

Intentional Radiator Test Report

For the

Aether RF LLC

Wiegand Wave

Tested under

The FCC Rules contained in Title 47 of the CFR, Part 15.247 for

Frequency Hopping Spread Spectrum

June 25, 2024

Prepared for:

Aether RF LLC

6020 N. 55th Avenue

Glendale, AZ 85301

Prepared By:

H.B. Compliance Solutions

5005 S. Ash Avenue, Suite # A-10

Tempe, Arizona 85282

Reviewed By:

Hoosamuddin Bandukwala

Cert # ATL-0062-E

Engineering Statement: The measurements shown in this report were made in accordance with the procedure indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurement made, the equipment tested is capable of operation in accordance with the requirements of Part 15 of the FCC Rules under normal use and maintenance. All results contained herein relate only to the sample tested.

Certificates and reports shall not be reproduced except in full, without the written permission of H.B Compliance Solutions, LLC.

Report Status Sheet

Revision #	Report Date	Reason for Revision
Ø	June 18, 2024	Initial Issue
1	June 25, 2024	Additional plots for Dwell Time

Table of Contents

EXECU	TIVE SUMMARY	5
1.	Testing Summary	5
EQUIPI	MENT CONFIGURATION	.6
1.	Overview	6
2.	Test Facility	7
3.	Description of Test Sample	8
4.	Equipment Configuration	8
5.	Support Equipment	8
6.	Ports and Cabling Information	8
7.	Method of Monitoring EUT Operation	.8
8.	Mode of Operation	.9
9.	Modifications	.9
10.	Disposition of EUT	9
Criteria	a for Un-Intentional Radiators	10
1.	Radiated Emissions	10
Er	missions Tests Calculations	11
2.	Conducted Emissions	14
Criteria	a for Intentional Radiators	18
1.		
	Occupied Bandwidth	18
2.	Occupied Bandwidth	
2. 3.		21
	RF Power Output	21 25
3.	RF Power Output	21 25 32
3. 4.	RF Power Output Conducted Spurious Emissions Radiated Spurious Emissions and Restricted Band	21 25 32 35
3. 4. 6.	RF Power Output	21 25 32 35 39

10.	Test Equipment	46
11.	Measurement Uncertainty	47

EXECUTIVE SUMMARY

1. Testing Summary

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15.247. All tests were conducted using measurement procedure from ANSI C63.10-2013, FCC Guidance document 558074 D01 v05r02 April 02, 2019 as appropriate.

Test Name	Test Method/Standard	Result	Comments
Unintentional Radiated Emissions	15.209	Pass	
A/C Powerline Conducted Emissions	15.207	Pass	
Occupied Bandwidth	15.247(a)(2)	Pass	
Peak Output Power	15.247(b)	Pass	
Conducted Spurious Emissions	15.247(d)	Pass	
Radiated Spurious Emissions & Restricted Band	15.247(d), 15.209(a), 15.205	Pass	
Emissions at Band Edges	15.247(d), 15.209(a), 15.205	Pass	
Time of Occupancy (Dwell Time)	15.247(a)	Pass	
Number of Hopping Channels	15.247(a)	Pass	
Carrier Frequency Separation	15.247(a)	Pass	

EQUIPMENT CONFIGURATION

1. Overview

H.B Compliance Solutions was contracted by Aether RF to perform testing on the Wiegand Wave under quotation number Q24031003.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Aether RF, Wiegand Wave.

The tests were based on FCC Part 15 Rules. The tests described in this document were formal tests as described with the objective of the testing was to evaluate compliance of the Equipment Under Test (EUT) to the requirements of the aforementioned specifications. Aether RF is to retain a copy of this document and it should be kept on file for at least five years after the manufacturing of the EUT has been permanently discontinued. The results obtained relate only to the item(s) tested.

Product Name:	Wiegand Wave	
Model(s) Tested:	100	
FCC ID:	2BGQ6WW100	
Supply Voltage Input:	Primary Power: 16-24 VAC/VDC	
Frequency Range:	902-928 MHz	
No. of Channels:	128 Channels	
Necessary Bandwidth	N/A	
Type(s) of Modulation:	OQPSK	
Range of Operation Power:	0.824W	
Emission Designator:	N/A	
Channel Spacing(s)	200kHz	
Test Item:	Pre-Production	
Type of Equipment:	Mobile	
Antenna Requirement	Type of Antenna: External Whip Antenna	
(§15.203) :	Gain of Antenna: 1.2dBi	
Environmental Test	Temperature: 15-35°C	
Conditions:	Humidity: 30-60%	
	Barometric Pressure: 860-1060 mbar	
Modification to the EUT:	None	
Evaluated By:	Staff at H.B. Compliance Solutions	
Test Date(s):	03/26/2024 till 03/28/2024	

2. Test Facility

All testing was performed at H.B. Compliance Solutions. This facility is located at 5005 S. Ash Avenue, Suite # A-10, Tempe AZ-85282. All equipment used in making physical determination is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements from 30MHz to 1GHz were performed in a GTEM chamber (equivalent to an Open Area Test Site). Radiated Emission above 1GHz were performed on an Open Area Test Site (OATS). In accordance with §2.948(a)(3), a complete site description is contained at H.B. Compliance Solutions.

Test facility H.B. Compliance Solutions is an ANAB accredited test site. The ANAB certificate number is L2458. The scope of accreditation can be found on ANAB website <u>www.anab.org</u>

3. Description of Test Sample

The Wiegand Wave Model 100 (WW100) system wirelessly connects an industry standard Wiegand card or fob reader, status signals, and relay outputs to an industry standard access control system.

The Module is integrated consistent with the grant notes and manufacturer's integration guide.

4. Equipment Configuration

Ref. ID	Name / Description	Model Number	Serial Number
# 1	Wiegand Wave	100	-

Table 1. Equipment Configuration

5. Support Equipment

All support equipment supplied is listed in the following Support Equipment List.

Ref ID	Name /	Manufacturer	Model #	Serial #
	Description			
# 2	AC/DC Adapter	HON-KWANG	-	-
# 3	Laptop Computer	Acer	Swift SF314-52	-

Table 2. Support Equipment

6. Ports and Cabling Information

Ref ID	Port name on the EUT	Cable Description	Qty.	Length (m)	Shielded? (Y/N)	Termination Box ID & Port ID
# 4	Power Input	2 Wire	1	1	N	# 2 / AC Power
#	Mini B USB	USB	1	0.5	Ν	# 3

Table 3. Ports and Cabling Information

7. Method of Monitoring EUT Operation

A test receiver will be used to monitor the data transmission from the EUT.

