

Test Report			
1. Client			
• Name: • Address:	Asterisk, Inc. 5-6-16 Nishinakajima, Yodogawa-ku, Shin-Osaka Dainichi Bldg 201, Osaka, Japan		
2. Use of Report :	FCC & IC Approval		
3. Sample Description			
 Product Name : Model Name : 	AsReader DOCK-Type Combo ASR-0240D-V4		
4. Date of Receipt :	2022-10-11		
5. Date of Test :	2022-10-26 ~ 2022-11-03		
6. Test Method :	FCC Part 15 Subpart C 15.225 RSS-210 Issue 10(2019-12), RSS-GEN Issue 5(2019-03)		
7. Test Results :	Refer to the test results		
This test report must not be reproduced or reproduced in any way. The results shown in this test report are the results of testing the samples provided. This test report is prepared according to the requirements of ISO / IEC 17025.			

Affirmation	Tested by	CAR	Technical Manager	Jun
Ammation	Dae-Seong, Choi	(signature)	Yong-Min, Won	(signature)
	Nov 30, 2022			30, 2022
		EMC Lab	s Co., Ltd.	

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 1 / 1

<u>Contents</u>

1.	Applicant & Manufacturer & Test Laboratory Information	4
2.	Equipment under Test(EUT) Information	5
3.	Test Summary	6
4.	Used equipment on test······	7
5.	Antenna Requirement·····	8
6.	20 dB Bandwidth & Occupied Bandwidth (99%)	9
7.	In-Band Emissions	11
8.	Out-Of-Band Emissions	13
9.	Frequency Stability	15
10.	Conducted Emission	16
	APPENDIX	
APPI	ENDIX I TEST SETUP	19

APPENDIX II UNCERTAINTY 21

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 2 / 2

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
KR0140-RF2211-009	Nov 30, 2022	Initial Issue

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 3 / 3

1. Applicant & Manufacturer & Test Laboratory Information

1.1 Applicant Information

Applicant	Asterisk, Inc.					
Applicant Address	5-6-16 Nishinakajima, Yodogawa-ku, Shin-Osaka Dainichi Bldg 20 Osaka, Japan					
Contact Person	Naoki Kumamoto					
Telephone No.	+81-50-5536-1185					
Fax No.	+81-6-6886-1114					
E-mail	nkumamoto@asx.co.jp					

1.2. Manufacturer Information

Manufacturer	Asterisk Inc.					
Manufacturer Address	5-6-16 Nishinakajima, Yodogawa-ku, Shin-Osaka Dainichi Bldg 201, Osaka, Japan					

1.3 Test Laboratory Information

Laboratory	EMC Labs Co., Ltd.
Laboratory Address	100, Jangjateo-ro, Hobeop-myeon, Icheon-si, Gyeonggi-do, Republic of Korea
Contact Person	Yongmin Won
Telephone No.	+82-2-508-7778
Fax No.	+82-2-538-3668
FCC Designation No.	KR0140
FCC Registration No.	58000
IC Site Registration No.	28751

2. Equipment under Test(EUT) Information

2.1 General Information

Product Name	AsReader DOCK-Type Combo		
Model Name	ASR-0240D-V4		
FCC ID	2AJXE-ASR-0240D-V4		
IC	22976-ASR0240DV4		
Power Supply	DC 3.7 V		

2.2 Additional Information

Operating Frequency	13.56 MHz		
Number of channel	1		
Modulation Type	ASK		
Antenna Type	PCB Pattern Antenna		
Firmware Version	1.0		
Hardware Version	1.0		
Test software	AsReader Scan		

2.3 Test Frequency

Test mode		Test Frequency (MHz)	
	Low Frequency	Middle Frequency	High Frequency
RFID	13.56	-	_

2.4 Used Test Software Setting Value

Test Mode	Setting Item	
Test Mode	Power	
RFID	None	

2.7 Mode of operation during the test

- The EUT continuous transmission mode during the test with set at Low Channel, Middle Channel, and High Channel. To get a maximum radiated emission levels from the EUT, the EUT was moved throughout the XY, YZ, XZ planes.

