💸 eurofins Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn # **Measurement Conditions** | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.42 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 7. | _ | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.4 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.9 W/kg ± 18.7 % (k=2) | Certificate No: 23J02Z80017 Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.5Ω+ 6.32jΩ | |--------------------------------------|---------------| | Return Loss | - 24.0dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.102 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. # Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: 23J02Z80017 Page 4 of 6 Report No.: R2401A0062-S1V2 Date: 2023-09-12 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ S/m}$; $\varepsilon_r = 39.77$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.76 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 19.4 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.25 W/kg Smallest distance from peaks to all points 3 dB below = 9.2 mm Ratio of SAR at M2 to SAR at M1 = 53% Maximum value of SAR (measured) = 16.0 W/kg 0 dB = 16.0 W/kg = 12.04 dBW/kg Page 5 of 6 Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### Impedance Measurement Plot for Head TSL Certificate No: 23J02Z80017 Client # **ANNEX I: D2450V2 Dipole Calibration Certificate** Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 TA(Shanghai) E-mail: cttl@chinattl.com http://www.caict.ac.cn Certificate No: 23J02Z80018 # CALIBRATION CERTIFICATE Object D2450V2 - SN: 786 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 12, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|---| | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | 106277
104291
SN 3617
SN 1556
ID #
MY49071430 | 106277 22-Sep-22 (CTTL, No.J22X09561)
104291 22-Sep-22 (CTTL, No.J22X09561)
SN 3617 31-Mar-23(CTTL-SPEAG,No.Z23-60161)
SN 1556 11-Jan-23(CTTL-SPEAG,No.Z23-60034)
ID# Cal Date (Calibrated by, Certificate No.)
MY49071430 05-Jan-23 (CTTL, No. J23X00107) | | ACCOUNTS THE RESERVE OF THE | Name | Function | Signature | |-----------------------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 20 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林路 | | Approved by: | Qi Dianyuan | SAR Project Leader | 30 | Issued: September 16, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: 23J02Z80018 Page 1 of 6 Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: 23J02Z80018 Page 2 of 6 💸 eurofins Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn # Measurement Conditions DASY system configuration. as | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters
and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.81 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.6 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 18.7 % (k=2) | Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.2Ω+ 3.34jΩ | |--------------------------------------|---------------| | Return Loss | - 28.2dB | ### General Antenna Parameters and Design | 1.060 ns | |----------| | | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: 23J02Z80018 Page 4 of 6 eurofins Report No.: R2401A0062-S1V2 Date: 2023-09-12 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.809 \text{ S/m}$; $\varepsilon_r = 38.86$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.68, 7.68, 7.68) @ 2450 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.7 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.13 W/kg Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 48.5% Maximum value of SAR (measured) = 22.2 W/kg 0 dB = 22.2 W/kg = 13.46 dBW/kg Certificate No: 23J02Z80018 Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### Impedance Measurement Plot for Head TSL Certificate No: 23J02Z80018 SAR Test Report No.: R2401A0062-S1V2 # **ANNEX J: D2600V2 Dipole Calibration Certificate** E-mail: cttl@chinattl.com http://www.chinattl.cn TA(Shanghai) Certificate No: Z21-60156 **CALIBRATION CERTIFICATE** Object D2600V2 - SN: 1025 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: April 23, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRP2 106276 12-May-20 (CTTL, No.J20X02965) May-21 Power sensor NRP6A 101369 12-May-20 (CTTL, No.J20X02965) May-21 Reference Probe EX3DV4 SN 3617 27-Jan-21(SPEAG,No.EX3-3617_Jan21) Jan-22 DAE4 SN 777 08-Jan-21(CTTL-SPEAG,No.Z21-60003) Jan-22 Secondary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 01-Feb-21 (CTTL, No.J21X00593) Jan-22 Network Analyzer E5071C MY46110673 14-Jan-21 (CTTL, No.J21X00232) Jan-22 Name Function Calibrated by: Zhao Jino SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: April 29, 2021 Certificate No: Z21-60156 Page 1 of 6 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Report No.: R2401A0062-S1V2 #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z not applicable or not measured N/A # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60156 Page 2 of 6 Add: No.52 HuaYuanBei Road, Huidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # **Measurement Conditions** | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.9 ± 6 % | 1.94 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.1 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60156 Page 3 of 6 Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Appendix(Additional assessments outside the scope of CNAS L0570) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.1Ω- 7.19jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.9dB | | # General Antenna Parameters and Design |