8. Mode of Operation

To Support FCC testing, a test firmware was provided to allow configuration of the duty cycle, transmission channel, and power level, as well as to enable frequency hopping for worst case emissions.

9. Modifications

9.1 Modifications to EUT

No modifications were made to the EUT

9.2 Modifications to Test Standard

No Modifications were made to the test standard.

10. Disposition of EUT

The test sample including all support equipment submitted to H.B Compliance Solutions for testing will be returned to Aether RF at the completion of testing & certification.

Criteria for Un-Intentional Radiators

1. Radiated Emissions

Test Requirement(s):	§15.109	Test Engineer(s):	Sean E.
Test Results:	Pass	Test Date(s):	May 28, 2024

Test Procedures:

The final radiated emissions test was performed using the parameters described above as worst case. That final test was conducted at a facility that meets the ANSI C63.4 NSA requirements. The frequency range noted in the data sheets was scanned/tested at that facility. Emissions were maximized as specified, by varying table azimuth, antenna height, and manipulating cables.

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.

Note: The specified distance is the horizontal separation between the closest periphery of the EUT and the center of the axis of the elements of the receiving antenna. However, if the receiving antenna is a log-periodic array, the specified distance shall be the distance between the closest periphery of the EUT and the front-to-back center of the array of elements.

Tests were made with the antenna positioned in both the horizontal and vertical polarization planes. The measurement was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 3 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)			
30 MHz to 1 GHz	120 kHz	120 kHz	N/A			
1 GHz to 11 GHz	1MHz	N/A	1MHz			
Measurements were made using the bandwidths and detectors specified. The video filter was at least as wide as the IF						
	bandwidth of the	bandwidth of the measuring receiver.				

Table 4. Radiated Emissions – Measurement Bandwidth

Emissions Tests Calculations

In the case of indoor measurements, radiated emissions measurements are made by the manipulation of correction factors using TILE4 software. This is done automatically by the software during the final measurement process.

In both cases, the level of the Field Strength of the interfering signal is calculated by adding the Antenna Factor, Cable Factor and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

FS = RA + AF + (CF - AG)

Where: FS = Field Strength

RA = Receiver (indicated) Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain

This laboratory uses an approach of combining the CF and AG using an end-to-end measurement of the entire cabling system, including the test cable, any in-line amplifiers, attenuators, or transient protection networks, all measured in-situ.

For a sample calculation, assume a receiver reading of 52.5 dBuV is obtained. With an antenna factor of 7.4 and a combined cable factor (CF + AG) of -27.9:

FS = 52.5 + 7.4 + (-27.9) = 32 dBuV/m

FS = 32 dBuV/m

If desired, this can be converted into its corresponding level in uV/m:

 $FS = 10^{((32 \text{ dBuV/m})/20)} = 39.8 \text{ uV/m}$

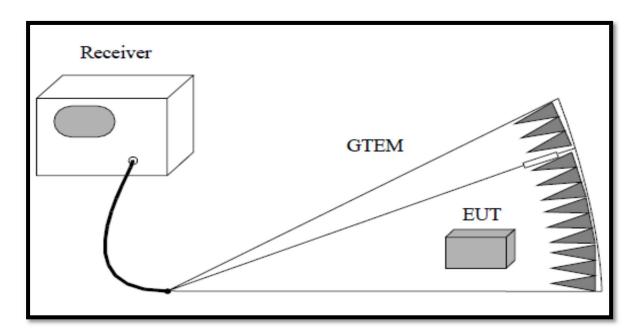
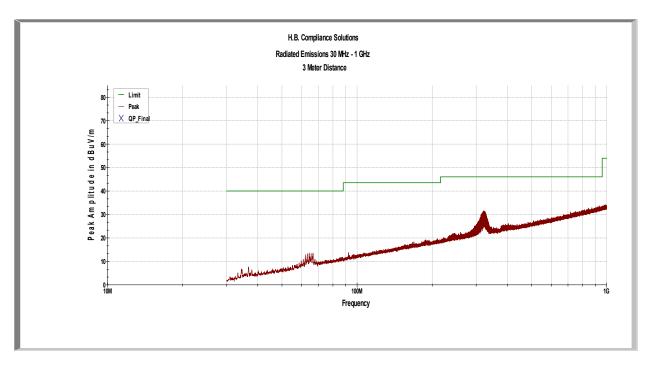



Figure 1. Radiated Emissions Test Setup (30MHz – 1GHz)

Plot 1 – Radiated Emissions – 30MHz to 1GHz

Frequency (MHz)	Measured Level	Detector	Limit (dBuV)	Margin (dB)
64.29	13.49	Peak	40.00	-26.51
322.60	31.55	Peak	46.02	-14.47

Table 5. Final Measurement Results for Radiated Emissions

2. Conducted Emissions

Test Requirement(s):	§15.207	Test Engineer(s):	Evan L.
Test Results:	Pass	Test Date(s):	March 26, 2024

Test Procedures: The EUT was placed on a non-metallic table, 80cm above the ground plane inside a shielded enclosure. The EUT was powered through a $50\Omega/50\mu$ H LISN. The conducted emissions tests were performed using AR emcware v4.1.2 software using the mode of operation and configuration noted within this report. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are the same as those cords normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically, those measurements are made using a LISN (Line Impedance Stabilization Network). All 50 Ohm measuring ports of the LISN are terminated by 50 Ohms, either by the 50 Ohm EMI receiver or a 50 Ohm resistive load.

> Refer to the Emissions Tests Calculations section in the Radiated Emissions section for sample calculations. For the purposes of the conducted emissions test, the Antenna Factor (AF) is replaced by the LISN correction factor.

