

SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

For MOBILE PERSONAL EMERGENCY RESPONSE SYSTEM PHONE

> FCC ID: 2AGPI-ANH1115 Model Name: ANH1115

Report Number: 15U21636-S1V3 Issue Date: 2/1/2016

Prepared for ANELTO 6270 MORNINGSTAR DR SUITE 100 THE COLONY, TX 75056 USA

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Date	Revisions	Revised By
V1	12/22/2015	Initial Issue	
V2	1/27/2016	 Sec 6.2: Add data mode. Removed extremity mode and add Body worn. Updated Appendixes B, C, E and F to V2 	Devin Chang
V3	2/1/2016	Updated Appendixes A	Devin Chang

Page 2 of 22

Table of Contents

1.	Attestation of Test Results4
2.	Test Specification, Methods and Procedures5
3.	Facilities and Accreditation5
4.	SAR Measurement System & Test Equipment6
4.1.	SAR Measurement System6
4.2.	SAR Scan Procedures7
4.3.	Test Equipment9
5.	Measurement Uncertainty10
6.	Device Under Test (DUT) Information11
6.1.	DUT Description
6.2.	Wireless Technologies
6.3.	Nominal and Maximum Output Power from Tune-up Procedure
7.	RF Exposure Conditions (Test Configurations)11
8.	Dielectric Property Measurements & System Check12
8.1.	Dielectric Property Measurements12
8.2.	System Check14
9.	Conducted Output Power Measurements15
9.1.	W-CDMA
10.	Measured and Reported (Scaled) SAR Results19
10.	1. W-CDMA Band II
10.2	2. W-CDMA Band V
11.	SAR Measurement Variability20
12.	Simultaneous Transmission SAR Analysis21
Appe	ndixes22
15L	I21636-S1V2 SAR_App A Photos & Ant. Locations22
15L	I21636-S1V2 SAR_App B System Check Plots22
15L	I21636-S1V2 SAR_App C Highest Test Plots22
15L	I21636-S1V1 SAR_App D Tissue Ingredients22
15L	I21636-S1V2 SAR_App E Probe Cal. Certificates22
15L	I21636-S1V2 SAR_App F Dipole Cal. Certificates22

Page 3 of 22

1. Attestation of Test Results

Applicant Name	ANELTO		
FCC ID	2AGPI-ANH1115		
Model Name	ANH1115		
Applicable Standards FCC 47 CFR § 2.1093			
	Published RF exposure KDB procedures		
	IEEE Std 1528-2013		
SAR Limits (W/Kg)			
Exposure Category	Peak spatial-average(1g of tissue)		
General population /	1.6		
Uncontrolled exposure			
The Highest Reported SAR (W/kg)		
DE Experiero Conditiono	Equipment Class		
RF Exposure Conditions	Licensed		
Body-worn	1.185		
Next to Mouth	0.429		
Date Tested	9/23/2015 to 9/28/2015 and		
	1/26/2016 to 1/27/2016		
Test Results	Pass		

above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released By:	Prepared By:
JanCarg	Florio Fr
Devin Chang	Florencio Pesigan
Senior Engineer	Laboratory Technician
UL Verification Services Inc.	UL Verification Services Inc.

2. Test Specification, Methods and Procedures

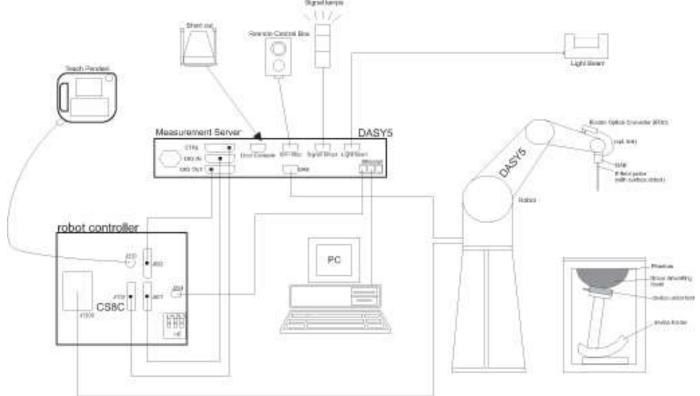
The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- o 447498 D01 General RF Exposure Guidance v06
- o 447498 D03 Supplement C Cross-Reference v01
- o 648474 D04 Handset SAR v01r03
- 690783 D01 SAR Listings on Grants v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02
- 941225 D01 3G SAR Procedures v03r01

