

Please Contact with WSCT www.wsct-cert.com

For

TECNO MOBILE LIMITED

ROOMS 05-15, 13A/F., SOUTH TOWER, WORLD FINANCE CENTRE, HARBOUR CITY, 17

CANTON ROAD, TSIM SHA TSUI, KOWLOON, HONG KONG

Model: B2

Hu Tong Hu Tong Test Engineer:

Report Number: FCC18110006A-SAR

Nov. 20, 2018 Report Date:

> 2ADYY-B2 FCC ID:

Approved By:

City Zhao Check By: Lily Zhao

Wang Fengbing

World Standardization Certification & Testing Group

Co.,Ltd.

Prepared By: Building A-B, Baoshi Science & Technology Park,

Baoshi Road, Bao'an District, Shenzhen, Guangdong,

China

Tel: +86-755-26996192 Fax: +86-755-86376605

174

Report No.: FCC18110006A-SAR

Table of contents

For Question,
Please Contact with WSC
www.wsct-cert.com

		General information	
	1/	W4748 / W4748 / W4748 / W4748	/199
/	1.1	Notes	4
	1.2	Application details	4
	1.3	Statement of Compliance	5
4	1.4		
	1.4		
	2	Testing laboratory	
	3	Test Environment W577 W577	
	4	Applicant and Manufacturer	7
`	5	Test standard/s:	8
Ī	5.1	WSCT WSCT WSCT	
	5.2		
	6	SAR Measurement System The Measurement System	11
7	6.1	The Measurement System	11
	6.2	Y Y Y	
	6.3		
<i>y</i>	_		
	6.4	Measurement procedure	12
	6.5	X X X X	
	0.0		13
	6.6	W5Phantom W5CT W5CT W5CT	13
/		W5Phantom W5CT W5CT W5CT	13
/	6.6 6.7	Phantom	13
	6.6 6.7 6.8	Phantom	13 14 15
	6.6 6.7 6.8 6.9	Phantom	13 14 15 16
	6.6 6.7 6.8	Phantom Device Holder Video Positioning System Tissue simulating liquids: dielectric properties	13 14 15 16
	6.6 6.7 6.8 6.9	Phantom	13 14 15 16 17
	6.6 6.7 6.8 6.9 6.10	Phantom	131415161718
	6.6 6.7 6.8 6.9 6.10 7	Phantom Device Holder Video Positioning System Tissue simulating liquids: dielectric properties Tissue simulating liquids: parameters System Check System check procedure	13141516171820
	6.6 6.7 6.8 6.9 6.10 7 7.1 7.2	Phantom Device Holder Video Positioning System Tissue simulating liquids: dielectric properties Tissue simulating liquids: parameters System Check System check procedure System check results	1314151617182020
	6.6 6.7 6.8 6.9 6.10 7 7.1 7.2	Phantom	131415161718202021
	6.6 6.7 6.8 6.9 6.10 7 7.1 7.2	Phantom	1315161718202021
	6.6 6.7 6.8 6.9 6.10 7 7.1 7.2	Phantom	1315161718202021

esting Group Co.,Ltd.

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

	9 Det	tailed Test Results	
	9.1	Conducted Power measurements	23
^	9.1.1	Conducted Power of GSM850	23
14	9.1.2	Conducted Power of GSM1900	24
	9.1.3	Conducted Power of UMTS Band II	25
	9.1.4	Conducted Power of UMTS Band V	26
	9.1.5	Conducted Power of Wi-Fi 2.4G	27
<	9.1.6	Conducted Power of BT	28
7 1	9.1.7	Tune-up power tolerance	29
14	9.2	SAR test results	30
	9.2.1	Results overview of GSM850	32
	9.2.2	Results overview of GSM1900	33/5/
1	9.2.3	Results overview of UMTS Band II	34
X	9.2.4	Results overview of UMTS Band V	35
14	9.2.5	Results overview of Wi-Fi 2.4G	36
	10	Multiple Transmitter Information	37
	10.1.1	Stand-alone SAR test exclusion	38
	10.1.2	Simultaneous Transmission Possibilities	39
\times	10.1.3	SAR Summation Scenario	40
72	11	Measurement uncertainty evaluation	44
14	11.1	Measurement uncertainty evaluation for SAR test	
	11.2	Measurement uncertainty evaluation for system check	46
	12	Test equipment and ancillaries used for tests	
	Annex		
X	Annex I		
74	Annex	AMERICAN SWEETS SWEETS SWEETS	
	Annex		

Certification d

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

Modified History

	REV.	Modification Description	Issued Date	Remark	5
/	REV.1.0	Initial Test Report Relesse	Nov. 20, 2018	Wang Fengbing	
7	N.	SET WSET	WSCT	WSET	
	\times	\times	\times		×
	WSET	WSUT	SUT WSI	3	47
/		\times		\times	
7		SET	WSET	WS/T	
			\checkmark		\ \

WSET WSET WSET WSET

1 General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in this test report. World Standardization Certification & Testing Group Co.,Ltd does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report is not to be reproduced or published in full without the prior written permission.

1.2 Application details

Date of receipt of test item: 2018-11-02
Start of test: 2018-11-12
End of test: 2018-11-13

WSET WSET

∠W5E1

W5LT

世标检测认证股份 esting Group Co..Ltd.

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

1.3 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for B2 is as below:

	Band	Position	MAX Reported SAR _{1g} (W/kg)
7	WSET	Head	0.208 W5
	GSM850	Body & Hotspot 10mm	0.329
		Head	0.016
/	GSM1900 W	Body & Hotspot 10mm	0.071
	X	Head	0.163
7	UMTS Band II	Body & Hotspot 10mm	0.710
		Head	0.136
	UMTS Band V	Body & Hotspot 10mm	0.236
	WSET		0.608
/	Wi-Fi 2450	Body & Hotspot 10mm	0.166
1	The highest si	imultaneous SAR is 0.8	76W/kg per KDB690783 D01

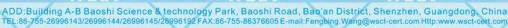
The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontraolled exposure limits of 1.6 W/Kg as averaged over any 1g tissue according to the FCC rule §2.1093, the ANSI/IEEE C95.1:2005, the NCRP Report Number 86 for uncontrolled environment, according to the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013.

WSGT WSGT WSGT WSGT

世标检测认证股份 Testing Group Co.,Ltd.

ADD: Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Report No.: FCC18110006A-SAR


For Question, 1 WSCT www.wsci-cert.com

1.4 EUT Information

					500
1	Device Information:				4
	Product Type:	Mobile Phone			
	Model:	B2	\wedge		1
	Brand Name:	TECNO	WSET	WSET	
	Device Type:	Portable device	,		
	Exposure Category:	uncontrolled enviror	nment / genera	al population	
1	Production Unit or Identical Prototype:	Production Unit		VSET	4
	Hardware version:	V1.1			
	Software version :	B2-F8017F-GO-180	919V48		
	Antenna Type :	Internal Antenna	WSET	WSET	
	Device Operating Configurations:				
	Supporting Mode(s):	GSM850/1900, UM			
1	Modulation:	GSM(GMSK/8PSK) WiFi(OFDM/CCK),B BLE(GFSK)	,UMTS(QPSK BT(GFSK/π/4-	/16QAM), DQPSK/ 8-DPSK),	4
	Device Class :	Class B, No DTM M	ode		
		Band	TX(MHz)	RX(MHz)	
		GSM850	824~849	869~894	
l d		GSM1900	1850~1910	1930~1990	
1	Operating Frequency Range(s)	UMTS Band II	1850~1910	1930~1990	/
		UMTS Band V	824~840	869~894	
		Wi-Fi	2412~2462	2412~2462	
		ВТ	2402~2480	2402~2480	
	GPRS class level:	GPRS class 12			
		128-190-251(GSM8 512-661-810(GSM1		VEI I	/
Test Channels (low-mid-high):		9262-9400-9538(UMTS Band II) 4132-4182-4233(UMTS Band V) 1-6-11 (Wi-Fi)			
		0-39-78(BT) 0-19-39(BLE)	WSET	WSLI	
	Power Source:	3.85 VDC/3000mAh	/11.55Wh Red	chargeable Battery	

Certification &

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

2 Testing laboratory

Test Site	World Standardization Certification & Testing Group Co., Ltd.
Test Location	Building A-B, Baoshi Science & Technology Park, Baoshi Road,
Test Location	Bao'an District, Shenzhen, Guangdong, China
Telephone	+86-755-26996192
Fax	+86-755-86376605

3 Test Environment

	Required	Actual
Ambient temperature:	18 – 25 °C	22 ± 2 °C
Tissue Simulating liquid:	22 ± 2 °C	22 ± 2 °C
Relative humidity content:	30 – 70 %	30 – 70 %

4 Applicant and Manufacturer

	Applicant/Client Name:	TECNO MOBILE LIMITED
/	Applicant Address:	ROOMS 05-15, 13A/F., SOUTH TOWER, WORLD FINANCE CENTRE, HARBOUR CITY, 17 CANTON ROAD, TSIM SHA TSUI, KOWLOON, HONG KONG
\	Manufacturer Name:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
7	Manufacturer Address:	1/F-4/F,7/F, BUILDING 3, TAIPINGYANG INDUSTRIAL ZONE, NO.2088, SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY, GUANGDONG PROVINCE, P.R.C

WSGT WSGT WSGT

WSET

WSET

AWSET

111-7-4

\$ V5L

esting Group Co.,Ltd.

Certification &

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

5 Test standard/s:

	X		
4	ANSI Std C95.1-2005	Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.	
	IEEE Std 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques	,
/	RSS-102	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 5 March 2015)	
4	KDB447498 D01	General RF Exposure Guidance v06 W577	>
	KDB648474 D04	Head set SAR v01r03	
	KDB941225 D06	Hot Spot SAR V02r01	/
1	KDB941225 D01	3G SAR Measurement Procedures	
\ =	KDB248227 D01	SAR meas for 802.11 a/b/g v01r02	
	KDB865664 D01	SAR Measurement 100 MHz to 6 GHz v01r04	
	KDB865664 D02	RF Exposure Reporting v01r02	

WSCT WSCT WSCT WSCT

SET WSET

世标检测认证股份 ADD:Building A-B TEL:86-755-26996143/

Certification &

W5C1

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.1 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR*	WEST	VSET 200 WWW WSE
(Brain/Body/Arms/Legs)	1.60 mW/g	8.00 mW/g
Spatial Average SAR**	V V	
(Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR***		
(Heads/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

The limit applied in this test report is shown in bold letters

Notes:

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** / 5 The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.

WSET WSET WSET WSET WSET WSET

WSET OF CERTIFICATION OF THE PROPERTY OF THE P

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, Chin

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.2 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (p).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

 $SAR = \frac{\sigma \mid E \mid^2}{\rho}$

where:

W5/T = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

WSGT WSGT WSGT WSGT

WSET WSET WSET WSET

WSET WSET WSET WSET

WSET WSET WSET WSET

WSET WSET WSET

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

6 SAR Measurement System

6.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Device holder
- Head simulating tissue

The following figure shows the system.

7 at a

/

ET

er the

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

世标检測认证股份

ertificatio

ADD: Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.2 Robot

The COMOSAR system uses the high precision robots KR 6 R900 sixx type out of the newer series from Satimo SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from Satimo is used. The KR 6 R900 sixx robot series have many features that are important for

- our application:High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

6.3 Probe

For the measurements the Specific Dosimetric E-Field Probe SSE 5 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter: 5 mm
- Distance between probe tip and sensor center: 2.5mm
- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)
- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.50 dB
- Calibration range: 300 to 3G for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suface normal line:less than 30°

WSET WSET WSET WSET WSET WSET

世标检测认证股份 Resting Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, Chin

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.4 Measurement procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection
 between the mobile and the base station simulator is established via air interface.
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors can not directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point,a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8
 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

6.5 Description of interpolation/extrapolation scheme

- The local SAR inside the phantom is measured using small dipole sensing elements inside a
 probe body. The probe tip must not be in contact with the phantom surface in order to minimise
 measurements errors, but the highest local SAR will occur at the surface of the phantom.
- An extrapolation is using to determinate this highest local SAR values.
 The extrapolation is based on afourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.
- The measurements have to be performed over a limited time(due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR average over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.6 Phantom

Certification &

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

1	System Mate	erial	Permittivity	Loss Tangent
7	Delrin	15[7]	3.7577	0.005

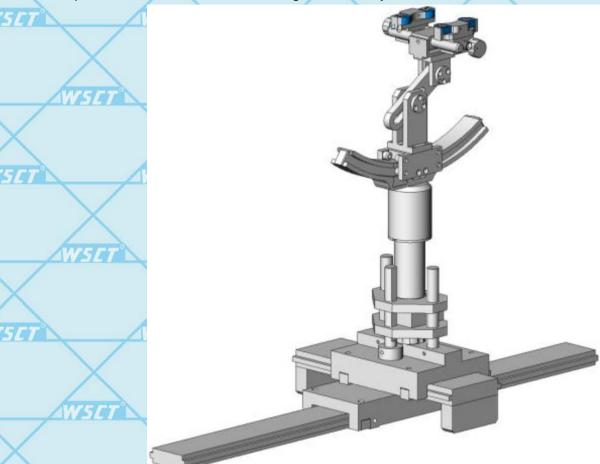
WSET WSET WSET WSET

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

WSET WSET

Report No.: FCC18110006A-SAR



For Question,
Please Contact with WSCT
www.wsct-cert.com

6.7 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

AWSLI N

ATT OF THE PARTY O

WSET

AW-14

WSLT

Device holder

System Material Permittivity Loss Tangent

Delrin 3.7 0.005

WSET WSET WSET

SET WSET

WSET

WSET"

WSET

WSET

WSET

WSET

WSLI

WSCT

世标检测认证股份 esting Group Co.,Ltd.

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.8 Video Positioning System

- The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link.
- During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.
- The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

	its actual position.	X	X	X	X
WSET	WSET			WSLT	WSLT SCT WSLT
WSCT	WSET	WSEI	WS		SET
	WSUT	WSET	WSCT	WSLT	WSET
WSU	WSCT	WSE			567
	X	WSET	WSET	WSET	WSET
Non Colin	ication & Person				

Member of the WSCT INC

Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

ADD:Building A-B Baoshi Science

esting Group Co.,Ltd.

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.9 Tissue simulating liquids: dielectric properties

The following materials are used for producing the tissue-equivalent materials.

(Liquids used for tests are marked with ⋈):

			_ /		/	
	Ingredients(% of weight)			Frequency (I	ИHz)	
	frequency band	450	⊠ 835	1800	⊠ 1900	⊠ 2450
	Tissue Type	Head	Head	Head	Head	Head
	Water	38.56	41.45	52.64	55.242	62.7
j	Salt (NaCl)	3.95	1.45	0.36	0.306	0.5
•	Sugar	56.32	56.0	0.0	0.0	0.0
\	HEC	0.98	1.0	0.0	0.0	0.0
ı,	Bactericide	0.19	0.1	0.0	0.0	0.0
	Triton X-100	0.0	0.0	0.0	0.0	36.8
	DGBE	0.0	0.0	47.0	44.542	0.0
	Ingredients(% of weight)	X		Frequency (I	MHz)	
				,		
	frequency band	450	⊠ 835	1800	⊠ 1900	∑ 2450 /
	frequency band Tissue Type	U 450 Body	☑ 835Body			
9				1800	∑ 1900	
/	Tissue Type	Body	Body	1800 Body	∑ 1900 Body	Body
	Tissue Type Water Salt (NaCl) Sugar	Body 51.16	Body 52.4	1800 Body 69.91	1900 Body 69.91	Body 73.2
/	Tissue Type Water Salt (NaCl) Sugar HEC	Body 51.16 1.49	Body 52.4 1.40	1800 Body 69.91 0.13	∑ 1900 Body 69.91 0.13	Body 73.2 0.04
	Tissue Type Water Salt (NaCl) Sugar	Body 51.16 1.49 46.78	Body 52.4 1.40 45.0	1800 Body 69.91 0.13 0.0	≥ 1900 Body 69.91 0.13 0.0	Body 73.2 0.04 0.0
	Tissue Type Water Salt (NaCl) Sugar HEC	Body 51.16 1.49 46.78 0.52	Body 52.4 1.40 45.0	1800 Body 69.91 0.13 0.0 0.0	☐ 1900 Body 69.91 0.13 0.0	Body 73.2 0.04 0.0 0.0

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, $16M\Omega$ + resistivity

HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

WSCT WSCT WSCT W

WSET

SET WSE

∠W5E1

世标检测认证股份

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, Chin

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.10 Tissue simulating liquids: parameters

	Tissue	Measured	Target T	issue	Measure	ed Tissue	Liquid	T . D .	
7	Туре	Frequency (MHz)	ε _r (+/-5%)	σ (S/m) (+/-5%)	٤r	σ (S/m)	Temp.	Test Date	
	\times	825	41.50 (39.43~43.58)	0.90 (0.86~0.95)	40.56	0.94			<
	835MHz Head	835	41.50 (39.43~43.58)	0.90 (0.86~0.95)	40.44	0.95	21.6°C	2018/11/13	7
/		850	41.50 (39.43~43.58)	0.90 (0.86~0.95)	40.33	0.95			
\	<u> </u>	825	55.20 (52.44~57.96)	0.97 (0.92~1.02)	53.86	0.95	1		
/	835MHz Body	835	55.20 (52.44~57.96)	0.97 (0.92~1.02)	53.76	0.96	21.6°C	2018/11/13	
	X	850	55.20 (52.44~57.96)	0.97 (0.92~1.02)	53.50	0.98			
)	WSET	1850	40.00 (38.00~42.00)	1.40 (1.33~1.47)	40.54	1.38	1	WS	£
	1900MHz	1880	40.00 (38.00~42.00)	1.40 (1.33~1.47)	40.66	1.37	21.6°C	2018/11/12	
	Head	1900	40.00 (38.00~42.00)	1.40 (1.33~1.47)	39.88	1.41	21.0 C	5/7	
	\sim	1910	40.00 (38.00~42.00)	1.40 (1.33~1.47)	39.54	1.44			<
	WSCT	1850	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.62	1.49		WS	6
/	1900MHz	1880	53.30 (50.64~55.97)	1.52 (1.44~1.60)	51.47	1.57	21.6°C	2018/11/12	
\	Body	1900	53.30 (50.64~55.97)	1.52 (1.44~1.60)	52.70	1.52	21.0 C		
77		1910	53.30 (50.64~55.97)	1.52 (1.44~1.60)	53.63	1.54	W	SET	
	\times	2410	39.30 (37.34~41.26)	1.76 (1.67~1.85)	39.29	1.88			<
	2450MHz	2435	39.20 (37.24~41.16)	1.79 (1.70~1.88)	39.25	1.87	21.6°C	2018/11/13	72
	Head	2450	39.20 (37.24~41.16)	1.80 (1.71~1.89)	39.27	1.85	21.0 0	2010/11/13	
1		2460	39.20 (37.24~41.16)	1.81 (1.72~1.90)	39.27	1.83	1	HAI	

WSCT Cortification & Continue of the Cortification & Cortific

esting Group Co.,Ltd.