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.150 - 30	9.0	9.0	9.0

Measurements were made using the bandwidths and detectors specified. No video filter was used. Table 6. Conducted Emissions – Measurement Bandwidth

Frequency	15.107(b), Class A Limits (dBuV)		15.107(a), Cla	ass B Limits (dBuV)
Range (MHz)	Quasi-Peak	Average	Quasi Peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.5 – 5.0	73	60	56	46
5.0 - 30	73	60	60	50
Note 1 - The lower	imit chall apply at the tr	ancition froquencies		

Note 1 – The lower limit shall apply at the transition frequencies.

 Table 7. Conducted Emissions Limits – FCC Limits from Section 15.207

Test Setup:

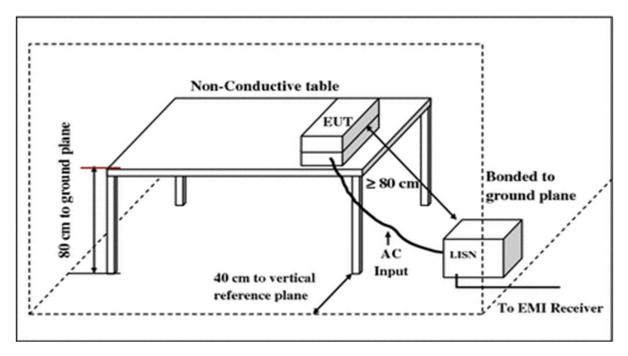
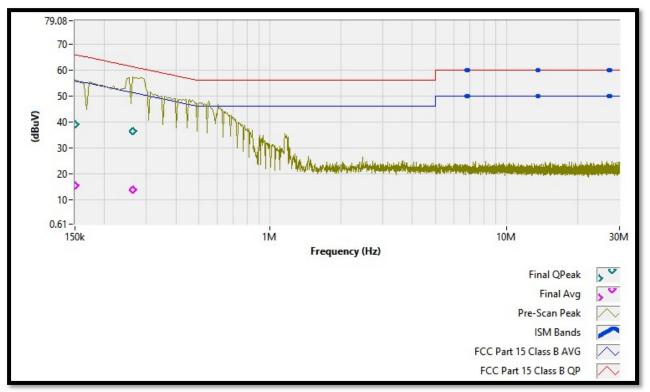
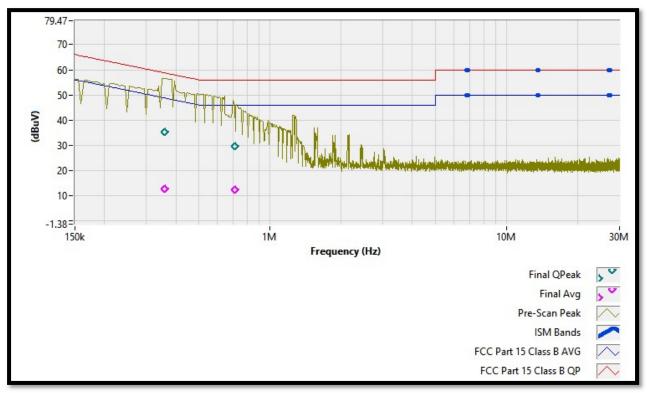



Figure 2. Conducted Emissions Test Setup



Plot 2 – Conducted Emission – Line Side

Frequency (Hz)	Detector	Measured Level (dBuV)	Limit (dBuV)	Margin (dB)
150k	Peak	55.56		
	QPeak	38.97	66	-27.03
	Avg	15.46	56	-40.54
262.781k	Peak	57.39		
	QPeak	36.43	61.343	-24.913
	Avg	13.69	51.343	-37.653

 Table 8. Measurement Results Summary

Plot 3 – Conducted Emissions – Neutral Side

Frequency (Hz)	Detector	Measured Level (dBuV)	Limit (dBuV)	Margin (dB)
357.518k	Peak	56.574		
	QPeak	35.314	58.786	-23.472
	Avg	12.694	48.786	-36.092
709.395k	Peak	45.998		
	QPeak	29.628	56	-26.372
	Avg	12.098	46	-33.902

Table 9. Measurement Results Summary

Criteria for Intentional Radiators

1. Occupied Bandwidth

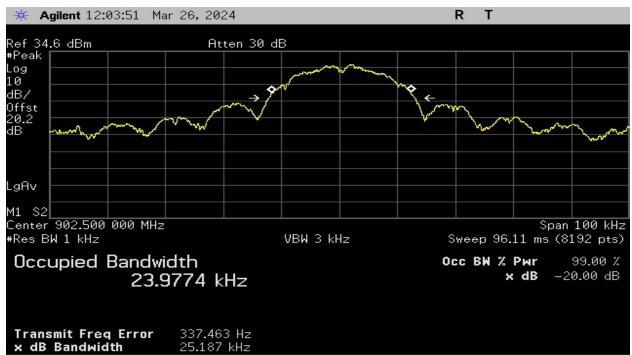
Test	15.247(a)(2), ANSI C63.10	Test Engineer(s):	Sean E.
Requirement(s):			
Test Results:	Pass	Test Date(s):	March 26, 2023

Test Procedure:As required by 47 CFR 15.247(a): For Frequency hopping systems
operating in the 902-928 MHz band: measurements to be made with
20dB bandwidth for frequency hopping systems.

Customer provided a test mode internal to the EUT to control the RF modulation, and frequency channel. The EUT was connected through an attenuator to a Spectrum Analyzer. The measured highest peak power was set relative to zero dB reference. The RBW of the Spectrum Analyzer was set to 1 to 5 percent of the OBW and VBW>RBW. Measurements were carried out at the low, mid and high channels of the TX band at the output terminals of the EUT.