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	SAR Lab 5
SAR Lab F	
SAR Lab G	
SAR Lab H	


UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

Page 5 of 22

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 6 of 22

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \ \mathrm{mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ\pm1^\circ$	$20^\circ\pm1^\circ$	
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz} : \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz} : \leq 10 \ \mathrm{mm} \end{array}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

			\leq 3 GHz	> 3 GHz
Maximum zoom scan s	spatial reso	olution: $\Delta x_{Zoom}, \Delta y_{Zoom}$	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm [*]	$3 - 4$ GHz: ≤ 5 mm [*] $4 - 6$ GHz: ≤ 4 mm [*]
	uniform	grid: Δz _{Zoom} (n)	\leq 5 mm	$\begin{array}{c} 3-4 \ \mathrm{GHz:} \leq 4 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$
Maximum zoom scan spatial resolution, normal to phantom surface	$\begin{array}{ c c c c c } graded \\ grid \\ \hline & \Delta z_{Zoom}(1): \ between \\ 1^{st} \ two \ points \ closest \\ to \ phantom \ surface \\ \hline & \Delta z_{Zoom}(n \geq 1): \\ between \ subsequent \\ points \\ \hline \end{array}$	1 st two points closest	\leq 4 mm	$3-4$ GHz: ≤ 3 mm $4-5$ GHz: ≤ 2.5 mm $5-6$ GHz: ≤ 2 mm
		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z		\geq 30 mm	$3-4$ GHz: ≥ 28 mm $4-5$ GHz: ≥ 25 mm $5-6$ GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Tested form 9/23/2015 to 9/28/2015

Dielectric Property Measurement	<u>S</u>			
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	8753ES	MY40000980	4/17/2016
Dielectric Probe kit	SPEAG	DAK-3.5	1087	11/11/2015
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	Traceable Calibration Control Co.	4242	122529162	10/8/2015
Thermometer	Traceable Calibration Control Co.	T1129	140562250	8/24/2016
System Check				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Synthesized Signal Generator	HP	8665B	3744A01084	5/8/2016
Power Meter	Agilent	N1912A	MY55196004	10/12/2016
Power Sensor	Agilent	E9323A	MY53070007	3/2/2016
Power Sensor	Agilent	E9323A	MY53070005	4/29/2016
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1795093	N/A
Directional coupler	Werlatone	C8060-102	2149	N/A
DC Power Supply	AMETEK	XT 15-4	1319A02778	N/A
Synthesized Signal Generator	HP	8665B	3744A01155	3/18/2016
Power Meter	HP	437B	3125U16345	6/15/2016
Power Meter	HP	437B	3125U12345	7/31/2016
Power Sensor	HP	8481A	2702A76223	9/3/2016
Power Sensor	HP	8481A	1926A27048	8/3/2016
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1795092	N/A
Directional coupler	Werlatone	C8060-102	2141	N/A
DC Power Supply	BK PRECISION	1611	215-02292	N/A
E-Field Probe (SAR Lab A)	SPEAG	EX3DV4	3901	1/27/2016
E-Field Probe (SAR Lab B)	SPEAG	EX3DV4	3751	11/14/2015
Data Acquisition Electronics (SAR Lab A)	SPEAG	DAE4	1357	2/20/2016
Data Acquisition Electronics (SAR Lab B)	SPEAG	DAE4	1360	3/12/2016
System Validation Dipole	SPEAG	D835V2	4d002	11/13/2015
System Validation Dipole	SPEAG	D1900V2	5d043	11/7/2015
Other				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Base Station Simulator	R & S	CMW500	137877-ms	8/10/2016
Base Station Simulator	R & S	CMW500	135390-ws	4/6/2016
Base Station Simulator	R & S	CMW500	104245-jz	1/14/2016