Electrical Delay (one direction) | 1.055 ns | |--|----------| | The second secon | 11000110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z21-60156 Page 4 of eurofins Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl/gchinattl.com http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Date: 04.23.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1025 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 1.944 S/m; ϵ_r = 39.94; ρ = 1000 kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.55, 7.55, 7.55) @ 2600 MHz; Calibrated: 2021-01-27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2021-01-08 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.1 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 44% Maximum value of SAR (measured) = 24.4 W/kg 0 dB = 24.4 W/kg = 13.87 dBW/kg Certificate No: Z21-60156 Page 5 of 6 #### Impedance Measurement Plot for Head TSL Certificate No: Z21-60156 Page 6 of 6 # ANNEX K: D3500V2 Dipole Calibration Certificate Report No.: R2401A0062-S1V2 Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: cttl@chinattl.com TA(Shanghai) Client Certificate No: Z22-60434 # CALIBRATION CERTIFICATE Object D3500V2 - SN: 1083 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 9, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106276 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | Power sensor NRP6A | 101369 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | Reference Probe EX3DV4 | SN 7464 | 26-Jan-22(SPEAG,No.EX3-7464_Jan22) | Jan-23 | | DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 氢 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | 5/- | Issued: October 14, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60434 Page 1 of 6 Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Glossary: TSL _ tissue simulating liquid ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60434 Page 2 of 6 💸 eurofins Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn http://www.caict.ac.cn # **Measurement Conditions** | DASY Version | DASY52 | 52.10.4 | |------------------------------|----------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3500 MHz ± 1 MHz | | # **Head TSL parameters** | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) ℃ | 38.1 ±6 % | 2.93 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | _ | _ | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 100 mW input power | 6.46 W/kg | |
SAR for nominal Head TSL parameters | normalized to 1W | 64.5 W/kg ±24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.48 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.8 W/kg ±24.2 % (k=2) | Page 3 of 6 SAR Test Report No.: R2401A0062-S1V2 Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.3Ω+ 0.98jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 36.0dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.040 ns | |---|----------| | AND CONTROL IN PROCESSION OF A CONTROL | | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: Z22-60434 🍪 eurofins Report No.: R2401A0062-S1V2 Date: 2022-10-09 Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn # **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN: 1083 Communication System: UID 0, CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.933 \text{ S/m}$; $\varepsilon_r = 38.08$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5 Configuration:** - Probe: EX3DV4 SN7464; ConvF(7.2, 7.2, 7.2) @ 3500 MHz; Calibrated: 2022-01-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration /Pin=100mW, d=10mm, f=3500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.41 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 6.46 W/kg; SAR(10 g) = 2.48 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 76.8% Maximum value of SAR (measured) = 11.7 W/kg Page 5 of 6 Report No.: R2401A0062-S1V2 Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn # Impedance Measurement Plot for Head TSL Certificate No: Z22-60434 Page 6 of 6 Client SAR Test Report # **ANNEX L: D3700V2 Dipole Calibration Certificate** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn TA(Shanghal) Certificate No: 2 Z22-60435 Report No.: R2401A0062-S1V2 # **CALIBRATION CERTIFICATE** Object D3700V2 - SN: 1048 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 10, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|--| | 106276 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | 101369 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | SN 7464 | 26-Jan-22(SPEAG,No.EX3-7464_Jan22) | Jan-23 | | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409) | Jan-23 | | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | 106276
101369
SN 7464
SN 1556
ID #
MY49071430 | 106276 10-May-22 (CTTL, No.J22X03103) 101369 10-May-22 (CTTL, No.J22X03103) SN 7464 26-Jan-22(SPEAG,No.EX3-7464_Jan22) SN 1556 12-Jan-22(CTTL-SPEAG,No.Z22-60007) ID # Cal Date (Calibrated by, Certificate No.) MY49071430 13-Jan-22 (CTTL, No.J22X00409) | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 红 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林名 | | Approved by: | Qi Dianyuan | SAR Project Leader | 20 | Issued: October 15, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60435 Page 1 of 6 Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the
standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60435 Page 2 of 6 Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 B-mail: emf@caict.ac.cn http://www.caict.ac.cn # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.4 | |------------------------------|----------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ±1 MHz | | # Head TSL parameters at 3700 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) ℃ | 38.0 ±6 % | 3.11 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | S | _ | #### SAR result with Head TSL at 3700 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 100 mW input power | 6.66 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.8 W/kg ±24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ±24.2 % (k=2) | Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL at 3700 MHz | Impedance, transformed to feed point | 44.6Ω - 1.96jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 24.4dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.042 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### Additional EUT Data | SPEAG | |-------| | | Certificate No: Z22-60435 Page 4 of 6 Report No.: R2401A0062-S1V2 Date: 2022-10-10 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1048 Communication System: UID 0, CW; Frequency: 