

FCC PART 15.231

TEST REPORT

For

QUANZHOU DAYTECH ELECTRONICS CO., LTD.

Hengdali Business Center, North Quanan Road, Jinjiang City, Quanzhou, Fujian, China

FCC ID: 2AWYQDS04

Report Type:		Product Type:		
Original Report		Door Sensor		
			Miller	X2e
Project Engineer:	Miller Xie			
Report Number:	RXM210322056	-00A		
Report Date:	2021-04-21			
Reviewed By:	Oscar Ye EMC Manager		Oscar	Ye
Prepared By:	Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn			

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC§15.203 - ANTENNA REQUIREMENT	9
Applicable Standard	9
ANTENNA CONNECTED CONSTRUCTION	9
FCC §15.205, §15.209, §15.231 (B) - RADIATED EMISSIONS	10
Applicable Standard	10
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	12
Test Results Summary Test Data	
FCC §15.231(A) (1) - DEACTIVATION TESTING	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	15
FCC §15.231(C) - 20DB EMISSION BANDWIDTH TESTING	
Applicable Standard	17
Test Procedure	
ТЕЅТ DATA	17

GENERAL INFORMATION

Applicant:	QUANZHOU DAYTECH ELECTRONICS CO., LTD.
Tested Model:	DS04
Series Model:	DS04-BL
Product Type:	Door Sensor
Power Supply:	DC 12V from battery
RF Function:	SRD
Operating Band/Frequency:	433.92MHz
Field strength of fundamental:	67.16dBµV/m@3m
Channel Number:	1
Modulation Type:	ASK
Antenna Type:	PCB Antenna
*Maximum Antenna Gain:	1.0 dBi

Product Description for Equipment under Test (EUT)

Note*: The maximum antenna gain is provided by the applicant.

Note: The difference between tested model and series model was explained in the attached declaration letter.

All measurement and test data in this report was gathered from production sample serial number: RXM210322056-1. (Assigned by the BACL. The EUT supplied by the applicant was received on 2021-03-22)

Objective

This test report is prepared on behalf of *QUANZHOU DAYTECH ELECTRONICS CO., LTD.* All the test measurements were performed according to the measurement procedure described in ANSI C63.10 - 2013.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209, 15.35(c) and 15.231 rules.

Related Submittal(s)/Grant(s)

No related submittal/grant.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10 - 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.231

Measurement Uncertainty

Item		Uncertainty
AC Power Line	es Conducted Emissions	3.19 dB
RF conducte	ed test with spectrum	0.9dB
	30MHz~1GHz	6.11dB
Radiated emission	1GHz~6GHz	4.45dB
	6GHz~18GHz	5.23dB
Occup	bied Bandwidth	0.5kHz
Temperature		1.0°C
]	Humidity	6%

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

SYSTEM TEST CONFIGURATION

Justification

Channel List:

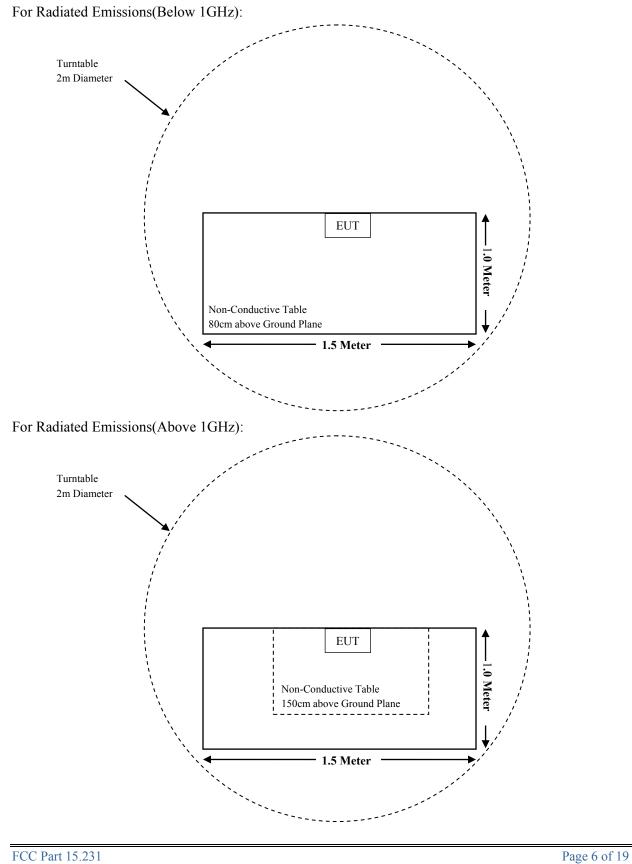
Channel	Frequency (MHz)
1	433.92

EUT Exercise Software

For radiated emission testing: Engineering mode which can continue transmit.