Tested form 1/26/2016 to 1/27/2016 Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	8753ES	MY40001647	7/28/2016
Dielectric Probe kit	SPEAG	DAK-3.5	1103	2/17/2016
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	2/17/2016
Thermometer	Control Company	Traceable	140493798	8/4/2016

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Synthesized Signal Generator	Agilent	8665B	3546A00784	6/27/2016
Power Meter	HP	437B	3125U09248	9/3/2016
Power Meter	HP	437B	3125U09516	9/17/2016
Power Sensor	Agilent	8481A	2349A36506	9/16/2016
Power Sensor	Agilent	8481A	3318A92374	9/16/2016
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1622052	N/A
Bi-directional coupler	Werlatone, Inc.	C8060-102	2711	N/A
DC Power Supply	Sorensen Ametek	XT 15-4	1319A02780	N/A
E-Field Probe (SAR Lab 3)	SPEAG	EX3DV4	3773	4/22/2016
Data Acquisition Electronics (SAR Lab 3)	SPEAG	DAE4	1434	4/16/2016
System Validation Dipole	SPEAG	D835V2	4d142	9/23/2016
System Validation Dipole	SPEAG	D1900V2	5d163	9/21/2016
Thermometer (SAR Lab 3)	EXTECH	445703	CCS-237	6/5/2016
Other				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Base Station Simulator	R & S	CMW500	135390	4/6/2016

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Page 10 of 22

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	Overall (Length x Width): 90 mm x 45 mm
	Overall Diagonal: 95 mm
Back Cover	☑ The rechargeable battery is not user accessible.
Battery Options	☑ The rechargeable battery is not user accessible.

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR testing
W-CDMA (UMTS)	Band II Band V	UMTS Rel. 99 (Voice & Data) HSDPA (Rel. 5) HSUPA (Rel. 6)	100%
ISM	902 to 928MHz	2FSK	One short burst every 5 minutes

6.3. Nominal and Maximum Output Power from Tune-up Procedure

KDB 447498 sec.4.1.(3) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

Upper limit (dB):	1.0	Max. RF Output Pow er (dBm)		
RF Air interface	Mode	Target	Max. tune-up tolerance limit	
W-CDMA Band V	R99	22.5	23.5	
W-CDMA Band II	R99	22.5	23.5	

7. RF Exposure Conditions (Test Configurations)

Refer to "SAR Photos and Ant locations" Appendix for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Wireless technologies	RF Exposure Conditions	DUT-to-User Separation	Test Position	Antenna-to- edge/surface	SAR Required	Note
	Body-worn	5	Rear	N/A	Yes	
WWAN	Body-worn	5	Front	N/A	Yes	
	Next to Mouth	10	Front	N/A	Yes	

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	H	lead	Body		
raiget requeitey (miliz)	۶ _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5000	36.2	4.45	49.3	5.07	
5100	36.1	4.55	49.1	5.18	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5400	35.8	4.86	48.7	5.53	
5500	35.6	4.96	48.6	5.65	
5600	35.5	5.07	48.5	5.77	
5700	35.4	5.17	48.3	5.88	
5800	35.3	5.27	48.2	6.00	

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

SAR Lab A

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
Ha	Head 835	e'	40.4100	Relative Permittivity (ε_r):	40.41	41.50	-2.63	5
	Tieau 000	e"	19.3300	Conductivity (σ):	0.90	0.90	-0.28	5
9/28/2015	Head 820	e'	40.5500	Relative Permittivity (ε_r):	40.55	41.60	-2.53	5
9/20/2015	Head 020	e"	19.3700	Conductivity (σ):	0.88	0.90	-1.70	5
	Head 850	e'	40.2500	Relative Permittivity (ε_r):	40.25	41.50	-3.01	5
Head 650	Tieau 050	e"	19.3200	Conductivity (o):	0.91	0.92	-0.21	5