Test Setup:

Figure 3. Occupied Bandwidth Test Setup


Test Results:

Frequency	Recorded	Comments
(MHz)	Measurement	
902.50	25.187 kHz	≤ 500 kHz
915.11	25.239 kHz	≤ 500 kHz
927.52	25.243 kHz	≤ 500 kHz

Table 10. Occupied Bandwidth Summary, Test Results

The following pages show measurements of Occupied Bandwidth plots:

Plot 4 – Lowest Channel – 20dB BW

HBCS Report # EMC_24014 Rev1

2. RF Power Output

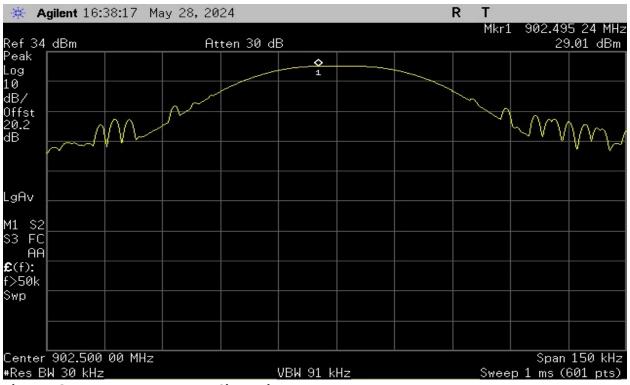
Test Requirement(s):	§15.247(b)(3)	Test Engineer(s):	Sean E.
Test Results:	Pass	Test Date(s):	May 28, 2024

Test Procedures:As required by 47 CFR 15.247(b)(3), RF Power output measurements
were made at the RF output terminals of the EUT

Customer provided a test mode internal to the EUT to control the RF modulation, and frequency channel. The EUT was connected through an attenuator to a Spectrum Analyzer capable of making power measurements. Measurements were made at the low, mid, and high channels of the entire frequency band.

Test Setup:

Figure 4. RF Power Test Setup



Test Results:

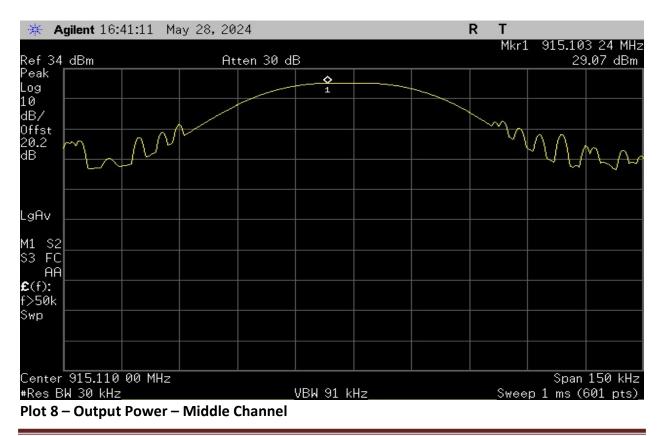
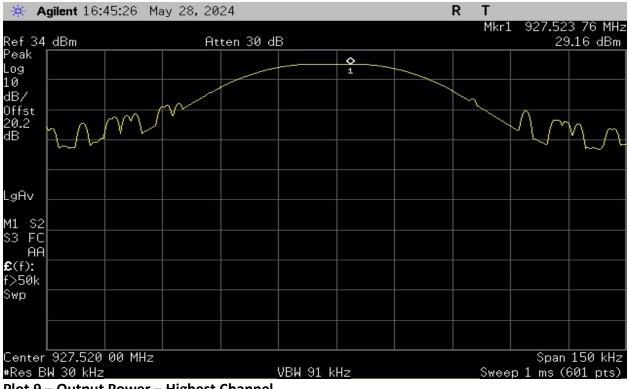

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Specification Limit
902.50	29.01	0.796	1W
902.11	29.07	0.807	1W
927.52	29.16	0.824	1W

Table 11. RF Power Output, Test Results



3. Conducted Spurious Emissions

Test	§15.247(c)	Test Engineer(s):	Sean E.
Requirement(s):			
Test Results:	Pass	Test Date(s):	March 28, 2024

Test Procedures:As required by 47 CFR 15.247(c): In any 100kHz bandwidth the
frequency band in which the spread spectrum or digitally
modulation intentional radiator is operating, the radio frequency
power that is produced by the intentional radiator shall be at least
20dB below that in the 100kHz bandwidth within the band that
contains the highest level of the desired power, based on either
and RF conducted or a radiated measurement. Conducted
spurious emissions at antenna terminal measurements were
made at the RF output antenna terminal of the EUT.

Customer provided a test mode internal to the EUT to control the RF modulation, and frequency channel. The EUT was connected through an attenuator to a Spectrum Analyzer with RBW set to 100kHz and VBW \geq RBW. The Spectrum Analyzer was set to sweep from 30MHz up to 10th harmonic of the fundamental or 40GHz whichever is the lesser. Measurements were made at the low, mid and high frequency of the transmit band.

Test Setup:

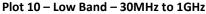
Figure 5. Conducted Spurious Emissions Test Setup

Test Data

Frequency (GHz)	Measured Level (dBm)	Limit (dBm)	Margin (dB)
0.863	-43.54	9.0	-52.54
1.305	-66.22	9.0	-75.22
6.320	-53.83	9.0	-62.83

Table 12. Lowest Channel – Conducted Spurious Emissions, Test Results

Frequency (GHz)	Measured Level (dBm)	Limit (dBm)	Margin (dB)
0.876	-43.51	9.0	-52.51
4.575	-64.58	9.0	-73.58
6.407	-60.00	9.0	-69.00


