

# Shenzhen Toby Technology Co., Ltd.



Report No.: TBR-C-202209-0163-23

Page: 1 of 53

# Radio Test Report

FCC ID: 2A4WI-T-LITE3

**Report No.** : TBR-C-202209-0163-23

**Applicant**: Sosmart Spa (SoyMomo SA)

**Equipment Under Test (EUT)** 

**EUT Name** : Tablet PC

Model No. : Tablet Lite 3.0

Series Model No. : ----

Brand Name : SoyMomo

Sample ID : RW-C-202209-0163-1-1#&RW-C-202209-0163-1-2#

**Receipt Date** : 2022-10-17

**Test Date** : 2022-10-17 to 2022-11-11

Issue Date : 2022-11-14

Standards : FCC Part 15 Subpart E 15.407

**Test Method** : ANSI C63.10: 2013

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

**Engineer Supervisor**:

Engineer Manager :

Made Ly Wade Ly Wade Ly Ray Lair

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202209-0163-23 Page: 2 of 53

# Contents

| COI | NTENTS                                                       | 2  |
|-----|--------------------------------------------------------------|----|
| 1.  | GENERAL INFORMATION ABOUT EUT                                | 6  |
|     | 1.1 Client Information                                       | 6  |
|     | 1.2 General Description of EUT (Equipment Under Test)        | 6  |
|     | 1.3 Block Diagram Showing the Configuration of System Tested | 7  |
|     | 1.4 Description of Support Units                             | 8  |
|     | 1.5 Description of Test Mode                                 | 8  |
|     | 1.6 Description of Test Software Setting                     | 10 |
|     | 1.7 Measurement Uncertainty                                  | 11 |
|     | 1.8 Test Facility                                            | 11 |
| 2.  | TEST SUMMARY                                                 | 12 |
| 3.  | TEST SOFTWARE                                                | 12 |
| 4.  | TEST EQUIPMENT                                               | 13 |
| 5.  | CONDUCTED EMISSION TEST                                      | 15 |
|     | 5.1 Test Standard and Limit                                  | 15 |
|     | 5.2 Test Setup                                               | 15 |
|     | 5.3 Test Procedure                                           | 15 |
|     | 5.4 Deviation From Test Standard                             | 16 |
|     | 5.5 EUT Operating Mode                                       | 16 |
|     | 5.6 Test Data                                                | 16 |
| 6.  | RADIATED AND CONDUCTED UNWANTED EMISSIONS                    | 17 |
|     | 6.1 Test Standard and Limit                                  | 17 |
|     | 6.2 Test Setup                                               | 19 |
|     | 6.3 Test Procedure                                           | 20 |
|     | 6.4 Deviation From Test Standard                             | 21 |
|     | 6.5 EUT Operating Mode                                       | 21 |
|     | 6.6 Test Data                                                |    |
| 7.  | RESTRICTED BANDS REQUIREMENT                                 | 22 |
|     | 7.1 Test Standard and Limit                                  | 22 |
|     | 7.2 Test Setup                                               | 23 |
|     | 7.3 Test Procedure                                           |    |
|     | 7.4 Deviation From Test Standard                             | 25 |





Report No.: TBR-C-202209-0163-23 Page: 3 of 53

|     | 7.5 EUT Operating Mode              | 25 |
|-----|-------------------------------------|----|
|     | 7.6 Test Data                       | 25 |
| 8.  | BANDWIDTH TEST                      | 26 |
|     | 8.1 Test Standard and Limit         | 26 |
|     | 8.2 Test Setup                      | 26 |
|     | 8.3 Test Procedure                  | 26 |
|     | 8.4 Deviation From Test Standard    | 28 |
|     | 8.5 EUT Operating Mode              | 28 |
|     | 8.6 Test Data                       | 28 |
| 9.  | MAXIMUM CONDUCTED OUTPUT POWER      | 29 |
|     | 9.1 Test Standard and Limit         | 29 |
|     | 9.2 Test Setup                      | 29 |
|     | 9.3 Test Procedure                  | 29 |
|     | 9.4 Deviation From Test Standard    | 29 |
|     | 9.5 EUT Operating Mode              | 29 |
|     | 9.6 Test Data                       | 30 |
| 10. | POWER SPECTRAL DENSITY TEST         | 31 |
|     | 10.1 Test Standard and Limit        | 31 |
|     | 10.2 Test Setup                     | 31 |
|     | 10.3 Test Procedure                 | 31 |
|     | 10.4 Deviation From Test Standard   | 32 |
|     | 10.5 Antenna Connected Construction | 32 |
|     | 10.6 Test Data                      | 32 |
| 11. | FREQUENCY STABILITY                 | 33 |
|     | 11.1 Test Standard and Limit        | 33 |
|     | 11.2 Test Setup                     | 33 |
|     | 11.3 Test Procedure                 | 33 |
|     | 11.4 Deviation From Test Standard   | 34 |
|     | 11.5 Antenna Connected Construction | 34 |
|     | 11.6 Test Data                      | 34 |
| 12. | ANTENNA REQUIREMENT                 | 35 |
|     | 12.1 Test Standard and Limit        | 35 |
|     | 12.2 Deviation From Test Standard   | 35 |
|     | 12.3 Antenna Connected Construction | 35 |
|     | 12.4 Test Data                      | 35 |





| Report No.: | TBR-C-2022 | 09-0163-23 |
|-------------|------------|------------|
|-------------|------------|------------|

Page: 4 of 53

| ATTACHMENT A CONDUCTED EMISSION TEST DATA | 36 |
|-------------------------------------------|----|
| ATTACHMENT BUNWANTED EMISSIONS DATA       | 38 |





Report No.: TBR-C-202209-0163-23 Page: 5 of 53

# **Revision History**

| Report No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Version     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Issued Date |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| TBR-C-202209-0163-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rev.01      | Initial issue of report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2022-11-14  |
| The same of the sa |             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | MODE TO THE PARTY OF THE PARTY  | 50          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Will st     | The state of the s |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Direction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| 0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | all pro-    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MORY        |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1100        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 10:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NI GIVE     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The same of | Will Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51 (1)      |





Page: 6 of 53

# 1. General Information about EUT

# 1.1 Client Information

| Applicant                                                      |                                                             | : Sosmart Spa (SoyMomo SA)           |  |  |
|----------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|--|--|
| Address                                                        | : Ricardo Lyon 1688, Providencia, Santiago, Chile, PROCIDEN |                                      |  |  |
| Manufacturer                                                   |                                                             | Shenzhen Ployer Electronics Co., Ltd |  |  |
| Address : 6F and 7F, Building 8, Rundongsheng Industrial Area, |                                                             |                                      |  |  |
| LongTeng Community, Xixiang Street, Bao'an District China      |                                                             |                                      |  |  |

# 1.2 General Description of EUT (Equipment Under Test)

| <b>EUT Name</b>                                                                                                                          | :   |                          |                                                                                                                        |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Models No.                                                                                                                               | :   |                          |                                                                                                                        |  |  |
| Model Different                                                                                                                          |     |                          |                                                                                                                        |  |  |
|                                                                                                                                          | VI) |                          |                                                                                                                        |  |  |
|                                                                                                                                          | 4   | Antenna Gain:            | -0.14dBi FPC Antenna                                                                                                   |  |  |
| Product Description                                                                                                                      |     | Modulation Type:         | 802.11a: OFDM (QPSK, BPSK, 16QAM)<br>802.11n: OFDM (QPSK, BPSK, 16QAM,<br>64QAM)<br>802.11ac: OFDM (QPSK, BPSK, 16QAM, |  |  |
| TOBY TOBY                                                                                                                                | 1   | Bit Rate of Transmitter: | 64QAM, 256QAM)<br>802.11a: 6/9/12/18/24/36/48/54 Mbps<br>802.11n: up to 150Mbps<br>802.11ac: at most 433.3 Mbps        |  |  |
| Power Rating  : Adapter (FX2U-050200U) Input: AC 100-240V~ 50/60Hz 0.4A MAX Output: 5V=2A DC 3.8V by 3000mAh Rechargeable Li-ion battery |     | - 50/60Hz 0.4A MAX       |                                                                                                                        |  |  |
| Software Version                                                                                                                         |     | SOYMOMOTABLET            |                                                                                                                        |  |  |
| Hardware Version                                                                                                                         | V   | BND-MT8168-P863          |                                                                                                                        |  |  |
| Dd                                                                                                                                       |     |                          |                                                                                                                        |  |  |

# Remark:

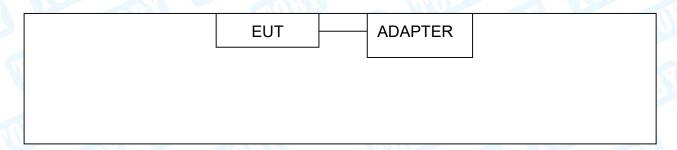
- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.



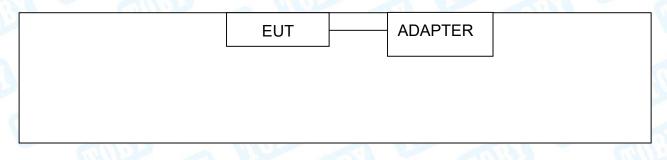


Page: 7 of 53

# (4) Channel List:


| Frequency Band | Channel No. | Frequency | Channel No. | Frequency |
|----------------|-------------|-----------|-------------|-----------|
| 5100, 5240MHz  | 36          | 5180 MHz  | 44          | 5220 MHz  |
| 5180~5240MHz   | 38          | 5190 MHz  | 46          | 5230 MHz  |
| (U-NII-1)      | 40          | 5200 MHz  | 48          | 5240 MHz  |
|                | 42          | 5210 MHz  |             |           |

For 20 MHz Bandwidth, use channel 36, 40, 44, 48. For 40 MHz Bandwidth, use channel 38, 46.