Report No.: FCC18110006A-SAR

For Question Please Contact with WSCT www.wsct-cert.com

	WSET N	2410	52.80	1.91 5	53.23	1.91		W5	
1		2410	(50.16~55.44)	(1.81~2.01)	55.25	1.91			
		2435	52.70	1.94	53.05	1.90		\times	
	2450MHz	2455	(50.07~55.34)	(1.84~2.04)	55.05	1.90	21.6°C	2018/11/13	
	Body	2450	52.70	1.95	53.05	2.03	21.0 C	2016/11/13	
Y.A		2430	(50.07~55.34)	$(1.85 \sim 2.05)$	33.03	2.03		-148	
		2460	52.70	1.96	53.01	2.04)
	X	2400	$(50.07 \sim 55.34)$	(1.86~2.06)	55.01	2.04			
			ε = Relative	nermittivity σ=	Conducti	vity	/	/	

WSCT	WSCT	WSET	WSET	WSLT	
Wist	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\langle \ \ \rangle$		741	WSLIT
WSET	WSET	WSET	WSLT	WSLT	
Wish	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\langle \ \ \ \rangle$		SET	WSET
WSLOT	WSET	WSUT	WSET	WSET	
WS	$\langle \hspace{0.1cm} \rangle$			5111	WSUT
WSUT	WSET	WSLT	WSET	WSET	
\rightarrow				5111	WSCT
Certification	2 de les ling				

Member of the WSCT INC.

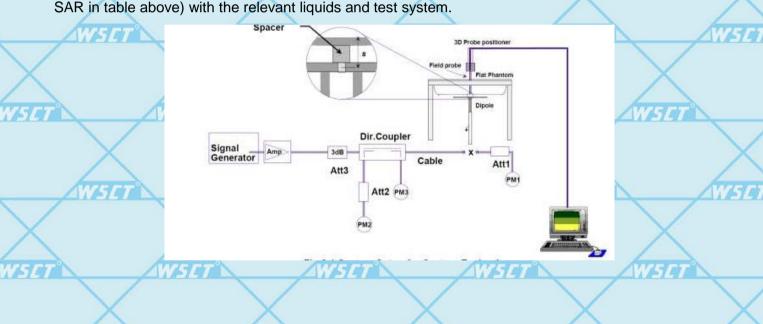
世标检测认证股份

esting Group Co.,Ltd.

World Standardizat

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com


7 System Check

Certification

7.1 System check procedure

The System check is performed by using a System check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the System check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

WSET WSET WSET WSET

WSET WSET WSET

WSET WSET

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

7.2 System check results

The system Check is performed for verifying the accuracy of the complete measurement system and performance of the software. The following table shows System check results for all frequency bands and tissue liquids used during the tests (plot(s) see annex A).

В		7.			ATT ALL			e
	System Check	Target SAR (1W) (+/-10%)	Measur (Normaliz		Liquid	Test Date	Ì
)	System Check	1-g (mW/g)	10-g (mW/g)	1-g (mW/g)	10-g (mW/g)	Temp.	Test Date	1
	D835V2 Head	9.82 (8.83~10.80)	6.35 (5.71~6.98)	9.120	6.720	21.6°C	2018/11/13	
_	D1900V2 Head	38.93 (35.93~43.92	20.5 (18.45~22.55)	37.820	20.630	21.6°C	2018/11/12	
Ŀ		53.41	23.95				ANDLI E	L
	D2450V2 Head	(48.06~58.75)	(21.55~26.34)	51.240	24.800	21.6°C	2018/11/13	
	D835V2 Body	9.41 (8.46~10.35)	6.22 (5.59~6.84)	8.460	6.300	21.6°C	2018/11/13	
-	D1900V2 Body	38.73 (34.85~42.60)	20.48 (18.62~22.75)	37.200	20.470	21.6°C	2018/11/12	3
	D2450V2 Body	51.39 (46.25~56.52)	23.63 (21.26~23.47)	47.280	23.290	21.6°C	2018/11/13	
1	NV5	Note: All SAR v	/alues are norma	lized to 1W	forward pov	ver.	WSTT	

WSGT	WSET	WSET	WSET	WSET
\times	501 WS			741
WSET	Wistr	WSET	WSET	WSLT
\times	SET WS		$\langle \ \ \rangle$	747
ertification	Wister	WSET	WSGT	WSCT

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

esting Group Co.,Ltd.

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

8 SAR Test Test Configuration

8.1 **GSM Test Configurations**

SAR tests for GSM850 and GSM1900, a communication link is set up with a base station by air link. Using CMU200 the power lever is set to "5" and "0" in SAR of GSM850 and GSM1900. The tests in the band of GSM 850 and GSM 1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5.

8.2 Wi-Fi Test Configuration

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for Wi-Fi mode test. The Absolute Radio Frequency Channel Number(ARFCN) is allocated to 1,6 and 11 respectively in the case of 2450 MHz.During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. 802.11b/g operating modes are tested independently according to the service requirements in each frquency band. 802.11b/g modes are tested on channel 1, 6, 11; however, if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11g/n channels when the maximum average output power is less than

0.25dB higher than that measured on the corresponding 802.11b channels.

/	Mode	Band	GHz	Channel	"Default	Test Channels"
\	mede	24.14	01.12	OTTAIL TO	802.11b	802.11g
ý	W5L	7	2412	1#	SET°	WALT
	802.11b/g	2.4 GHz	2437	6	1	Δ
			2462	11#	1	Δ

Notes:

 $\sqrt{\ }$ = "default test channels"

 Δ = possible 802.11g channels with maximum average output ½ dB the "default test channels"

= when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

802.11 Test Channels per FCC Requirements

WSC7 G 世标检测认证股份

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

9 Detailed Test Results

9.1 Conducted Power measurements

The output power was measured using an integrated RF connector and attached RF cable.

9.1.1 Conducted Power of GSM850

	THE PERSON NAMED IN		ATTI		100		2000	and the latest the lat	ATTA
GSM850(SIM1)		50(SIM1)	Burst-Averaged output Power (dBm)			Division		Based time Power(dBm	
		•	128CH	190CH	251CH	Factors	128CH	190CH	251CH
	GSN	Л(CS)	32.98	33.01	32.95	-9.03	23.95	23.98	23.92
ij		1 Tx Slot	32.73	32.68	32.76	-9.03	23.70	23.65	23.73
	GPRS	2 Tx Slots	31.62	31.56	31.58	-6.02	25.60	25.54	25.56
	(GMSK)	3 Tx Slots	30.69	30.59	30.66	-4.26	26.43	26.33	26.40
	-	4 Tx Slots	29.98	29.88	29.90	-3.01	26.97	26.87	26.89
		1 Tx Slot	28.75	28.74	28.72	-9.03	19.72	19.71	19.69
,	EGPRS	2 Tx Slots	27.55	27.54	27.57	-6.02	21.53	21.52	21.55
	(8-PSK)	3 Tx Slots	26.39	26.42	26.45	-4.26	22.13	22.16	22.19
		4 Tx Slots	25.51	25.55	25.58	-3.01	22.50	22.54	22.57

	GSM85	50(SIM2)		Burst-Averaged output Power (dBm)				Based time Power(dBm	_
	,		128CH	190CH	251CH	Factors	128CH	190CH	251CH
	// GSN	/I(CS)	32.92	32.98	32.95	-9.03	23.89	23.95	23.92
,		1 Tx Slot	32.69	32.66	32.68	-9.03	23.66	23.63	23.65
	GPRS	2 Tx Slots	31.53	31.54	31.57	-6.02	25.51	25.52	25.55
	(GMSK)	3 Tx Slots	30.48	30.52	30.55	-4.26	26.22	26.26	26.29
		4 Tx Slots	29.91	29.79	29.87	-3.01	26.90	26.78	26.86
		1 Tx Slot	28.67	28.63	28.62	-9.03	19.64	19.60	19.59
	EGPRS	2 Tx Slots	27.52	27.55	27.56	-6.02	21.50	21.53	21.54
	(8-PSK)	3 Tx Slots	26.38	26.39	26.43	-4.26	22.12	22.13	22.17
	_AWSL	4 Tx Slots	25.47	25.51	25.55	-3.01	22.46	22.50	22.54

Note: 1) The conducted power of GSM850 is measured with RMS detector.

- 2) Source Based time Average Power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 3)The bolded GPRS 4Tx slots mode was selected for SAR testing according the highest Source Based time Average Power table.
 - 4) channel /Frequency: 128/824.2; 190/836.6; 251/848.8

Report No.: FCC18110006A-SAR

For Question Please Contact with WSCT www.wsct-cert.com

9.1.2 Conducted Power of GSM1900

r									
١	GSM1900(SIM1)		Burst-Averaged output Power (dBm)			Division		Based time Power(dBm	_
į	,		512CH	661CH	810CH	Factors	512CH	661CH	810CH
	GSN	M(CS)	29.89	29.90	29.95	-9.03	20.86	20.87	20.92
	X	1 Tx Slot	29.66	29.73	29.68	-9.03	20.63	20.70	20.65
	GPRS	2 Tx Slots	28.56	28.65	28.61	-6.02	22.54	22.63	22.59
	(GMSK)	3 Tx Slots	27.44	27.56	27.50	-4.26	23.18	23.30	23.24
j		4 Tx Slots	26.89	27.09	26.98	-3.01	23.88	24.08	23.97
		1 Tx Slot	27.15	27.08	27.12	-9.03	18.12	18.05	18.09
`	EGPRS	2 Tx Slots	26.57	26.62	26.65	-6.02	20.55	20.60	20.63
ý	(8-PSK)	3 Tx Slots	25.52	25.53	25.57	-4.26	21.26	21.27	21.31
		4 Tx Slots	24.48	24.51	24.56	-3.01	21.47	21.50	21.55

	GSM1900(SIM2)		Burst-Averaged output Power (dBm)			Division		Based time Power(dBm	
			512CH	661CH	810CH	Factors	512CH	661CH	810CH
1	GSN	Л(CS)	29.87	29.88	29.91	-9.03	20.84	20.85	20.88
\		1 Tx Slot	29.62	29.69	29.66	-9.03	20.59	20.66	20.63
3	GPRS	2 Tx Slots	28.54	28.62	28.58	-6.02	22.52	22.60	22.56
	(GMSK)	3 Tx Slots	27.46	27.49	27.47	-4.26	23.20	23.23	23.21
	X	4 Tx Slots	26.85	26.97	26.92	-3.01	23.84	23.96	23.91
	/	1 Tx Slot	27.02	27.06	27.07	-9.03	17.99	18.03	18.04
	EGPRS	2 Tx Slots	26.53	26.52	26.54	-6.02	20.51	20.50	20.52
	(8-PSK)	3 Tx Slots	25.47	25.46	25.48	-4.26	21.21	21.20	21.22
		4 Tx Slots	24.43	24.45	24.51	-3.01	21.42	21.44	21.50

Note: 1) The conducted power of GSM1900 is measured with RMS detector.

- 2) Source Based time Average Power was calculated from the measured burst-averaged output power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 3) The bolded GPRS 4Tx slots mode was selected for SAR testing according the highest Source Based time Average Power table.
 - 4) channel /Frequency: 512/1850.2; 661/1880; 810/1909.8

esting Group Co.,Ltd.

W5E7

世标检测认证股份 esting Group Co.,Ltd.

World Standardization Certification & Testing Group Co., Ltd.

Report No.: FCC18110006A-SAR

For Question, Please Contact with WSCT www.wsct-cert.com

9.1.3 Conducted Power of UMTS Band II

	V		V	V				
	LIMTO	Band II	Conducted Power (dBm)					
7	OWIT 3	Dallu II	9262CH	9400CH	9538CH			
	WCDMA	12.2kbps RMC	22.10	22.22	22.08			
		Subtest 1	22.02	22.11	22.00	_		
	HSDPA	Subtest 2	21.95//5//	21.99	21.88	57		
/	ПОДРА	Subtest 3	21.82	21.90	21.80			
	,	Subtest 4	21.76	21.79	21.75			
7	W	Subtest 1	22.01	22.06	21.98			
		Subtest 2	21.88	21.90	21.79			
	HSUPA	Subtest 3	21.75	21.78	21.70	\geq		
	WSET	Subtest 4	21.62	21.71	21.64	27		
1		Subtest 5	21.58	21.62	21.55			

Note: 1) channel /Frequency: 9262/1852.4, 9400/1880, 9538/1907.6	
WSET WSET WSET WSET	
\times	X
WSET WSET WSET WSET	507
WSET WSET WSET WSET	
	$\overline{\ \ }$
WSUT WSUT WSUT W	SET
	2/5/
WSET WSET WSET WSET	
	eg
Certification & WSET WSET WSET	5ET

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

9.1.4 Conducted Power of UMTS Band V

世标检测认证股份 esting Group Co.,Ltd.

	V		V				
	UMTS Band V		Conducted Power (dBm)				
7	UIVITS	Danu v	4132CH	4182CH	4233CH		
	WCDMA	12.2kbps RMC	22.13	22.10	22.02		
		Subtest 1	22.10	22.05	22.00		
	HSDPA	Subtest 2	21.90//5/7	21.86	21.85		
/	ПОДРА	Subtest 3	21.76	21.72	21.70		
	,	Subtest 4	21.65	21.62	21.61		
7	W	Subtest 1	22.07	22.02	22.01		
		Subtest 2	21.88	21.85	21.90		
	HSUPA	Subtest 3	21.81	21.78	21.82		
	WSET	Subtest 4	21.67	21.69	21.76		
/		Subtest 5	21.60	21.62	21.70		

X	Note: 1) channel	/Frequency: 4132/826.	4, 4182/836.4, 4233/8	46.6	X	-
WSET	WSE	WS	W	SLT	WSCT	
						\checkmark
	WSET	WSET	WSET	WSEI	<i>h</i>	1514
	AL PARTY OF THE PA			110141	1	F14 H
X	X			X	X	
	· /	A /				
WSET	WSE	W.S	The state of the s	SET	WSET	
						\vee
					. 2	
	WSET	WSLT	WSET	WSET		VSET
		_				
AWSET.	WSG	7 W5	77 W	SET	WSET	
						\wedge
	certification &	WSET	WSET	WSET		VSET
	26,					

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

9.1.5 Conducted Power of Wi-Fi 2.4G

I	Mode	802.11b							
ì	Channel / Frequency (MHz)	1(2412)	6(2437)	11(2462)					
I	Average Power(dBm)	17.34	17.51	17.31					
I	Mode		802.11g						
I	Channel / Frequency (MHz)	1(2412)	6(2437)	11(2462)					
I	Average Power(dBM)	15.08	15.55	15.76					
	Mode		802.11n(HT20)						
1	Channel / Frequency (MHz)	1(2412)	6(2437)	11(2462)					
I	Average Power(dBM)	15.34	15.87	15.88					

Note:

< KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters>

- (1) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured.
- (2) For Wi-Fi 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

世标检测认证股份 Testing Group Co.,Ltd.

ADD: Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

World Standardizat

World Standardization Certification & Testing Group Co., Ltd.

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT

Member of the WSCT INC

9.1.6 Conducted Power of BT

The maximum output power of BT is:

	Mode		1Mbps	
	Channel / Frequency (MHz)	0(2402)	39(2441)	78(2480)
a de	Average Power(dBm)	2.29	3.24	3.85
	Mode		2Mbps	
	Channel / Frequency (MHz)	0(2402)	39(2441)	78(2480)
	Average Power(dBm)	1.44	2.25	2.87
	Mode		3Mbps	
	Channel / Frequency (MHz)	0(2402)	39(2441)	78(2480)
1	Average Power(dBm)	1.36	2.21	2.82

The maximum output power of BLE is: 1/5/1

esting Group Co.,Ltd.