Table 13. Middle Channel – Conducted Spurious Emissions, Test Results

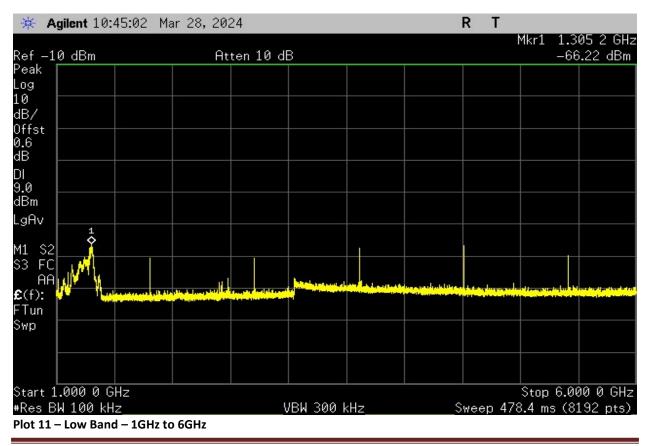
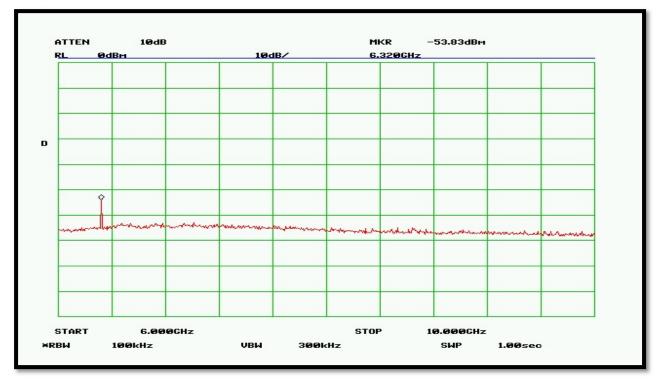
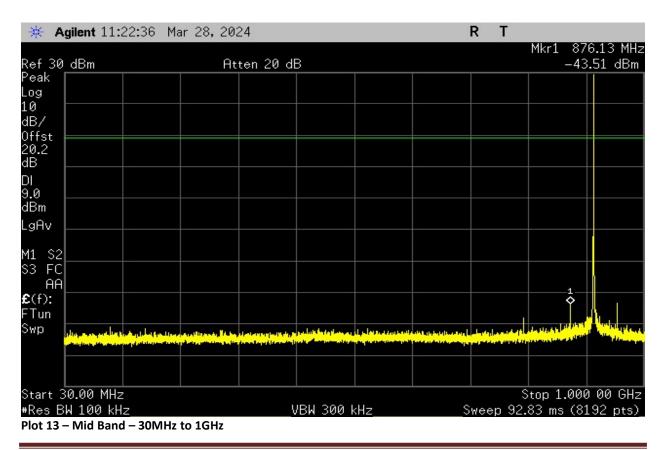
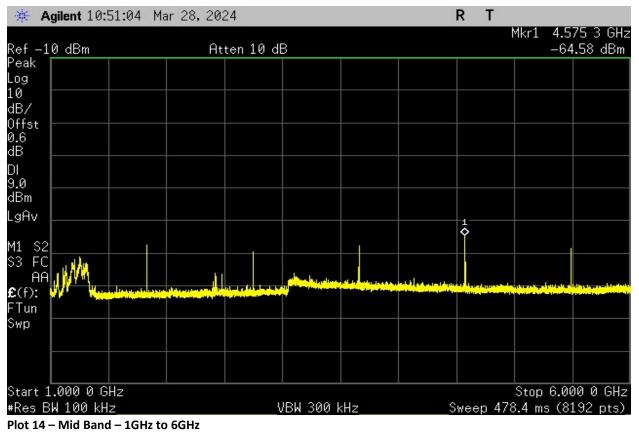

Frequency (GHz)	Measured Level (dBm)	Limit (dBm)	Margin (dB)
0.966	-43.50	9.0	-52.50
2.782	-62.55	9.0	-71.55
6.493	-60.83	9.0	-69.83

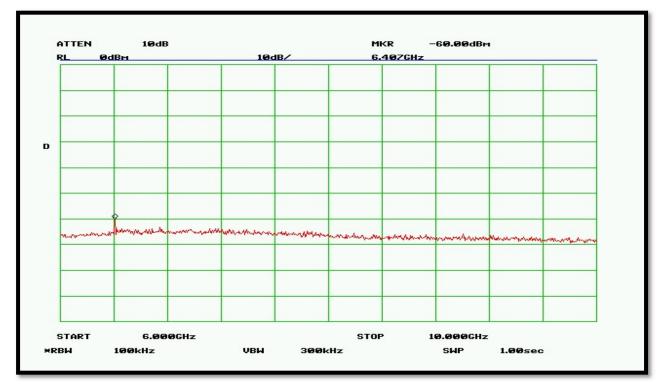
Table 14. Highest Channel – Conducted Spurious Emissions, Test Results



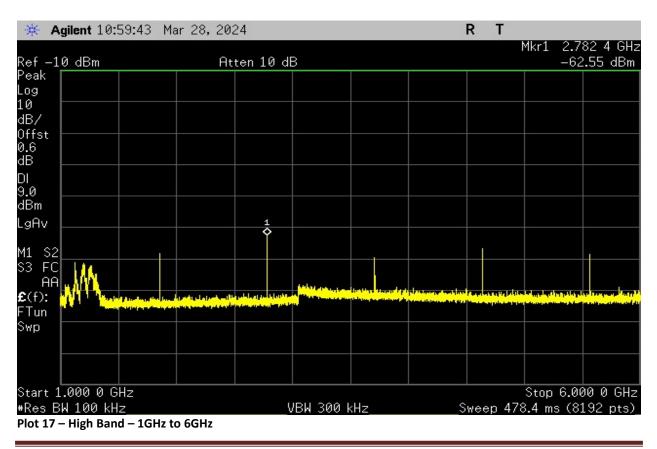
Agilent 11:22:	09 Mar 28,202	4		RT	
ef 30 dBm	Att	en 20 dB			Mkr1 863.46 MH -43.54 dBm
eak 🛛 👘					
og					
0 B/					
ffst					
0.2 B					
.0					
.0 Bm					
gAv					
1 S2					
3 FC					
AA					1
(f):					
Tun wp					white an an and the second state
	all all the schelar second all all				
tart 30.00 MHz					Stop 1.000 00 GH
Res BW 100 kHz_		VBW 300	0 kHz		2.83 ms (8192 pts)



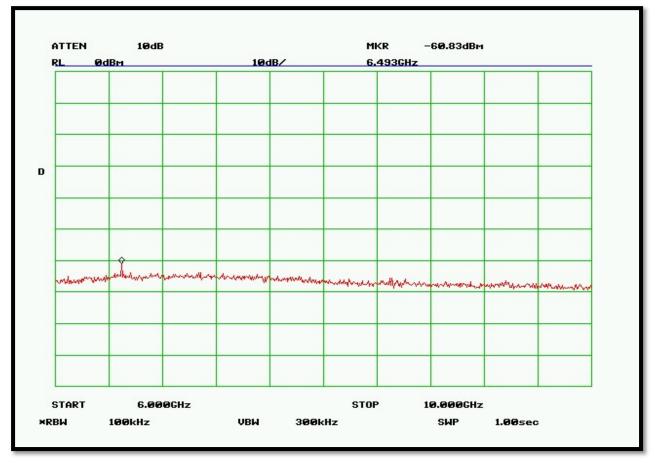




Plot 12 – Low Band – 6GHz to 10GHz



Plot 15 – Mid Band – 6GHz to 10GHz



Agilent 11:23:	:04 Mar 28, 2024	1		RT	Mkr1 966.60 MH;
Ref 30 dBm	Atte	en 20 dB			-43.50 dBm
Peak					
.0g .0					
IBZ					
ffst					
0ffst 20.2 IB					
) .0					
IBm 🛛 👘					
gAv					
11 S2					
3 FC AA					
:(f): Tun					
	an out of the state of the state of the	and the stand of the	Julia and the stand of the	العمرية بالرمارية الماليين ويراد اللاليس	And the second second
Contraction of the second		and the second	and the state of the	and the second	and the second
tart 30.00 MHz					Stop 1.000 00 GH:
Res BW 100 kHz_		VBW 300 k	:Hz		.83 ms (8192 pts)