For 80 MHz Bandwidth, use channel 42.

# 1.3 Block Diagram Showing the Configuration of System Tested

# **Conducted Test**



# **Radiated Test**



EUT





Page: 8 of 53

# 1.4 Description of Support Units

| Equipment Information                         |              |        |         |           |  |  |
|-----------------------------------------------|--------------|--------|---------|-----------|--|--|
| Name Model FCC ID/SDOC Manufacturer Used "√"  |              |        |         |           |  |  |
| Adapter                                       | FX2U-050200U | WAD IN | FangXin | 1         |  |  |
| Cable Information                             |              |        |         |           |  |  |
| Number Shielded Type Ferrite Core Length Note |              |        |         |           |  |  |
| Cable 1                                       | Yes          | NO     | 1.0M    | Accessory |  |  |

# 1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

| For Conducted Test        |                                               |                                               |  |  |  |
|---------------------------|-----------------------------------------------|-----------------------------------------------|--|--|--|
| Final Test Mode           |                                               | Description                                   |  |  |  |
| Mode 1                    |                                               | TX a Mode(5180MHz)                            |  |  |  |
|                           | Fo                                            | r Radiated Test Below 1GHz                    |  |  |  |
| Fina                      | I Test Mode                                   | Description                                   |  |  |  |
|                           | Mode 2                                        | TX a Mode(5180MHz)                            |  |  |  |
|                           | For Radiated Above 1GHz and RF Conducted Test |                                               |  |  |  |
| Test Band Final Test Mode |                                               | Description                                   |  |  |  |
| Chine                     | Mode 3                                        | TX Mode 802.11a Mode Channel 36/40/48         |  |  |  |
|                           | Mode 4                                        | TX Mode 802.11n(HT20) Mode Channel 36/40/48   |  |  |  |
| U-NII-1                   | Mode 5                                        | TX Mode 802.11ac(VHT20) Mode Channel 36/40/48 |  |  |  |
| U-INII- I                 | Mode 6                                        | TX Mode 802.11n(HT40) Mode Channel 38/46      |  |  |  |
|                           | Mode 7                                        | TX Mode 802.11ac(VHT40) Mode Channel 38/46    |  |  |  |
|                           | Mode 8                                        | TX Mode 802.11ac(VHT80) Mode Channel 42       |  |  |  |





Page: 9 of 53

#### Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 0 802.11n (HT40) Mode: MCS 0

802.11ac(VHT20) Mode: MCS 0/ Nss1 802.11ac(VHT40) Mode: MCS 0/ Nss1 802.11ac(VHT80) Mode: MCS 0/ Nss1

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.





Page: 10 of 53

# 1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

| Test So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ftware: Model of engineerin | 19         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U-NII-1                     |            |
| Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frequency (MHz)             | Parameters |
| The Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5180                        | 20         |
| 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5200                        | 21         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5240                        | 22         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5180                        | 17.5       |
| 802.11n(HT20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5200                        | 17.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5240                        | 17.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5180                        | 17.5       |
| 802.11ac(VHT20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5200                        | 17.5       |
| The state of the s | 5240                        | 17.5       |
| 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5190                        | 17         |
| ου2.1111(Π140)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5230                        | 17         |
| 902 44aa/\/UT40\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5190                        | 17         |
| 802.11ac(VHT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5230                        | 17         |
| 802.11ac(VHT80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5210                        | 16.5       |





Page: 11 of 53

# 1.7 Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U_1$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of  $k=2_1$  providing a level of confidence of approximately 95 %.

| Test Item          | Parameters                                  | Expanded Uncertainty (U <sub>Lab</sub> ) |
|--------------------|---------------------------------------------|------------------------------------------|
| Conducted Emission | Level Accuracy: 9kHz~150kHz 150kHz to 30MHz | ±3.50 dB<br>±3.10 dB                     |
| Radiated Emission  | Level Accuracy: 9kHz to 30 MHz              | ±4.60 dB                                 |
| Radiated Emission  | Level Accuracy:<br>30MHz to 1000 MHz        | ±4.50 dB                                 |
| Radiated Emission  | Level Accuracy: Above 1000MHz               | ±4.20 dB                                 |

# 1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

# **CNAS (L5813)**

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

#### A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

# IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.



Page: 12 of 53

# 2. Test Summary

| Standard Section       | To at Itama                      | Toot Commission          | Judgment | Damar  |  |
|------------------------|----------------------------------|--------------------------|----------|--------|--|
| FCC                    | lest item                        | Test Item Test Sample(s) |          | Remark |  |
| FCC 15.207(a)          | Conducted Emission               | RW-C-202209-0163-1-1#    | PASS     | N/A    |  |
| FCC 15.209 & 15.407(b) | Radiated Unwanted<br>Emissions   | RW-C-202209-0163-1-1#    | PASS     | N/A    |  |
| FCC 15.203             | Antenna Requirement              | RW-C-202209-0163-1-2#    | PASS     | N/A    |  |
| FCC 15.407(a)          | -26dB Emission Bandwidth         | RW-C-202209-0163-1-2#    | PASS     | N/A    |  |
| FCC 15.407(a)          | 99% Occupied Bandwidth           | RW-C-202209-0163-1-2#    | PASS     | N/A    |  |
| FCC 15.407(e)          | -6dB Min Emission<br>Bandwidth   | RW-C-202209-0163-1-2#    | PASS     | N/A    |  |
| FCC 15.407(a)          | Maximum Conducted Output Power   | RW-C-202209-0163-1-2#    | PASS     | N/A    |  |
| FCC 15.407(a)          | Power Spectral Density           | RW-C-202209-0163-1-2#    | PASS     | N/A    |  |
| FCC 15.407(b)& 15.205  | Emissions in Restricted<br>Bands | RW-C-202209-0163-1-2#    | PASS     | N/A    |  |
| FCC 15.407(b)&15.209   | Conducted Unwanted<br>Emissions  | RW-C-202209-0163-1-2#    | PASS     | N/A    |  |
| FCC 15.407(g)          | Frequency Stability              | RW-C-202209-0163-1-2#    | PASS     | N/A    |  |
| I milk                 | On Time and Duty Cycle           | RW-C-202209-0163-1-2#    |          | N/A    |  |

# 3. Test Software

| Test Item                 | Test Software | Manufacturer | Version No.  |
|---------------------------|---------------|--------------|--------------|
| Conducted Emission        | EZ-EMC        | EZ           | CDI-03A2     |
| Radiation Emission        | EZ-EMC        | EZ           | FA-03A2RE    |
| Radiation Emission        | EZ-EMC        | EZ           | FA-03A2RE+   |
| RF Conducted  Measurement | MTS-8310      | MWRFtest     | V2.0.0.0     |
| RF Test System            | JS1120        | Tonscend     | V2.6.88.0336 |





Report No.: TBR-C-202209-0163-23 Page: 13 of 53

# 4. Test Equipment

| Equipment           | Manufacturer    | Model No.   | Serial No.  | Last Cal.     | Cal. Due Date |
|---------------------|-----------------|-------------|-------------|---------------|---------------|
| Spectrum Analyzer   | Rohde & Schwarz | FSV40-N     | 102197      | Jun. 23, 2022 | Jun. 22, 2023 |
| EMI Test Receiver   | Rohde & Schwarz | ESPI        | 100010/007  | Jun. 23, 2022 | Jun. 22, 2023 |
| Bilog Antenna       | ETS-LINDGREN    | 3142E       | 00117537    | Feb. 27, 2022 | Feb.26, 2024  |
| Horn Antenna        | ETS-LINDGREN    | 3117        | 00143207    | Feb. 26, 2022 | Feb.25, 2024  |
| Horn Antenna        | SCHWARZBECK     | BBHA 9170   | 1118        | Feb. 26, 2022 | Feb.25, 2024  |
| Loop Antenna        | SCHWARZBECK     | FMZB 1519 B | 1519B-059   | Feb. 26, 2022 | Feb.25, 2024  |
| Pre-amplifier       | SONOMA          | 310N        | 185903      | Feb. 26, 2022 | Feb.25, 2023  |
| Pre-amplifier       | HP              | 8449B       | 3008A00849  | Feb. 26, 2022 | Feb.25, 2023  |
| HF Amplifier        | Tonscend        | TAP0184050  | AP21C806129 | Sep. 01, 2022 | Aug. 31, 2023 |
| Radiation Emission  | n Test (A Site) |             |             |               |               |
| Equipment           | Manufacturer    | Model No.   | Serial No.  | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer   | Rohde & Schwarz | FSV40-N     | 102197      | Jun. 23, 2022 | Jun. 22, 2023 |
| EMI Test Receiver   | Rohde & Schwarz | ESPI        | 100010/007  | Jun. 23, 2022 | Jun. 22, 2023 |
| Bilog Antenna       | ETS-LINDGREN    | 3142E       | 00117537    | Feb. 27, 2022 | Feb.26, 2024  |
| Horn Antenna        | ETS-LINDGREN    | 3117        | 00143207    | Feb. 26, 2022 | Feb.25, 2024  |
| Horn Antenna        | SCHWARZBECK     | BBHA 9170   | 1118        | Feb. 26, 2022 | Feb.25, 2024  |
| Loop Antenna        | SCHWARZBECK     | FMZB 1519 B | 1519B-059   | Feb. 26, 2022 | Feb.25, 2024  |
| Pre-amplifier       | SONOMA          | 310N        | 185903      | Feb. 26, 2022 | Feb.25, 2023  |
| Pre-amplifier       | HP              | 8449B       | 3008A00849  | Feb. 26, 2022 | Feb.25, 2023  |
| HF Amplifier        | Tonscend        | TAP0184050  | AP21C806129 | Sep. 01, 2022 | Aug. 31, 2023 |
| Radiation Emission  | n Test (B Site) |             |             |               |               |
| Equipment           | Manufacturer    | Model No.   | Serial No.  | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer   | Rohde & Schwarz | FSV40-N     | 102197      | Jun. 23, 2022 | Jun. 22, 2023 |
| MXA Signal Analyzer | Agilent         | N9020A      | MY47380425  | Sep. 01, 2022 | Aug. 31, 2023 |
| EMI Test Receiver   | Rohde & Schwarz | ESU-8       | 100472      | Feb. 26, 2022 | Feb.25, 2023  |
| Bilog Antenna       | SCHWARZBECK     | VULB 9168   | 1225        | Dec. 05, 2021 | Dec. 04, 2023 |
| Horn Antenna        | SCHWARZBECK     | BBHA 9120 D | 2463        | Feb. 26, 2022 | Feb.25, 2024  |
| Horn Antenna        | SCHWARZBECK     | BBHA 9170   | 1118        | Jun. 26, 2022 | Jun.25, 2024  |
| Loop Antenna        | SCHWARZBECK     | FMZB 1519 B | 1519B-059   | Jun. 26, 2022 | Jun.25, 2024  |
| HF Amplifier        | Tonscend        | TAP9E6343   | AP21C806117 | Sep. 01, 2022 | Aug. 31, 2023 |
| HF Amplifier        | Tonscend        | TAP051845   | AP21C806141 | Sep. 01, 2022 | Aug. 31, 2023 |
| HF Amplifier        | Tonscend        | TAP0184050  | AP21C806129 | Sep. 01, 2022 | Aug. 31, 2023 |