2.8 Modifications of EUT

- None

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 5 / 5

3. Test Summary

Applied	FCC Rule	IC Rule	Test Items	Test Condition	Result
\square	15.203	-	Antenna Requirement	_	С
\square	15.215 (c)	-	20 dB Bandwidth		С
\square	_	RSS GEN [6.7]	Occupied Bandwidth (99%)		С
\square	15.225 (a)	RSS-210 [B6(a)]	In-Band Emissions (13.553 - 13.567 MHz)		С
	15.225 (b)	RSS-210 [B6(b)]	In-Band Emissions (13.410 - 13.553 MHz, 13.567 - 13.710 MHz)	Radiated	С
	15.225 (c)	RSS-210 [B6(c)]	In-Band Emissions (13.110 - 13.410 MHz, 13.710 - 14.010 MHz)		С
\square	15.225 (d) 15.209	RSS-210 [B6(d)] RSS-GEN [8.9]	Out-of-Band Emissions		С
\square	15.225 (e)	RSS-210 [B6]	Frequency Stability		С
\square	15.207	RSS-GEN [8.8]	Conducted Emissions	AC Line Conducted	С
<u>Note 1</u> : C=0	Complies NC=Not	Complies NT=Nc	ot Tested NA=Not Applicable		

The sample was tested according to the following specification: ANSI C63.10:2013.

Compliance was determined by specification limits of the applicable standard according to customer requirements.

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 6 / 6

4. Used equipment on test

	Description	Manufacturer	Model Name	Serial Name	Next Cal.	
TEMP & HUMID CHAMBER		JFM	JFMA-001	20200929-01	2022.12.17	
	CONTROLLER	AMWON TECHNOLOGY	TEMI2500	S7800VK191 0707	2022.12.17	
	PSA SERIES SPECTRUM ANALYZER	AGILENT	E4440A	MY45304057	2022.12.15	
	MXG ANALOG SIGNAL GENERATOR	AGILENT	N5183A	MY50141890	2022.12.15	
	SYSTEM DC POWER SUPPLY	AGILENT	6674A	MY53000118	2022.12.15	
	VECTOR SIGNAL GENERATOR	ROHDE & SCHWARZ	SMBV100A	257524	2022.12.15	
	BLUETOOTH TESTER	TESCOM	TC-3000A	3000A480088	2022.12.15	
	DIRECTIONAL COUPLER	AGILENT	773D	2839A01855	2022.12.15	
	ATTENUATOR	AGILENT	8493C	73193	2022.12.15	
	ATTENUATOR	ACE RF COMM	ATT SMA 20W 20dB 8 GHz	A-0820.SM20.2	2023.04.11	
	TERMINATIOM	HEWLETT PACKARD	909D	07492	2022.12.15	
	POWER DIVIDER	HEWLETT PACKARD	11636A	06916	2022.12.15	
	SLIDE-AC	DAEKWANG TECH	SV-1023	_	_	
	DIGITAL MULTIMETER	HUMANTECHSTORE	15B+	50561541WS	2022.12.15	
	ACTIVE LOOP ANTENNA	TESEQ	HLA 6121	55685	2022.12.30	
	Biconilog ANT	Schwarzbeck	VULB 9160	3260	2023.02.03	
	Biconilog ANT	Schwarzbeck	VULB9168	902	2023.01.14	
	Horn Ant.	Schwarzbeck	BBHA9120D	974	2023.01.08	
	Horn Ant.	S/B	BBHA9120D	1497	2023.01.25	
	Amplifier	TESTEK	TK-PA18H	200104-L	2023.03.17	
	EMI TEST RECEIVER	ROHDE& SCHWARZ	ESW44	101952	2023.04.07	
	PROGRAMMABLE DC POWER SUPPLY	ODA	OPE-305Q	oda-01-09-23-1831	2023.01.10	
	DC POWER SUPPLY	AGILENT	E3634A	MY40012120	2023.02.03	
	Test Receiver	ROHDE & SCHWARZ	ESR7	101616	2023.06.28	
	LISN	ROHDE & SCHWARZ	ENV216 100409		2023.01.10	
	PULSE LIMITER	lignex1	EPL-30	NONE	2023.01.24	

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 7 / 7

5. Antenna Requirement

According to §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

According to §15.247(b)(4) e conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1 Result

Complies

(The transmitter has a PCB Pattern Antenna.)