SAR Lab B

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
Head 1900	Hood 1900	e'	39.2200	Relative Permittivity (ε_r):	39.22	40.00	-1.95	5
	e"	13.6000	Conductivity (σ):	1.44	1.40	2.63	5	
9/28/2015	Head 1850	e'	39.4600	Relative Permittivity (ε_r):	39.46	40.00	-1.35	5
9/20/2013	Tieau 1050	e"	13.4900	Conductivity (σ):	1.39	1.40	-0.88	5
ŀ	Head 1910	e'	39.1700	Relative Permittivity (ε_r):	39.17	40.00	-2.08	5
	Head 1910	e"	13.6200	Conductivity (σ):	1.45	1.40	3.32	5

SAR Lab 3

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 1900	e'	51.3700	Relative Permittivity (ε_r):	51.37	53.30	-3.62	5
	BOUY 1900	e"	14.7400	Conductivity (σ):	1.56	1.52	2.45	5
1/26/2016	Body 1850	e'	51.5900	Relative Permittivity (ε_r):	51.59	53.30	-3.21	5
1/20/2010	BOUY 1050	e"	14.5800	Conductivity (o):	1.50	1.52	-1.33	5
	Body 1910	e'	51.2900	Relative Permittivity (ε_r):	51.29	53.30	-3.77	5
		e"	14.7800	Conductivity (o):	1.57	1.52	3.27	5
	Body 835	e'	53.2300	Relative Permittivity (ε_r):	53.23	55.20	-3.57	5
		e"	21.7900	Conductivity (σ):	1.01	0.97	4.30	5
1/26/2016	Body 820	e'	53.3300	Relative Permittivity (ε_r):	53.33	55.28	-3.52	5
1/20/2010	Body 020	e"	21.7200	Conductivity (σ):	0.99	0.97	2.26	5
	Body 850	e'	52.9800	Relative Permittivity (ε_r):	52.98	55.16	-3.95	5
	воау 850	e"	21.6100	Conductivity (σ):	1.02	0.99	3.46	5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

	System	n Dipole	т о		Measured	d Results	T	Dalta					
Date Tested	Туре	Serial #	T.S. Liquid			Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.				
9/28/2015	D835V2	4d002	Head	1g	0.901	9.01	9.23	-2.38	1,2				
3/20/2013	D033V2	40002	neau	10g	0.592	5.92	5.99	-1.17	1,2				
SAR Lab B													
	System	n Dipole			Measured	d Results	Tannat	Dalta					
Date Tested	Туре	Serial #	T.S. Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.				
9/28/2015	D1900V2	5d043	Head	1g	3.94	39.4	40.6	-2.96	3,4				
9/20/2013	D1900V2	50045	neau	10g	2.05	20.5	21.1	-2.84	3,4				
SAR Lab 3		-		-									
	System	n Dipole			Torgot	Delte							
Date Tested Type	Туре	Serial #	T.S. Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.				
1/26/2016	D1900\/2	5d163	Body	1g	3.84	38.4	39.9	-3.76	5,6				
1/26/2016	D1900V2	50105	Body	воцу	воду	Бойу	Body	10g	2.02	20.2	21.0	-3.81] 0,0
1/26/2016	D835V2	4d142	Body	1g	0.974	9.74	9.4	3.51	7.8				

SAR Lab A

Page 14 of 22

0.646

6.46

6.2

4.53

10g

9. Conducted Output Power Measurements

9.1. W-CDMA

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 2
WCDMA Conorol Sottingo	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA			
	Subtest	1	2	3	4			
	Loopback Mode	Test Mode 1						
	Rel99 RMC	12.2kbps RMC	12.2kbps RMC					
	HSDPA FRC	H-Set 1						
W-CDMA	Power Control Algorithm	Algorithm 2						
-	βc	2/15	11/15	15/15	15/15			
General Settings	βd	15/15	15/15	8/15	4/15			
Settings	Bd (SF)	64						
	βc/βd	2/15	11/15	15/8	15/4			
	βhs	4/15	24/15	30/15	30/15			
	MPR (dB)	0	0	0.5	0.5			
	D _{ACK}	8						
	D _{NAK}	8						
HSDPA	DCQI	8						
Specific	Ack-Nack repetition factor	3						
Settings	CQI Feedback (Table 5.2B.4)	4ms						
	CQI Repetition Factor (Table 5.2B.4)	2						
	Ahs=βhs/βc	30/15						