Report No.: TBR-C-202209-0163-23 Page: 14 of 53

| Antenna Conducted Emission              |                    |                   |               |               |               |
|-----------------------------------------|--------------------|-------------------|---------------|---------------|---------------|
| Equipment                               | Manufacturer       | Model No.         | Serial No.    | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer                       | Agilent            | E4407B            | MY45106456    | Jun. 23, 2022 | Jun. 22, 2023 |
| Spectrum Analyzer                       | Rohde & Schwarz    | FSV40-N           | 102197        | Jun. 23, 2022 | Jun. 22, 2023 |
| MXA Signal Analyzer                     | KEYSIGT            | N9020B            | MY60110172    | Sep. 01, 2022 | Aug. 31, 2023 |
| MXA Signal Analyzer                     | Agilent            | N9020A            | MY47380425    | Sep. 01, 2022 | Aug. 31, 2023 |
| Vector Signal<br>Generator              | Agilent            | N5182A            | MY50141294    | Sep. 01, 2022 | Aug. 31, 2023 |
| Analog Signal<br>Generator              | Agilent            | N5181A            | MY48180463    | Sep. 01, 2022 | Aug. 31, 2023 |
| Vector Signal<br>Generator              | KEYSIGT            | N5182B            | MY59101429    | Sep. 01, 2022 | Aug. 31, 2023 |
| Analog Signal<br>Generator              | KEYSIGHT           | N5173B            | MY61252685    | Dec. 16, 2021 | Dec. 15, 2022 |
| 000                                     | DARE!! Instruments | RadiPowerRPR3006W | 17I00015SNO26 | Sep. 01, 2022 | Aug. 31, 2023 |
|                                         | DARE!! Instruments | RadiPowerRPR3006W | 17I00015SNO29 | Sep. 01, 2022 | Aug. 31, 2023 |
| RF Power Sensor                         | DARE!! Instruments | RadiPowerRPR3006W | 17I00015SNO31 | Sep. 01, 2022 | Aug. 31, 2023 |
|                                         | DARE!! Instruments | RadiPowerRPR3006W | 17I00015SNO33 | Sep. 01, 2022 | Aug. 31, 2023 |
| RF Control Unit                         | Tonsced            | JS0806-1          | 21C8060380    | N/A           | N/A           |
| RF Control Unit                         | Tonsced            | JS0806-2          | 21F8060439    | Sep. 01, 2022 | Aug. 31, 2023 |
| Band Reject Filter<br>Group             | Tonsced            | JS0806-F          | 21D8060414    | Jun. 23, 2022 | Jun. 22, 2023 |
| Power Control Box                       | Tonsced            | JS0806-4ADC       | 21C8060387    | N/A           | N/A           |
| Wideband Radio<br>Comunication Tester   | Rohde & Schwarz    | CMW500            | 144382        | Sep. 01, 2022 | Aug. 31, 2023 |
| Universal Radio<br>Communication Tester | Rohde&Schwarz      | CMW500            | 168796        | Jun. 23, 2022 | Jun. 22, 2023 |
| Temperature and<br>Humidity Chamber     | ZhengHang          | ZH-QTH-1500       | ZH2107264     | Jun. 22, 2022 | Jun. 21, 2023 |



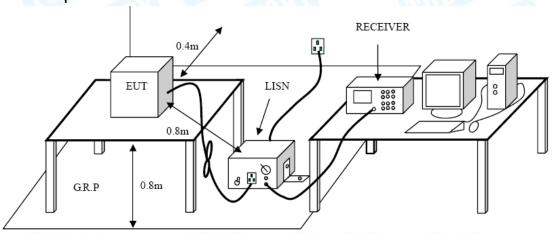
Report No.: TBR-C-202209-0163-23 Page: 15 of 53

5. Conducted Emission Test

# 5.1 Test Standard and Limit

5.1.1 Test Standard

#### FCC Part 15.207


#### 5.1.2 Test Limit

| Fraguenav     | Maximum RF Line Voltage (dBμV) |               |  |
|---------------|--------------------------------|---------------|--|
| Frequency     | Quasi-peak Level               | Average Level |  |
| 150kHz~500kHz | 66 ~ 56 *                      | 56 ~ 46 *     |  |
| 500kHz~5MHz   | 56                             | 46            |  |
| 5MHz~30MHz    | 60                             | 50            |  |

#### Notes:

- (1) \*Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

# 5.2 Test Setup



# 5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- ●Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.





Page: 16 of 53

● The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

# 5.4 Deviation From Test Standard

No deviation

# 5.5 EUT Operating Mode

Please refer to the description of test mode.

# 5.6 Test Data

Please refer to the Attachment A inside test report.





Page: 17 of 53

# 6. Radiated and Conducted Unwanted Emissions

# 6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.407(b)

#### 6.1.2 Test Limit

| General field strength limits at frequencies Below 30MHz |                   |                      |  |  |
|----------------------------------------------------------|-------------------|----------------------|--|--|
| Frequency                                                | Field Strength    | Measurement Distance |  |  |
| (MHz)                                                    | (microvolt/meter) | (meters)             |  |  |
| 0.009~0.490                                              | 2400/F(KHz)       | 300                  |  |  |
| 0.490~1.705                                              | 24000/F(KHz)      | 30                   |  |  |
| 1.705~30.0                                               | 30                | 30                   |  |  |

**Note:** 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

| General field strength limits at frequencies above 30 MHz |                |                      |  |  |
|-----------------------------------------------------------|----------------|----------------------|--|--|
| Frequency                                                 | Field strength | Measurement Distance |  |  |
| (MHz)                                                     | (µV/m at 3 m)  | (meters)             |  |  |
| 30~88                                                     | 100            | 3                    |  |  |
| 88~216                                                    | 150            | 3                    |  |  |
| 216~960                                                   | 200            | 3                    |  |  |
| Above 960                                                 | 500            | 3                    |  |  |

| General field strength limits at frequencies Above 1000MHz |                         |         |  |
|------------------------------------------------------------|-------------------------|---------|--|
| Frequency                                                  | Distance of 3m (dBuV/m) |         |  |
| (MHz)                                                      | Peak                    | Average |  |
| Above 1000                                                 | 74                      | 54      |  |

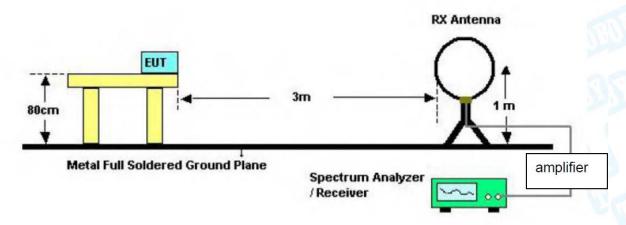
- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power

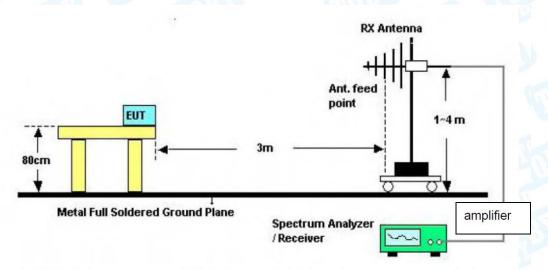




Page: 18 of 53


limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.




Page: 19 of 53

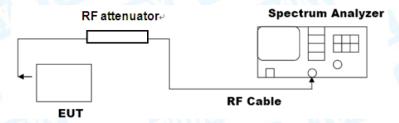
# 6.2 Test Setup

# Radiated measurement



# **Below 30MHz Test Setup**




# Below 1000MHz Test Setup Ant. feed point 1.5m Metal Full Soldered Ground Plane Spectrum Analyzer / Receiver





Page: 20 of 53

# Above 1GHz Test Setup Conducted measurement



## 6.3 Test Procedure

#### ---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.





Page: 21 of 53

#### --- Conducted measurement

# Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3\*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

# Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3\*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

#### 6.4 Deviation From Test Standard

No deviation

# 6.5 EUT Operating Mode

Please refer to the description of test mode.

#### 6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

Conducted measurement please refer to the external appendix report of 5G Wi-Fi.