Plot 16 – High Band – 30MHz to 1GHz

Plot 18 – High Band – 6GHz to 10GHz

4. Radiated Spurious Emissions and Restricted Band

Test	§15.247(d), 15.209(a),	Test Engineer(s):	Sean E.
Requirement(s):	15.205		
Test Results:	Pass	Test Date(s):	May 28, 2024

Test Procedures:As required by 47 CFR 15.247, Radiated spurious measurements were
made in accordance with the procedures of the FCC Guidance Document
558074 D01 and ANSI C63.10.

The EUT was placed on a non-reflective table inside a 3-meter open area test site. The EUT was set on continuous transmit.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The frequency range up to the 10th harmonic was investigated included all the restricted band frequencies include 2483.5MHz. Measurement 10dB below the limits were not reported.

To get a maximum emission level from the EUT, the EUT was rotated throughout the X-axis, Y-axis and Z-axis. Worst case is X-axis

Detector Setting	Resolution Bandwidth	Video Bandwidth	Span
Peak	1MHz	3MHz	As necessary
Average	1MHz	10Hz	0 Hz

Table 15. Analyzer Settings

Test Setup:

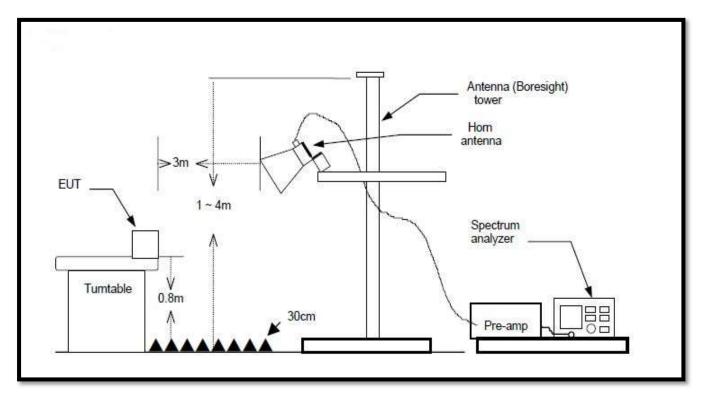


Figure 6. Radiated Emission Above 1GHz Test Setup

Frequency (MHz)	Peak Amplitude (dbuV/m)	Peal Limit (dBuV/m)	Peak Margin (dB)	Average Amplitude (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)	Comment
1805	47.57	74.0	-26.43	47.57	54.0	-6.43	Harmonic
2707.5	43.68	74.0	-30.32	43.68	54.0	-10.32	Harmonic
3610	42.10	74.0	-31.90	42.10	54.0	-11.90	Harmonic
4512.5	46.16	74.0	-27.84	46.16	54.0	-7.84	Harmonic
5415	44.86	74.0	-29.14	44.86	54.0	-9.14	Noise Floor
6317.5	46.28	74.0	-27.72	46.28	54.0	-7.72	Harmonic

Table 16 - Spurious Radiated Emission Data – Low Band

Frequency (MHz)	Peak Amplitude (dbuV/m)	Peal Limit (dBuV/m)	Peak Margin (dB)	Average Amplitude (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)	Comment
1830.22	41.40	74.0	-32.60	41.40	54.0	-12.60	Harmonic
2745.33	46.43	74.0	-27.57	46.43	54.0	-7.57	Harmonic
3660.44	47.36	74.0	-26.64	47.36	54.0	-6.64	Harmonic
4575.55	46.02	74.0	-27.98	46.02	54.0	-7.98	Harmonic
5490.66	47.18	74.0	-26.82	47.18	54.0	-6.82	Noise Floor
6405.77	46.95	74.0	-27.05	46.95	54.0	-7.05	Harmonic

Table 17 – Spurious Radiated Emission Data – Mid Band

Frequency (MHz)	Peak Amplitude (dbuV/m)	Peal Limit (dBuV/m)	Peak Margin (dB)	Average Amplitude (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)	Comment
1855.04	45.75	74.0	-28.25	45.75	54.0	-8.25	Harmonic
2782.56	51.50	74.0	-22.50	51.50	54.0	-2.50	Harmonic
3710.08	52.33	74.0	-21.67	52.33	54.0	-1.67	Harmonic
4637.6	47.34	74.0	-26.66	47.34	54.0	-6.66	Harmonic
5565.12	46.53	74.0	-27.47	46.53	54.0	-7.47	Noise Floor
6492.64	47.65	74.0	-26.35	47.65	54.0	-6.35	Harmonic

Table 18 - Spurious Radiated Emission Data – High Band

NOTE: There were no detectable emissions above the 7th harmonic.

Spurious Emission levels from the BLE Module FCC ID: X8WBT840F were investigated and found to be below the levels in the test report.

6. Emissions At Band Edges

Test	§15.247(d)	Test Engineer(s):	Sean E.
Requirement(s):			
Test Results:	Pass	Test Date(s):	March 26, 2024

Test Procedures: As required by 47 CFR 15.247, Band edge radiated emissions measurements were made at the RF antenna output terminals of the EUT using the marker-delta method.

Customer provided a test mode internal to the EUT to control the RF modulation, and frequency channel. The EUT output was connected directly to the spectrum analyzer through an attenuator. The EUT was set up at maximum power, first on the lowest operating channel, then on the highest operating channel of the transmit band.