HSPA (HSDPA & HSUPA) Setup Procedures used to establish the test signals The following 5 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSPA							
	Subtest	1	2	3	4	5			
	Loopback Mode	Test Mode 1	Test Mode 1						
	Rel99 RMC	12.2 kbps RMC							
	HSDPA FRC	H-Set 1							
	HSUPA Test	HSPA							
	Power Control Algorithm	Algorithm 2				Algorithm 1			
WCDMA	βc	11/15	6/15	15/15	2/15	15/15			
General	βd	15/15	15/15	9/15	15/15	0			
Settings	βес	209/225	12/15	30/15	2/15	5/15			
	βc/βd	11/15	6/15	15/9	2/15	15/1			
	βhs	22/15	12/15	30/15	4/15	5/15			
	βed	1309/225	94/75	47/15	56/75	47/15			
	CM (dB)	1	3	2	3	1			
	MPR (dB)	0	2	1	2	0			
	DACK	8				0			
	DNAK	8				0			
HSDPA	DCQI	8	-						
Specific Settings	Ack-Nack repetition factor	3							
	CQI Feedback (Table 5.2B.4)	4ms							
	CQI Repetition Factor (Table 5.2B.4) 2								
	Ahs = βhs/βc	30/15							
	E-DPDCCH	6	8	8	5	7			
	DHARQ	0	0	0	0	0			
	AG Index	20	12	15	17	21			
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	81			
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9			
	Reference E-TFCIs	5	5	2	5	1			
	Reference E-TFCI	11	11	11	11	67			
HSUPA	Reference E-TFCI PO	4	4	4	4	18			
Specific	Reference E-TFCI	67	67	92	67	67			
Settings	Reference E-TFCI PO	18	18	18	18	18			
	Reference E-TFCI	71	71	71	71	71			
	Reference E-TFCI PO	23	23	23	23	23			
	Reference E-TFCI	75	75	75	75	75			
	Reference E-TFCI PO	26	26	26	26	26			
	Reference E-TFCI	81	81	81	81	81			
	Reference E-TFCI PO	27	27	27	27	27			
	Maximum Channelisation Codes	2xSF2				SF4			

Band		Mode	UL Ch No.	Freq. (MHz)	Max. Pwr (dBm)
			9262	1852.4	21.5
	Rel 99	RMC, 12.2 kbps	9400	1880.0	21.5
			9538	1907.6	21.8
			9262	1852.4	21.4
		Subtest 1	9400	1880.0	21.5
			9538	1907.6	21.6
			9262	1852.4	21.5
		Subtest 2	9400	1880.0	21.5
	HSDPA		9538	1907.6	21.8
	TIGDI A		9262	1852.4	21.5
		Subtest 3	9400	1880.0	21.5
			9538	1907.6	21.8
		Subtest 4	9262	1852.4	21.5
			9400	1880.0	21.5
W-CDMA			9538	1907.6	21.8
Band II			9262	1852.4	19.6
		Subtest 1	9400	1880.0	20.0
			9538	1907.6	20.4
			9262	1852.4	19.8
		Subtest 2	9400	1880.0	19.8
			9538	1907.6	20.8
			9262	1852.4	20.0
	HSUPA	Subtest 3	9400	1880.0	20.5
			9538	1907.6	20.6
			9262	1852.4	19.5
		Subtest 4	9400	1880.0	19.8
			9538	1907.6	20.4
			9262	1852.4	19.5
		Subtest 5	9400	1880.0	19.6
			9538	1907.6	20.0