Page: 22 of 53

# 7. Restricted Bands Requirement

# 7.1 Test Standard and Limit

7.1.1 Test Standard

# FCC Part 15.205 & FCC Part 15.407(b)

#### 7.1.2 Test Limit

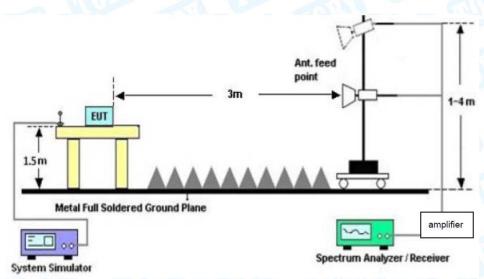
| Frequency (MHz) | EIRP Limits (dBm) | Equivalent Field Strength at 3m (dBuV/m) |
|-----------------|-------------------|------------------------------------------|
| 5150~5250       | -27               | 68.3                                     |
| 5250~5350       | -27               | 68.3                                     |
| 5470~5725       | -27               | 68.3                                     |
| 1               | -27(Note 2)       | 68.3                                     |
| E70E . E00E     | 10(Note 2)        | 105.3                                    |
| 5725~5825       | 15.6(Note 2)      | 110.9                                    |
|                 | 27(Note 2)        | 122.3                                    |

#### NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.


**Note:** According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.






# 7.2 Test Setup

#### Radiated measurement



#### **Conducted measurement**



## 7.3 Test Procedure

#### ---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.





Page: 24 of 53

● For the actual test configuration, please see the test setup photo.



Page: 25 of 53

#### --- Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to

determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies

≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for

frequencies > 1000 MHz).

- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

$$E = EIRP-20 \log d + 104.8$$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

#### 7.4 Deviation From Test Standard

No deviation

# 7.5 EUT Operating Mode

Please refer to the description of test mode.

#### 7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

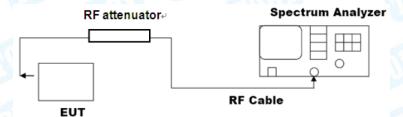
Please refer to the external appendix report of 5G Wi-Fi.



Page: 26 of 53

# 8. Bandwidth Test

# 8.1 Test Standard and Limit


8.1.1 Test Standard

# FCC Part 15.407(a) & FCC Part 15.407(e)

#### 8.1.2 Test Limit

| Test Item      | Limit   | Frequency Range<br>(MHz) |
|----------------|---------|--------------------------|
|                |         | 5150~5250                |
| 26 Bandwidth   | N/A     | 5250~5350                |
|                |         | 5500~5725                |
| 6 dB Bandwidth | >500kHz | 5725~5850                |
|                | MUBA T  | 5150~5250                |
| 99% Bandwidth  |         | 5250~5350                |
| 99% Bandwidth  | N/A     | 5500~5725                |
|                | W. C.   | 5725~5850                |

# 8.2 Test Setup



# 8.3 Test Procedure

## ---Emission bandwidth

- The procedure for this method is as follows:
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

NOTE—The automatic bandwidth measurement capability of a spectrum analyzer or an EMI receiver may be employed if it implements the functionality described in the preceding items.





Page: 27 of 53

#### ---DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3\*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

## ---occupied bandwidth

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum





Page: 28 of 53

until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

# 8.4 Deviation From Test Standard

No deviation

# 8.5 EUT Operating Mode

Please refer to the description of test mode.

#### 8.6 Test Data

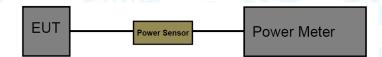
Please refer to the external appendix report of 5G Wi-Fi.





Page: 29 of 53

# 9. Maximum Conducted Output Power


- 9.1 Test Standard and Limit
  - 9.1.1 Test Standard

FCC Part 15.407(a)

9.1.2 Test Limit

|                        | FCC Part 15 Sub                                                                                                                                                                                           | part E(15.407)                                                                      |                                                              |                                    |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------|
| Limit                  | Freq                                                                                                                                                                                                      | uency Range(MHz)                                                                    |                                                              |                                    |
| Limit                  | 5150~5250                                                                                                                                                                                                 | 5250~5350                                                                           | 5500~5725                                                    | 5725~5850                          |
| Max Conducted TX Power | Master Device: 1 Watt(30dBm) Client  Device: 250mW(24dBm)                                                                                                                                                 | 24dBm (250 mW) or 11 dBm+ 10<br>log B, whichever is lower (B= 26-dB<br>emission BW) |                                                              | 1 Watt (30dBm)                     |
| Max E.I.R.P            | 4 W (36 dBm) with 6 dBi antenna  200 W (53 dBm) for fixed P-t-P application with 23 dBiantenna  Additional rule for outdoor operation:  Max_EIRP< 125 mW(21 dBm) at any elevation angle > 30°from horizon | 1 W (30 dBm) with 6 dBi antenna                                                     |                                                              | 4 W (36 dBm) with<br>6 dBi antenna |
| TPC                    | NO                                                                                                                                                                                                        | dBm) and able to                                                                    | RP ≥ 500 mW (27<br>b lower EIRP below<br>dBm<br>EIRP < 500mW | NO                                 |

# 9.2 Test Setup



# 9.3 Test Procedure

- The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.
- 9.4 Deviation From Test Standard
  No deviation
- 9.5 EUT Operating Mode

  Please refer to the description of test mode.





Report No.: TBR-C-202209-0163-23 Page: 30 of 53

Page:

# 9.6 Test Data

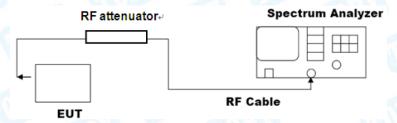
Please refer to the external appendix report of 5G Wi-Fi.



Page: 31 of 53

# 10. Power Spectral Density Test

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.407(a)

10.1.2 Test Limit

| Test Item               | Limit                                                | Frequency<br>Range(MHz) |
|-------------------------|------------------------------------------------------|-------------------------|
| Power Spectral  Density | Master Device: 17dBm/MHz<br>Client Device: 11dBm/MHz | 5150~5250               |
|                         | 11dBm/MHz                                            | 5250~5350               |
|                         | 11dBm/MHz                                            | 5500~5725               |
|                         | 30dBm/500kHz                                         | 5725~5850               |

# 10.2 Test Setup



# 10.3 Test Procedure

- Notwithstanding that some regulatory requirements refer to peak power spectral density (PPSD), in some cases the intent is to measure the maximum value of the time average of the power spectral density during a period of continuous transmission. The procedure for this method is as follows:
- a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power···."(This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)
- b) Use the peak search function on the instrument to find the peak of the spectrum.
- c) Make the following adjustments to the peak value of the spectrum, if applicable:
- 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.





Page: 32 of 53

2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

- d) The result is the PPSD.
- e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities.95 This requirement also permits use of resolution bandwidths less than 1 MHz"provided that the measured power is integrated to show the total power over the measurement bandwidth"(i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:
- 1) Set RBW≥1 / T, where T is defined in 12.2 a).
- 2) Set VBW ≥ [3\*RBW].
- 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.
- 10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.



Page: 33 of 53

# 11. Frequency Stability

# 11.1 Test Standard and Limit


11.1.1 Test Standard

# FCC Part 15.407(g)

#### 11.1.2 Test Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

# 11.2 Test Setup



# 11.3 Test Procedure

- Determining compliance with the peak excursion requirement shall be done by confirming that the ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed the regulatory requirement.<sup>96</sup> The procedure for this method is as follows:
- a) The following guidance for limiting the number of tests applies only to peak excursion measurements:
- 1) Testing each modulation mode on a single channel in a single operating band is sufficient to determine compliance with the peak excursion requirement. (If all modulation modes are not available on a single channel in a single band, then testing must be extended to other channels and bands as needed to ensure that all modulation modes are tested.)
- 2) Tests must include all variations in signal structure, such as:
  - i) All signal types [e.g., direct sequence spread spectrum (DSSS) and OFDM].
  - ii) All modulation types [e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), 16-QAM, 64-QAM, and 256-QAM].
  - iii) All bandwidth modes.
  - iv) All variations in signal parameters (e.g., changes in subcarrier spacing or number of subcarriers).
- 3) For a given signal structure, testing of multiple error-correction coding rates is not required (e.g., 1/2, 2/3, and 3/4).





Page: 34 of 53

4) For MIMO devices, testing of a single output port is sufficient to determine compliance with the peak excursion requirement. If a given signal structure can be exercised with various combinations of spatial multiplexing (such as different numbers of spatial streams), beamforming, and cyclic delay diversity, peak excursion tests are not required to include those variations.

- b) The procedure is as follows:
- 1) Set the span of the spectrum analyzer or EMI receiver to view the entire emission bandwidth or occupied bandwidth.
- 2) Find the maximum of the peak-max-hold spectrum:
  - i) Set RBW = 1 MHz.
  - ii) VBW □ 3 MHz.
  - iii) Detector = peak.
  - iv) Trace mode = max-hold.
  - v) Allow the sweeps to continue until the trace stabilizes.
  - vi) Use the peak search function to find the peak of the spectrum.
- 3) Use the procedure found in 12.5 to measure the PPSD.
- 4) Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD.

#### 11.4 Deviation From Test Standard

No deviation

# 11.5 Antenna Connected Construction

Please refer to the description of test mode.