Equipment Modifications

No modification was made to the EUT.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	Conducted Emissions	Not applicable (See Note)
§15.205, §15.209, §15.231(b)	Radiated Emissions	Compliant
§15.231 (a) (1)	Deactivation	Compliant
§15.231 (c)	20dB Emission Bandwidth	Compliant

Note: The EUT is powered by battery.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
	Radiated E	mission Test(Char	nber 1#)	-		
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2020-11-27	2021-11-26	
Rohde & Schwarz	Signal Analyzer	FSV40	101116	2020-07-28	2021-07-27	
Sunol Sciences	Broadband Antenna	JB3	A090314-1	2020-08-05	2023-08-04	
Sonoma Instrument	Pre-amplifier	310N	171205	2020-08-14	2021-08-13	
Rohde & Schwarz	Auto Test Software	EMC32	100361	N/A	N/A	
MICRO-COAX	Coaxial Cable	Cable-8	008	2020-08-15	2021-08-14	
MICRO-COAX	Coaxial Cable	Cable-9	009	2020-08-15	2021-08-14	
MICRO-COAX	Coaxial Cable	Cable-10	010	2020-08-15	2021-08-14	
	Radiated Emission Test(Chamber 2#)					
Rohde & Schwarz	EMI Test Receiver	ESU40	100207/040	2021-04-01	2022-03-31	
ETS-LINDGREN	Horn Antenna	3115	9311-4159	2020-07-15	2023-07-14	
A.H.Systems, inc	Amplifier	PAM-0118P	512	2020-08-14	2021-08-13	
Narda	Attenuator	10dB	010	2020-08-15	2021-08-14	
Rohde & Schwarz	Auto test Software	EMC32	100361	N/A	N/A	
MICRO-COAX	Coaxial Cable	Cable-6	006	2020-08-15	2021-08-14	
MICRO-COAX	Coaxial Cable	Cable-11	011	2020-08-15	2021-08-14	
MICRO-COAX	Coaxial Cable	Cable-12	012	2020-08-15	2021-08-14	
MICRO-COAX	Coaxial Cable	Cable-13	013	2020-08-15	2021-08-14	

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Antenna Connected Construction

The EUT has a PCB antenna which was permanently attached and the antenna gain is 1.0 dBi; fulfill the requirement of this section. Please refer to EUT photos.

Result: Compliant.

FCC §15.205, §15.209, §15.231 (b) - RADIATED EMISSIONS

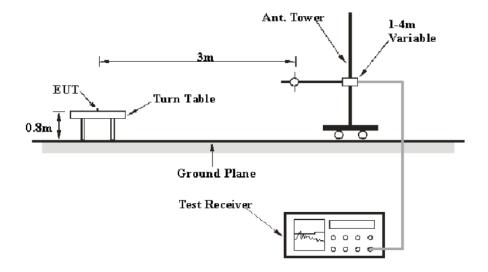
Applicable Standard

FCC §15.205, §15.209, §15.231 (b)

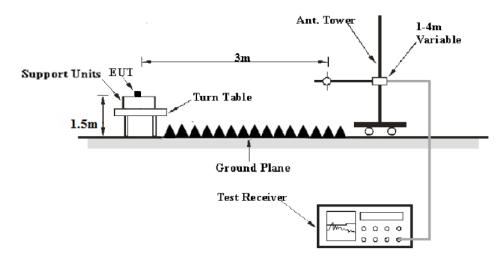
According to FCC §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750 **	125 to 375 **
174-260	3750	375
260-470	3750 to 12500 **	375 to 1250**
Above 470	12500	1250

Note: ** means Linear interpolations


(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

(2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.


(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

EUT Setup

Below 1GHz:

Above 1 GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10 - 2013. The specification used was the FCC 15 § 15.209, 15.205 and 15.231.

Bay Area Compliance Laboratories Corp. (Kunshan)

EMI Test Receiver Setup

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	РК
1000MHz – 5000MHz	1MHz	3MHz	/	РК

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude $(dB\mu V / m) =$ Meter Reading $(dB\mu V) +$ Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

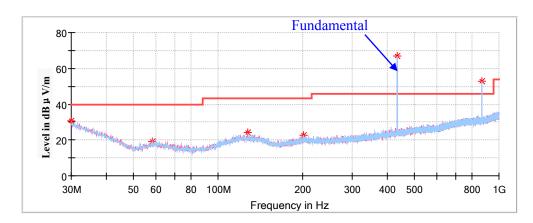
Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.205, §15.209, §15.231 (b).

Test Data

Environmental Conditions

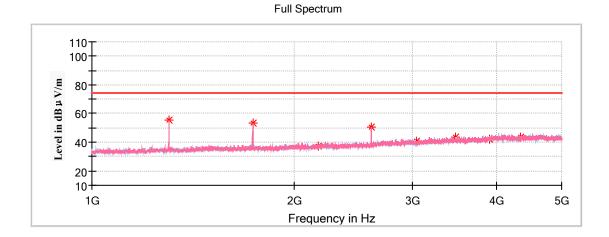

Temperature:	24.8-24.9℃
Relative Humidity:	50-51 %
ATM Pressure:	101.1-103.4 kPa

The testing was performed by Miller Xie from 2021-04-13 to 2021-04-16.

Test mode: Transmitting

30MHz-1GHz (ASK modulation)

(Pre-scan in the X,Y and Z axes of orientation, the worst case **Y-axis of orientation** was recorded.)