Detector Setting	Resolution Bandwidth	Video Bandwidth	Sweep Time
Peak	100 kHz	300 kHz	Auto

Table 19 – Analyzer settings

Test Setup:

Figure 7. Band Edge Test Setup

Test Results:

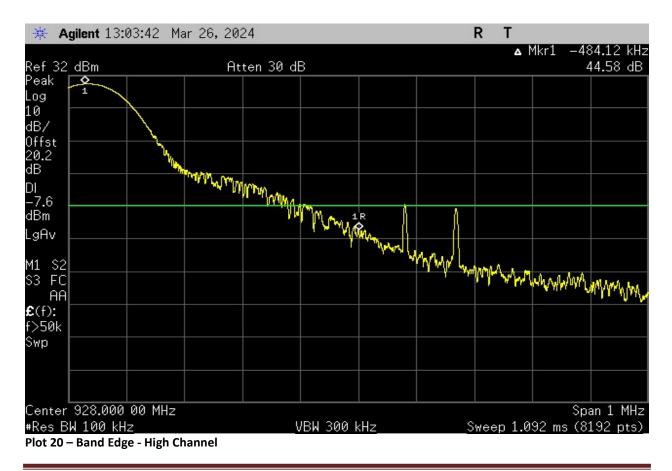
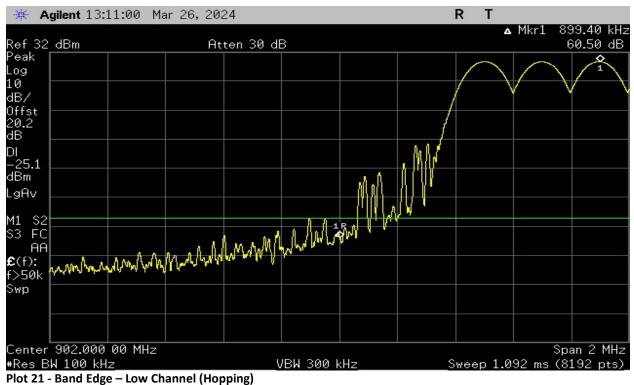
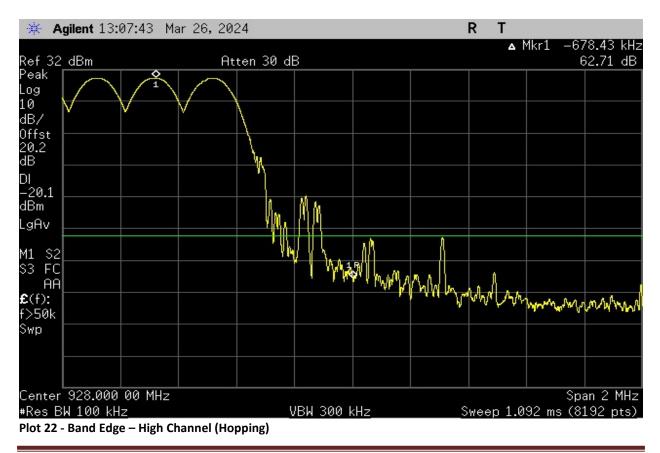

Frequency (MHz)	Measured Level (dBc)	Detector	Limit	Comments
902	-46.12	Peak	-20dBc	
928	-44.58	Peak	-20dBc	
902	-60.50	Peak	-20dBc	Hopping
928	-62.71	Peak	-20dBc	Hopping

Table 20 – Band Edge Emissions Summary





Plot 19 - Band Edge – Low Channel

7. Time of Occupancy (Dwell Time)

Test	§15.247(a)	Test Engineer(s):	Sean E.
Requirement(s):			
Test Results:	Pass	Test Date(s):	March 26, 2024

Test Procedures: As required by 47 CFR 15.247(a), for frequency hopping spread spectrum operating in the 902-928 MHz band with a 20 dB bandwidth less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. Measurements were made with device hopping function enabled.

The EUT output was connected directly to the spectrum analyzer through an attenuator. The measurements were made at the RF antenna output terminals of the EUT.

Detector Setting	Resolution Bandwidth	Video Bandwidth	Span
Peak	30kHz	91kHz	0

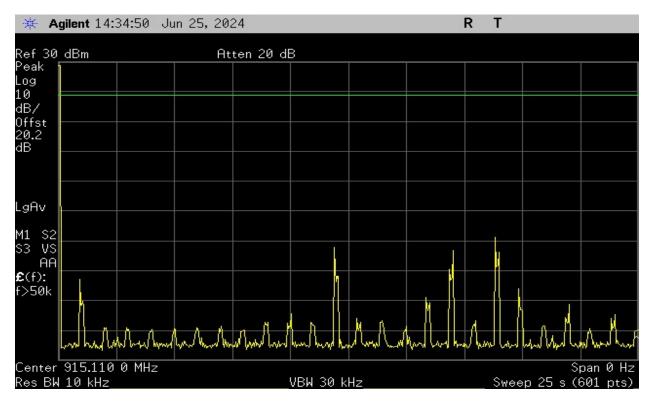
Table 21 – Analyzer settings

Calculation:

The transmitter's worst case burst length is 166.7ms.

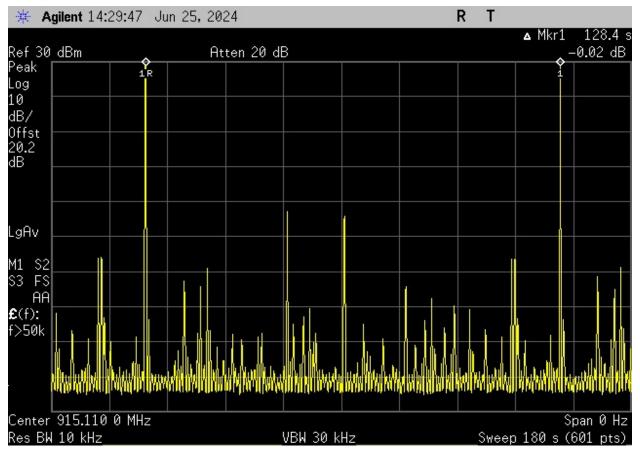
The transmitter utilizes 128 hopping channels and does not return to the same channel before completing the pseudo-random sequence.

128 hopping channels x 166.7ms burst length = 21.34 seconds


Note: If the transmitter were constantly transmitting and hopping channels, it would not utilize the same channel more than once in a 21.34 second period.

Additionally, the transmitter is designed for access control systems; The device only transmits after a manual action granting entry. Thus, the system is unlikely to transmit more than once a second in a worse case scenario.