#### 11.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.





Page: 35 of 53

# 12. Antenna Requirement

# 12.1 Test Standard and Limit

12.1.1 Test Standard

#### FCC Part 15.203

## 12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

# 12.2 Deviation From Test Standard

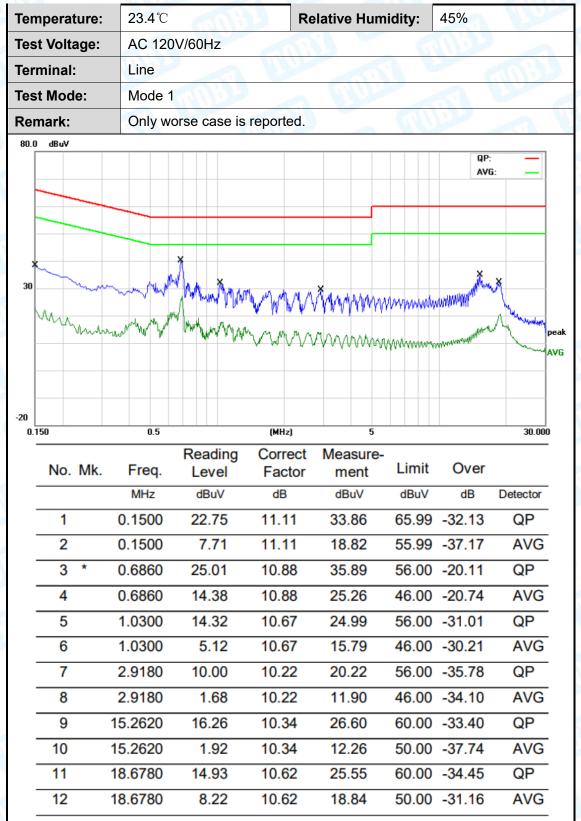
No deviation

## 12.3 Antenna Connected Construction

The gains of the antenna used for transmitting is -0.14dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

# 12.4 Test Data

The EUT antenna is a FPC Antenna. It complies with the standard requirement.


| Antenna Type                       |
|------------------------------------|
| ⊠Permanent attached antenna        |
| ☐Unique connector antenna          |
| ☐Professional installation antenna |





Page: 36 of 53

# **Attachment A-- Conducted Emission Test Data**



#### Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)





| Temper       | ature:                  | 23.4℃                                                             |                                                                 |                                                                                                 | Relative Hu                                                                                      | ımidity:                                                                     | 45%                                                                                          |                                      |
|--------------|-------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|
| Test Vo      | Itage:                  | AC 12                                                             | 0V/60Hz                                                         | 13                                                                                              | CALL.                                                                                            | 1)                                                                           |                                                                                              | Alla                                 |
| Termina      | al:                     | Neutra                                                            | al                                                              |                                                                                                 | 3                                                                                                | 6                                                                            | UPP                                                                                          |                                      |
| Test Mo      | ode:                    | Mode                                                              | 1                                                               | Alle                                                                                            |                                                                                                  | 1                                                                            |                                                                                              | AND.                                 |
| Remark       | <b>(</b> :              | Only w                                                            | vorse case i                                                    | s reported.                                                                                     | OHO.                                                                                             |                                                                              |                                                                                              |                                      |
| 80.0 dBu     | ١٧                      |                                                                   |                                                                 |                                                                                                 |                                                                                                  |                                                                              | QP:                                                                                          |                                      |
|              |                         |                                                                   |                                                                 |                                                                                                 |                                                                                                  |                                                                              | AVE                                                                                          |                                      |
|              |                         |                                                                   |                                                                 |                                                                                                 |                                                                                                  |                                                                              |                                                                                              |                                      |
|              |                         |                                                                   |                                                                 |                                                                                                 |                                                                                                  |                                                                              |                                                                                              |                                      |
|              |                         |                                                                   | ×                                                               |                                                                                                 |                                                                                                  |                                                                              |                                                                                              |                                      |
| 30           |                         | , J                                                               | <b>∄</b>                                                        |                                                                                                 |                                                                                                  |                                                                              | X                                                                                            |                                      |
| hom          | - Line                  | MAN W                                                             | ~ (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                         | <u>ኊ</u> ሊሲ <i>ሺ</i> ለ                                                                          | (1/1/2/1/1/1/2/2)                                                                                | 1944/Proposition                                                             | Marin Property and the same                                                                  | hammen server                        |
| 1200         | Munday                  | $\mathcal{M}_{A}$                                                 | WWW                                                             | ~~~~~                                                                                           | י אינו אי אי או מי ע' מייעוי                                                                     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                       |                                                                                              | 1.                                   |
|              |                         | 4                                                                 |                                                                 | A A A A                                                                                         | \                                                                                                | A s i brisiohan                                                              | Midnitina                                                                                    | To the woodboards                    |
|              |                         |                                                                   |                                                                 |                                                                                                 |                                                                                                  |                                                                              |                                                                                              |                                      |
|              |                         |                                                                   |                                                                 |                                                                                                 |                                                                                                  |                                                                              |                                                                                              |                                      |
|              |                         |                                                                   |                                                                 |                                                                                                 |                                                                                                  |                                                                              |                                                                                              |                                      |
| -20          |                         |                                                                   |                                                                 |                                                                                                 |                                                                                                  |                                                                              |                                                                                              |                                      |
| -20<br>0.150 |                         | 0.5                                                               |                                                                 | (MHz)                                                                                           | 5                                                                                                |                                                                              |                                                                                              | 30.000                               |
| 0.150        | o. Mk.                  |                                                                   | Reading                                                         | Correct                                                                                         | Measure-                                                                                         | Limit                                                                        | Over                                                                                         | 30.000                               |
| 0.150        | o. Mk.                  | 0.5 Freq.                                                         | Reading<br>Level                                                |                                                                                                 |                                                                                                  | Limit                                                                        | Over                                                                                         | 30.000                               |
| 0.150<br>No  |                         | Freq.                                                             | Level                                                           | Correct<br>Factor                                                                               | Measure-<br>ment                                                                                 | dBuV                                                                         |                                                                                              |                                      |
| 0.150<br>No  | 1                       | Freq.                                                             | Level                                                           | Correct<br>Factor                                                                               | Measure-<br>ment<br>dBuV                                                                         | dBuV<br>65.99                                                                | dB                                                                                           | Detector                             |
| 0.150<br>No  | 1 2                     | Freq.<br>MHz<br>0.1500                                            | dBuV<br>23.71                                                   | Correct<br>Factor<br>dB                                                                         | Measure-<br>ment<br>dBuV<br>34.82                                                                | dBuV<br>65.99<br>55.99                                                       | dB<br>-31.17                                                                                 | Detector<br>QP                       |
| 0.150<br>No  | 1 2 3                   | Freq.<br>MHz<br>0.1500<br>0.1500                                  | dBuV<br>23.71<br>10.05                                          | Correct<br>Factor<br>dB<br>11.11<br>11.11                                                       | Measure-<br>ment<br>dBuV<br>34.82<br>21.16                                                       | dBuV<br>65.99<br>55.99<br>56.00                                              | dB<br>-31.17<br>-34.83                                                                       | Detector<br>QP<br>AVG                |
| 0.150        | 1 2 3 4 *               | Freq.<br>MHz<br>0.1500<br>0.1500<br>0.6900                        | Level dBuV 23.71 10.05 26.17                                    | Correct<br>Factor<br>dB<br>11.11<br>11.11<br>10.88                                              | Measure-<br>ment<br>dBuV<br>34.82<br>21.16<br>37.05                                              | dBuV<br>65.99<br>55.99<br>56.00<br>46.00                                     | dB<br>-31.17<br>-34.83<br>-18.95                                                             | Detector<br>QP<br>AVG<br>QP          |
| 0.150        | 1<br>2<br>3<br>4 *      | Freq. MHz 0.1500 0.1500 0.6900 0.6900                             | Level dBuV 23.71 10.05 26.17 22.62                              | Correct Factor  dB  11.11  11.11  10.88  10.88                                                  | Measure-<br>ment<br>dBuV<br>34.82<br>21.16<br>37.05<br>33.50                                     | dBuV<br>65.99<br>55.99<br>56.00<br>46.00                                     | dB<br>-31.17<br>-34.83<br>-18.95<br>-12.50                                                   | Detector<br>QP<br>AVG<br>QP<br>AVG   |
| No. 150      | 1<br>2<br>3<br>4 *<br>5 | Freq. MHz 0.1500 0.1500 0.6900 0.6900 1.0380                      | Level dBuV 23.71 10.05 26.17 22.62 14.13                        | Correct Factor  dB  11.11  11.11  10.88  10.88  10.67                                           | Measure-<br>ment<br>dBuV<br>34.82<br>21.16<br>37.05<br>33.50<br>24.80                            | dBuV<br>65.99<br>55.99<br>56.00<br>46.00<br>46.00                            | dB<br>-31.17<br>-34.83<br>-18.95<br>-12.50<br>-31.20                                         | Detector<br>QP<br>AVG<br>QP<br>AVG   |
| 0.150        | 1 2 3 4 * 5 6 7 :       | Freq. MHz 0.1500 0.1500 0.6900 0.6900 1.0380 1.0380               | Level dBuV 23.71 10.05 26.17 22.62 14.13 11.58                  | Correct Factor dB 11.11 11.11 10.88 10.67 10.67                                                 | Measure-<br>ment<br>dBuV<br>34.82<br>21.16<br>37.05<br>33.50<br>24.80<br>22.25                   | dBuV<br>65.99<br>55.99<br>56.00<br>46.00<br>46.00<br>56.00                   | dB<br>-31.17<br>-34.83<br>-18.95<br>-12.50<br>-31.20<br>-23.75                               | Detector QP AVG QP AVG QP AVG        |
| 0.150        | 1 2 3 4 * 5 6 7 2 8 3 1 | Freq. MHz 0.1500 0.1500 0.6900 0.6900 1.0380 1.0380 2.3100        | Level dBuV 23.71 10.05 26.17 22.62 14.13 11.58 10.63            | Correct<br>Factor<br>dB<br>11.11<br>11.11<br>10.88<br>10.88<br>10.67<br>10.67                   | Measure-<br>ment<br>dBuV<br>34.82<br>21.16<br>37.05<br>33.50<br>24.80<br>22.25<br>21.03          | dBuV<br>65.99<br>55.99<br>56.00<br>46.00<br>46.00<br>46.00                   | dB<br>-31.17<br>-34.83<br>-18.95<br>-12.50<br>-31.20<br>-23.75<br>-34.97                     | Detector QP AVG QP AVG QP AVG        |
| 0.150        | 1                       | Freq. MHz 0.1500 0.1500 0.6900 1.0380 1.0380 2.3100 2.3100        | Level dBuV 23.71 10.05 26.17 22.62 14.13 11.58 10.63 8.15       | Correct<br>Factor<br>dB<br>11.11<br>11.11<br>10.88<br>10.88<br>10.67<br>10.67<br>10.40          | Measure-<br>ment<br>dBuV<br>34.82<br>21.16<br>37.05<br>33.50<br>24.80<br>22.25<br>21.03<br>18.55 | dBuV<br>65.99<br>55.99<br>56.00<br>46.00<br>56.00<br>46.00<br>60.00          | dB<br>-31.17<br>-34.83<br>-18.95<br>-12.50<br>-31.20<br>-23.75<br>-34.97<br>-27.45           | Detector QP AVG QP AVG QP AVG AVG    |
| 0.150        | 1                       | Freq. MHz 0.1500 0.1500 0.6900 1.0380 1.0380 2.3100 2.3100 5.3700 | Level dBuV 23.71 10.05 26.17 22.62 14.13 11.58 10.63 8.15 13.60 | Correct<br>Factor<br>dB<br>11.11<br>11.11<br>10.88<br>10.88<br>10.67<br>10.67<br>10.40<br>10.40 | Measure- ment  dBuV  34.82  21.16  37.05  33.50  24.80  22.25  21.03  18.55  23.94               | dBuV<br>65.99<br>55.99<br>56.00<br>46.00<br>56.00<br>46.00<br>60.00<br>50.00 | dB<br>-31.17<br>-34.83<br>-18.95<br>-12.50<br>-31.20<br>-23.75<br>-34.97<br>-27.45<br>-36.06 | Detector QP AVG QP AVG QP AVG QP AVG |

