

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202502-0011-13

Page: 1 of 83

RF Test Report

FCC ID: ZQ6-W665S3

Report No. : TBR-C-202502-0011-13

Applicant : AMPAK Technology Inc.

Equipment Under Test (EUT)

EUT Name : W665S3

Model No. : W665S3

Series Model No. : ----

Brand Name : AMPAK

Sample ID : RW-C-202502-0011-1-1#&RW-C-202502-0011-1-2#

Receipt Date : 2025-02-20

Test Date : 2025-02-20 to 2025-04-10

Issue Date : 2025-04-10

Standards : FCC Part 15 Subpart E 15.407

Test Method : ANSI C63.10:2013

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Tested By :

Ride . chan

Reviewed By :

Jade W

Approved By : WAN SV

Wade Ly Ivan Su *

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202502-0011-13 Page: 2 of 83

Contents

COI	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	6
	1.1 Client Information	6
	1.2 General Description of EUT (Equipment Under Test)	6
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	9
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	12
	1.7 Measurement Uncertainty	15
	1.8 Test Facility	16
2.	TEST SUMMARY	17
3.	TEST SOFTWARE	17
4.	TEST EQUIPMENT AND TEST SITE	18
5.	CONDUCTED EMISSION TEST	20
	5.1 Test Standard and Limit	20
	5.2 Test Setup	20
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	21
	5.5 EUT Operating Mode	21
	5.6 Test Data	21
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	22
	6.1 Test Standard and Limit	22
	6.2 Test Setup	24
	6.3 Test Procedure	25
	6.4 Deviation From Test Standard	26
	6.5 EUT Operating Mode	26
	6.6 Test Data	26
7.	RESTRICTED BANDS AND BAND EDGE REQUIREMENT	27
	7.1 Test Standard and Limit	27
	7.2 Test Setup	28
	7.3 Test Procedure	28
	7.4 Deviation From Test Standard	29

Report No.: TBR-C-202502-0011-13 Page: 3 of 83

	7.5 EUT Operating Mode	29
	7.6 Test Data	29
8.	BANDWIDTH TEST	30
	8.1 Test Standard and Limit	30
	8.2 Test Setup	30
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	32
	8.5 EUT Operating Mode	32
	8.6 Test Data	32
9.	MAXIMUM CONDUCTED OUTPUT POWER	33
	9.1 Test Standard and Limit	33
	9.2 Test Setup	33
	9.3 Test Procedure	33
	9.4 Deviation From Test Standard	33
	9.5 EUT Operating Mode	33
	9.6 Test Data	34
10.	POWER SPECTRAL DENSITY TEST	35
	10.1 Test Standard and Limit	35
	10.2 Test Setup	35
	10.3 Test Procedure	35
	10.4 Deviation From Test Standard	36
	10.5 Antenna Connected Construction	36
	10.6 Test Data	36
11.	FREQUENCY STABILITY	37
	11.1 Test Standard and Limit	37
	11.2 Test Setup	37
	11.3 Test Procedure	37
	11.4 Deviation From Test Standard	38
	11.5 Antenna Connected Construction	38
	11.6 Test Data	38
12.	ANTENNA REQUIREMENT	39
	12.1 Test Standard and Limit	
	12.2 Deviation From Test Standard	39
	12.3 Antenna Connected Construction	39
	12.4 Test Data	39

Report No.: TBR-C-202502-0011-13 Page: 4 of 83

ATTACHMENT A CONDUCTED EMISSION TEST DATA	.40
ATTACHMENT B UNWANTED EMISSIONS DATA	.42
ATTACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	.56

Report No.: TBR-C-202502-0011-13 Page: 5 of 83

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202502-0011-13	Rev.01	Initial issue of report	2025-04-10
	(401)		
		MODE THE	50
	WORR I		The state of the s
		OH THE	E BOOK
	B_{R}	TOTAL STORY	
TO THE PARTY OF			A COL
	83	MODE TO THE	
	3	MODES OF THE PARTY	
	WWB7	TUDE OF THE	
The same		Direction of the second	50

Page: 6 of 83

1. General Information about EUT

1.1 Client Information

Applicant : AMPAK Technology Inc.		AMPAK Technology Inc.
Address : 3F, No. 1, Jen Al Road, Hsinchu Industrial Park, Hsinch		3F, No. 1, Jen Al Road, Hsinchu Industrial Park, Hsinchu, Taiwan
Manufacturer : AMPAK Technolo		AMPAK Technology Inc.
Address		3F, No. 1, Jen Al Road, Hsinchu Industrial Park, Hsinchu, Taiwan

1.2 General Description of EUT (Equipment Under Test)

EUT Name		W665S3				
Models No.	:	W665S3				
Model Different):	(400)				
10019	V	Operation Frequency:	U-NII-1: 5180MHz~5240MHz U-NII-2A: 5260MHz~5320MHz U-NII-2C: 5500MHz~5720MHz U-NII-3: 5745MHz~5825MHz			
Product Description		Modulation Type:	802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM) 802.11ax: OFDMA (BPSK, QPSK,16QAM, 64QAM, 256QAM, 1024QAM)			
Power Rating	:	DC 3.3V				
Software Version	1					
Hardware Version		V1.0 BT Pin48, V2.0 B	/1.0 BT Pin48, V2.0 BT Pin12			

Remark:

- (1) The antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) The above antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

Page: 7 of 83

(4) Channel List:

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5180~5240MHz	38	5190 MHz	46	5230 MHz
(U-NII-1)	40	5200 MHz	48	5240 MHz
	42	5210 MHz		

For 20 MHz Bandwidth, use channel 36, 40, 44, 48.

