Н | 16.59 | | | | | | V | 18.76 | | | | | | Н | 16.43 | | | | Mode | Channel | Antenna Pol. | ERP | Limit (dBm) | Result |
------------------|---------------------|--------------|-------|-------------|--------| | | 4132 | V | 19.52 | | | | | | Н | 17.46 | | | | WCDMA Band V | V 4183 V H V 4233 H | V | 19.84 | 38.45 | Pass | | VVCDIVIA Bariu V | | Н | 17.38 | | F 455 | | | | V | 19.69 | | | | | | Н | 17.32 |] | | Report No: TRE1511007601 Page: 39 of 56 Issued: 2015-11-26 ### 4.7. Radiated Spurious Emssion #### **LIMIT** -13dBm #### **TEST CONFIGURATION** - 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver. - The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (Pr). Report No: TRE1511007601 Page: 40 of 56 Issued: 2015-11-26 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. - 6. The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga - This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi. Report No: TRE1511007601 Page: 41 of 56 Issued: 2015-11-26 | | | GS | M850 | | | |-----------|-----------|--------------|-------------|-------------|--------| | Ob a made | Frequency | Spurious | Emission | Limit (dDm) | Danult | | Channel | (MHz) | Polarization | Level (dBm) | Limit (dBm) | Result | | | 1648.40 | Vertical | -36.58 | | | | | 2472.60 | V | -43.61 | | | | | 3296.80 | V | -42.38 | -13.00 | Pass | | | 4121.00 | V | -51.67 | | | | 128 | 4945.20 | V | | | | | 120 | 1648.40 | Horizontal | -34.34 | | | | | 2472.60 | Н | -45.15 | | | | | 3296.80 | Н | -41.99 | -13.00 | Pass | | | 4121.00 | Н | -52.45 | | | | | 4945.20 | Н | | | | | | 1673.20 | Vertical | -36.74 | | | | | 2509.80 | V | -42.95 | | | | | 3346.40 | V | -42.63 | -13.00 | Pass | | | 4183.00 | V | -51.37 | | | | 190 | 5019.60 | V | | | | | 190 | 1673.20 | Horizontal | -35.28 | | Pass | | | 2509.80 | Н | -45.36 | | | | | 3346.40 | Н | -41.74 | -13.00 | | | | 4183.00 | Н | -52.08 | | | | | 5019.60 | Н | | | | | | 1697.60 | Vertical | -35.93 | | | | | 2546.40 | V | -43.42 | | | | | 3395.20 | V | -42.35 | -13.00 | Pass | | | 4244.00 | V | -51.36 | | | | 251 | 5092.80 | V | | | | | ۱۵۷ | 1697.60 | Horizontal | -34.37 | | | | | 2546.40 | Н | -45.85 | | | | | 3395.20 | Н | -41.29 | -13.00 | Pass | | | 4244.00 | Н | -52.76 | | | | | 5092.80 | Н | | | | - The emission behaviour belongs to narrowband spurious emission. - 2. - Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report. Report No: TRE1511007601 Page: 42 of 56 2015-11-26 Issued: | PCS1900 | | | | | | | | | |---------|-----------|--------------|-------------|-------------|--------|--|--|--| | 01 1 | Frequency | Spurious | Emission | L':'(/JD) | D 11 | | | | | Channel | (MHz) | Polarization | Level (dBm) | Limit (dBm) | Result | | | | | | 3700.40 | Vertical | -45.25 | | | | | | | | 5550.60 | V | -43.64 | | | | | | | | 7400.80 | V | -36.87 | -13.00 | Pass | | | | | | 9251.00 | V | -47.95 | | | | | | | 512 | 11101.20 | V | | | | | | | | 312 | 3700.40 | Horizontal | -47.52 | | | | | | | | 5550.60 | Η | -45.84 | | | | | | | | 7400.80 | Η | -37.63 | -13.00 | Pass | | | | | | 9251.00 | Η | -49.38 | | | | | | | | 11101.20 | Η | | | | | | | | | 3760.00 | Vertical | -44.36 | -13.00 | | | | | | | 5640.00 | V | -43.85 | | | | | | | | 7520.00 | V | -35.74 | | Pass | | | | | | 9400.00 | V | -46.87 | | | | | | | 661 | 11280.00 | V | | | | | | | | 001 | 3760.00 | Horizontal | -46.75 | | | | | | | | 5640.00 | Η | -45.93 | | | | | | | | 7520.00 | Н | -38.32 | -13.00 | Pass | | | | | | 9400.00 | Н | -49.37 | | | | | | | | 11280.00 | Η | | | | | | | | | 3819.60 | Vertical | -45.63 | | | | | | | | 5729.40 | V | -44.08 | | | | | | | | 7639.20 | V | -36.87 | -13.00 | Pass | | | | | | 9549.00 | V | -47.3 | | | | | | | 810 | 11458.80 | V | | | | | | | | 010 | 3819.60 | Horizontal | -48.32 | | | | | | | | 5729.40 | Н | -44.52 | | | | | | | | 7639.20 | Н | -38.06 | -13.00 | Pass | | | | | | 9549.00 | Н | -49.63 | | | | | | | | 11458.80 | Н | | | | | | | - The emission behaviour belongs to narrowband spurious emission. Remark"----" means that the emission level is too low to be measured - 1. 2. 3. The emission levels of below 1 GHz are very lower than the limit and not show in test report. Report No: TRE1511007601 Page: 43 of 56 Issued: 2015-11-26 | | | WCDM | A Band II | | | |---------|-----------|--------------|-------------|-------------|--------| | Channel | Frequency | Spurious | Emission | Limit (dPm) | Result | | Channel | (MHz) | Polarization | Level (dBm) | Limit (dBm) | Result | | 3704.80 | 3704.80 | Vertical | -43.22 | | | | | 5557.20 | V | -46.74 | -13.00 | _ | | | 7409.60 | V | -49.85 | -13.00 | Pass | | 9262 | 9262.00 | V | | | | | 9202 | 3704.80 | Horizontal | -42.58 | | | | | 5557.20 | Н | -49.57 | -13.00 | Pass | | | 7409.60 | Н | -50.68 | -13.00 | | | | 9262.00 | Н | | | | | | 3760.00 | Vertical | -43.76 | | Pass | | | 5640.00 | V | -46.98 | -13.00 | | | | 7520.00 | V | -49.57 | -13.00 | | | 9400 | 9400.00 | V | | | | | 9400 | 3760.00 | Horizontal | -42.36 | | Pass | | | 5640.00 | Н | -48.07 | 42.00 | | | | 7520.00 | Н | -50.44 | -13.00 | | | | 9400.00 | Н | | | | | | 3815.20 | Vertical | -42.74 | | | | | 5722.80 | V | -45.35 | 42.00 | Daga | | | 7630.40 | V | -49.68 | -13.00 | Pass | | 9538 | 9538.00 | V | | | | | 9000 | 3815.20 | Horizontal | -42.98 | | | | | 5722.80 | Н | -49.06 | 12.00 | Door | | | 7630.40 | Н | -49.37 | -13.00 | Pass | | | 9538.00 | Н | | | | - The emission behaviour belongs to narrowband spurious emission. - 4. 5. - Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report. Report No: TRE1511007601 Page: 44 of 56 2015-11-26 Issued: | | | WCDM | A Band V | | | |---------|-----------|--------------|-------------|-------------|--------| | Channal | Frequency | Spurious | Emission | Limit (dDm) | Dogult | | Channel | (MHz) | Polarization | Level (dBm) | Limit (dBm) | Result | | | 1652.80 | Vertical | -50.46 | | | | | 2479.20 | V | -41.32 | 42.00 | Dese | | | 3305.60 | V | -46.94 | -13.00 | Pass | | 4132 | 4132.00 | V | | | | | 4132 | 1652.80 | Horizontal | -47.33 | | | | | 2479.20 | Н | -42.33 | 12.00 | Pass | | | 3305.60 | Н | -46.86 | -13.00 | Fass | | | 4132.00 | Н | | | | | | 1673.20 | Vertical | -50.94 | -13.00 | Pass | | | 2509.80 | V | -41.08 | | | | | 3346.40 | V | -45.75 | | | | 4183 | 4183.00 | V | | | | | 4103 | 1673.20 | Horizontal | -47.46 | | Davis | | | 2509.80 | Н | -42.57 | -13.00 | | | | 3346.40 | Н | -45.94 | -13.00 | Pass | | | 4183.00 | Н | | | | | | 1693.20 | Vertical | -49.35 | | | | | 2539.80 | V | -41.37 | 12.00 | Door | | | 3386.40 | V | -46.06 | -13.00 | Pass | | 4233 | 4233.00 | V | | | | | 4233 | 1693.20 | Horizontal | -47.78 | | | | | 2539.80 | Н | -42.39 | -13.00 | Pass | | | 3386.40 | Н | -46.65 | -13.00 | Fa55 | | F | 4233.00 | Н | | | | - 4. The emission behaviour belongs to narrowband spurious emission. - 5. 6. - Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report. Report No: TRE1511007601 Page: 45 of 56 Issued: 2015-11-26 ## 4.8. Frequency stability V.S. Temperature measurement #### **LIMIT** 2.5ppm ## **TEST CONFIGURATION** Note: Measurement setup for testing on Antenna connector #### **TEST PROCEDURE** - 1. The equipment under test was connected to an external DC power supply and input rated voltage. - 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. - 3. The EUT was placed inside the temperature chamber. - 4. Set the spectrum
analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25℃ operating frequency as reference frequency. - 5. Turn EUT off and set the chamber temperature to −30 °C. After the temperature stabilized for approximately 30 minutes recorded the frequency. - 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached. | Reference Frequency: GSM850 Middle channel=190 channel=836.6MHz | | | | | | | | | |---|----------------------|------------------|-----------------|-------------|--------|--|--|--| | Power supplied | Temperature (℃) | Frequer | cy error | Limit (ppm) | Result | | | | | (Vdc) | remperature (C) | Hz | ppm | Еши (ррш) | Nesuit | | | | | | -30 | 27 | 0.032 | | | | | | | | -20 | 16 | 0.019 | | | | | | | | -10 | 30 | 0.036 | | | | | | | | 0 | 12 | 0.014 | | | | | | | 3.80 | 10 | 26 | 0.031 | 2.5 | Pass | | | | | | 20 | 14 | 0.017 | | | | | | | | 30 | 30 | 0.036 | | | | | | | | 40 | 31 | 0.037 | | | | | | | | 50 | 22 | 0.026 | | | | | | | Refe | erence Frequency: Po | CS1900 Middle ch | annel=661 chann | el=1880MHz | | | | | | Power supplied | Tomporeture (°C) | Frequency error | | Limit (nnm) | Result | | | | | (Vdc) | Temperature (°C) | Hz | ppm | Limit (ppm) | Result | | | | | | -30 | 19 | 0.010 | | | | | | | | -20 | 22 | 0.012 | | | | | | | | -10 | 28 | 0.015 | | | | | | | | 0 | 32 | 0.017 | | | | | | | 3.80 | 10 | 30 | 0.016 | 2.5 | Pass | | | | | | 20 | 25 | 0.013 | | | | | | | | 30 | 37 | 0.020 | | | | | | | | 40 | 26 | 0.014 | | | | | | | | 50 | 18 | 0.010 | | | | | | Report No: TRE1511007601 Page: 46 of 56 Issued: 2015-11-26 | Referen | nce Frequency: WCDN | MA Band II Middle | channel=9400 ch | nannel=1880MH | <u>z</u> | |----------------|---------------------|-------------------|-----------------|----------------|----------| | Power supplied | Temperature (°C) | Frequency error | | Limit (ppm) | Result | | (Vdc) | remperature (C) | Hz | ppm | Limit (ppm) | Result | | | -30 | 26 | 0.014 | | | | | -20 | 19 | 0.010 | | | | | -10 | 32 | 0.017 | | | | | 0 | 14 | 0.007 | | | | 3.80 | 10 | 25 | 0.013 | 2.5 | Pass | | | 20 | 19 | 0.010 | | | | | 30 | 28 | 0.015 | | | | | 40 | 32 | 0.017 | | | | | 50 | 17 | 0.009 | - | | | Referer | ce Frequency: WCDM | AA Band V Middle | channel=4183 ch | nannel=836.6MH | Z | | Power supplied | Temperature (°C) | Frequer | cy error | Limit (nnm) | Result | | (Vdc) | remperature (C) | Hz | ppm | Limit (ppm) | Resuit | | | -30 | 18 | 0.022 | | | | | -20 | 26 | 0.031 | | | | | -10 | 18 | 0.022 | | | | | 0 | 33 | 0.039 | | | | 3.80 | 10 | 32 | 0.038 | 2.5 | Pass | | | 20 | 17 | 0.020 | | | | | 30 | 21 | 0.025 |] | | | | 40 | 27 | 0.032 |] | | | | 50 | 22 | 0.026 | 1 | | Report No: TRE1511007601 Page: 47 of 56 Issued: 2015-11-26 ## 4.9. Frequency stability V.S. Voltage measurement #### **LIMIT** 2.5ppm ## **TEST CONFIGURATION** Note: Measurement setup for testing on Antenna connector ## **TEST PROCEDURE** - 1. Set chamber temperature to 25° C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. - 2. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. - 3. Reduce the input voltage to specified extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change. | Reference Frequency: GSM850 (GSM link) Middle channel=190 channel=836.6MHz | | | | | | | | |--|--------------------|-------------------|-----------------|----------------|--------|--|--| | Temperature (°C) | Power supplied | Frequer | ncy error | Limit (ppm) | Result | | | | Temperature (C) | (Vdc) | Hz | ppm | Еши (ррш) | Nesuit | | | | | 4.30 | 26 | 0.031 | | | | | | 25 | 3.80 | 15 | 0.018 | 2.5 | Pass | | | | | 3.60 | 24 | 0.029 | | | | | | Reference | Frequency: PCS190 | 00 (GSM link) Mid | dle channel=661 | channel=1880Ml | Hz | | | | Temperature (°C) | Power supplied | Frequer | ncy error | Limit (ppm) | Result | | | | remperature (c) | (Vdc) | Hz | ppm | Еппи (ррпп) | Resuit | | | | | 4.30 | 13 | 0.007 | | | | | | 25 | 3.80 | 26 | 0.014 | 2.5 | Pass | | | | | 3.60 | 29 | 0.015 | | | | | | Referen | ce Frequency: WCDN | MA Band II Middle | channel=9400 ch | nannel=1880MHz | Z | | | | Temperature (°C) | Power supplied | Frequer | ncy error | Limit (ppm) | Result | | | | remperature (C) | (Vdc) | Hz | ppm | Limit (ppin) | Nesuit | | | | | 4.30 | 21 | 0.011 | | | | | | 25 | 3.80 | 29 | 0.015 | 2.5 | Pass | | | | | 3.60 | 28 | 0.015 | | | | | | Reference | e Frequency: WCDM | MA Band V Middle | channel=4183 ch | nannel=836.6MH | z | | | | Temperature (°C) | Power supplied | Frequer | ncy error | Limit (ppm) | Result | | | | Temperature (C) | (Vdc) | Hz | ppm | Lillit (ppill) | Nesuit | | | | | 4.30 | 17 | 0.020 | | | | | | 25 | 3.80 | 16 | 0.019 | 2.5 | Pass | | | | | 3.60 | 1 | 0.030 | 1 | | | | Report No: TRE1511007601 Page: 48 of 56 Issued: 2015-11-26 ## 4.10. Peak-Average Ratio #### **LIMIT** 13dB #### **TEST CONFIGURATION** #### **TEST PROCEDURE** According with KDB 971168 - 1. The signal analyzer's CCDF measurement profile is enabled - 2. Frequency = carrier center frequency - 3. Measurement BW > Emission bandwidth of signal - 4. The signal analyzer was set to collect one million samples to generate the CCDF curve - 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals(>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power | Band | Channel | Frequency(MHz) | PAR | Limit(dB) | Result | |---------|---------|----------------|------|-----------|--------| | | 128 | 824.2 | 0.13 | 13 | Pass | | GSM850 | 190 | 836.6 | 0.11 | 13 | Pass | | | 251 | 848.8 | 0.14 | 13 | Pass | | | 512 | 1850.2 | 0.09 | 13 | Pass | | PCS1900 | 661 | 1880.0 | 0.12 | 13 | Pass | | | 810 | 1909.8 | 0.15 | 13 | Pass | | Band | Channel | Frequency(MHz) | PAR | Limit(dB) | Result | |-----------------|---------|----------------|------|-----------|--------| | WCDMA BAND
V | 4132 | 826.4 | 2.15 | 13 | Pass | | | 4183 | 836.6 | 2.03 | 13 | Pass | | | 4233 | 846.6 | 2.11 | 13 | Pass | | WCDMA BAND | 9262 | 1852.4 | 2.21 | 13 | Pass | | | 9400 | 1880.0 | 2.16 | 13 | Pass | | | 9538 | 1907.6 | 2.19 | 13 | Pass | Report No: TRE1511007601 Page: 49 of 56 Issued: 2015-11-26 # 5. Test Setup Photos of the EUT Radiated emission: Report No: TRE1511007601 Page: 50 of 56 Issued: 2015-11-26 ## Conducted emission: Report No: TRE1511007601 Page: 51 of 56 Issued: 2015-11-26 ## 6. External and Internal Photos of the EUT ## **External photos of the EUT** Report No: TRE1511007601 Page: 52 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 53 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 54 of 56 Issued: 2015-11-26 ## Internal photos of the EUT Report No: TRE1511007601 Page: 55 of 56 Issued: 2015-11-26 Report No: TRE1511007601 Page: 56 of 56 Issued: 2015-11-26End of Report.....