- Remark:
  1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)





Report No.: TBR-C-202209-0163-23

Page: 38 of 53

# **Attachment B--Unwanted Emissions Data**

# --- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

# 30MHz~1GHz

| emperati                                           | ıre:                     | <b>24.3</b> ℃                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Relative F                                   | lumidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |
|----------------------------------------------------|--------------------------|--------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| st Volta                                           | ge:                      | AC 12                          | 0V/60Hz                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and it                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Miles                                       |
| nt. Pol.                                           |                          | Horizo                         | ntal                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| st Mode                                            | ):                       | Mode                           | 2 TX Mode                        | 802.11a M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ode Chann                                    | el 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| emark:                                             |                          | Only w                         | orse case i                      | is reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TO BUT                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (IIII)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |
| 80.0 dB                                            | uV/m                     |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| 70                                                 |                          |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| 60                                                 |                          |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| 50                                                 |                          |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C 3M Radiatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | " H                                         |
| 50                                                 |                          |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | Margin -6 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |
| 40                                                 |                          |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| 30                                                 |                          |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pea                                         |
|                                                    |                          |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 3                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sub>ш мү</sub> мүчүүн реа                  |
| 20                                                 |                          |                                | 2                                | 3<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , <b>,</b> , , , , , , , , , , , , , , , , , | lea Hardwayler with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the state of t | He training to be                           |
| الطها                                              | Carrenar Carrenar        | Mary Mary Company              | S. My James                      | Mary Market Mary Mary Mary Mary Mary Mary Mary Mary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | langer with the thirt of which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | angles duty in the second and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | He, every market                            |
| 20                                                 | Limme                    | manunghe aware                 | M. A.                            | March March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              | le afferment of the state of th | and the second s | He was a second                             |
| الطها                                              | Luthanagh                | manungha saasah                | & Mul                            | Mary Market Mary Mary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | wÅ                                           | lea fighter and the state of th | and the desired and the second and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No. and |
| البليم 10                                          | Lanenge                  | manna de seneral               | & Mile Manusana                  | de la companya de la |                                              | hanger and the self-order of the self-order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the state of t | No.                                         |
| 10 -10 -20                                         | Lanner                   | minumed by America             | & Mul                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | had governor the september of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and the desire of the second o | Market Comment                              |
| 10                                                 | Lamenee                  | 60.00                          | & Mile Marine Ann                | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300                                          | had the state of t | and the desire the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000.00                                     |
| 10 -10 -20 30.000                                  | Freq                     |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000<br>Level                                | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and the desire of the second o | 1000.00                                     |
| 10 -10 -20                                         |                          | 60.00<br>quency                | Reading (dBuV)                   | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Market Comment                              |
| 10 0 -10 -20 30.000                                | (N                       | quency                         | Reading                          | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level                                        | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000.00                                     |
| 10<br>0<br>-10<br>-20<br>30.000                    | (N<br>35.                | luency<br>(Hz)                 | Reading (dBuV)                   | Factor (dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level<br>(dBuV/m)                            | Limit<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Margin (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000.00                                     |
| 10<br>0<br>-10<br>-20<br>30.000<br>No.             | 35.<br>73.               | quency<br>MHz)<br>3750         | Reading (dBuV) 50.07             | Factor (dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level<br>(dBuV/m)<br>27.00                   | Limit<br>(dBuV/m)<br>40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Margin<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000.00 Detector                            |
| 10 0 -10 -20 30.000 No.                            | (N<br>35.<br>73.<br>178  | quency<br>(Hz)<br>3750<br>1025 | Reading (dBuV) 50.07 45.82       | (MHz) Factor (dB/m) -23.07 -25.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Level<br>(dBuV/m)<br>27.00<br>20.75          | Limit<br>(dBuV/m)<br>40.00<br>40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Margin<br>(dB)<br>-13.00<br>-19.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Detector peak peak                          |
| 10<br>0<br>-10<br>-20<br>30.000<br>No.<br>1 *<br>2 | 35.<br>73.<br>178<br>264 | guency<br>MHz)<br>3750<br>1025 | Reading (dBuV) 50.07 45.82 45.62 | (MHz) Factor (dB/m) -23.07 -25.07 -22.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Level<br>(dBuV/m)<br>27.00<br>20.75<br>22.65 | Limit<br>(dBuV/m)<br>40.00<br>40.00<br>43.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Margin<br>(dB)<br>-13.00<br>-19.25<br>-20.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Detector peak peak                          |

<sup>\*:</sup>Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)





Page: 39 of 53

| emperature: 24.3°C Relative Humidit |                      |                                          | nidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |
|-------------------------------------|----------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|
| est Vol                             | ltage:               | AC 12                                    | 20V/60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | 11010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47                                        | Alle                    |
| nt. Pol                             | ],                   | Vertic                                   | al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                                           | The same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 193                                       |                         |
| est Mo                              | de:                  | Mode                                     | 2 TX Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 802.11a Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ode Channe                                   | I 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | ARY.                    |
| Remark                              |                      | Only                                     | worse case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHO.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a V                                       |                         |
| 30.0 dBu                            | iV/m                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |
| 70                                  |                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |
| 50                                  |                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iC 3M Radiatio                            | on C                    |
| 50                                  |                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Margin -6 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                         | <del>     </del>        |
| 10                                  | 2                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                         | +++                     |
| 10                                  | N.M. N.              | 3 4<br>X X                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Anathred and pe         |
| 20 💆                                | 47 Y X               | . AWWAWA                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | انت الت                                      | - much mineral mine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the water water                           | W. C.                   |
| 1                                   | W.                   | 17Lin.                                   | M MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mary Mary No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "Nort /V"                                    | - and the state of | 7 -                                       |                         |
|                                     | W                    | 7                                        | Manual Ma | and the state of t | W. Min                                       | magamatigh the later of the same of the sa |                                           |                         |
| 10                                  | N/                   | 7                                        | The succession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The property of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | - ye-izh a kinduz (ha la a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                         |
| 10                                  | W                    | 7                                        | Market Ma | and any and any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                         |
| )                                   | 10                   | 60.00                                    | Market Ma | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                                          | - Control of the Cont |                                           | 1000.0                  |
| 10<br>20<br>30.000                  | Frequ                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                         |
| 10                                  | Frequ<br>(MH         | ency                                     | Reading (dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level<br>(dBuV/m)                            | .oo<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Margin                                    | 1000.0                  |
| 10<br>20<br>30.000                  |                      | ency<br>Iz)                              | Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Level                                        | .oo<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Margin                                    | 1000.0                  |
| 10<br>20<br>30.000                  | (MF                  | ency<br>Hz)<br>541                       | Reading (dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Factor<br>(dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level<br>(dBuV/m)                            | Limit (dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Margin (dB)                               | 1000.0                  |
| 10<br>20<br>30.000<br>No.           | (MH<br>36.2          | ency<br>Hz)<br>541<br>260                | Reading (dBuV) 57.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Factor<br>(dB/m)<br>-23.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Level<br>(dBuV/m)<br>34.82                   | Limit<br>(dBuV/m)<br>40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Margin<br>(dB)<br>-5.18                   | Detector peak           |
| 10<br>20<br>30.000<br>No.           | (MF<br>36.2<br>47.8  | tency<br>Hz)<br>541<br>260<br>912        | Reading (dBuV) 57.88 54.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Factor<br>(dB/m)<br>-23.06<br>-22.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Level<br>(dBuV/m)<br>34.82<br>32.30          | Limit<br>(dBuV/m)<br>40.00<br>40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Margin<br>(dB)<br>-5.18<br>-7.70          | Detector peak peak      |
| 30.000<br>No.                       | 36.2<br>47.8<br>56.9 | sency<br>Hz)<br>541<br>260<br>912<br>751 | Reading<br>(dBuV)<br>57.88<br>54.96<br>53.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Factor<br>(dB/m)<br>-23.06<br>-22.66<br>-23.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level<br>(dBuV/m)<br>34.82<br>32.30<br>30.40 | Limit<br>(dBuV/m)<br>40.00<br>40.00<br>40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Margin<br>(dB)<br>-5.18<br>-7.70<br>-9.60 | Detector peak peak peak |