Agilent 13:26:33	1101 20, 2024					RT	∆ Mkr1	166.7 m
əf 32_dBm	Atten	30 d	В				A PINIT	0.05 df
eak 👧		\$						
)g 1R		1						
) 3/								
ffst								
9.2 3								
B								
βAv								
l \$2								
3 VS								
AA								
(f):								
>50k			مر منا والعرف هذا ولا	Harris Latter May	ورياه بالجرية الأليا			
		14	na su su su	an a		dulla	Hilder () Jacob	t diana la ch
			<mark>lu lu ^ju d'an d</mark>		In the second	l' p ⁱⁿ de la re	adding to a	المارز على ا
		111		- I - '				alt - last de la
enter 915.110 0 MHz								Span 0 H
es BW 30 kHz			VBW 91 k	Hz	S	ween 41	75.6 ms (8	


Plot 23 – Burst Length

Plot 24 – Channel Occupancy

HBCS Report # EMC_24014 Rev1

Plot 25 – Channel Occupancy

8. Number of Hopping Frequencies

Test Requirement(s):	§15.247(a)	Test Engineer(s):	Sean E.
Test Results:	Pass	Test Date(s):	March 26, 2024

Test Procedures: As required by 47 CFR 15.247(a), for frequency hopping spread spectrum operating at 902MHz-928MHz band. Measurements were made with device hopping function enabled.

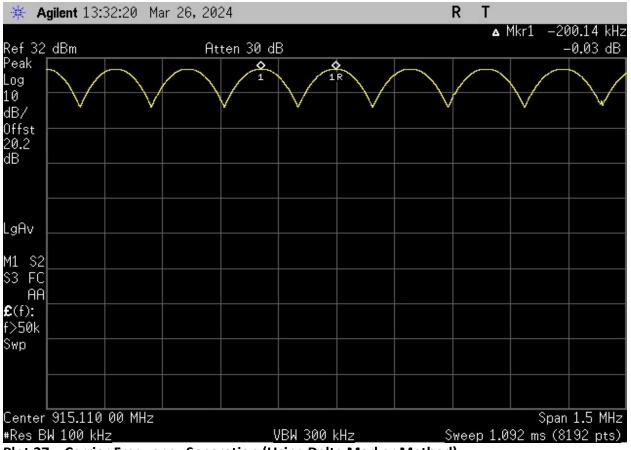
The EUT output was connected directly to the spectrum analyzer through an attenuator. The measurements were made at the RF antenna output terminals of the EUT. Peak detector was used, and trace was set to max hold.

🔆 Ag	ilent 13	3:30	0:21	Ma	r 26,2	202	24			R	Т		
Ref 32	dBm					At	ten 30 df	3					
Peak Log		MΜ	NIN WY	MM	NAMANI	ŴŴ				ŴW			M
10 - dB/				111		111							
Offst 20.2									5. S				
dB													
LgAv _													
M1 S2	ĺ												
S3 FC AA	J												- (N - 1
£(f): FTun 🖗	WW H												maria
Swp													
Start 90												Stop 930.	
#Res B₩ Plot 26				rec	quency	/ H		/BW 300 k 2MHz to			p 3.2	76 ms (81	.92 pts)_

HBCS Report # EMC_24014 Rev1

9. Carrier Frequency Separation

Test	§15.247(a)(1)	Test Engineer(s):	Sean E.
Requirement(s):			
Test Results:	Pass	Test Date(s):	March 26, 2024


Test Procedures: As required by 47 CFR 15.247(a), for frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Measurements were made with device hopping function enabled.

The EUT output was connected directly to the spectrum analyzer through an attenuator. The measurements were made at the RF antenna output terminals of the EUT. Peak detector was used, and trace was set to max hold.

Frequency Measured (MHz)	Frequency Separation (kHz)	Detector	Limit
915.11	200	Peak	>25 kHz

Table 22 – Carrier Frequency Separation - Summary

Plot 27 – Carrier Frequency Separation (Using Delta Marker Method)

10. Test Equipment

Equipment	Manufacturer	Model	Serial #	Last Cal Date	Cal Due Date
Spectrum Analyzer	Agilent	E4443A	US41420164	Jun-01-23	Jun-01-24
EMI Test Receiver	Rhode & Schwarz	ESMI26	840607/005	Nov-15-23	Nov-15-24
High Pass Filter	Mini-Circuits	VHF-1320+	1047	Ver	ified
Spectrum Analyzer	Hewlett Packard	8666B	2747A05264	Feb-01-24	Feb-01-25
Attenuator 20dB	Weinschel	41-20-12	86332	Ver	ified
Horn Antenna	Com-Power	AHA-118	711150	Jan-09-23	Jan-09-25
Antenna	EMCO	GTEM 5417	1063	Verified	
USB Wideband Power Sensor	Agilent	U2021XA	MY54210014	Nov-15-23	Nov-15-24
Spectrum Analyzer	Hewlett Packard	8563E	3821A09316	May-02-23	May-02-24
Spectrum Analyzer	Hewlett Packard	8595EM	3801A00177	May-02-23	May-02-24
Two Line V- Network – LISN	Teseq	NNB 51	43198	Jan-12-23	Jan-12-25

Table 23 – Test Equipment List

*Statement of Traceability: Test equipment is maintained and calibrated on a regular basis. All calibrations have been performed by a 17025 accredited test facility, traceable to National Institute of Standards and Technology (NIST)

11. Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. These measurements figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2. Instrumentation measurement uncertainty has **not** been taken into account to determine compliance.

The following measurement uncertainty values have been calculated as show in the table below:

Measured Parameter	Measurement	Frequency Range	Expanded	
	Unit		Uncertainty	
Conducted Emissions (AC Power)	dBuV or dBuA	150kHz – 30MHz	± 4.3dB	
Radiated Emission below 30MHz	dBuV/m	9kHz-30MHz	± 2.96dB	
Radiated Emissions below 1GHz	dBuV/m	30 – 1000MHz	± 5.6dB	
Radiated Emissions above 1GHz	dBuV/m	1 – 26.5GHz	± 4.1dB	

The reported expanded uncertainty has been estimated at a 95% confidence level (k=2)

END OF TEST REPORT