W-CDMA Band V Measured Results

Band		Mode	UL Ch No.	Freq. (MHz)	Max. Pwr (dBm)
			4132	826.4	22.7
	Rel 99	RMC, 12.2 kbps	4183	836.6	22.5
			4233	846.6	22.7
			4132	826.4	22.4
		Subtest 1	4183	836.6	22.3
			4233	846.6	22.5
			4132	826.4	22.5
		Subtest 2	4183	836.6	22.3
	HSDPA		4233	846.6	22.5
	NSDFA		4132	826.4	22.4
		Subtest 3	4183	836.6	22.3
			4233	846.6	22.5
			4132	826.4	22.5
		Subtest 4	4183	836.6	22.3
W-CDMA			4233	846.6	22.5
Band V	HSUPA		4132	826.4	21.3
		Subtest 1	4183	836.6	21.6
			4233	846.6	21.6
			4132	826.4	21.6
		Subtest 2	4183	836.6	21.6
			4233	846.6	20.8
			4132	826.4	20.7
		Subtest 3	4183	836.6	20.9
			4233	846.6	21.1
			4132	826.4	22.1
		Subtest 4	4183	836.6	21.8
			4233	846.6	22.1
			4132	826.4	21.8
		Subtest 5	4183	836.6	21.8
			4233	846.6	21.9

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

10.1. W-CDMA Band II

RF Exposure Conditions	Mode	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Power (dBm)		1-g SAR (W/kg)		Plot
						Tune-up limit	Meas.	Meas.	Scaled	No.
Body-worn	Rel 99 RMC	MC 5	Rear	9400	1880.0	23.5	21.5	0.434	0.688	
			Front	9400	1880.0	23.5	21.5	0.444	0.704	1
Next-to-mouth	Rel 99 RMC	10	Front	9400	1880.0	23.5	21.5	0.219	0.347	2

10.2. W-CDMA Band V

RF Exposure	Mode	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Power (dBm)		1-g SAR (W/kg)		Plot
Conditions						Tune-up limit	Meas.	Meas.	Scaled	No.
Body-worn	Rel 99 RMC	5	Rear	4183	836.6	23.5	22.5	0.532	0.670	
			5 Front	4132	826.4	23.5	22.7	0.986	1.185	3
				4183	836.6	23.5	22.5	0.690	0.869	
				4233	846.6	23.5	22.7	0.586	0.705	
Next-to-mouth	Rel 99 RMC	10	Front	4183	836.6	23.5	22.5	0.341	0.429	4

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or 3 (1-g or 10-g respectively) or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 or 3 (1-g or 10-g respectively).

Body-worn

Frequency Band Air Interface (MHz)		RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	First Repeated		Second Repeated		Third Repeated
	Air Interface					Measured SAR (W/kg)	Largest to Smallest SAR Ratio	Measured SAR (W/kg)	Largest to Smallest SAR Ratio	Measured SAR (W/kg)
850	WCDMA Band II	Body	Front	No	0.444	N/A	N/A	N/A	N/A	N/A
1900	WCDMA Band V	Body	Front	Yes	0.986	0.937	1.05	N/A	N/A	N/A

Next-to-Mouth

Frequency Band A (MHz)		RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	First Repeated		Second Repeated		Third Repeated
	Air Interface					Measured SAR (W/kg)	Largest to Smallest SAR Ratio	Measured SAR (W/kg)	Largest to Smallest SAR Ratio	Measured SAR (W/kg)
850	WCDMA Band II	Next to Mouth	Front	No	0.219	N/A	N/A	N/A	N/A	N/A
1900	WCDMA Band V	Next to Mouth	Front	No	0.341	N/A	N/A	N/A	N/A	N/A

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively).

12. Simultaneous Transmission SAR Analysis

This device doesn't support simultaneous transmission SAR.

Page 21 of 22

Appendixes

Refer to separated files for the following appendixes.

15U21636-S1V2 SAR_App A Photos & Ant. Locations

15U21636-S1V2 SAR_App B System Check Plots

15U21636-S1V2 SAR_App C Highest Test Plots

15U21636-S1V1 SAR_App D Tissue Ingredients

15U21636-S1V2 SAR_App E Probe Cal. Certificates

15U21636-S1V2 SAR_App F Dipole Cal. Certificates

END OF REPORT