6. 20 dB Bandwidth & Occupied Bandwidth (99%)

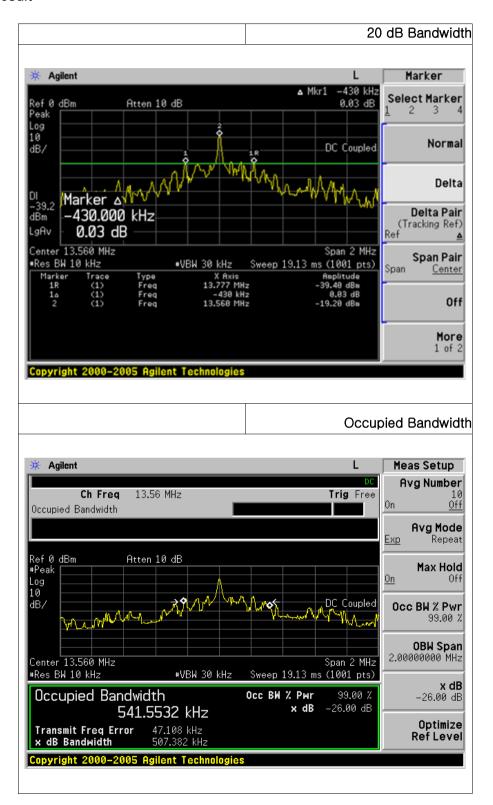
6.1 Test Setup

Refer to the APPENDIX I.

6.2 Limit

N/A

6.3 Test Procedure


- 1. The 20 dB Bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.
- 2. Spectrum analyzer setting use following test procedure

 $RBW = 1 \% \sim 5 \% OBW$ $VBW \ge 3 \times RBW$ Span = Span = 2 ~ 5 times the OBW Sweep = Auto Detector = Peak Trace = Max hold

- 3. The trace was allowed to stabilize
- 4. Determine the reference value = Set the spectrum analyzer marker to the highest level of the displayed trace
- 5. Using the marker-delta function of the instrument, determine the "-xx dB down amplitude" using [(reference value) xx].
- 6. Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

6.4 Test Result

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 10 / 10

7. In-Band Emissions

7.1 Test Setup

Refer to the APPENDIX I.

7.2 Limit

Part 15.225(a).(b).(c) & RSS-210 [B6(a).(b).(c)]

Frequency Band	Limit at 30 m measurement distance			
(MHz)	(uV/m)	(dBuV/m)		
13.553-13.567	15,848	84.00		
13.410-13.553 13.567-13.710	334	50.47		
13.110-13.410 13.710-14.010	106	40.51		

7.3 Test Procedure

The radiated emission was tested according to the section 6.4 of the ANSI C63.10-2013.

The EUT was placed on a 0.8 m high non-conductive table and it was placed at 3m distance from the antenna.

Measurements were performed for each of the three antenna orientations. (ie. parallel, perpendicular, and ground-parallel)

Also, measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

RBW = As specified in below table $VBW \ge 3 \times RBW$ Sweep = Auto Detector = Peak Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW			
9–150 kHz	200-300 Hz			
0.15-30 MHz	9-10 kHz			
30-1000 MHz	100-120 kHz			
>1 000 MHz	1 MHz			

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 11 / 11

7.4 Test Result

- Test Frequency: 13.56 MHz
- Measurement Distance: 3 m

Test Frequency Band (MHz)	Freq. (MHz)	Ant	Reading Value (dB #V)	T.F (dB/m)	Field Strength @3m (dB #/m)	Field Strength @30m (dB ⊮/m)	Limit (dB ⊮/m)	Margin (dB)
13.110-13.410	13.267	15.08	Ρ	21.89	36.97	-3.03	40.51	43.54
13.410-13.553	13.478	14.52	Ρ	21.89	36.41	-3.59	50.47	54.06
13.553-13.567	13.560	24.49	Ρ	21.89	46.38	6.38	84.00	77.62
13.567-13.710	13.659	15.01	Ρ	21.89	36.90	-3.10	50.47	53.57
13.710-14.010	13.887	14.52	Р	21.89	36.41	-3.59	40.51	44.10

Note 1: Loop antenna orientation

"P": Parallel, "V": Perpendicular, "G": Ground-parallel

Note 2: This test item was performed at 3 m and the data were extrapolated to the specified measurement distance of 30 m using the square of an inverse linear distance extrapolation factor (40 dB/decade)

as specified in §15.31(f)2.

Extrapolation Factor = 20 log₁₀(30/3)² = 40 dB

Note 3: All data were recorded using a spectrum analyzer employing a peak detector.

If PK results were meet Quasi-peak limit, Quasi-peak measurements were omitted.

Note 4: Sample Calculation.

8. Out-of-Band Emissions

8.1 Test Setup

Refer to the APPENDIX I.