# Remark:

\*:Maximum data

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
   QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB $\mu$ V/m)-Limit QPK(dB $\mu$ V/m)

x:Over limit !:over margin





Page: 40 of 53

# **Above 1GHz**

# 5180MHz-5240MHz(U-NII-1)

| Temperature:  | 23.5℃                             | Relative Humidity: | 46% |  |  |  |  |
|---------------|-----------------------------------|--------------------|-----|--|--|--|--|
| Test Voltage: | DC 3.8V                           |                    |     |  |  |  |  |
| Ant. Pol.     | Horizontal                        | Horizontal         |     |  |  |  |  |
| Test Mode:    | TX 802.11a Mode 5180MHz (U-NII-1) |                    |     |  |  |  |  |

| No. | Mk | c. Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10360.20 | 67.08            | -22.24            | 44.84            | 54.00 | -9.16  | AVG      |
| 2   |    | 10360.32 | 79.75            | -22.24            | 57.51            | 68.30 | -10.79 | peak     |

# Remark:

## Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                 | Relative Humidity:                | 46% |  |  |  |  |  |
|---------------|-----------------------|-----------------------------------|-----|--|--|--|--|--|
| Test Voltage: | DC 3.8V               |                                   |     |  |  |  |  |  |
| Ant. Pol.     | Vertical              |                                   |     |  |  |  |  |  |
| Test Mode:    | TX 802.11a Mode 5180N | TX 802.11a Mode 5180MHz (U-NII-1) |     |  |  |  |  |  |

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *   | 10360.24 | 66.32            | -22.24            | 44.08            | 54.00 | -9.92  | AVG      |
| 2   |     | 10360.36 | 79.08            | -22.24            | 56.84            | 68.30 | -11.46 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB $\mu$ V/m)= Corr. (dB/m)+ Read Level (dB $\mu$ V)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.







Page: 41 of 53

| Temperature:  | 23.5℃               | Relative Humidity:                | 46% |  |  |  |  |
|---------------|---------------------|-----------------------------------|-----|--|--|--|--|
| Test Voltage: | DC 3.8V             | DC 3.8V                           |     |  |  |  |  |
| Ant. Pol.     | Horizontal          | Horizontal                        |     |  |  |  |  |
| Test Mode:    | TX 802.11a Mode 520 | TX 802.11a Mode 5200MHz (U-NII-1) |     |  |  |  |  |

| No. | Mk | . Freq.  | Reading<br>Level |        | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|--------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB     | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10400.22 | 65.89            | -22.20 | 43.69            | 54.00 | -10.31 | AVG      |
| 2   |    | 10400.37 | 78.38            | -22.20 | 56.18            | 68.30 | -12.12 | peak     |

# Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                 | Relative Humidity: | 46%  |  |
|---------------|-----------------------|--------------------|------|--|
| Test Voltage: | DC 3.8V               | THURSDAY           | 1    |  |
| Ant. Pol.     | Vertical              |                    |      |  |
| Test Mode:    | TX 802.11a Mode 5200N | 1Hz (U-NII-1)      | WURR |  |

| No. | Mk | . Freq.  | Reading<br>Level |        | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|--------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB     | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10400.13 | 66.77            | -22.20 | 44.57            | 54.00 | -9.43  | AVG      |
| 2   |    | 10400.28 | 79.81            | -22.20 | 57.61            | 68.30 | -10.69 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 42 of 53

|   |               |                       | 687 C (1 4 b) (1 b) |        |  |  |  |
|---|---------------|-----------------------|---------------------|--------|--|--|--|
| 1 | Temperature:  | 23.5℃                 | Relative Humidity:  | 46%    |  |  |  |
| • | Test Voltage: | DC 3.8V               |                     |        |  |  |  |
|   | Ant. Pol.     | Horizontal            |                     |        |  |  |  |
|   | Test Mode:    | TX 802.11a Mode 5240M | IHz (U-NII-1)       | (1000) |  |  |  |

| No. | Mk | . Freq.  | Reading<br>Level |        | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|--------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB     | dBuV/m           | dB/m  | dB     | Detector |
| 1   |    | 10480.27 | 79.02            | -22.11 | 56.91            | 68.30 | -11.39 | peak     |
| 2   | *  | 10480.34 | 66.70            | -22.11 | 44.59            | 54.00 | -9.41  | AVG      |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                 | Relative Humidity: | 46%    |
|---------------|-----------------------|--------------------|--------|
| Test Voltage: | DC 3.8V               | THU                | TO THE |
| Ant. Pol.     | Vertical              |                    |        |
| Test Mode:    | TX 802.11a Mode 5240N | MHz (U-NII-1)      | WURT I |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10480.27 | 66.63            | -22.11            | 44.52            | 54.00 | -9.48  | AVG      |
| 2   |    | 10480.38 | 79.85            | -22.11            | 57.74            | 68.30 | -10.56 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 43 of 53

|   | Temperature:  | 23.5℃             | Relative Humidity: | 46% |  |  |  |  |  |
|---|---------------|-------------------|--------------------|-----|--|--|--|--|--|
| > | Test Voltage: | DC 3.8V           | DC 3.8V            |     |  |  |  |  |  |
|   | Ant. Pol.     | Horizontal        |                    |     |  |  |  |  |  |
|   | Test Mode:    | 5180MHz (U-NII-1) |                    |     |  |  |  |  |  |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10360.23 | 65.92            | -22.24            | 43.68            | 54.00 | -10.32 | AVG      |
| 2   |    | 10360.41 | 80.08            | -22.24            | 57.84            | 68.30 | -10.46 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
   The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| 23.5℃                 | Relative Humidity:  | 46%     |
|-----------------------|---------------------|---------|
| DC 3.8V               |                     |         |
| Vertical              |                     | MAC     |
| TX 802.11n(HT20) Mode | 5180MHz (U-NII-1)   |         |
|                       | DC 3.8V<br>Vertical | DC 3.8V |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10360.23 | 66.55            | -22.24            | 44.31            | 54.00 | -9.69  | AVG      |
| 2   |    | 10360.34 | 78.61            | -22.24            | 56.37            | 68.30 | -11.93 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
   The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.







Page: 44 of 53

| Temperature:  | 23.5℃                 | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46%   |
|---------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Test Voltage: | DC 3.8V               | THE PARTY OF THE P | 3 110 |
| Ant. Pol.     | Horizontal            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000  |
| Test Mode:    | TX 802.11n(HT20) Mode | 5200MHz (U-NII-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mill? |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10400.18 | 66.41            | -22.20            | 44.21            | 54.00 | -9.79  | AVG      |
| 2   |    | 10400.34 | 79.44            | -22.20            | 57.24            | 68.30 | -11.06 | peak     |

## Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                 | Relative Humidity: | 46%  |
|---------------|-----------------------|--------------------|------|
| Test Voltage: | DC 3.8V               | TO BY              | wun. |
| Ant. Pol.     | Vertical              |                    |      |
| Test Mode:    | TX 802.11n(HT20) Mode | 5200MHz (U-NII-1)  | THUE |

| No. | Mk | . Freq.  | _     | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|-------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV  | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10400.27 | 66.07 | -22.20            | 43.87            | 54.00 | -10.13 | AVG      |
| 2   |    | 10400.30 | 79.26 | -22.20            | 57.06            | 68.30 | -11.24 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.







Page: 45 of 53

| AND VIEW OF A STREET |                |                            |      |
|----------------------|----------------|----------------------------|------|
| Temperature:         | 23.5℃          | Relative Humidity:         | 46%  |
| Test Voltage:        | DC 3.8V        |                            | 7    |
| Ant. Pol.            | Horizontal     |                            | 1000 |
| Test Mode:           | TX 802.11n(HT2 | 20) Mode 5240MHz (U-NII-1) |      |

| No. | Mk | . Freq.  | Reading<br>Level |        | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|--------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB     | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10480.32 | 66.46            | -22.11 | 44.35            | 54.00 | -9.65  | AVG      |
| 2   |    | 10480.41 | 78.78            | -22.11 | 56.67            | 68.30 | -11.63 | peak     |

# Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                 | Relative Humidity: | 46%  |
|---------------|-----------------------|--------------------|------|
| Test Voltage: | DC 3.8V               |                    |      |
| Ant. Pol.     | Vertical              |                    | 0000 |
| Test Mode:    | TX 802.11n(HT20) Mode | 5240MHz (U-NII-1)  | mnB1 |

| No. | Mk | . Freq.  | _     | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|-------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV  | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10480.09 | 67.33 | -22.11            | 45.22            | 54.00 | -8.78  | AVG      |
| 2   |    | 10480.32 | 78.75 | -22.11            | 56.64            | 68.30 | -11.66 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 46 of 53

| Temperature:  | 23.5℃          | Relative Humidity:           | 46%   |  |  |  |  |
|---------------|----------------|------------------------------|-------|--|--|--|--|
| Test Voltage: | DC 3.8V        |                              | 3 110 |  |  |  |  |
| Ant. Pol.     | Horizontal     | Horizontal                   |       |  |  |  |  |
| Test Mode:    | TX 802.11ac(VH | HT20) Mode 5180MHz (U-NII-1) |       |  |  |  |  |

| No. | М | k. Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|---|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |   | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | * | 10360.11 | 65.92            | -22.24            | 43.68            | 54.00 | -10.32 | AVG      |
| 2   |   | 10360.32 | 79.82            | -22.24            | 57.58            | 68.30 | -10.72 | peak     |

# Remark:

TOBY

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| ACCOUNT OF THE PARTY OF THE PAR |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.5℃              | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46% |
| Test Voltage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DC 3.8V            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 600 |
| Ant. Pol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vertical           | THE PARTY OF THE P |     |
| Test Mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TX 802.11ac(VHT20) | Mode 5180MHz (U-NII-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   |    | 10360.19 | 79.18            | -22.24            | 56.94            | 68.30 | -11.36 | peak     |
| 2   | *  | 10360.27 | 66.76            | -22.24            | 44.52            | 54.00 | -9.48  | AVG      |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB $\mu$ V/m)= Corr. (dB/m)+ Read Level (dB $\mu$ V)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.