3700 MHz; Medium parameters used: f = 3700 MHz; $\sigma = 3.108$ S/m; $\varepsilon_r = 37.98$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN7464; ConvF(6.78, 6.78, 6.78) @ 3700 MHz; Calibrated: 2022-01-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration /Pin=100mW, d=10mm, f=3700 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.77 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 6.66 W/kg; SAR(10 g) = 2.46 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.9% Maximum value of SAR (measured) = 12.5 W/kg Certificate No: Z22-60435 Page 5 of 6 SAR Test Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Impedance Measurement Plot for Head TSL Certificate No: Z22-60435 Page 6 of 6 Client SAR Test Report # **ANNEX M: D3900V2 Dipole Calibration Certificate** Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn TA(Shanghal) Certificate No: Z22-60436 # **CALIBRATION CERTIFICATE** Object D3900V2 - SN: 1027 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 9, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106276 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | Power sensor NRP6A | 101369 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | Reference Probe EX3DV4 | SN 7464 | 26-Jan-22(SPEAG,No.EX3-7464_Jan22) | Jan-23 | | DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | I | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 41 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林名 | | Approved by: | Qi Dianyuan | SAR Project Leader | SIS | Issued: October 14, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60436 Page 1 of 6 Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60436 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Measurement Conditions | ASY system configuration, as far as | not given on page 1. | T | |-------------------------------------|----------------------------|----------------------------------| | DASY Version | DASY52 | 52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3900 MHz ± 1 MHz | | Head TSL parameters at 3900MHz | he following parameters and calculations were | Temperature | Permittivity | Conductivity |
---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) ℃ | 37.6 ±6 % | 3.40 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | _ | - | # SAR result with Head TSL at 3900MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 100 mW input power | 6.63 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.1 W/kg ±24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.3 W/kg ±24.2 % (k=2) | Certificate No: Z22-60436 Report No.: R2401A0062-S1V2 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL at 3900MHz | Impedance, transformed to feed point | 47.9Ω- 5.31JΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.7dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.012 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: Z22-60436 Page 4 of 6 🍪 eurofins Date: 2022-10-09 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN: 1027 Communication System: UID 0, CW; Frequency: 3900 MHz Medium parameters used: f = 3900 MHz; $\sigma = 3.399 \text{ S/m}$; $\epsilon_r = 37.61$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(6.76, 6.76, 6.76) @ 3900 MHz; Calibrated: 2022-01-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration /Pin=100mW, d=10mm, f=3900 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.44 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 6.63 W/kg; SAR(10 g) = 2.33 W/kgSmallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 75.9% Maximum value of SAR (measured) = 12.9 W/kg Certificate No: Z22-60436 Page 5 of 6 💸 eurofins Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: emf@caict.ac.cn # Impedance Measurement Plot for Head TSL Certificate No: Z22-60436 Page 6 of 6 **SAR Test Report** Report No.: R2401A0062-S1V2 # **ANNEX N: D5GHzV2 Dipole Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Accreditation No.: SCS 0108 Certificate No: D5GHzV2-1203_Dec22 | Object | D5GHzV2 - SN:1 | 203 | | |---|---|--|---| | Calibration procedure(s) | QA CAL-22.v7
Calibration Proce | dure for SAR Validation Sources | between 3-10 GHz | | Calibration date: | December 09, 20 | 22 | | | The measurements and the uncerta | ainties with confidence pr | onal standards, which realize the physical unitrobability are given on the following pages and y facility: environment temperature $(22 \pm 3)^{\circ}$ C | d are part of the certificate. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | ower sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | reference 20 db Attenuator | | | | | | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Type-N mismatch combination
Reference Probe EX3DV4 | SN: 3503 | 08-Mar-22 (No. EX3-3503_Mar22) | Apr-23
Mar-23 | | Type-N mismatch combination
Reference Probe EX3DV4 | | 맛입기를 가게 하는 것이 되었다면서 하면 있는 것이 된다면 가게 되는 데 He | | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4 | SN: 3503 | 08-Mar-22 (No. EX3-3503_Mar22)
31-Aug-22 (No. DAE4-601_Aug22) | Mar-23 | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4
Secondary Standards | SN: 3503
SN: 601 | 08-Mar-22 (No. EX3-3503_Mar22) | Mar-23
Aug-23 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 3503
SN: 601 | 08-Mar-22 (No. EX3-3503_Mar22)
31-Aug-22 (No. DAE4-601_Aug22)
Check Date (in house) | Mar-23
Aug-23
Scheduled Check | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 3503
SN: 601
ID #
SN: GB39512475 | 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) | Mar-23
Aug-23
Scheduled Check
In house check: Oct-24 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) | Mar-23 Aug-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) | Mar-23 Aug-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972 | 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) | Mar-23 Aug-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) | Mar-23 Aug-23 Scheduled Check In house check: Oct-24 Signature | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477
Name | 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No.
DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) | Mar-23 Aug-23 Scheduled Check In house check: Oct-24 | Certificate No: D5GHzV2-1203_Dec22 Page 1 of 9 **SAR Test Report** Report No.: R2401A0062-S1V2 # Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1203_Dec22 Page 2 of 9 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz
5850 MHz ± 1 MHz | | ## Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.4 ± 6 % | 4.61 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | (**** | | ## SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.76 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.4 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1203_Dec22 Page 3 of 9 Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.9 ± 6 % | 4.98 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | - manage of the access of the second | |---|--------------------|--------------------------------------| | SAR measured | 100 mW input power | 8.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.7 ± 6 % | 5.14 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.68 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 76.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.0 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1203_Dec22 Report No.: R2401A0062-S1V2 ## Head TSL parameters at 5850 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.2 | 5.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.6 ± 6 % | 5.24 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | ## SAR result with Head TSL at 5850 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.90 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.5 W/kg ± 19.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 48.5 Ω - 3.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.0 dB | | ## Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | $51.7 \Omega + 2.6 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 30.4 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 53.6 Ω + 4.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.3 dB | | #### Antenna Parameters with Head TSL at 5850 MHz | Impedance, transformed to feed point | 52.4 Ω + 4.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.5 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.191 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| DE MARY POUR PROPERTY OF MEDICAL MEDICAL PROPERTY OF THE PROPE Certificate No: D5GHzV2-1203_Dec22 #### **DASY5 Validation Report for Head TSL** Date: 09.12.2022 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1203 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5850 MHz Medium parameters used: f=5250 MHz; $\sigma=4.61$ S/m; $\epsilon_r=36.4;$ $\rho=1000$ kg/m³
, Medium parameters used: f=5600 MHz; $\sigma=4.98$ S/m; $\epsilon_r=35.9;$ $\rho=1000$ kg/m³ , Medium parameters used: f=5750 MHz; $\sigma=5.14$ S/m; $\epsilon_r=35.7;$ $\rho=1000$ kg/m³ , Medium parameters used: f = 5850 MHz; $\sigma = 5.24 \text{ S/m}$; $\varepsilon_r = 35.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(4.99, 4.99, 4.99) @ 5850 MHz; Calibrated: 08.03.2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 31.08.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.31 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 26.3 W/kg SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.24 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 70.6% Maximum value of SAR (measured) = 17.6 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.76 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 67.9% Maximum value of SAR (measured) = 18.9 W/kg | Contificate No: DECHAVO 1000 Decoo | Dana 7 of O | | |------------------------------------|-------------|--| Certificate No: D5GHzV2-1203_Dec22 Page 7 of 9 Report No.: R2401A0062-S1V2 ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.15 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 29.7 W/kg SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.19 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 66.2% Maximum value of SAR (measured) = 18.3 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.55 