8.2 Limit

Part 15.209, 15.225(d) & RSS-210[B6(d)], RSS-GEN[8.9]

FCC	Part	15	.209(a):
100	i uit	10	.200(u)·

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)	
0.009 ~ 0.490	2400/F (kHz)	300	
0.490 ~ 1705	24000/F (kHz)	30	
1705 ~ 30.0	30	30	
30 ~ 88	100 **	3	
88 ~ 216	150 **	3	
216~960	200 **	3	
Above 960	500	3	

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

FCC Part 15.209(b): In the emission table above, the tighter limit applies at the band edges.

8.3 Test Procedure

The radiated emission was tested according to the section 6.4 of the ANSI C63.10-2013.

The EUT was tested from 9 kHz up to the 1 GHz excluding the band 13.110-14.010 MHz. The EUT was placed on a 0.8 m high non-conductive table and it was placed at 3m distance from the antenna.

For measurements below 30MHz were performed for each of the three antenna orientations. (ie. parallel, perpendicular, and ground-parallel)

For measurements above 30MHz were performed for each of the both horizontal and vertical polarizations.

Also, measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

RBW = As specified in below table $VBW \ge 3 \times RBW$ Sweep = Auto Detector = PeakTrace mode = Max Hold until the trace stabilizes.

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 13 / 13

Frequency	RBW			
9–150 kHz	200-300 Hz			
0.15-30 MHz	9-10 kHz			
30-1000 MHz	100-120 kHz			
>1 000 MHz	1 MHz			

8.4 Test Result

- Test Frequency: 13.56 MHz
- Measurement Distance: **3 m**

Frequency (MHz)	Ant	Reading Value (dB ⊮)	T.F (dB/m)	Distance Factor (dB ⊮/m)	Field Strength (dB ⊮/m)	Limit (dB ⊮/m)	Margin (dB)
36.30	V	21.91	13.11	0.00	35.02	40.00	4.98
85.72	V	18.41	9.38	0.00	27.79	40.00	12.21

Note 1: The radiated emissions were inverstigated 9 kHz to 1 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

Note 2: Loop antenna orientation (below 30 MHz) "P": Parallel, "V": Perpendicular, "G": Ground-parallel Bilog antenna polarization (above 30 MHz) "H": Horizontal, "V": Vertical

- Note 3: All data were recorded using a spectrum analyzer employing a peak detector.
- If PK results were meet Quasi-peak limit, Quasi-peak measurements were omitted.
- Note 4: Sample Calculation.

Margin = Limit – Field Strength

Field Strength = Reading + T.F - Distance factor

Distance factor = $20\log(Measurement distance / The measured distance)^2 = <math>20\log(30/3)^2 = 40 \text{ dB}$ T.F = AF + CL -AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

9. Out-of-Band Emissions

9.1 Test Setup

Refer to the APPENDIX I.

9.2 Limit

Part 15.225(e) & RSS-210[B6]

The frequency tolerance of the carrier signal shall be maintained within ± 0.01 % of the operating frequency.

9.3 Test Procedure

Part 15.225 requires that devices operating in the 13.553 - 13.567 MHz shall maintain the carrier frequency within 0.01 % of the operating frequency over the temperature variation of -20 degrees to + 50 degrees C at normal supply voltage.

Voltage		Temp	Frequency	D	eviation
(%)	(Vdc)	(°C)	(Hz)	(Hz)	(%)
100		-20	13 560 029	29	0.000 2
100		-10	13 560 011	11	0.000 1
100		0	13 559 998	2	0.000 0
100	0.70	10	13 559 971	29	0.000 2
100	3.70	+20	13 559 900	100	0.000 7
100		30	13 559 893	107	0.000 8
100		40	13 559 867	133	0.001 0
100		50	13 559 842	158	0.001 2
115	4.07	20	13 559 896	104	0.000 8
85	3.33 20		13 559 906	94	0.000 7

9.4 Test Result

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 15 / 15

10. Conducted Emission

10.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

10.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

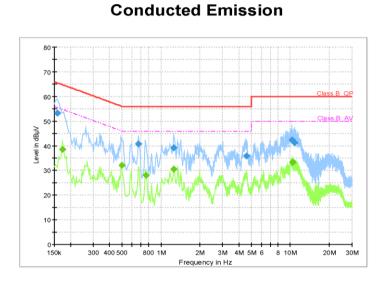
Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

	Conducted Limit (dBuV)				
Frequency Range (MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

* Decreases with the logarithm of the frequency

10.3 Test Procedure

Conducted emissions from the EUT were measured according to the ANSI C63.10.