Mode	1Mbps				
Channel / Frequency (MHz)	0(2402)	39(2440)	78(2480)		
Average Power(dBm)	2.18	4.28	3.73		

WSET	WSLI	WSET	WSLT	WSLT	
WIS	$\langle \ \ \ \rangle$		SET W.5		5111
WSET	WSET	WSET	WSET	WSET	
WS			SET WIS		507
WSCT	WSET	WSLT	WSLT	WSET	
			5/67 W/5		SET
Certification WSC1	on a resulting of				

Page 28 of 49

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

9.1.7 Tune-up power tolerance

	Band		Tune-up po	wer tolerance(dBm)	X	
١	N02-		GSM	Max output power =33.0	dBm±0.5dBm	
		GSM/GPRS	1TXslots	Max output power =32.5	dBm±0.5dBm	
	GSM850	(GMSK)	2TXslots	Max output power =31.5	dBm±0.5dBm	
		(GIVISIN)	3TXslots	Max output power =30.5	dBm±0.5dBm	
			4TXslots	Max output power =29.5	dBm±0.5dBm	
,	AWS I'V	AWSET	1TXslots	Max output power =28.5	dBm±0.5dBm	
	GSM850	EGPRS (8-	2TXslots	Max output power =27.5	dBm±0.5dBm	
	GOIVIOOU	PSK)	3TXslots	Max output power =26.0	dBm±0.5dBm	
			4TXslots	Max output power =25.5	dBm±0.5dBm	
N	1000		GSM	Max output power =29.5	dBm±0.5dBm	
_		GSM/GPRS	1TXslots	Max output power =29.5	dBm±0.5dBm	
	GSM1900	M1900 (GMSK)	2TXslots	Max output power =28.5	dBm±0.5dBm	
			3TXslots	Max output power =27.5	dBm±0.5dBm	
			4TXslots	Max output power =27.0	dBm±0.5dBm	
į	WATER		1TXslots	Max output power =27.0	dBm±0.5dBm	
	GSM1900	EGPRS (8-	2TXslots	Max output power =26.5	dBm±0.5dBm	
	GSWI1900	(PSK)	3TXslots	Max output power =25.5	dBm±0.5dBm	
			4TXslots	Max output power =24.5	dBm±0.5dBm	
١	WCDMA 2		Max output por	wer =21.5dbm±1.0dbm	WELT	
	WCDMA 5			wer =21.5dbm±1.0dbm		
		802	2.11b	Max output power =1		
	2.4G Wi-Fi		2.11g	Max output power =15.0±1.0dbm Max output power =15.0±1.0dbm Max output power =3.0dBm±1dbm		
		802.11	n (HT20)			
į	WSIT	1Mbps	Power			
	BT	2Mbps	s Power	Max output power =2.0		
			s Power	Max output power =2.0		
	BLE	1Mbps	s Power	Max output power =3.5	5dBm±1dbm	

WSET WSET WSET WSET

W5E7 G 世标检测认证股份

esting Group Co.,Ltd.

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

9.2 SAR test results

Notes:

1) Per KDB447498 D01v05 r02,the SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the scaled SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

- 2) Per KDB447498 D01v05r02, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.
- 3) Per KDB447498 D01v05r02, All measurement SAR result is scaled-up to account for tune-up tolerance is compliant.
- 4) Per KDB648474 D04v01r02, body-worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn with headset SAR.
- 5)Per KDB248227 D01v01r02, the procedures required to establish specific device operating configurations for testing the SAR of 802.11 a/b/g transmitters.
- 6) Per KDB865664 D01v01r04,for each frequency band,repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%,and the measured SAR <1.45W/Kg,only one repeated measurement is required.
- 7) Per KDB865664 D02v01r01, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing(Refer to appendix B for details).

ADD; Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, Chin

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

- 8) Per KDB941225 D06v01r01, the DUT Dimension is bigger than 9 cm x 5 cm, so 10mm is chosen as the test separation distance for Hotspot mode. When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.
- 9) KDB 941225 D01, 3G SAR Measurement Procedures ,The mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ 1/4 dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤1.2 W/kg, SAR measurement is not required for the secondary mode.

WSET	WSET	WSGT	WSET	WSET	
Wist		Wis			590
WSET	WSLIT	WSLT	WSET	WSLT	
Wist		ET WS			511
WSET	WSET	WSET	WSET	WSET	
WSI					1514
WSET	WSCI	WSET	WSLT	WSLT	
\rightarrow					1501
Certification WSET	A Pasting Group	WSET	WSLT	WSLI	

Member of the WSCT INC

世标检测认证股份

esting Group Co.,Ltd.

BURN

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

9.2.1 Results overview of GSM850

Jajan.

`	/										
	Test Position	Test channel	Test	_	Value 'kg)	Power Drift	Condu cted	Tune-up Limit	Scaled SAR _{1-q}	Scaling	
7	of Head	/Freq.(MHz)	Mode	1-g	10-g	(%)	Power (dBm)	(dBm)	(W/kg)	Factor	
	Left Hand Touched	128/824.2	GPRS 4TS	0.207	0.152	2.760	29.980	30.000	0.208	1.005	
	Left Hand Tilted 15°	128/824.2	GPRS 4TS	0.126	0.091	0.770	29.980	30.000	0.127	1.005	
\	Right Hand Touched	128/824.2	GPRS 4TS	0.193	0.144	4.520	29.980	30.000	0.194	1.005	
/	Right Hand Tilted 15°	128/824.2	GPRS 4TS	0.102	0.075	-1.740	29.980	30.000	0.102	1.005	
P	Test Position	Test	Test	_	Value 'kg)	Power Drift	Condu cted	Tune-up Limit	Scaled	Scaling	7
	of Body with 10mm	channel /Freq.(MHz)	Mode	1-g	10-g	(%)	Power (dBm)	(dBm)	SAR _{1-g} (W/kg)	Factor	
	WSET		SAR Res	ults for l	Hotspot	Exposure	Conditio	n <i>WSET</i> °		WSE	Z
\	Front side	128/824.2	GPRS 4TS	0.184	0.137	-1.200	29.980	30.000	0.185	1.005	
/	Rear side	128/824.2	GPRS 4TS	0.327	0.245	1.080	29.980	30.000	0.329	1.005	
A	Left side	128/824.2	GPRS	0.187	0.129	-0.470	29.980	30.000	0.188	1.005	

W	SET	SET	SET WS	ET WSET
X	\times	\times	X	\times
WSET	WSET	WSET	WSET	WSET
W	SUT	507 W.	WIS	UT WSUT
WSET	WSLT		WSLT	WSET
	X	WSET		

世标检测认证股份 Testing Group Co.,Ltd.

Certification

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

9.2.2 Results overview of GSM1900

/c/c/

`		\ /			\ /						
2	Test Position of	Test channel	Test Mode	SAR ' (W/		Power Drift	Conducted Power	Tune-up Limit	Scaled SAR _{1-g}	Scalig Factor	
1/5	Head	/Freq.(MHz)	WIOGE	1-g	10-g	(%)	(dBm)	(dBm)	(W/kg)	i actor	
	Left Hand Touched	661/1880	GPRS 4TS	0.013	0.007	-2.250	27.090	27.500	0.014	1.099	1
	Left Hand Tilted 15°	661/1880	GPRS 4TS	0.015	0.007	-1.580	27.090	27.500	0.016	1.099	1
	Right Hand Touched	661/1880	GPRS 4TS	0.014	0.007	-4.150	27.090	27.500	0.015	1.099	
	Right Hand Tilted 15°	661/1880	GPRS 4TS	0.008	0.006	-0.420	27.090	27.500	0.009	1.099	
7	Test Position of	Test	Test	SAR Value (W/kg)		Power		Tune-up Scaled Limit SAR _{1-a}		Scalig)
	Body with 10mm /Freq.(M	/Freq.(MHz)	Mode	1-g	10-g	Drift (%)	(dBm)	(dBm)	SAR _{1-g} (W/kg)	Factor	
	(1123)	7	SAR F	Results f	or Hotsp	oot Expos	ure Condition	WELL		Aug 3	7
	Front side	661/1880	GPRS 4TS	0.041	0.021	0.310	27.090	27.500	0.045	1.099	4
/	Rear side	661/1880	GPRS 4TS	0.065	0.030	-2.190	27.090	27.500	0.071	1.099	
X	Left side	661/1880	GPRS 4TS	0.019	0.010	1.720	27.090	27.500	0.021	1.099	/

W	SET	WSET	WSET	WSET	WSET
WSCT	WSET	WSET	\rightarrow		ISBT .
	\times	Wistr	WSET	WSLIT	WSLT
WSET	WSLT	WSLT	\rightarrow		75ET
	X	X	X	X	X

世标检测认证股份 ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China esting Group Co.,Ltd. TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing:Wang@wsct-cert.com

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

9.2.3 Results overview of UMTS Band II

7575

	\ /									
	Test Position of	Test channel	Test	SAR Value (W/kg)		Power Drift	Conducted Power	Tune- up	Scaled SAR _{1-q}	Scalig
V	Head	/Freq.(MHz)	Mode	1-g	10-g	(%)	(dBm)	Limit (dBm)	(W/kg)	Factor
	Left Hand Touched	9400/1880	RMC	0.153	0.074	-3.340	22.220	22.500	0.163	1.067
	Left Hand Tilted 15°	9400/1880	RMC	0.088	0.043	-0.630	22.220	22.500	0.094	1.067
	Right Hand Touched	9400/1880	RMC	0.123	0.058	0.080	22.220	22.500	0.131	1.067
4	Right Hand Tilted 15°	9400/1880	RMC	0.061	0.028	-0.570	22.220	22.500	0.065	1.067
_	Test Position of	Test	Test	SAR Value (W/kg)		Power	Conducted	l IIn	Scaled	Scalig
	Body with 10mm	channel /Freq.(MHz)	Mode	1-g	10-g	Drift (%)	Power (dBm)	Limit (dBm)	SAR _{1-g} (W/kg)	Factor
L	177	141	SAR R	esults fo	r Hotspo	ot Exposu	re Condition	WSET		111-7
	Front side	9400/1880	RMC	0.359	0.177	-1.110	22.220	22.500	0.383	1.067
	Rear side	9400/1880	RMC	0.666	0.297	-0.890	22.220	22.500	0.710	1.067
4	Left side	9400/1880	RMC	0.219	0.105	-4.110	22.220	22.500	0.234	1.067

	WSET	WSET	WSET	WSET	WSET
WSET	WSLIT	X			5/27
	NSET	Wistr	WSLT	WSET	WSET
WSET	WSLT	WSEI			SET
	X	X	X	X	X

世标检测认证股份 & Testing Group Co.,Ltd.

World Standardized

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

9.2.4 Results overview of UMTS Band V

70700

	\ /										
_		Test channel	Test	(VV/Ka)		Power Drift	Conducted Power	Tune- up	Scaled SAR _{1-q}	Scalig	
V		/Freq.(MHz)	Mode	1-g	10-g	(%)	(dBm)	Limit (dBm)	(W/kg)	Factor	,
	Left Hand Touched	4132/826.4	RMC	0.125	0.094	-2.680	22.130	22.500	0.136	1.089	
_	Left Hand Tilted 15°	4132/826.4	RMC	0.072	0.054	-1.660	22.130	22.500	0.078	1.089	2
	Right Hand Touched	4132/826.4	RMC	0.117	0.088	-1.030	22.130	22.500	0.127	1.089	
4	Right Hand Tilted 15°	4132/826.4	RMC	0.065	0.050	-0.070	22.130	22.500	0.071	1.089	
	Test Position of	Test channel	Test	SAR Value (W/kg)		Power	_	III	Scaled	Scalig	1
	Body with 10mm	/Freq.(MHz)	Mode	1-g	10-g	Drift (%)	Power (dBm)	Limit (dBm)	SAR _{1-g} (W/kg)	Factor	\
L	117	141	SAR Re	esults fo	r Hotspo	ot Exposu	re Condition	WSET		Allet	Ż
	Front side	4132/826.4	RMC	0.105	0.078	-0.680	22.130	22.500	0.114	1.089	
	Rear side	4132/826.4	RMC	0.217	0.159	-1.230	22.130	22.500	0.236	1.089	
4	Left side	4132/826.4	RMC	0.105	0.072	-1.200	22.130	22.500	0.114	1.089	

WSET	WSCT	WSET	WSET	WSET
\times	X	WSET	WSET	WSET
WSLIT	WSUT	WSET	WSLIT	WSET
\times	\times	WSET	WSET	WSET
X	WISTER	WSET	WSET	WSET
Certification & Reggi				

世标检测认证股份 8 festing Group Co.,Ltd.

World Standardizat

World Standardized

世标检测认证股份 esting Group Co.,Ltd.

World Standardization Certification & Testing Group Co., Ltd.

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

9.2.5 Results overview of Wi-Fi 2.4G

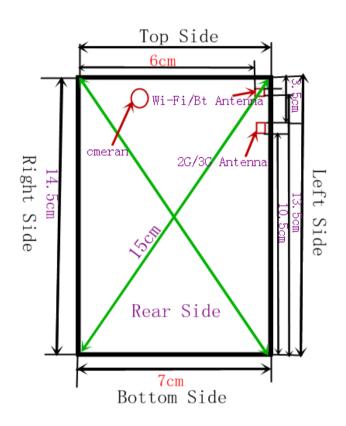
7575

	\ /				\ /					
4	Test Position of	Test channel	Test Mode		Value 'kg)	Power Drift	Conducted Power	Tune- up Limit	Scaled SAR _{1-g}	Scaling Factor
10	Head /Freq.(M	/Freq.(MHz)	WIOGE	1-g	10-g	(%)	(dBm)	(dBm)	(W/kg)	i actor
	Left Hand Touched	6/2437	802.11b	0.379	0.158	-0.250	17.510	18.000	0.424	1.119
	Left Hand Tilted 15°	6/2437	802.11b	0.231	0.098	-0.520	17.510	18.000	0.259	1.119
	Right Hand Touched	6/2437	802.11b	0.543	0.216	0.240	17.510	18.000	0.608	1.119
4	Right Hand Tilted 15°	6/2437	802.11b	0.308	0.125	-0.020	17.510	18.000	0.345	1.119
_	Test Position of	Test	Test	_	Value 'kg)	Power	Conducted	Tune- up	Scaled	Scaling
	Body with 10mm	channel /Freq.(MHz)	Mode	1-g	10-g	Drift (%)	Power (dBm)	Limit (dBm)	SAR _{1-g} (W/kg)	Factor
L		5/47	SAR R	esults fo	or Hotsp	ot Exposi	ure Condition	WSET		111-19
	Front side	6/2437	802.11b	0.139	0.063	-1.880	17.510	18.000	0.156	1.119
	Rear side	6/2437	802.11b	0.148	0.067	-1.010	17.510	18.000	0.166	1.119
4	Left side	6/2437	802.11b	0.025	0.012	-1.290	17.510	18.000	0.028	1.119
/										

W/s	101	WSET	WSET	WSET	WSET
WSLIT	WSET	WSET	\rightarrow		SET
		WSET	WSUT	WSET	WSET
WSLIT	WSET	WSET	\rightarrow		5/27
		X	X	X	X

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com


10 Multiple Transmitter Information

The SAR measurement positions of each side are as below:

VSET*

WSET

WSET

AA	E 1		
			_
			•
			- ^

WSET"

WSET.

W5ET

	Mode	Front Side	Rear Side	Left Side	Right Side	Top Side	Bottom Side
,	2G/3G Antenna	Yes	Yes	Yes	No	No	No
	Wi-Fi	Yes	Yes	Yes	No	Yes	No

1) Per KDB941225 D06v01r01, the DUT Dimension is bigger than 9 cm x 5 cm, so 10mm is chosen as the test separation distance for Hotspot mode. When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

WSET |

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

10.1.1 Stand-alone SAR test exclusion

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR,where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Head position

	Mode	Pmax(dBm)	Pmax(mW)	Distance(mm)	f(GHz)	Calculation Result	exclusion Threshold	SAR test exclusion
ě		4.50	0.00	F 00	0.45	0.00	0.00	
	BLE	4.50	2.82	5.00	2.45	0.88	3.00	Yes

Body-Worn position

- NV-57/						A-7 III III \	/ 11/2
Mode	Dmay(dPm)	Dmay(mW)	Distance(mm)	€(CH-)	Calculation	exclusion	SAR test
Wode	Piliax(ubili)	rillax(IIIVV)	Distance(IIIII)	I(GHZ)	Result	Threshold	exclusion
BLE	4.50	2.82	10.00	2.45	0.44	3.00	Yes

VSGT WSGT WSGT

WSET

WEE

WSE

としている。世标检测认证股份

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Report No.: FCC18110006A-SAR

For Question, Please Contact with WSCT

When the standalone SAR test exclusion applies to an antenna that transmits simultaneously With wsct-cert.com other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm, where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	Position	Pmax(dBm)	Pmax(mW)	Distance(mm)	f(GHz)	х	Estimated SAR(W/Kg)
BLE	Head	4.50	2.82	5.00	2.45	7.50	0.118
BLE	Body	4.50	2.82	10.00	2.45	7.50	0.059

10.1.2 Simultaneous Transmission Possibilities

The Simultaneous Transmission Possibilities are as below:

	Simultaneous Transmission Possibilities					
_	Simultaneous Tx Combination Configuration		Head	Body	Hotspot	
	1	GSM/GPRS/UMTS +Wi-Fi	YES	YES	YES	
	W-2	GSM/GPRS/UMTS +BLE	YES	YES 5 CT	YES	

Note: The device does not support simultaneous BT and Wi-Fi ,because the BT and Wi-Fi share the same antenna and can't transmit simultaneously.