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 7.90 W/kg; SAR(10 g) = 2.25 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 65.2% Maximum value of SAR (measured) = 19.2 W/kg 0 dB = 19.2 W/kg = 12.84 dBW/kg Certificate No: D5GHzV2-1203_Dec22 Page 8 of 9 ## Impedance Measurement Plot for Head TSL Certificate No: D5GHzV2-1203_Dec22 Page 9 of 9 ## **ANNEX O: DAE4 Calibration Certificate (SN: 1317)** ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TA Shanghai City Certificate No: DAE4-1317_Sep23 ## CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BM - SN: 1317 Object QA CAL-06.v30 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) September 13, 2023 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration 29-Aug-23 (No:37421) Keithley Multimeter Type 2001 SN: 0810278 Aug-24 Secondary Standards Check Date (in house) Scheduled Check In house check: Jan-24 Auto DAE Calibration Unit SE UWS 053 AA 1001 27-Jan-23 (in house check) Calibrator Box V2.1 SE UMS 006 AA 1002 27-Jan-23 (in house check) In house check: Jan-24 Function Dominique Steffen Laboratory Technician Calibrated by: Sven Kühn Technical Manager Approved by: Issued: September 13, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1317_Sep23 Page 1 of 5 🎎 eurofins Report No.: R2401A0062-S1V2 Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating Certificate No: DAE4-1317_Sep23 Page 2 of 5 # DC Voltage Measurement A/D - Converter Resolution nominal full range = -100...+300 mV full range = -1.....+3mV $6.1 \mu V$, High Range: Low Range: 1LSB = 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.828 ± 0.02% (k=2) | 404.593 ± 0.02% (k=2) | 403.947 ± 0.02% (k=2) | | Low Range | 3.98059 ± 1.50% (k=2) | 3.99254 ± 1.50% (k=2) | 3.98124 ± 1.50% (k=2) | ## Connector Angle | Connector Angle to be used in DASY system | 332.0 ° ± 1 ° | |---|---------------| |---|---------------| Certificate No: DAE4-1317_Sep23 Page 3 of 5 eurofins Report No.: R2401A0062-S1V2 ## Appendix (Additional assessments outside the scope of SCS0108) ## 1. DC Voltage Linearity | High Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200035.87 | -2.10 | -0.00 | | Channel X + Input | 20009.78 | 2.22 | 0.01 | | Channel X - Input | -20003.08 | 1.96 | -0.01 | | Channel Y + Input | 200038.43 | 1.12 | 0.00 | | Channel Y + Input | 20007.38 | 0.01 | 0.00 | | Channel Y - Input | -20005.14 | 0.15 | -0.00 | | Channel Z + Input | 200035.44 | -1.96 | -0.00 | | Channel Z + Input | 20007.06 | -0.38 | -0.00 | | Channel Z - Input | -20005,82 | -0.50 | 0.00 | | Low Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2002.30 | -0.21 | -0.01 | | Channel X + Input | 202.91 | 0.62 | 0.31 | | Channel X - Input | -197.09 | 0.46 | -0.24 | | Channel Y + Input | 2001.50 | -0.93 | -0.05 | | Channel Y + Input | 201.49 | -0.69 | -0.34 | | Channel Y - Input | -198.93 | -1.28 | 0.65 | | Channel Z + Input | 2002.15 | -0.14 | -0.01 | | Channel Z + Input | 201.40 | -0.60 | -0.30 | | Channel Z - Input | -198.25 | -0.54 | 0.27 | ## 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 12.18 | 10.32 | | | - 200 | -9.53 | -11.39 | | Channel Y | 200 | 11.60 | 11.04 | | | - 200 | -12.39 | -13.28 | | Channel Z | 200 | 1.85 | 2.16 | | | - 200 | -3.72 | -3.91 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------
----------------| | Channel X | 200 | - | 1.45 | -3.50 | | Channel Y | 200 | 8.83 | (*) | 4.46 | | Channel Z | 200 | 10.22 | 5.65 | (*) | Certificate No: DAE4-1317_Sep23 Page 4 of 5 Report No.: R2401A0062-S1V2 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15750 | 15569 | | Channel Y | 16504 | 16920 | | Channel Z | 16070 | 16718 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.33 | -0.60 | 1.20 | 0.43 | | Channel Y | -0.09 | -1,84 | 1.39 | 0.59 | | Channel Z | 0.28 | -0.95 | 2.09 | 0.54 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-1317_Sep23 Page 5 of 5 # **ANNEX P: The EUT Appearance** The EUT Appearance are submitted separately. ## **ANNEX Q: Test Setup Photos** The Test Setup Photos are submitted separately. ******END OF REPORT ******