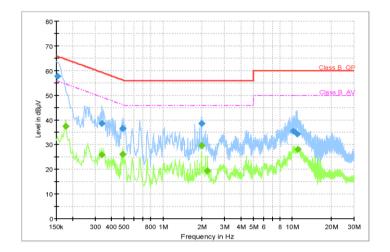

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 16 / 16

10.4 Test Result

• AC Line Conducted Emission (Graph)

ASR-X240D_RFID_L1


Final_Result

	Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
- 1	0.158	53.37		65.57	12.20	9	L1	19.4
	0.174		38.53	54.77	16.24	9	L1	19.6
	0.500		32.03	46.00	13.97	9	L1	19.8
- [0.670	40.74		56.00	15.26	9	L1	19.8
	0.770		28.02	46.00	17.98	9	L1	19.8
	1.260	39.16		56.00	16.84	9	L1	19.7
	1.260		30.58	46.00	15.42	9	L1	19.7
	4.560	35.81		56.00	20.19	9	L1	19.8
- [10.250	42.38		60.00	17.62	9	L1	20.0
	10.380		33.37	50.00	16.63	9	L1	20.0
	10.470		33.16	50.00	16.84	9	L1	20.0
	10.740	41.27		60.00	18.73	9	L1	20.0

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 17 / 17

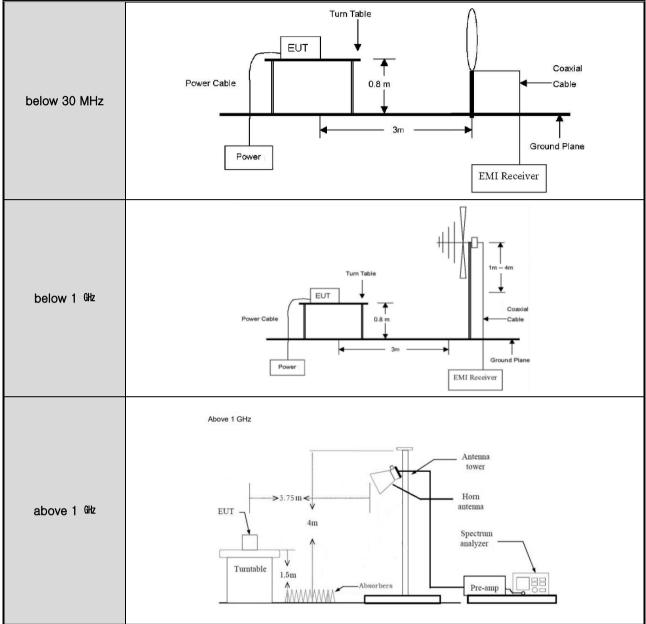
ASR-X240D_RFID_N

Conducted Emission

Final_Result

	Frequency	QuasiPeak	CAverage	Limit	Margin	Bandwidth	Line	Corr.
	(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(kHz)		(dB)
	0.154	57.81	· · · ·	65.78	7.97	9	N	19.3
	0.178		37.43	54.58	17.15	9	N	19.5
	0.338		25.89	49.25	23.36	9	N	19.6
1	0.338	38.46		59.25	20.80	9	N	19.6
	0.490	36.60		56.17	19.57	9	N	19.8
	0.490		26.11	46.17	20.06	9	N	19.8
1	1.990	38.64		56.00	17.36	9	N	19.7
	1.990		29.73	46.00	16.27	9	N	19.7
1	2.210		19.33	46.00	26.67	9	N	19.7
	10.220	35.44		60.00	24.56	9	N	20.0
	10.840	34.37		60.00	25.63	9	N	20.0
	11.060		28.06	50.00	21.94	9	N	20.0

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 18 / 18


APPENDIX I

TEST SETUP

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 19 / 19

Radiated Measurement

• Conducted Measurement

Conducted EUT Attenuator Spectrum Analyzer				
	Conducted	EUT	Attenuator	Spectrum Analyzer

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 20 / 20

APPENDIX II

UNCERTAINTY

EMCLabs-QPF-26-25 [Enactment_00 / 2022. 09. 07] Page 21 / 21

Measurement Item	Expanded Uncertainty U = <i>k</i> Uc (<i>k</i> =2)	
Radiated Spurious Emissions	6.34 dB	
Conducted Emissions	1.74 dB	