WSET WSET WSET WSET WSET

世标检测认证股份 n & Testing Group Co.,Ltd. ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

10.1.3 SAR Summation Scenario

	Test Position		Scaled	Scaled SAR _{Max}		SPLSP	
		rest i osition		Wi-Fi	∑ _{1-g} SAR	SFLSF	
		Left Head Touched	0.208	0.424	0.632	NA5	
`	Head	Left Head Tilted 15°	0.127	0.259	0.386	NA	
	Heau	Right Head Touched	0.194	0.608	0.802	NA	
1		Right Head Tilted 15°	0.102	0.345	0.447	NA	
4	SET	Front side	0.185	0.156	0.341//5/	NA	
	Body	Rear side	0.329	0.166	0.495	NA	
	Hotspot	Top side	1	0.056	0.056	NA	
		Left side	0.188	0.028	0.216	NA	

Note: Simultaneous Tx Combination of GSM850 and Wi-Fi

	Tost Position	Scaled	SAR _{Max}	7. SAP	SPLSP	
	rest rosition		Wi-Fi	∠ _{1-g} 3AN	SPLSP	
15ET	Left Head Touched	0.014	0.424	0.438	NA	
Hood	Left Head Tilted 15°	0.016	0.259	0.275	NA	
Heau	Right Head Touched	0.015	0.608	0.623	NA	
	Right Head Tilted 15°	0.009	0.345	0.354	NA	
/	Front side	0.045	0.156	0.201	NA	
Body	Rear side	0.071	0.166	0.237	NA	
Hotspot	Top side	/	0.056	0.056	NA	
\wedge	Left side	0.021	0.028	0.049	NA	
	Head	Head Left Head Tilted 15° Right Head Touched Right Head Tilted 15° Front side Body Hotspot Top side	Left Head Touched 0.014 Head	Left Head Touched 0.014 0.424 Head Left Head Tilted 15° 0.016 0.259 Right Head Touched 0.015 0.608 Right Head Tilted 15° 0.009 0.345 Front side 0.045 0.156 Body Rear side 0.071 0.166 Hotspot Top side / 0.056	Left Head Touched 0.014 0.424 0.438	

Note: Simultaneous Tx Combination of GSM1900 and Wi-Fi

	Test Position		Scaled SAR _{Max}		
			Wi-Fi	∑ _{1-g} SAR	SPLSP
	Left Head Touched	0.163	0.424	0.587	NA
Head	Left Head Tilted 15°	0.094	0.259	0.353	NA
Head	Right Head Touched	0.131	0.608	0.739	NA
	Right Head Tilted 15°	0.065	0.345	0.410	NA
NSL1 V	Front side	0.383	0.156	0.539	NA
Body	Rear side	0.710	0.166	0.876	NA
Hotspot	Top side	×/	0.056	0.056	NA
	Left side	0.234	0.028	0.262	NA

Note: Simultaneous Tx Combination of UMTS Band II and Wi-Fi

Report No.: FCC18110006A-SAR

For Question Please Contact with WSCT www.wsct-cert.com

		Scaled SAR _{Max}			
	Test Position	UMTS	Wi-Fi	$\sum_{1-g} SAR$	SPLSP
		Band V			
	Left Head Touched	0.136	0.424	0.560	NA
Hood	Left Head Tilted 15°	0.078	0.259	0.337	NA -
Heau	Right Head Touched	0.127	0.608	0.735	NA
V	Right Head Tilted 15°	0.071	0.345	0.416	NA
	Front side	0.114	0.156	0.270	NA
Body	Rear side	0.236	0.166	0.402	NA NA
Hotspot	Top side		0.056	0.056	NA
	Left side	0.114	0.028	0.142	NA
	Head Body	Head Left Head Tilted 15° Right Head Touched Right Head Tilted 15° Front side Body Hotspot Rear side Top side	Left Head Touched	Test Position	Test Position

Note: Simultaneous Tx Combination of UMTS Band V and Wi-Fi

MAX.∑SAR_{1g} = 0.876W/kg<1.6 W/kg, so the Simultaneous SAR is not required for Wi-Fi and GSM&UMTS antenna.

esting Group Co.,Ltd.

Certification &

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

			- 2			
1		Test Position		SAR _{Max}	∑ _{1-q} SAR	SPLSP
	rest i osition		GSM850	BT	∠ _{1-g} 3AN	SFLSF
		Left Head Touched	0.208	0.118	0.326	NA
Head	Left Head Tilted 15°	0.127	0.118	0.245	NA	
	пеац	Right Head Touched	0.194	0.118	0.312	NA5E7
\		Right Head Tilted 15°	0.102	0.118	0.220	NA
	X	Front side	0.185	0.059	0.244	NA
į	Body	Rear side	0.329	0.059	0.388	NA
Ā	Hotspot	Top side	1	0.059	0.059	NA
a	L_A_R_Million	Left side	0.188	0.059	0.247	NA

Note: Simultaneous Tx Combination of GSM850 and BT

	Test Position		Scaled SAR _{Max}		SPLSP
			BT	∑ _{1-g} SAR	SPLSP
X	Left Head Touched	0.014	0.118	0.132	NA
Head	Left Head Tilted 15°	0.016	0.118	0.134	NA
Tleau	Right Head Touched	0.015	0.118	0.133	NA NA
	Right Head Tilted 15°	0.009	0.118	0.127	NA
	Front side	0.045	0.059	0.104	NA
Body	Rear side	0.071	0.059	0.130	NA
Hotspot	Top side		0.059	0.059	NA
	Left side	0.021	0.059	0.080	NA

Note: Simultaneous Tx Combination of GSM1900 and BT

24 10 10				1007 17	
		Scaled	SAR _{Max}		
	Test Position	UMTS	BT	∑ _{1-g} SAR	SPLSP
		Band II			
-	Left Head Touched	0.163	0.118	0.281	NA
Head	Left Head Tilted 15°	0.094	0.118	0.212	NA
пеац	Right Head Touched	0.131	0.118	0.249	NA
X	Right Head Tilted 15°	0.065	0.118	0.183	NA
	Front side	0.383	0.059	0.442	NA
Body	Rear side	0.710	0.059	0.769	NA
Hotspot	Top side		0.059	0.059	NA
	Left side	0.234	0.059	0.293	NA

Note: Simultaneous Tx Combination of UMTS Band II and BT

WSET WSET

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

SP
15/7
1
\
\
\
A

Note: Simultaneous Tx Combination of UMTS Band V and BT

MAX.∑SAR_{1g} = 0.769W/kg<1.6 W/kg, so the Simultaneous SAR is not required for BT and GSM&UMTS antenna.

	WSUT	WSET	WSLIT	WELT	WSET
WETE		$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			CT CT
	WSGT	WSET	WSET	WSET	WSET
WST	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\langle \ \rangle$			
	WSLT	WSLT	WSLT	WSLIT	WSLT
WSIG	$\langle \rangle$	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\langle \ \ \ \rangle$		
	certification e	WSLIT	WSET	WSET	WSET
	061				

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

11 Measurement uncertainty evaluation

11.1 Measurement uncertainty evaluation for SAR test

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Satimo. The breakdown of the individual uncertainties is as follows:

	Measurement Uncertainty evaluation for SAR test								
	Uncertainty Component	Tol. (±%)	Prob.	Div.	C_{i}	C_{i}	1g U _i	10g U _i	Vi
			Dist.	Div.	(1g)	(10g)	(±%)	(±%)	
_	measurement system								
	Probe Calibration	5.8	N	1	1	1	5.8	5.8	∞
	Axial Isotropy	3.5	R	$\sqrt{3}$	$(1-C_p)^{1/2}$	$(1-C_p)^{1/2}$	1.43	1.43	∞
	Hemispherical Isotropy	5.9	R	$\sqrt{3}$	$\sqrt{C_p}$	√C _p	2.41	2.41	∞
Ä	Boundary Effect	1 W	5/R	$\sqrt{3}$	1 W/	ET1	0.58	0.58	∞
	Linearity	4.7	R	$\sqrt{3}$	/ 1	1	2.71	2.71	∞
	system Detection Limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
	Modulation response	3	N	1	1	1 /	3.00	3.00	∞
	Readout Electronics	0.5	N	W/5/		1/7	0.50	0.50	00/
	Response Time	0	R	$\sqrt{3}$	1	<u> </u>	0.00	0.00	∞
	Integration Time	1.4	R	$\sqrt{3}$	1	X 1	0.81	0.81	∞
	RF Ambient Conditions-Noise	3 /	R	$\sqrt{3}$	1 /	7	1.73	1.73	∞
2	RF Ambient Conditions- Reflections	3 W	⁵ /R	$\sqrt{3}$	1W	141	1.73	1.73	∞
	Probe Positioner Mechanical Tolerance	1.4	R	√3	1	1	0.81	0.81	∞
	Probe positioning with respect to Phantom Shell	1.4	R	$\sqrt{3}$	1	1/1	0.81	0.81	∞ /
<	Extrapolation, interpolation and Integration Algorithms for Max.SAR Evaluation	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Ž	Test sample Related								
	Test Sample Positioning	2.6	N	1	/1	1	2.60	2.60	11
	Device Holder Uncertainty	3	N	1	1	1	3.00	3.00	7
	Output Power Variation-SAR drift measurement	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
	SAR scaling	2	R	$\sqrt{3}$	1	1/1	1.15	1.15	∞ △

WSET WSET WSET

World Standardizat

世标检测认证股份 Testing Group Co.,Ltd.

World Standardization Certification & Testing Group Co.,Ltd.

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

Member of the WSCT INC.

	Phantom and Tissue Parameters								
	Phantom Uncertainty (shape and thickness tolerances)	4	R	$\sqrt{3}$	1	1	2.31	2.31	8
	Uncertainty in SAR correction for deviation (in permittivity and conductivity)	2	Z	1	1 W	0.84	2.00	1.68	8
	Liquid conductivity (meas.)	2.5	N	1	0.64	0.43	1.60	1.08	5
	Liquid conductivity (target.)	5	R	$\sqrt{3}$	0.64	0.43	1.85	1.24	5
	Liquid Permittivity (meas.)/5/	2.5	N	115/	0.60	0.49	1.50	1.23	8
	Liquid Permittivity (target.)	5	R	√3	0.60	0.49	1.73	1.42	8
	Combined Standard Uncertainly	4	Rss		4		10.63	10.54	
4	Expanded Uncertainty{95% CONFIDENCE INTERRVAL}		k		1	74	21.26	21.08	

WSCT	WSET	WSCI	WSET	WSET
\times	SET			
WSLT	WSET	WSET	WSET	WSET
\times	SET			E)
WSLT	WSET	WSET	WSET	WSLT
\times	SUT			14
\times	WSET	WSET	WSET	WSET
Certification & Testing G	\times			

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

11.2 Measurement uncertainty evaluation for system check

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Satimo. The breakdown of the individual uncertainties is as follows:

1	Satimo. The breakdown of the individual differtainties is as follows.								
	Uncer	rtainty	For Syste	m Perf	ormance (Check		4	
L	Uncertainty Component	Tol. (±%)	Prob. Dist.	Div.	C _i	C _i 10g	1g U _i (±%)	10g U _i (±%)	Vi
	measurement system	, ,						,	
	Probe Calibration	5.8	N	1	1	1	5.80	5.80	∞
	Axial Isotropy	3.5	R	$\sqrt{3}$	$(1-C_p)^{1/2}$	$(1-C_p)^{1/2}$	1.43	1.43	∞,
	Hemispherical Isotropy	5.9	R/	$\sqrt{3}$	√Cp	√Cp	2.41	2.41	8
1	Boundary Effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
	Linearity	4.7	R	$\sqrt{3}$	1 /	1	2.71	2.71	∞
77	system detection Limits	1/2	R R	$\sqrt{3}$	1/1/2	722	0.58	0.58	∞
-	Modulation response	0	N		1100		0.00	0.00	∞
	Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
	Response Time	0	R	$\sqrt{3}$	1	1	0.00	0.00	∞/
	Integration Time	1.4	R	$\sqrt{3}$	1	1 /	0.81	0.81	~
	RF ambient Conditions - Noise	3	R	$\sqrt{3}$	1	1	1.73	1.73	- &
<	RF ambient Conditions – Reflections	3	R	√3	1	X 1	1.73	1.73	8
ľ	Probe positioned Mechanical Tolerance	1.4	R.	√3	1/1/2	77	0.81	0.81	∞
	Probe positioning with respect to Phantom Shell	1.4	R	√3	/ 1	1	0.81	0.81	8
	Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	8 4VA
	Dipole								
<	Deviation of experimental source from numerical source	4	N	1	1	X1	4.00	4.00	8
ľ	Input power and SAR drift measurement	5 1	/5 R7	$\sqrt{3}$	1 W	741	2.89	2.89	∞
	Dipole axis to liquid Distance	2	R	$\sqrt{3}$	/ 1	1	1.16	1.16	∞

WSCT WSCT WSCT

Wist

WSET

WSET

11/-14

W5CT

Certification &

世标检测认证股份 esting Group Co.,Ltd.

World Standardized

世标检测认证股份 Testing Group Co.,Ltd.

World Standardization Certification & Testing Group Co., Ltd.

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

	Phantom and Tissue Parameters									L
1	Phantom Uncertainty (shape and thickness tolerances)	4	R	√3	1	/1	2.31	2.31	8	
3	Uncertainty in SAR correction for deviation (in permittivity and conductivity)	2	12 12	1	1/1/2	0.84	2.00	1.68	8	
	Liquid conductivity (meas.)	2.5	N	1	0.64	0.43	1.60	1.08	5	
	Liquid conductivity (target.)	5	R	$\sqrt{3}$	0.64	0.43	1.85	1.24	5	١
	Liquid Permittivity (meas.) /5/	2.5	N	W15/	0.60	0.49	1.50	1.23	8	Ł
1	Liquid Permittivity (target.)	5	R	√3	0.60	0.49	1.73	1.41	8	
`	Combined Standard Uncertainty		Rss		/		10.28	9.98		
Z	Expanded Uncertainty (95% Confidence interval)	1	75/k7		W	777	20.57	19.95	/	
			•							

	WSET	WSCT	WSET	WSET	WHA	
WSI	($\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			WSUT	
	WSUT	WSET	WSET	WSET	WSG	
Wister	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				WSET	
	WSLT	WSUT	WSLT	WSET	WSI	\ \
WISIG	$\langle \rangle$	$\langle \rangle$			NSET.	
	X	WSET	WSET	WSET	Wist	7
dardizatio	Certification & Regulation of the Control of the Co					

Member of the WSCT INC.

Report No.: FCC18110006A-SAR

For Question,
Please Contact with WSCT
www.wsct-cert.com

12 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

		Manufact	Device Type	Type(Model)	Serial number	calib	ration	
		urer	Device Type	71 - ()		Last Cal.	Due Date	
	1	A74	COMOSAR					É
/		SATIMO	DOSIMETRIC E FIELD PROBE	SSE5	SN 07/15 EP252	2017-11-27	2018-11-26	
\ 77		SATIMO	COMOSAR 835 MHz REFERENCE DIPOLE	SID835	SN 14/13 DIP0G835-235	2018-07-25	2019-07-24	
		SATIMO	COMOSAR 900 MHz REFERENCE DIPOLE	SID900	SN 14/13 DIP0G900-231	2018-07-25	2019-07-24	
		SATIMO	COMOSAR 1800 MHz REFERENCE DIPOLE	SID1800	SN 14/13 DIP1G800-232	2018-07-25	2019-07-24	/
		SATIMO	COMOSAR 1900 MHz REFERENCE DIPOLE	SID1900	SN 14/13 DIP1G900-236	2018-07-25	2019-07-24	ě
		SATIMO	COMOSAR 2000 MHz REFERENCE DIPOLE	SID2000	SN 14/13 DIP2G000-237	2018-07-25	2019-07-24	
7		SATIMO	COMOSAR 2450 MHz REFERENCE DIPOLE	SID2450	SN 14/13 DIP2G450-238	2018-07-25	2019-07-24	
		SATIMO	COMOSAR 2600 MHz REFERENCE DIPOLE	SID2600	SN 28/14 DIP2G600-327	2018-07-25	2019-07-24	١
	X	SATIMO	Software	OPENSAR	N/A	N/A	N/A	ľ
ľ	1	VELT	WELL	COMOSAR	·	MISTT	/17	ŀ
/		SATIMO	Phantom	IEEE SAM PHANTOM	SN 14/13 SAM99	N/A	N/A	
\ L		R&S	Universal Radio Communication Tester	CMU 200	119733	2018-05-24	2019-05-23	
4		HP	Network Analyser	8753D	3410A08889	2018-10-29	2019-10-28	H
	\boxtimes	HP	Signal Generator	E4421B	GB39340770	2018-10-29	2019-10-28	1
		Keithley	Multimeter	Keithley 2000	4014539	2018-10-29	2019-10-28	/
,		SATIMO	Amplifier	Power Amplifier	MODU-023-A- 0004	2018-10-29	2019-10-28	Į
	\boxtimes	Agilent	Power Meter	E4418B	GB43312909	2018-10-29	2019-10-28	
	\boxtimes	Agilent	Power Meter Sensor	E4412A	MY41500046	2018-10-29	2019-10-28	
,		Agilent	Power Meter	E4417A	GB41291826	2018-10-29	2019-10-28	
L		Agilent	Power Meter Sensor	8481H	MY41091215	2018-10-29	2019-10-28	

Report No.: FCC18110006A-SAR

For Question Please Contact with WSCT www.wsct-cert.com

Annex A: System performance verification

(Please See the SAR Measurement Plots of annex A.)

Annex B: Measurement results

(Please See the SAR Measurement Plots of annex B.)

Annex C: Calibration reports

(Please See the Calibration reports of annex C.)

Annex D: Photo documentation

Certification

(Please See the Photo documentation of annex D.)