Frequency	Corrected Amplitude	Rx An	itenna	Turntable	Corrected	QP/Average	Margin (dB)	
(MHz)	Max Peak (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	Limit (dBµV/m)		
30.00	30.66	100	V	324	-3.7	60.83	30.17	
58.49	19.07	200	Н	0	-14.9	60.83	41.76	
127.49	23.99	100	V	245	-11.1	43.50	19.51	
201.81	22.50	200	Н	227	-12	60.83	38.33	
433.92	67.16	200	Н	0	-7.2	80.83	13.67	
867.84	52.91	100	Н	352	-0.3	60.83	7.92	

Note: If the spurious emissions maximized peak measured value complies with the QP/Average limit, it is unnecessary to perform QP/Average measurement.

1GHz-5 GHz (ASK modulation)

(Pre-scan in the X,Y and Z axes of orientation, the worst case Y-axis of orientation was recorded.)

Corrected **Rx** Antenna Amplitude Corrected Average Frequency Turntable Margin Limit Factor (MHz) Max Peak Height Polar Degree (**dB**) (dB/m) $(dB\mu V/m)$ $(dB\mu V/m)$ (cm) (H/V) 1301.78 51.52 V 197 -10.6 54.00 200 2.48 1735.70 V -8.6 7.43 53.40 150 232 60.83 37.38 V 197 23.45 2169.63 200 -7.0 60.83 2603.55 50.23 200 V 291 -5.3 60.83 10.6 3037.48 40.81 200 Н 32 -3.1 60.83 20.02 -1.9 3471.40 43.53 150 Η 202 60.83 17.3 54.00 11.54 3905.33 299 0.0 42.46 150 Η 54.00 4339.20 43.87 200 V 2 0.8 10.13

Note: If the spurious emissions maximized peak measured value complies with the Average limit, it is unnecessary to perform an Average measurement

Note 1:

Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

FCC §15.231(a) (1) - DEACTIVATION TESTING

Applicable Standard

Per FCC §15.231(a) (1), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Test Procedure

- 1. With the EUT's antenna attached, the waveform was received by the test antenna which was connected to the spectrum analyzer.
- 2. Set center frequency of spectrum analyzer=operating frequency.
- 3. Set the spectrum analyzer as RBW=100k VBW=300k Span=0Hz.
- 4. Repeat above procedures until all frequency measured was complete.

Test Data

Environmental Conditions

Temperature:	24.8 °C
Relative Humidity:	53 %
ATM Pressure:	101.1 kPa

The testing was performed by Miller Xie on 2021-04-13.

Test mode: Transmitting

Channel Frequency (MHz)	Limit (s)	Result
433.92	<5	Pass

ASK Modulation

T_{stop} <5s

-0.56 d 5.0000 .90 dBµ 2.5619
.90 dBµ
-theytheyt
~

Date: 13.APR.2021 18:46:46

FCC §15.231(c) - 20dB EMISSION BANDWIDTH TESTING

Applicable Standard

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Test Procedure

With the EUT's antenna attached, the waveform was received by the test antenna which was connected to the spectrum analyzer, plot the 20 dB bandwidth.

Test Data

Environmental Conditions

Temperature:	24.8 °C
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa

The testing was performed by Miller Xie on 2021-04-13.

Test Mode: Transmitting

Bay Area Compliance Laboratories Corp. (Kunshan)

ASK modulation:

Channel Frequency	20dB Bandwidth	Limit	Result
(MHz)	(kHz)	(kHz)	
433.92	7.850	1084.8	Pass

Note: Limit = 0.25% * Center Frequency = 0.25% * 433.92 MHz = 1084.8 kHz

20 dB Emission Bandwidth

Refle	velo	98.03 dE	ωV		_	RB	W 200 Hz								[₩
Att				T 9.5	_		W 500 Hz	Mod	le Aut	o FFT					
∋1Pk Ma	x														
									DI	l[1]					.03 dl
90 dBµV-	+					_			—						50 kH
								M1[1]			43	48.42 3.85794	2 dBµ' to MH		
80 dBµV-	+		-								1		1	0.00794	
70 dBµV-	-D:	1 68.16	о авил								_				
60 dBµV-			$ \land $												
00 000			1												
50 dBµV-			4 d1 8.160 dBL												
		02 1													
40 dBµV-	-	~	, "								_				
oo Jowy		and and a strength		"h											
30 dBµV-	m				W.										
20 dBuV-					vw	M	4								
20 0001							munu	vi.							
10 dBµV-	_								mm	annola	m	Malana a aa		-	
							688					0.0.000	popos	more	mar
0 dBµV-													L		
CF 433. Marker	92 M	HZ					688	pts					sp	an 200.	U KHZ
					Y-value	Function				Function Result					
M1	Kel	1		85794	F MHz		48.42 dBµ		Tunc			Full	COULT KE	suit	
D1	M1	1			5 kHz		-0.03 d								

Date: 13.APR.2021 17:30:32

Declarations

1: BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

2: Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

3: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

4: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

5: This report cannot be reproduced except in full, without prior written approval of the Company.

6: This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

***** END OF REPORT *****