Page: 47 of 53

| Temperature:  | 23.5℃                 | Relative Humidity:    | 46%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|---------------|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Voltage: | DC 3.8V               | DC 3.8V               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Ant. Pol.     | Horizontal            | 1773                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Test Mode:    | TX 802.11ac(VHT20) Mo | ode 5200MHz (U-NII-1) | COURT OF THE PARTY |  |  |  |  |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10400.15 | 66.95            | -22.20            | 44.75            | 54.00 | -9.25  | AVG      |
| 2   |    | 10400.47 | 80.26            | -22.20            | 58.06            | 68.30 | -10.24 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
   The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                 | Relative Humidity:   | 46%  |
|---------------|-----------------------|----------------------|------|
| Test Voltage: | DC 3.8V               | 0000                 |      |
| Ant. Pol.     | Vertical              |                      |      |
| Test Mode:    | TX 802.11ac(VHT20) Mc | de 5200MHz (U-NII-1) | Tana |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10400.16 | 66.57            | -22.20            | 44.37            | 54.00 | -9.63  | AVG      |
| 2   |    | 10400.36 | 78.75            | -22.20            | 56.55            | 68.30 | -11.75 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB $\mu$ V/m)= Corr. (dB/m)+ Read Level (dB $\mu$ V) 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.







Page: 48 of 53

| Temperature:  | 23.5℃                 | Relative Humidity:    | 46%    |
|---------------|-----------------------|-----------------------|--------|
| Test Voltage: | DC 3.8V               | William .             | 3 110  |
| Ant. Pol.     | Horizontal            | 1773                  | 1000   |
| Test Mode:    | TX 802.11 ac(VHT20) M | ode 5240MHz (U-NII-1) | Camb L |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10480.16 | 67.41            | -22.11            | 45.30            | 54.00 | -8.70  | AVG      |
| 2   |    | 10480.24 | 78.95            | -22.11            | 56.84            | 68.30 | -11.46 | peak     |

## Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                 | Relative Humidity:   | 46% |
|---------------|-----------------------|----------------------|-----|
| Test Voltage: | DC 3.8V               |                      |     |
| Ant. Pol.     | Vertical              |                      |     |
| Test Mode:    | TX 802.11ac(VHT20) Mc | de 5240MHz (U-NII-1) | You |

| No. | Mk | . Freq.  | Reading<br>Level |        | Measure-<br>ment | Limit | Over  |          |
|-----|----|----------|------------------|--------|------------------|-------|-------|----------|
|     |    | MHz      | dBuV             | dB     | dBuV/m           | dB/m  | dB    | Detector |
| 1   | *  | 10480.22 | 66.61            | -22.11 | 44.50            | 54.00 | -9.50 | AVG      |
| 2   |    | 10480.30 | 80.47            | -22.11 | 58.36            | 68.30 | -9.94 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 49 of 53

|   | Temperature:  | 23.5℃                                       | Relative Humidity: | 46% |  |  |  |  |
|---|---------------|---------------------------------------------|--------------------|-----|--|--|--|--|
| > | Test Voltage: | DC 3.8V                                     | DC 3.8V            |     |  |  |  |  |
|   | Ant. Pol.     | Horizontal                                  | Horizontal         |     |  |  |  |  |
|   | Test Mode:    | le: TX 802.11n(HT40) Mode 5190MHz (U-NII-1) |                    |     |  |  |  |  |

| No. | Mk | . Freq.  | Reading<br>Level |        | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|--------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB     | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10380.13 | 65.76            | -22.22 | 43.54            | 54.00 | -10.46 | AVG      |
| 2   |    | 10380.31 | 79.33            | -22.22 | 57.11            | 68.30 | -11.19 | peak     |

## Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
   The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                 | Relative Humidity: | 46%             |
|---------------|-----------------------|--------------------|-----------------|
| Test Voltage: | DC 3.8V               |                    |                 |
| Ant. Pol.     | Vertical              |                    | TO THE STATE OF |
| Test Mode:    | TX 802.11n(HT40) Mode | 5190MHz (U-NII-1)  | Time and the    |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10380.19 | 66.59            | -22.22            | 44.37            | 54.00 | -9.63  | AVG      |
| 2   |    | 10380.24 | 80.09            | -22.22            | 57.87            | 68.30 | -10.43 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 50 of 53

| Temperature:  | 23.5℃                | Relative Humidity:   | 46%  |
|---------------|----------------------|----------------------|------|
| Test Voltage: | DC 3.8V              | COURSE OF STREET     | 7    |
| Ant. Pol.     | Horizontal           |                      | 1000 |
| Test Mode:    | TX 802.11n(HT40) Mod | de 5230MHz (U-NII-1) |      |

| No. | Mk | c. Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   |    | 10460.23 | 79.10            | -22.13            | 56.97            | 68.30 | -11.33 | peak     |
| 2   | *  | 10460.39 | 66.74            | -22.13            | 44.61            | 54.00 | -9.39  | AVG      |

## Remark:

TOBY

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
   The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                 | Relative Humidity: | 46%  |
|---------------|-----------------------|--------------------|------|
| Test Voltage: | DC 3.8V               | 0.000              |      |
| Ant. Pol.     | Vertical              |                    |      |
| Test Mode:    | TX 802.11n(HT40) Mode | 5230MHz (U-NII-1)  | Tana |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   |    | 10460.24 | 65.64            | -22.13            | 43.51            | 54.00 | -10.49 | AVG      |
| 2   | *  | 10460.32 | 80.83            | -22.13            | 58.70            | 68.30 | -9.60  | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB $\mu$ V/m)= Corr. (dB/m)+ Read Level (dB $\mu$ V) 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.







Page: 51 of 53

| AND VIEW OF A STREET |                |                             |      |
|----------------------|----------------|-----------------------------|------|
| Temperature:         | 23.5℃          | Relative Humidity:          | 46%  |
| Test Voltage:        | DC 3.8V        | and the same                |      |
| Ant. Pol.            | Horizontal     |                             | 1000 |
| Test Mode:           | TX 802.11ac(VH | T40) Mode 5190MHz (U-NII-1) |      |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10380.13 | 65.50            | -22.22            | 43.28            | 54.00 | -10.72 | AVG      |
| 2   |    | 10380.21 | 78.66            | -22.22            | 56.44            | 68.30 | -11.86 | peak     |

# Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
   The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                 | Relative Humidity:   | 46%  |
|---------------|-----------------------|----------------------|------|
| Test Voltage: | DC 3.8V               | 4000                 |      |
| Ant. Pol.     | Vertical              |                      |      |
| Test Mode:    | TX 802.11ac(VHT40) Mc | de 5190MHz (U-NII-1) | ang. |

| No. | Mk | . Freq.  | Reading<br>Level |        | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|--------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB     | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10380.27 | 66.49            | -22.22 | 44.27            | 54.00 | -9.73  | AVG      |
| 2   |    | 10380.34 | 79.77            | -22.22 | 57.55            | 68.30 | -10.75 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 52 of 53

| THE RESERVE TO SERVE |                      |                       |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|------|
| Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.5℃                | Relative Humidity:    | 46%  |
| Test Voltage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC 3.8V              | CHIDDE .              | 7    |
| Ant. Pol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Horizontal           |                       | 1000 |
| Test Mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TX 802 11ac(VHT40) M | ode 5230MHz (U-NII-1) |      |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   |    | 10460.11 | 65.41            | -22.13            | 43.28            | 54.00 | -10.72 | AVG      |
| 2   | *  | 10460.34 | 79.79            | -22.13            | 57.66            | 68.30 | -10.64 | peak     |

## Remark:

**TOBY** 

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
   The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                 | Relative Humidity:   | 46% |
|---------------|-----------------------|----------------------|-----|
| Test Voltage: | DC 3.8V               |                      |     |
| Ant. Pol.     | Vertical              | 4000                 |     |
| Test Mode:    | TX 802.11ac(VHT40) Mo | de 5230MHz (U-NII-1) |     |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   |    | 10460.18 | 79.60            | -22.13            | 57.47            | 68.30 | -10.83 | peak     |
| 2   | *  | 10460.24 | 66.38            | -22.13            | 44.25            | 54.00 | -9.75  | AVG      |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB $\mu$ V/m)= Corr. (dB/m)+ Read Level (dB $\mu$ V)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 53 of 53



| Temperature:  | 23.5℃                 | Relative Humidity:    | 46% |
|---------------|-----------------------|-----------------------|-----|
| Test Voltage: | DC 3.8V               |                       |     |
| Ant. Pol.     | Horizontal            |                       |     |
| Test Mode:    | TX 802.11ac(VHT80) Mc | ode 5210MHz (U-NII-1) |     |

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |    | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 10420.15 | 66.05            | -22.18            | 43.87            | 54.00 | -10.13 | AVG      |
| 2   |    | 10420.37 | 79.69            | -22.18            | 57.51            | 68.30 | -10.79 | peak     |

# Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                 | Relative Humidity:    | 46% |
|---------------|-----------------------|-----------------------|-----|
| Test Voltage: | DC 3.8V               |                       |     |
| Ant. Pol.     | Vertical              |                       |     |
| Test Mode:    | TX 802.11ac(VHT80) Mo | ode 5210MHz (U-NII-1) |     |

| No. | ı | Mk. | . Freq.  | Reading<br>Level |        | Measure-<br>ment | Limit | Over   |          |
|-----|---|-----|----------|------------------|--------|------------------|-------|--------|----------|
|     |   |     | MHz      | dBuV             | dB     | dBuV/m           | dB/m  | dB     | Detector |
| 1   | 1 | *   | 10420.32 | 66.12            | -22.18 | 43.94            | 54.00 | -10.06 | AVG      |
| 2   |   |     | 10420.37 | 79.09            | -22.18 | 56.91            | 68.30 | -11.39 | peak     |

# Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
  2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

----END OF REPORT-----