Annex A: System Check

Tested Model: B2

Report Number: FCC18110006A-SAR

I. RESULTS

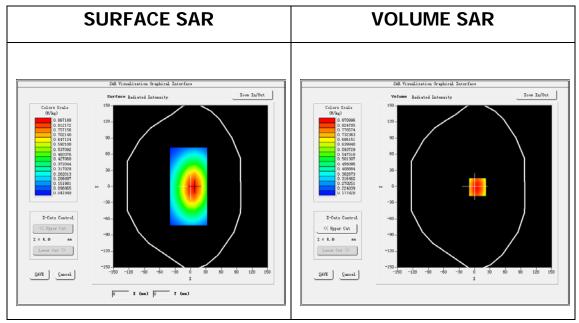
<u>TYPE</u>	<u>BAND</u>	<u>PARAMETERS</u>
Validation	CW835	Measurement 1: Validation Plane with Dipole device position on Middle Channel in CW mode
Validation	CW835	Measurement 2: Validation Plane with Dipole device position on Middle Channel in CW mode
Validation	CW1900	Measurement 3: Validation Plane with Dipole device position on Middle Channel in CW mode
Validation	CW1900	Measurement 4: Validation Plane with Dipole device position on Middle Channel in CW mode
Validation	CW2450	Measurement 5: Validation Plane with Dipole device position on Middle Channel in CW mode
Validation	CW2450	Measurement 6: Validation Plane with Dipole device position on Middle Channel in CW mode

BODY

Type: Validation measurement (Complete)

Date of measurement: 13/11/2018

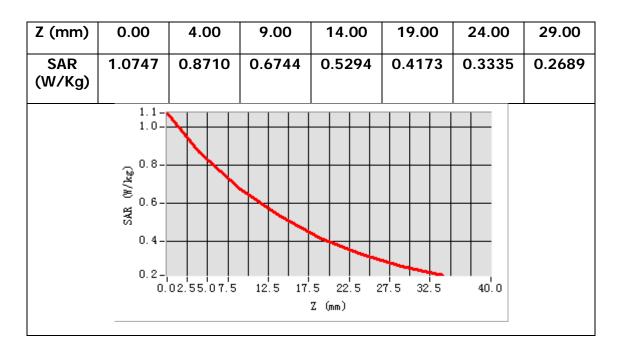
Measurement duration: 11 minutes 38 seconds

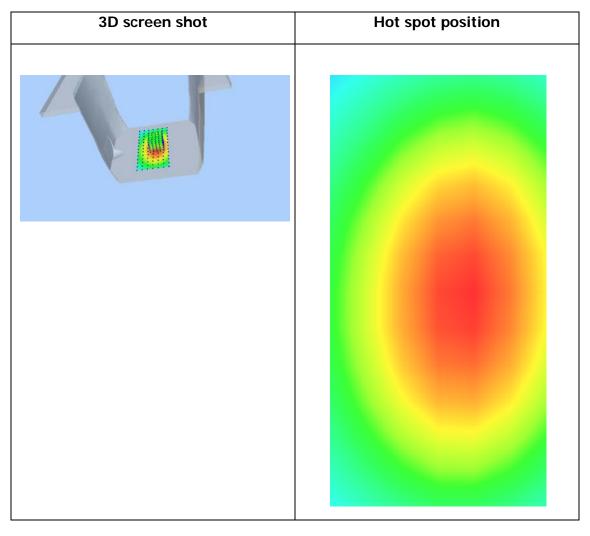

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Dipole</u>
<u>Band</u>	<u>CW835</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	CW (Crest factor: 1.0)

B. SAR Measurement Results

Frequency (MHz)	835.000000
Relative permittivity (real part)	53.458401
Relative permittivity (imaginary part)	20.503000
Conductivity (S/m)	0.951111
Variation (%)	-1.520000




Maximum location: X=6.00, Y=-1.00

SAR Peak: 1.08 W/kg

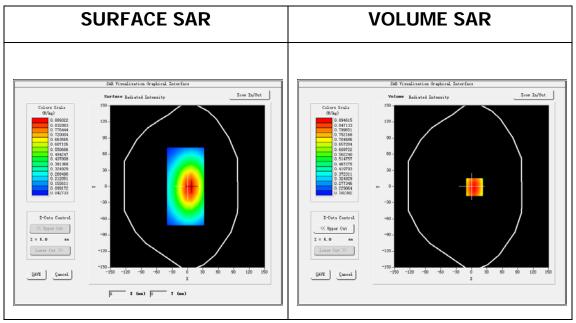
SAR 10g (W/Kg)	0.629766
SAR 1g (W/Kg)	0.846036

HEAD

Type: Validation measurement (Complete)

Date of measurement: 13/11/2018

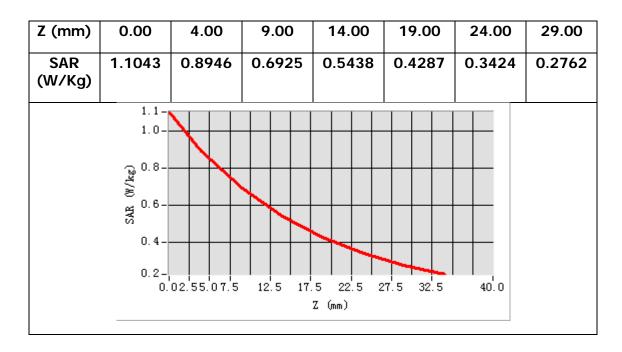
Measurement duration: 11 minutes 38 seconds

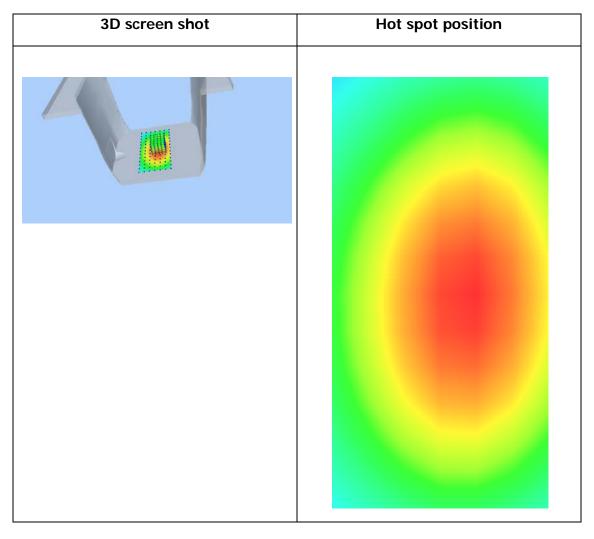

A. Experimental conditions.

<u>Area Scan</u>	dx=8mm dy=8mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Dipole</u>
<u>Band</u>	<u>CW835</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	CW (Crest factor: 1.0)

B. SAR Measurement Results

Frequency (MHz)	835.000000
Relative permittivity (real part)	40.441299
Relative permittivity (imaginary part)	20.606899
Conductivity (S/m)	0.955931
Variation (%)	-1.660000




Maximum location: X=6.00, Y=-1.00

SAR Peak: 1.11 W/kg

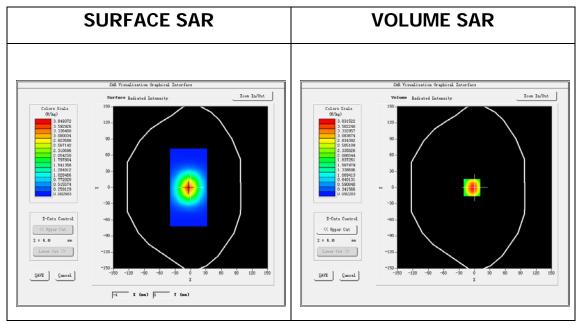
SAR 10g (W/Kg)	0.671843
SAR 1g (W/Kg)	0.912096

BODY

Type: Validation measurement (Complete)

Date of measurement: 12/11/2018

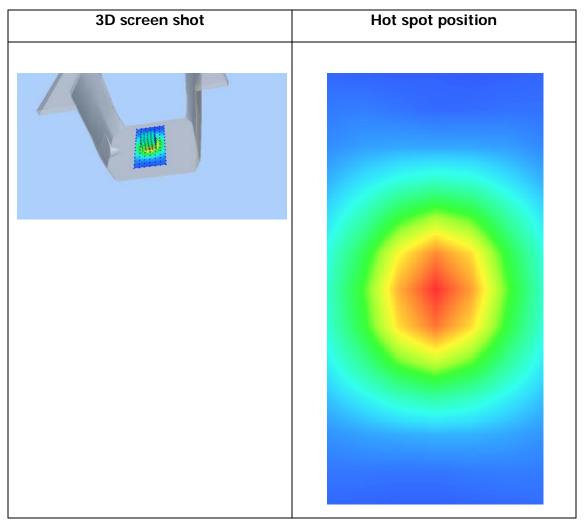
Measurement duration: 9 minutes 55 seconds


A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Dipole</u>
<u>Band</u>	<u>CW1900</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	CW (Crest factor: 1.0)

B. SAR Measurement Results

Frequency (MHz)	1900.000000
Relative permittivity (real part)	52.199100
Relative permittivity (imaginary part)	14.615200
Conductivity (S/m)	1.542716
Variation (%)	-0.660000


Maximum location: X=-5.00, Y=0.00

SAR Peak: 5.90 W/kg

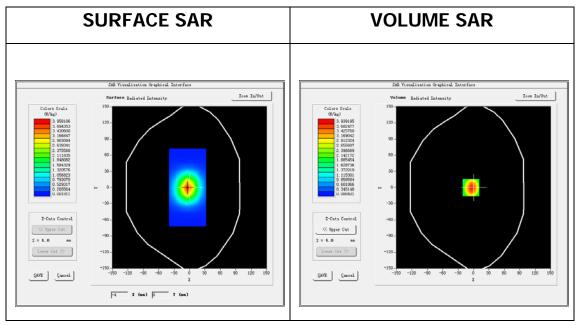
SAR 10g (W/Kg)	2.047070
SAR 1g (W/Kg)	3.720274

HEAD

Type: Validation measurement (Complete)

Date of measurement: 12/11/2018

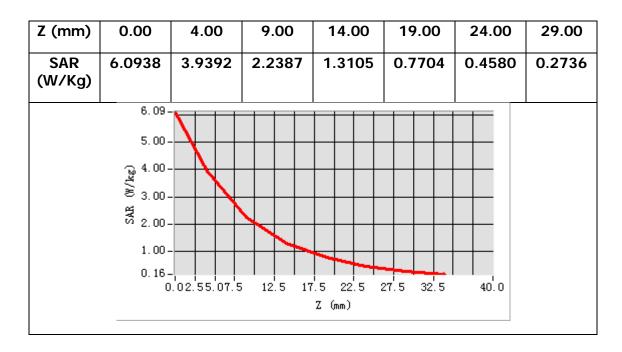
Measurement duration: 9 minutes 56 seconds

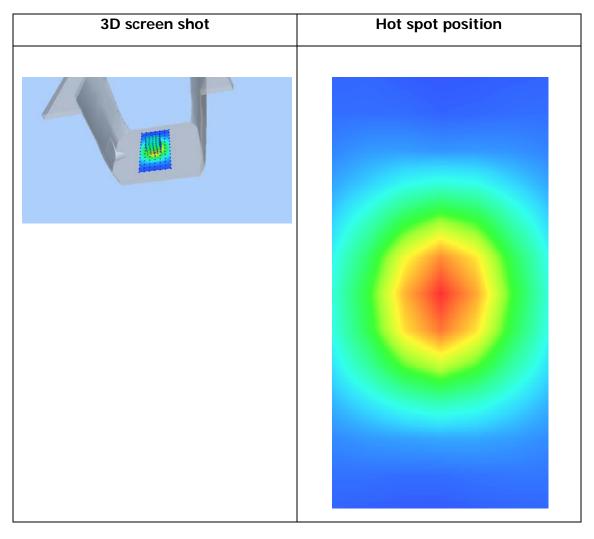

A. Experimental conditions.

<u>Area Scan</u>	dx=8mm dy=8mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Dipole</u>
<u>Band</u>	<u>CW1900</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	CW (Crest factor: 1.0)

B. SAR Measurement Results

Frequency (MHz)	1900.000000
Relative permittivity (real part)	39.880501
Relative permittivity (imaginary part)	13.326500
Conductivity (S/m)	1.406686
Variation (%)	-0.860000




Maximum location: X=-5.00, Y=0.00

SAR Peak: 6.12 W/kg

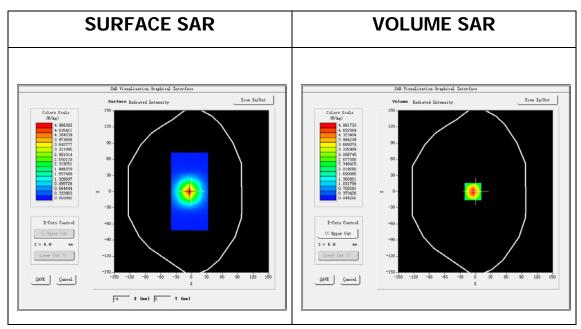
SAR 10g (W/Kg)	2.063282
SAR 1g (W/Kg)	3.782124

BODY

Type: Validation measurement (Complete)

Date of measurement: 13/11/2018

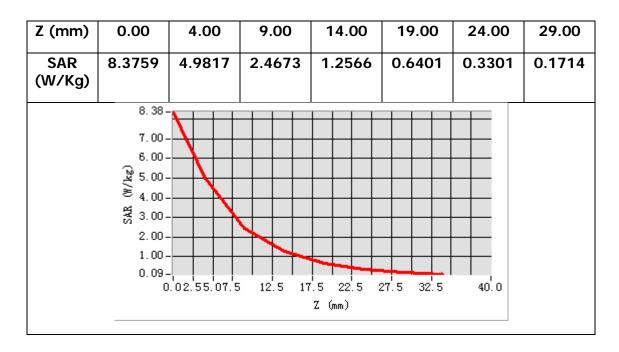
Measurement duration: 9 minutes 58 seconds

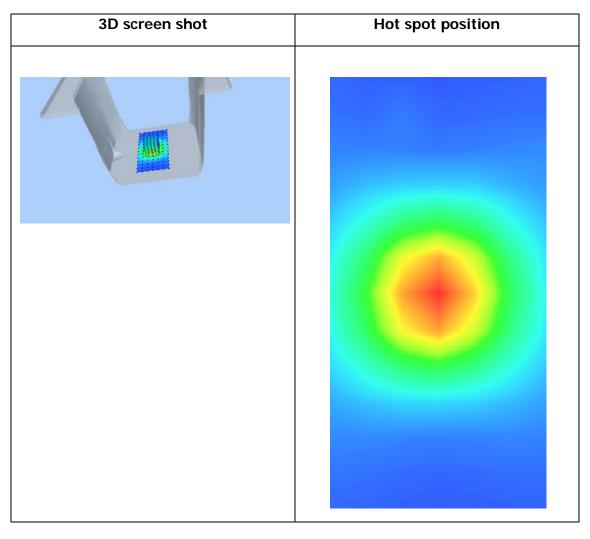

A. Experimental conditions.

<u>Area Scan</u>	dx=8mm dy=8mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Dipole</u>
<u>Band</u>	<u>CW2450</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	CW (Crest factor: 1.0)

B. SAR Measurement Results

Frequency (MHz)	2450.000000
Relative permittivity (real part)	52.735699
Relative permittivity (imaginary part)	14.017300
Conductivity (S/m)	1.907910
Variation (%)	-0.880000




Maximum location: X=-5.00, Y=0.00

SAR Peak: 8.28 W/kg

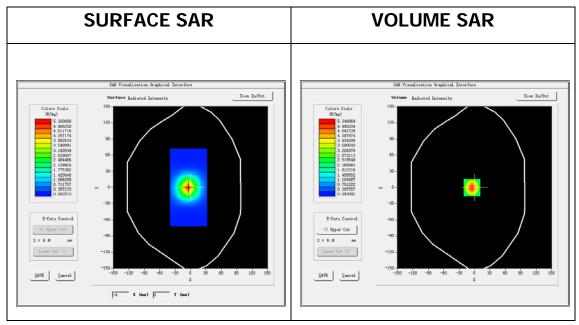
SAR 10g (W/Kg)	2.328959
SAR 1g (W/Kg)	4.728068

HEAD

Type: Validation measurement (Complete)

Date of measurement: 13/11/2018

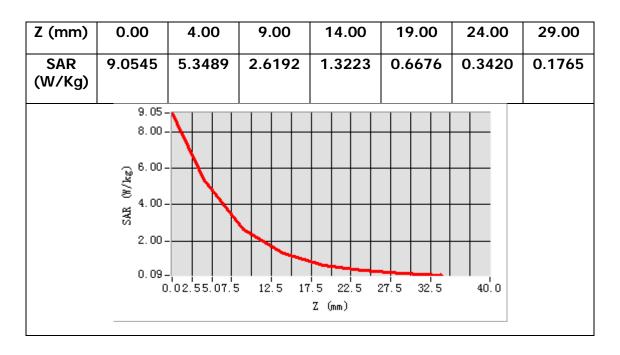
Measurement duration: 9 minutes 57 seconds

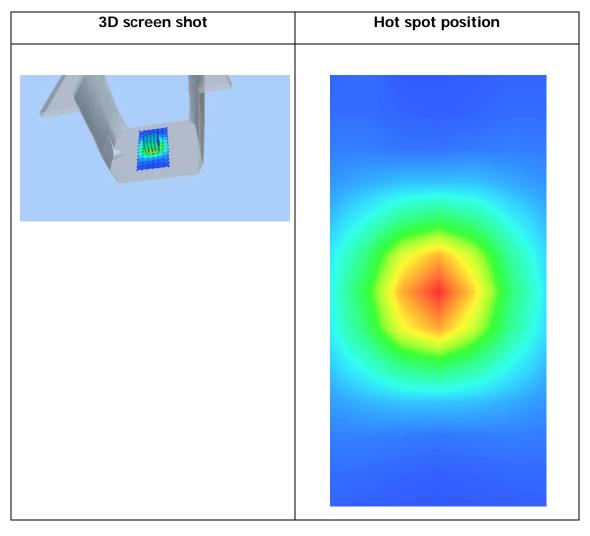

A. Experimental conditions.

<u>Area Scan</u>	dx=8mm dy=8mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Dipole</u>
<u>Band</u>	<u>CW2450</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	CW (Crest factor: 1.0)

B. SAR Measurement Results

Frequency (MHz)	2450.000000
Relative permittivity (real part)	39.270901
Relative permittivity (imaginary part)	13.557900
Conductivity (S/m)	1.845381
Variation (%)	-0.750000




Maximum location: X=-5.00, Y=0.00

SAR Peak: 8.94 W/kg

SAR 10g (W/Kg)	2.480377
SAR 1g (W/Kg)	5.123599

Annex B: Measurement Results

Tested Model: B2

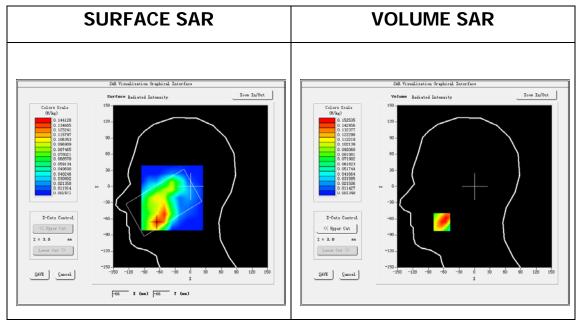
Report Number: FCC18110006A-SAR

Type: Phone measurement (Complete)

Date of measurement: 12/11/2018

Measurement duration: 10 minutes 35 seconds

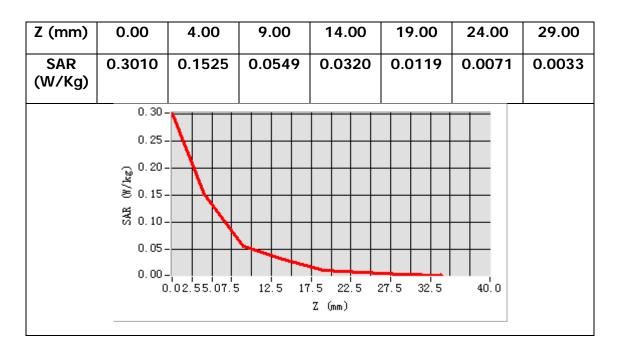
A. Experimental conditions.

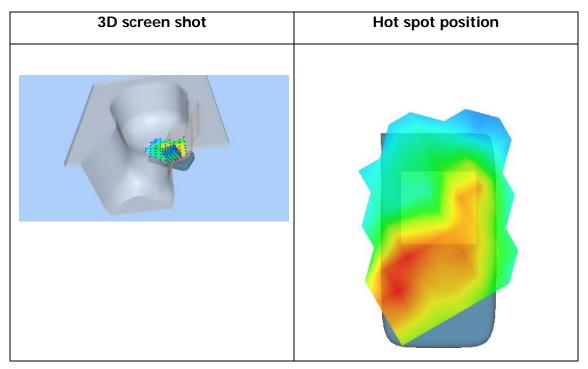

Area Scan	<u>dx=15mm dy=15mm</u>
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
<u>Phantom</u>	<u>Left head</u>
<u>Device Position</u>	<u>Cheek</u>
<u>Band</u>	Band2_WCDMA1900
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	WCDMA (Crest factor: 1.0)
Conversion factor	<u>5.17</u>

B. SAR Measurement Results

Middle Band SAR (Channel 9400):

Frequency (MHz)	1880.000000
Relative permittivity (real part)	51.470901
Relative permittivity (imaginary part)	15.022000
Conductivity (S/m)	1.568964
Variation (%)	-3.340000




Maximum location: X=-64.00, Y=-66.00

SAR Peak: 0.28 W/kg

SAR 10g (W/Kg)	0.074112
SAR 1g (W/Kg)	0.152949

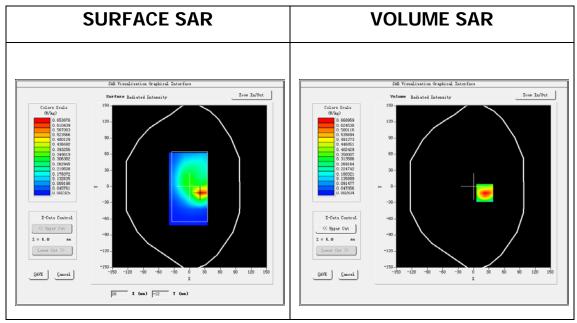
Rear-side-middle

Type: Phone measurement (Complete)

Date of measurement: 12/11/2018

Measurement duration: 10 minutes 45 seconds

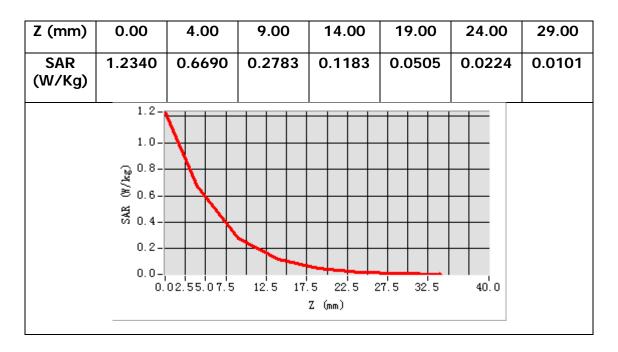
A. Experimental conditions.

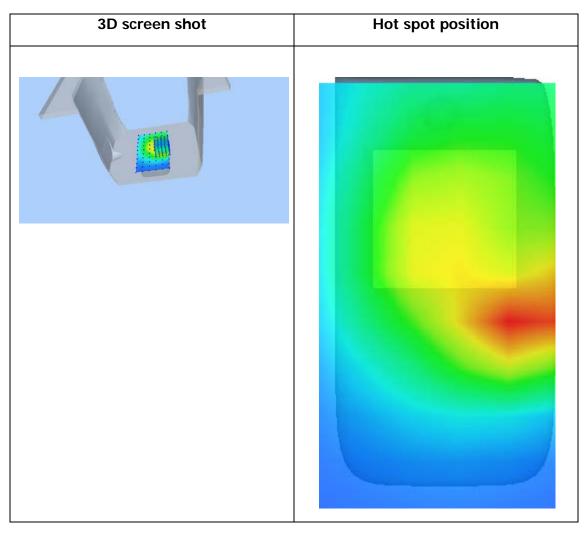

Area Scan	dx=15mm dy=15mm	
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete	
<u>Phantom</u>	<u>Validation plane</u>	
<u>Device Position</u>	<u>Body</u>	
<u>Band</u>	Band2_WCDMA1900	
<u>Channels</u>	<u>Middle</u>	
<u>Signal</u>	WCDMA (Crest factor: 1.0)	
Conversion factor	<u>5.28</u>	

B. SAR Measurement Results

Middle Band SAR (Channel 9400):

Frequency (MHz)	1880.000000
Relative permittivity (real part)	51.470901
Relative permittivity (imaginary part)	15.022000
Conductivity (S/m)	1.568964
Variation (%)	-0.890000




Maximum location: X=22.00, Y=-12.00

SAR Peak: 1.24 W/kg

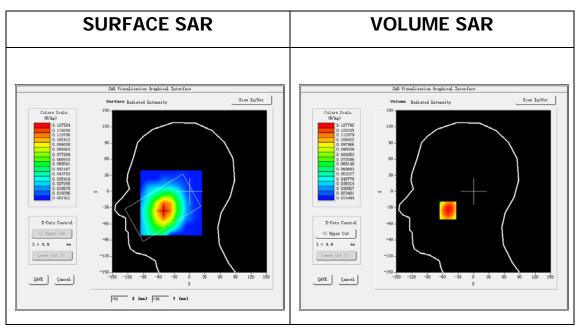
SAR 10g (W/Kg)	0.296775
SAR 1g (W/Kg)	0.665589

Type: Phone measurement (Complete)

Date of measurement: 13/11/2018

Measurement duration: 9 minutes 3 seconds

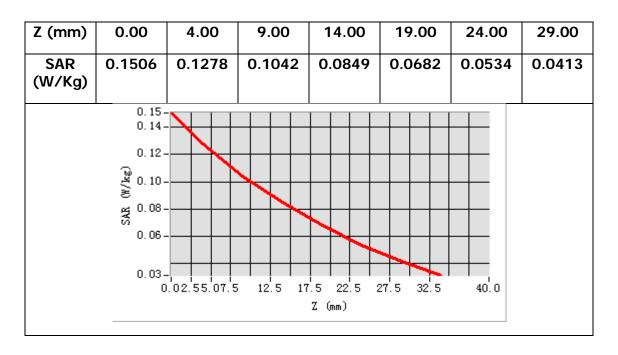
A. Experimental conditions.

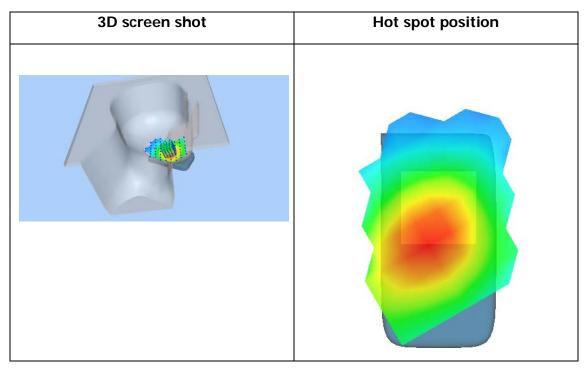

<u>Area Scan</u>	<u>dx=15mm dy=15mm</u>
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
<u>Phantom</u>	<u>Left head</u>
<u>Device Position</u>	<u>Cheek</u>
<u>Band</u>	Band5_WCDMA850
<u>Channels</u>	Low
<u>Signal</u>	WCDMA (Crest factor: 1.0)
Conversion factor	<u>5.54</u>

B. SAR Measurement Results

Lower Band SAR (Channel 4132):

Frequency (MHz)	826.400024
Relative permittivity (real part)	40.545761
Relative permittivity (imaginary part)	19.543301
Conductivity (S/m)	0.897255
Variation (%)	-2.680000




Maximum location: X=-50.00, Y=-35.00

SAR Peak: 0.15 W/kg

SAR 10g (W/Kg)	0.093939
SAR 1g (W/Kg)	0.124827

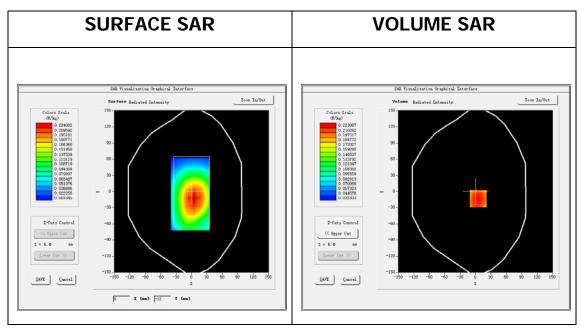
Rear-side-middle

Type: Phone measurement (Complete)

Date of measurement: 13/11/2018

Measurement duration: 10 minutes 36 seconds

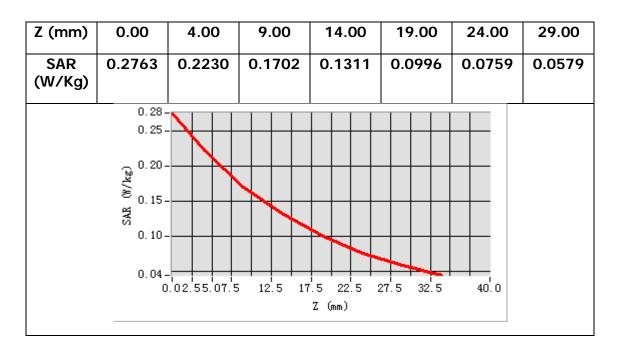
A. Experimental conditions.

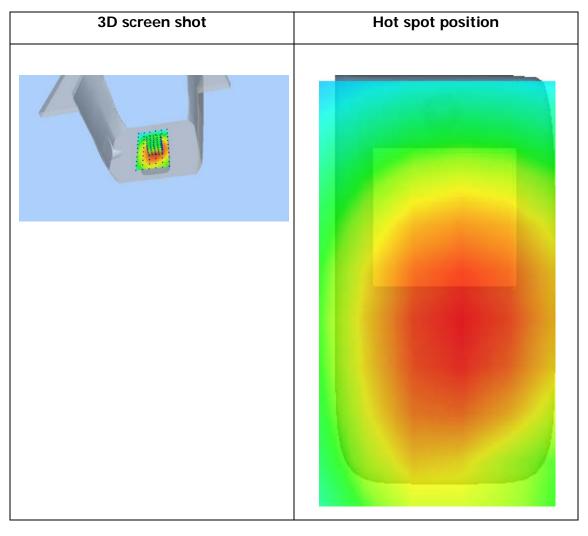

Area Scan	dx=15mm dy=15mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Body</u>
<u>Band</u>	Band5_WCDMA850
<u>Channels</u>	Low
<u>Signal</u>	WCDMA (Crest factor: 1.0)
Conversion factor	<u>5.75</u>

B. SAR Measurement Results

Lower Band SAR (Channel 4132):

Frequency (MHz)	826.400024
Relative permittivity (real part)	53.853939
Relative permittivity (imaginary part)	20.656139
Conductivity (S/m)	0.948346
Variation (%)	-1.230000




Maximum location: X=5.00, Y=-13.00

SAR Peak: 0.28 W/kg

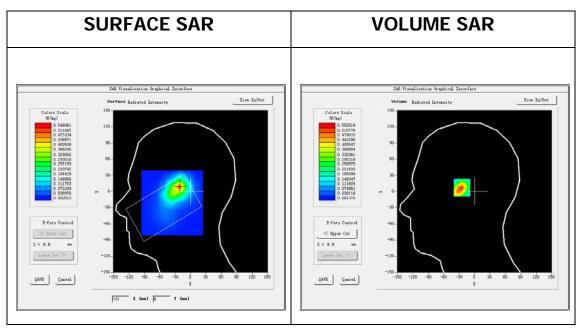
SAR 10g (W/Kg)	0.159323
SAR 1g (W/Kg)	0.216583

Type: Phone measurement (Complete)

Date of measurement: 13/11/2018

Measurement duration: 8 minutes 20 seconds

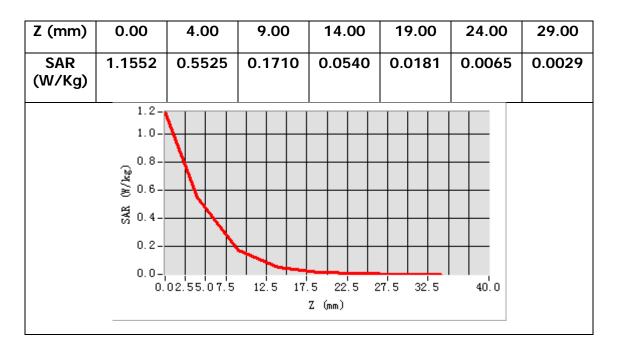
A. Experimental conditions.

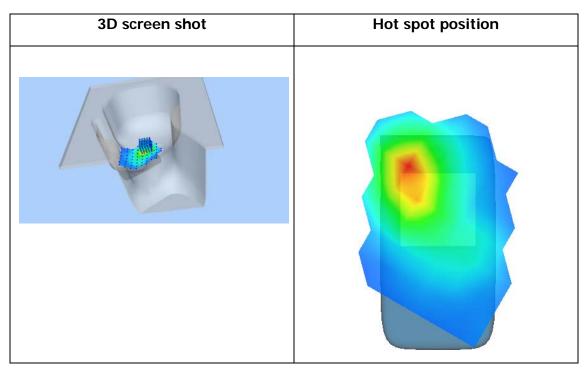

<u>Area Scan</u>	<u>dx=12mm dy=12mm</u>	
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm,Complete	
<u>Phantom</u>	Right head	
<u>Device Position</u>	<u>Cheek</u>	
<u>Band</u>	<u>IEEE 802.11b ISM</u>	
<u>Channels</u>	<u>Middle</u>	
<u>Signal</u>	IEEE802.b (Crest factor: 1.0)	
Conversion factor	<u>4.83</u>	

B. SAR Measurement Results

Middle Band SAR (Channel 6):

Frequency (MHz)	2437.000000
Relative permittivity (real part)	39.233898
Relative permittivity (imaginary part)	13.206700
Conductivity (S/m)	1.791709
Variation (%)	0.240000




Maximum location: X=-22.00, Y=9.00

SAR Peak: 1.14 W/kg

SAR 10g (W/Kg)	0.216115
SAR 1g (W/Kg)	0.543107

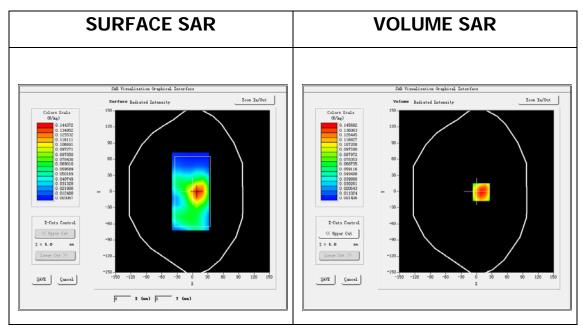
Rear-side-middle

Type: Phone measurement (Complete)

Date of measurement: 13/11/2018

Measurement duration: 11 minutes 57 seconds

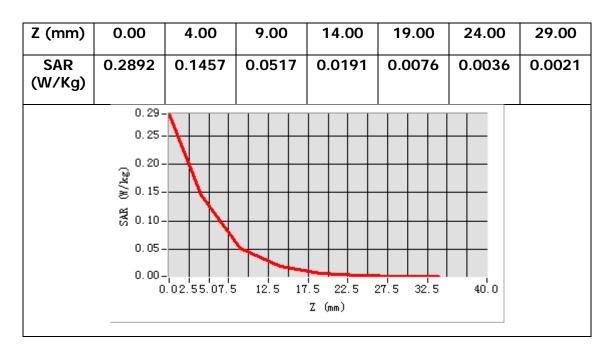
A. Experimental conditions.

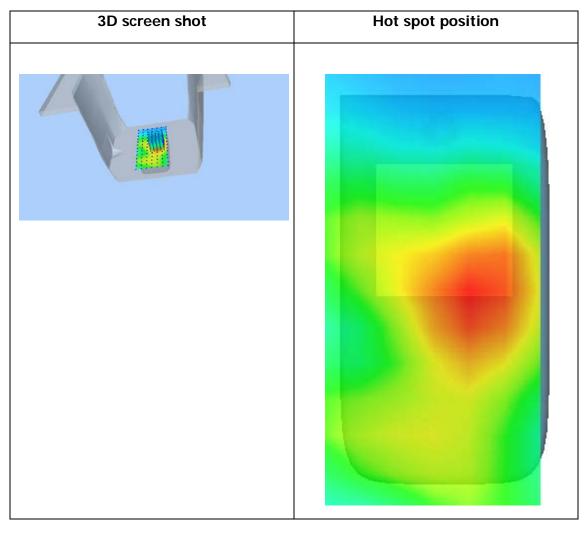

<u>Area Scan</u>	dx=12mm dy=12mm	
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm,Complete	
<u>Phantom</u>	<u>Validation plane</u>	
<u>Device Position</u>	<u>Body</u>	
<u>Band</u>	IEEE 802.11b ISM	
<u>Channels</u>	<u>Middle</u>	
<u>Signal</u>	IEEE802.b (Crest factor: 1.0)	
Conversion factor	<u>5.02</u>	

B. SAR Measurement Results

Middle Band SAR (Channel 6):

Frequency (MHz)	2437.000000
Relative permittivity (real part)	53.066399
Relative permittivity (imaginary part)	14.968200
Conductivity (S/m)	2.030686
Variation (%)	-1.010000




Maximum location: X=9.00, Y=-1.00

SAR Peak: 0.29 W/kg

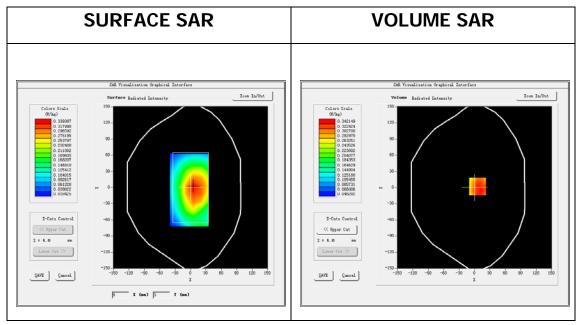
SAR 10g (W/Kg)	0.067087
SAR 1g (W/Kg)	0.148399

Rear-side-middle

Type: Phone measurement (Complete)

Date of measurement: 13/11/2018

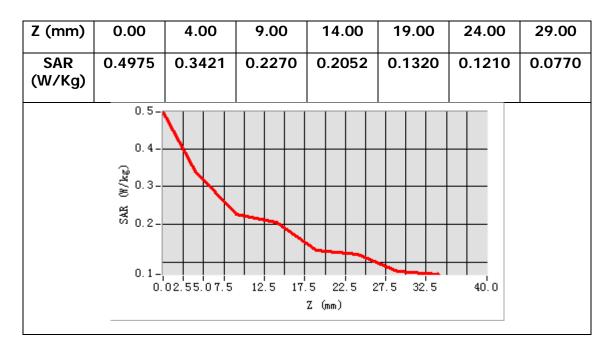
Measurement duration: 10 minutes 50 seconds

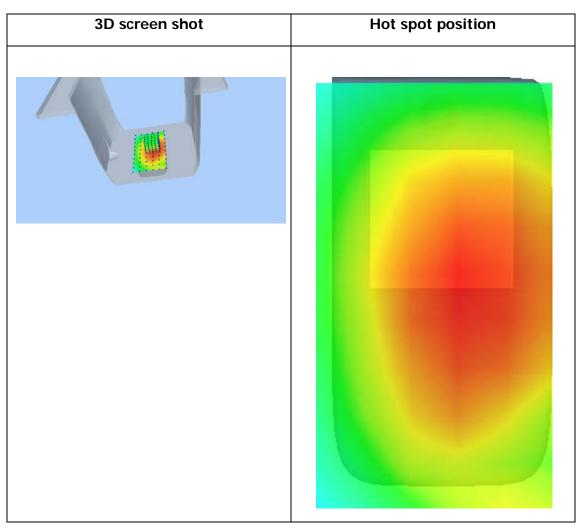

A. Experimental conditions.

<u>Area Scan</u>	<u>dx=15mm dy=15mm</u>	
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete	
<u>Phantom</u>	<u>Validation plane</u>	
<u>Device Position</u>	<u>Body</u>	
<u>Band</u>	CUSTOM (GPRS850_1Tx)	
<u>Channels</u>	Low	
<u>Signal</u>	Duty Cycle: 0.12 (Crest factor: 0.1)	
Conversion factor	<u>5.75</u>	

B. SAR Measurement Results

Frequency (MHz)	824.200012
Relative permittivity (real part)	55.242077
Relative permittivity (imaginary part)	21.378187
Conductivity (S/m)	0.978883
Variation (%)	1.080000




Maximum location: X=6.00, Y=2.00

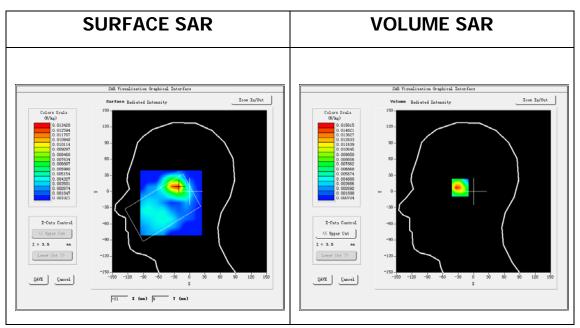
SAR Peak: 0.42 W/kg

SAR 10g (W/Kg)	0.244579
SAR 1g (W/Kg)	0.327291

Type: Phone measurement (Complete)

Date of measurement: 12/11/2018

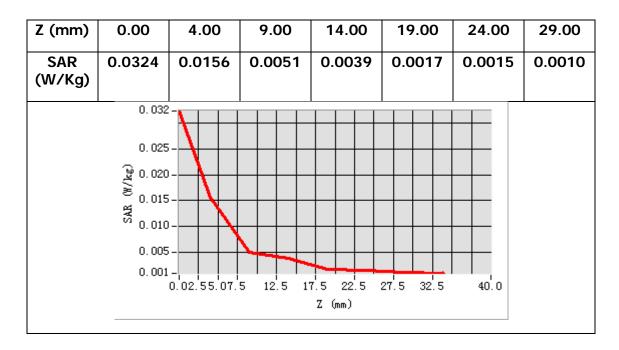
Measurement duration: 8 minutes 12 seconds

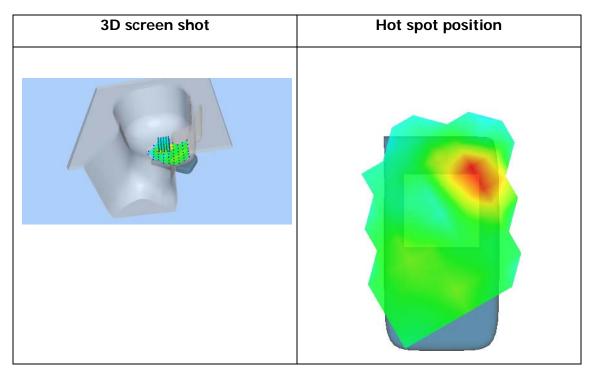

A. Experimental conditions.

<u>Area Scan</u>	<u>dx=15mm dy=15mm</u>
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
<u>Phantom</u>	<u>Left head</u>
<u>Device Position</u>	<u>Tilt</u>
<u>Band</u>	CUSTOM (GPRS1900_4Tx)
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	Duty Cycle: 2.00 (Crest factor: 2.0)
Conversion factor	<u>5.17</u>

B. SAR Measurement Results

Frequency (MHz)	1880.000000
Relative permittivity (real part)	40.660301
Relative permittivity (imaginary part)	13.075800
Conductivity (S/m)	1.365695
Variation (%)	-1.580000




Maximum location: X=-24.00, Y=9.00

SAR Peak: 0.03 W/kg

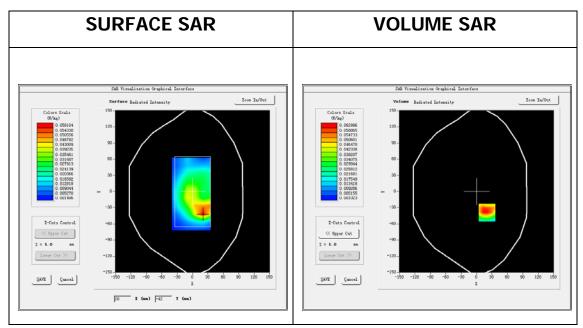
SAR 10g (W/Kg)	0.006744
SAR 1g (W/Kg)	0.014570

Rear-side-middle

Type: Phone measurement (Complete)

Date of measurement: 12/11/2018

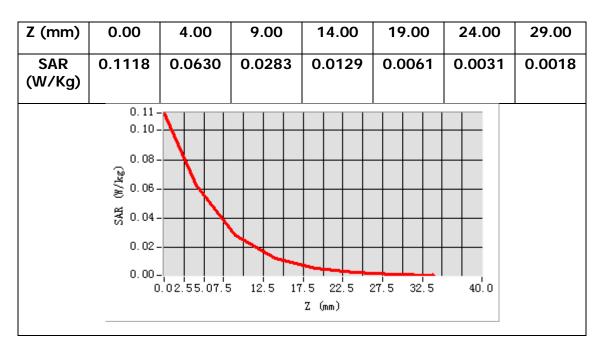
Measurement duration: 11 minutes 14 seconds

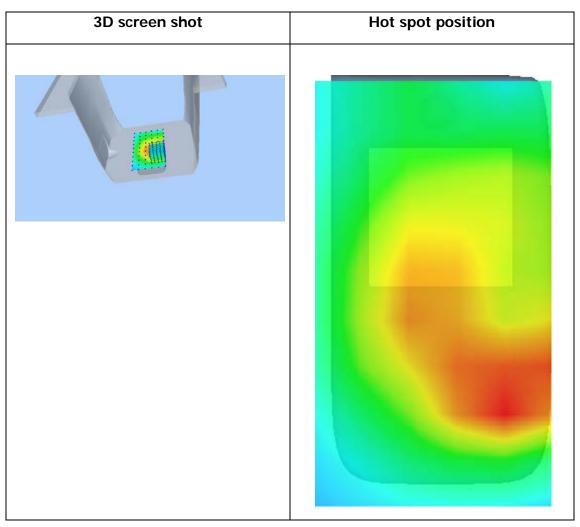

A. Experimental conditions.

<u>Area Scan</u>	<u>dx=15mm dy=15mm</u>	
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete	
<u>Phantom</u>	<u>Validation plane</u>	
<u>Device Position</u>	<u>Body</u>	
<u>Band</u>	CUSTOM (GPRS1900_4Tx)	
<u>Channels</u>	<u>Middle</u>	
<u>Signal</u>	Duty Cycle: 2.00 (Crest factor: 2.0)	
Conversion factor	<u>5.28</u>	

B. SAR Measurement Results

Frequency (MHz)	1880.000000
Relative permittivity (real part)	51.470901
Relative permittivity (imaginary part)	15.022000
Conductivity (S/m)	1.568964
Variation (%)	-2.190000




Maximum location: X=20.00, Y=-39.00

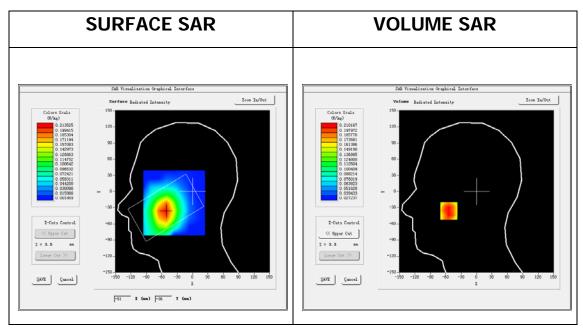
SAR Peak: 0.12 W/kg

SAR 10g (W/Kg)	0.030372
SAR 1g (W/Kg)	0.065269

Type: Phone measurement (Complete)

Date of measurement: 13/11/2018

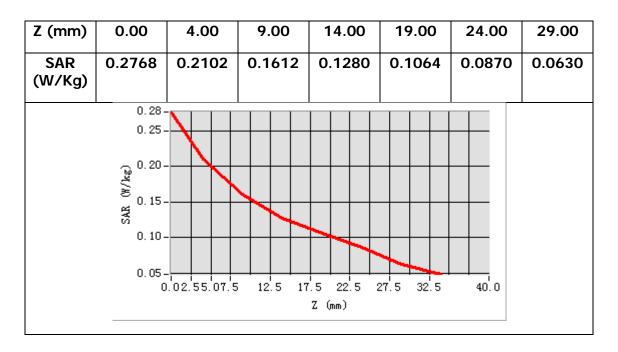
Measurement duration: 10 minutes 11 seconds

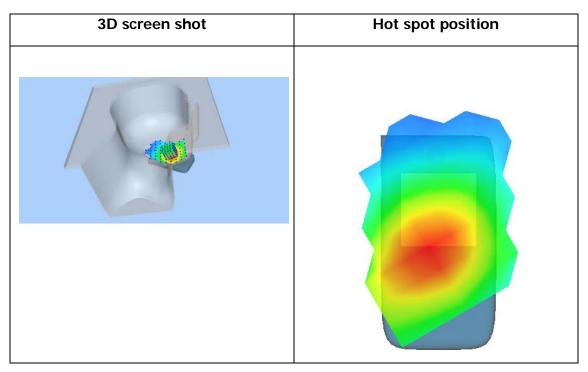

A. Experimental conditions.

Area Scan	<u>dx=15mm dy=15mm</u>	
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete	
<u>Phantom</u>	<u>Left head</u>	
<u>Device Position</u>	<u>Cheek</u>	
<u>Band</u>	CUSTOM (GPRS850_4Tx)	
<u>Channels</u>	Low	
<u>Signal</u>	Duty Cycle: 2.00 (Crest factor: 2.0)	
Conversion factor	<u>5.54</u>	

B. SAR Measurement Results

Frequency (MHz)	824.200012
Relative permittivity (real part)	53.891621
Relative permittivity (imaginary part)	20.664499
Conductivity (S/m)	0.946204
Variation (%)	2.760000




Maximum location: X=-54.00, Y=-36.00

SAR Peak: 0.28 W/kg

SAR 10g (W/Kg)	0.151734	
SAR 1g (W/Kg)	0.207035	

Annex C: Calibration Reports

Tested Model: B2

Report Number:

FCC18110006A-SAR

SAR Reference Dipole Calibration Report

Ref: ACR.176.1.15.SATU.A

WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP CO .,LTD BLOCK A-B, BAO SHI SCIENCE PARK,BAO SHI ROAD, BAO'AN DISTRICT SHENZHEN 518108,P.R. CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 14/13 DIP 0G835-235

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 7/25/2018

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SAR REFERENCE DIPOLECALIBRATION REPORT

<u> </u>	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	7/25/2018	JES
Checked by:	Jérôme LUC	Product Manager	7/25/2018	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	7/25/2018	him Puthowski

- 22	Customer Name
Distribution :	WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP CO .,LTD

— Issue — A	Date 7/25/2018	Modifications Initial release
1		

SAR REFERENCE DIPOLECALIBRATION REPORT

TABLE OF CONTENTS

1	Intro	duction4	
2	Devic	e Under Test	
3	Produ	act Description	
	3.1	General Information	4
4	Meas	urement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Meas	urement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Calib	ration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Valida	ation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List o	f Equipment	

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
Device Type COMOSAR 835 MHz REFERENCE DIPOLE			
Manufacturer MVG			
Model	SID835		
Serial Number	SN 14/13 DIP 0G835-235		
Product Condition (new / used) Used			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

SAR REFERENCE DIPOLECALIBRATION REPORT

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss	
400-6000MHz	0.1 dB	

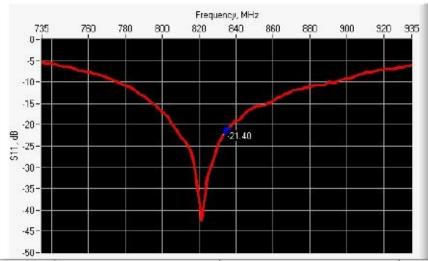
5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length	
3 - 300	0.05 mm	

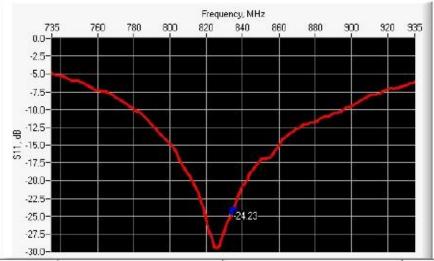
5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.


Scan Volume	Expanded Uncertainty
1g	20.3 %

6 CALIBRATION MEASUREMENT RESULTS

10 g


6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

20.1 %

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-21.40	-20	59.2 Ω - 1.5 j

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-24.23	-20	$56.3 \Omega + 1.7 j$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	h mı	n	d n	ım
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

SAR REFERENCE DIPOLECALIBRATION REPORT

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.	Į.	3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (-/')		Conductivity (σ) S/m		
	required	measured	required	measured	
300	45.3 ±5 %		0.87 ±5 %		
450	43.5 ±5 %		0.87 ±5 %		
750	41.9 ±5 %		0.89 ±5 %		
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS	
900	41.5 ±5 %		0.97 ±5 %		
1450	40.5 ±5 %		1.20 ±5 %		
1500	40.4 ±5 %		1.23 ±5 %		
1640	40.2 ±5 %		1.31 ±5 %	i i	
1750	40.1 ±5 %		1.37 ±5 %		

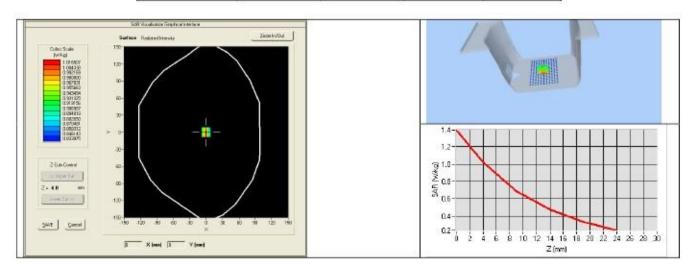
Page: 7/11

SAR REFERENCE DIPOLECALIBRATION REPORT

1800	40.0 ±5 %	1.40 ±5 %	
1900	40.0 ±5 %	1.40 ±5 %	
1950	40.0 ±5 %	1.40 ±5 %	
2000	40.0 ±5 %	1.40 ±5 %	
2100	39.8 ±5 %	1.49 ±5 %	
2300	39.5 ±5 %	1.67 ±5 %	
2450	39.2 ±5 %	1.80 ±5 %	
2600	39.0 ±5 %	1.96 ±5 %	
3000	38.5 ±5 %	2.40 ±5 %	
3500	37.9 ±5 %	2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.


Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 42.3 sigma: 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 ℃
Lab Temperature	21 ℃
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.82 (0.98)	6.22	6.35 (0.63
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	2
1800	38.4		20.1	

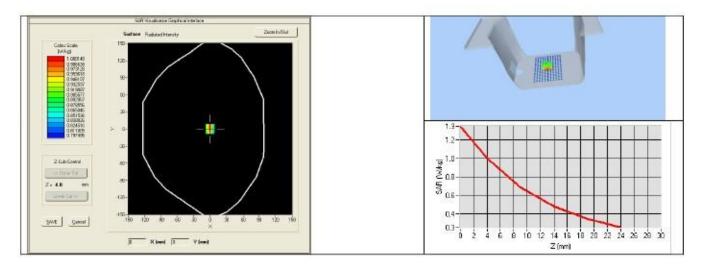
Page: 8/11

1900	39.7	20.5
1950	40.5	20.9
2000	41.1	21.1
2100	43.6	21.9
2300	48.7	23.3
2450	52.4	24
2600	55.3	24.6
3000	63.8	25.7
3500	67.1	25

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative nermittivity ('/)	mittivity (-/)	Conductivi	ty (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	

Page: 9/11



2600	52.5 ±5 %	2.16 ±5 %	
3000	52.0 ±5 %	2.73 ±5 %	
3500	51.3 ±5 %	3.31 ±5 %	
5200	49.0 ±10 %	5.30 ±10 %	
5300	48.9 ±10 %	5.42 ±10 %	
5400	48.7 ±10 %	5.53 ±10 %	
5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

p	10 10
Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 53.3 sigma: 0.97
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 ℃
Lab Temperature	21 ℃
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	9.41 (0.94)	6.22 (0.62)

Page: 10/11

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019	
Calipers	Carrera	CALIPER-01	12/2016	12/2019	
Reference Probe	MVG	EPG122 SN 18/11	01/2017	01/2020	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	012017	01/2020	
Amplifier	Aethercomm	SN 046		ized prior to Characterized prior to all required.	
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to C test. No cal required. tes		
Temperature and Humidity Sensor	Control Company	11-661-9	11/2017	11/2020	

SAR Reference Dipole Calibration Report

Ref: ACR.176.4.15.SATU.A

WORLD STANDARDIZATION CERTIFICATION

& TESTING GROUP CO .,LTD BLOCK A-B, BAO SHI SCIENCE PARK,BAO SHI ROAD, BAO'AN DISTRICT

SHENZHEN 518108, P.R. CHINA

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1900 MHZ

SERIAL NO.: SN 14/13 DIP 1G900-236

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 7/25/2018

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	7/25/2018	JES
Checked by:	Jérôme LUC	Product Manager	7/25/2018	JE
Approved by :	Kim RUTKOWSKI	Quality Manager	7/25/2018	from Puthowshi

Customer Name

WORLD
STANDARDIZATION
CERTIFICATION &
TESTING GROUP CO .,LTD

Issue	Date	Modifications
A	7/25/2018	Initial release
17		

TABLE OF CONTENTS

1	Intro	duction	
2	Devic	ee Under Test	
3	Prod	act Description	
	3.1	General Information	4
4	Meas	urement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Meas	urement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Calib	ration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Valid	ation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List o	of Equipment	

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type COMOSAR 1900 MHz REFERENCE DIPOLE		
Manufacturer	MVG	
Model	SID1900	
Serial Number	SN 14/13 DIP 1G900-236	
Product Condition (new / used) Used		

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – *MVG COMOSAR Validation Dipole*

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

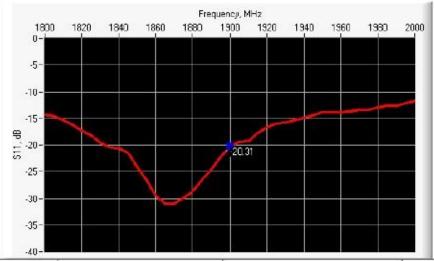
Length (mm)	Expanded Uncertainty on Length	
3 - 300	0.05 mm	

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1g	20.3 %

10 g	20.1 %
------	--------


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
1900	-20.08	-20	$54.9 \Omega + 9.2 j$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
1900	-20.31	-20	$49.7 \hat{\Omega} + 9.7 \hat{j}$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mr	n	d n	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

The state of the s						
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.	PASS	39.5 ±1 %.	PASS	3.6 ±1 %.	PASS
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

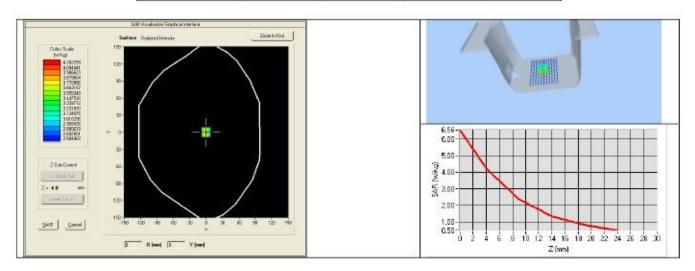
Frequency MHz	Relative permittivity (Conductivi	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.


Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 40.4 sigma: 1.41
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 ℃
Lab Temperature	21 ℃
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

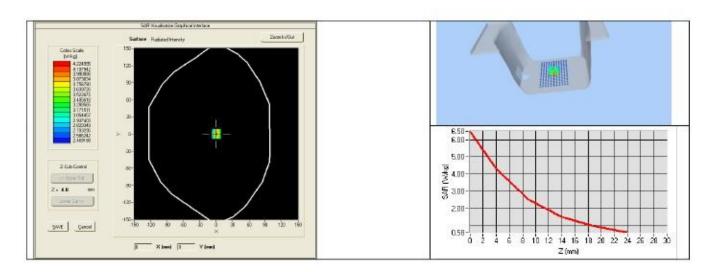
Page: 8/11

				Č-1
1900	39.7	38.93 (3.89)	20.5	20.27 (2.03)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative nermittivity (-/)		Conductivi	ty (σ) S/m	
	required	measured	required	measured	
150	61.9 ±5 %		0.80 ±5 %		
300	58.2 ±5 %		0.92 ±5 %		
450	56.7 ±5 %		0.94 ±5 %		
750	55.5 ±5 %		0.96 ±5 %		
835	55.2 ±5 %		0.97 ±5 %		
900	55.0 ±5 %		1.05 ±5 %		
915	55.0 ±5 %		1.06 ±5 %		
1450	54.0 ±5 %		1.30 ±5 %		
1610	53.8 ±5 %		1.40 ±5 %		
1800	53.3 ±5 %		1.52 ±5 %		
1900	53.3 ±5 %	PASS	1.52 ±5 %	PASS	
2000	53.3 ±5 %		1.52 ±5 %		
2100	53.2 ±5 %		1.62 ±5 %		
2450	52.7 ±5 %		1.95 ±5 %		

Page: 9/11



2600	52.5 ±5 %	2.16 ±5 %	
3000	52.0 ±5 %	2.73 ±5 %	
3500	51.3 ±5 %	3.31 ±5 %	
5200	49.0 ±10 %	5.30 ±10 %	
5300	48.9 ±10 %	5.42 ±10 %	
5400	48.7 ±10 %	5.53 ±10 %	
5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

F	10
Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 53.9 sigma: 1.55
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 ℃
Lab Temperature	21 ℃
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1900	38.73 (3.87)	20.48 (2.05)

Page: 10/11

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Calipers	Carrera	CALIPER-01	12/2016	12/2019
Reference Probe	MVG	EPG122 SN 18/11	01/2017	01/2020
Multimeter	Keithley 2000	1188656	01/2017	01/2020
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020
Amplifier	Aethercomm	SN 046	Characterized prior to Cl test. No cal required. tes	
Power Meter	HP E4418A	US38261498	01/2017	01/2020
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020
Directional Coupler	Narda 4216-20	01386	Characterized prior to Cl test. No cal required. tes	
Temperature and HumiditySensor	Control Company	11-661-9	11/2017	11/2020

SAR Reference Dipole Calibration Report

Ref: ACR.176.6.15.SATU.A

WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP CO .,LTD

BLOCK A-B, BAO SHI SCIENCE PARK,BAO SHI ROAD, BAO'AN DISTRICT

SHENZHEN 518108, P.R. CHINA

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 14/13 DIP 2G450-238

Calibrated at MVG US

2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 7/25/2018

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	7/25/2018	JES
Checked by:	Jérôme LUC	Product Manager	7/25/2018	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	7/25/2018	frem Puthourshi

<u> </u>	Customer Name
Distribution :	WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP CO .,LTD

Issue	Date	Modifications	
A	7/25/2018	Initial release	
161 ·			

TABLE OF CONTENTS

1	Intro	duction	
2	Devic	ee Under Test	
3	Prod	act Description	
	3.1	General Information	4
4	Meas	urement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Meas	urement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Calib	ration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Valid	ation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List o	of Equipment	

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2450	
Serial Number	SN 14/13 DIP 2G450-238	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

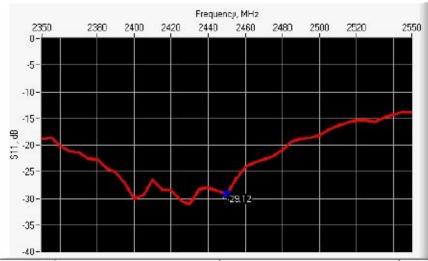
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1g	20.3 %

-	V 47
4.0	20.40/
10 g	20.1 %


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-32.56	-20	48.3 Ω - 1.6 j

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-29.12	-20	$0.0 \Omega + 11.0 j$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	h mr	n	d n	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

31						
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

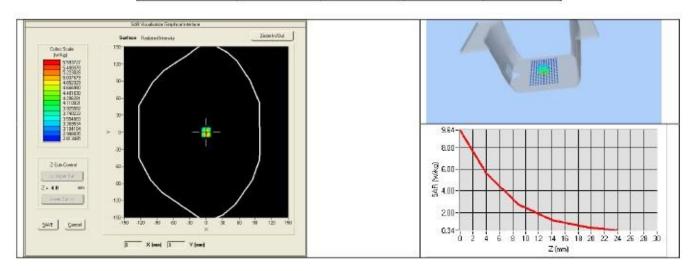
Frequency MHz	Relative permittivity ('',')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.


Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 38.3 sigma: 1.80
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 ℃
Lab Temperature	21 ℃
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

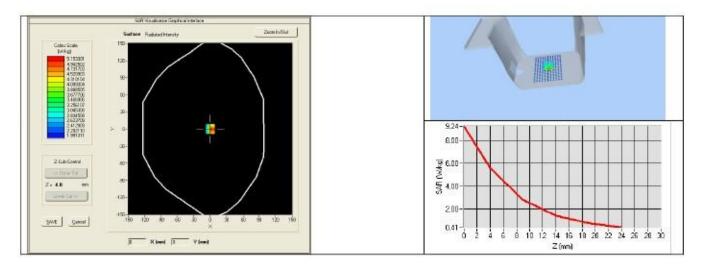
Page: 8/11

1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.41 (5.34)	24	23.95 (2.40)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative perr	mittivity (-/)	Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS

Page: 9/11



2600	52.5 ±5 %	2.16 ±5 %	
3000	52.0 ±5 %	2.73 ±5 %	
3500	51.3 ±5 %	3.31 ±5 %	
5200	49.0 ±10 %	5.30 ±10 %	
5300	48.9 ±10 %	5.42 ±10 %	
5400	48.7 ±10 %	5.53 ±10 %	
5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

gr	10 10
Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 52.7 sigma: 1.94
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 ℃
Lab Temperature	21 ℃
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	51.39 (5.14)	23.63 (2.36)

Page: 10/11

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019	
Calipers	Carrera	CALIPER-01	12/2016	12/2019	
Reference Probe	MVG	EPG122 SN 18/11	01/2017	01/2020	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020	
Amplifier	Aethercomm	SN 046	Characterized prior to Characterized prior to test. No cal required. test. No cal required.		
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to C test. No cal required. tes		
Temperature and HumiditySensor	Control Company	11-661-9	11/2017	11/2020	

COMOSAR E-Field Probe Calibration Report

Ref: ACR.331.3.17.SATU.A

WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP CO.,LTD

BLOCK A, BAO SHI SCIENCE PARK,BAO SHI ROAD,
BAO'AN DISTRICT
SHENZHEN 518108,P.R. CHINA
MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 07/15 EP252

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 11/27/2017

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	11/27/2017	JES
Checked by:	Jérôme LUC	Product Manager	11/27/2017	JS
Approved by:	Kim RUTKOWSKI	Quality Manager	11/27/2017	thim Puthowshi

	Customer Name
	World Standardization
Distribution:	Certification &
	Testing Group Co
	.,Ltd

Issue	Date	Modifications
A	11/27/2017	Initial release

COMOSAR E-FIELD PROBE CALIBRATION REPORT

TABLE OF CONTENTS

1	Devi	ce Under Test4	
2	Prod	uct Description4	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty5	
5	Calil	oration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	List	of Equipment9	

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE5	
Serial Number	SN 07/15 EP252	
Product Condition (new / used)	New	
Frequency Range of Probe	0.7 GHz-3GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.202 MΩ	
	Dipole 2: R2=0.233 MΩ	
	Dipole 3: R3=0.206 MΩ	

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

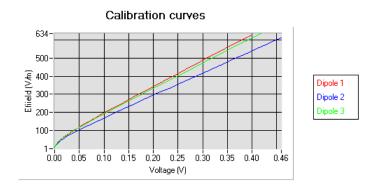
Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

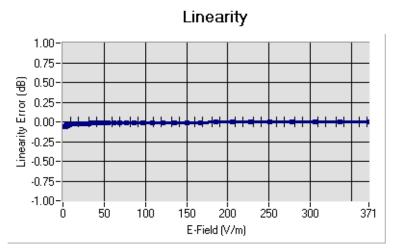
Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	


5.1 <u>SENSITIVITY IN AIR</u>

Normx dipole		
$1 (\mu V/(V/m)^2)$	$2 (\mu V/(V/m)^2)$	$3 (\mu V/(V/m)^2)$
5.11	6.67	5.81

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
99	99	95

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:


$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$

Page: 6/9

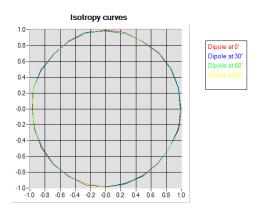
5.2 **LINEARITY**

Linearity: I+/-1.35% (+/-0.06dB)

5.3 <u>SENSITIVITY IN LIQUID</u>

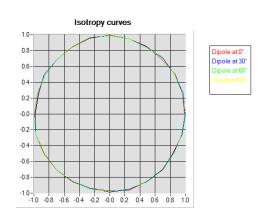
<u>Liquid</u>	Frequency (MHz +/-	Permittivity	Epsilon (S/m)	<u>ConvF</u>
	100MHz)			
HL750	750	42.09	0.91	5.38
BL750	750	55.69	0.95	5.54
HL850	835	42.71	0.89	5.54
BL850	835	57.52	1.03	5.75
HL900	900	41.94	0.93	5.53
BL900	900	52.87	1.09	5.74
HL1800	1800	40.62	1.39	4.65
BL1800	1800	53.22	1.47	4.80
HL1900	1900	41.22	1.37	5.17
BL1900	1900	50.99	1.52	5.28
HL2000	2000	40.39	1.36	5.00
BL2000	2000	54.39	1.54	5.14
HL2300	2300	38.10	1.74	4.89
BL2300	2300	53.33	1.85	4.93
HL2450	2450	40.46	1.87	4.83
BL2450	2450	54.62	1.95	5.02
HL2600	2600	38.46	2.01	4.51
BL2600	2600	51.98	2.16	4.66

LOWER DETECTION LIMIT: 8mW/kg



COMOSAR E-FIELD PROBE CALIBRATION REPORT

5.4 <u>ISOTROPY</u>


HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.08 dB

6 LIST OF EQUIPMENT

Equipment Summary Sheet							
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date			
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.			
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019			
Reference Probe	MVG	EP 94 SN 37/08	10/2017	10/2018			
Multimeter	Keithley 2000	1188656	01/2017	01/2020			
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020			
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	HP E4418A	US38261498	01/2017	01/2020			
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020			
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.			
Waveguide Transition	Mega Industries	069Y7-158-13-701		Validated. No cal required.			
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.			
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020			