For 40 MHz Bandwidth, use channel 38, 46.

For 80 MHz Bandwidth, use channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	52	5260 MHz	60	5300 MHz
5260~5320MHz (U-NII-2A)	54	5270 MHz	62	5310 MHz
	56	5280 MHz	64	5320 MHz
	58	5290 MHz		

For 20 MHz Bandwidth, use channel 52, 56, 60, 64.

For 40 MHz Bandwidth, use channel 54, 62.

For 80 MHz Bandwidth, use channel 58.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
5500~5720MHz (U-NII-2C)	108	5540 MHz	134	5670 MHz
	110	5550 MHz	136	5680 MHz
	112	5560 MHz	138	5690 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5720 MHz
	122	5610 MHz		

For 20 MHz Bandwidth, use channel 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144

For 40 MHz Bandwidth, use channel 102, 110, 118, 126, 134, 142

For 80 MHz Bandwidth, use channel 106, 122, 138

Note: For the protection of Environment, the 5600-5650MHz band restricted in Canada. So the CH 118/120/122/124/126/128 was restricted use in Canada.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	149	5745 MHz	157	5785 MHz
5745~5825MHz	151	5755 MHz	159	5795 MHz
(U-NII-3)	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165.

For 40 MHz Bandwidth, use channel 151, 159.

For 80 MHz Bandwidth, use channel 155.

Report No.: TBR-C-202502-0011-13 Page: 8 of 83

(5) Antenna information

TX Antenna (s)		Remark			
1.1	CITIES .	ANT. 1			
2	ANT. 1+ ANT. 2				
2	A	NT. 1+ ANT. 2			
2	P	ANT. 1+ ANT. 2			
2	ANT. 1+ ANT. 2				
2	ANT. 1+ ANT. 2				
2	ANT. 1+ ANT. 2				
2	ANT. 1+ ANT. 2				
2	ANT. 1+ ANT. 2				
5180MHz~5825MHz					
Model Name	Туре	Antenna Gain(dBi)			
	1 2 2 2 2 2 2 2 2 5180MHz~582	1 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2			

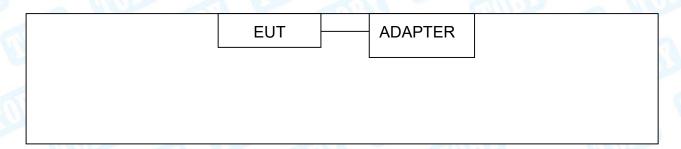
Antenna	Brand	Model Name	Туре	Antenna Gain(dBi)
ANT. 1	N/A	TZ2412W	Dipole	4.97
ANT. 2	N/A	TZ2412W	Dipole	4.97

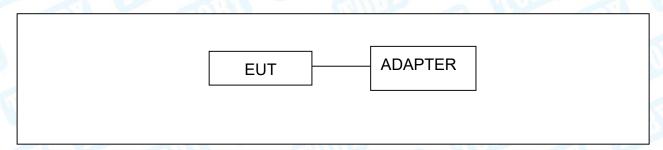
Note:

For MIMO mode: Directional Gain=ANT. Gain+10*LOG(NANT)=7.98dBi

5G working with 802.11n/ac/ax has MIMO mode.

The maximum antenna gain value is used to evaluate.




Page: 9 of 83

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

Equipment Information					
Name	Model	FCC ID/SDOC	Manufacturer	Used "√"	
Adapter	C6	#1000	HANG	1	
Assemble the	i7-8700/16G/1T	(3)	AMPAK	1	
computer	SSD		Technology Inc.	V	
Test board	WUR7	A THURST	AMPAK	1	
lest board	100		Technology Inc.	All Control	
	С	able Information			
Number	Shielded Type	Ferrite Core	Length	Note	
Cable		- 1110	0.8M	Accessory	
lote: The adapter a	and cable is provided by	y Applicant.	Millian	a w	

Page: 10 of 83

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

		or Conducted Test(AC POWER)		
Fina	al Test Mode	Description		
	Mode 1	TX a Mode(5180MHz)		
		For Radiated Test Below 1GHz		
Fina	al Test Mode	Description		
ELMIN	Mode 2	TX a Mode(5180MHz)		
		ed Above 1GHz and RF Conducted Test		
est Band	Final Test Mode	Description		
	Mode 3	TX Mode 802.11a Mode Channel 36/40/48		
	Mode 4	TX Mode 802.11n(HT20) Mode Channel 36/40/48		
	Mode 5	TX Mode 802.11n(HT40) Mode Channel 38/46		
	Mode 6	TX Mode 802.11ac(VHT20) Mode Channel 36/40/48		
U-NII-1	Mode 7	TX Mode 802.11ac(VHT40) Mode Channel 38/46		
TILL	Mode 8	TX Mode 802.11ac(VHT80) Mode Channel 42		
	Mode 9	TX Mode 802.11ax(HE20) Mode Channel 36/40/48		
	Mode 10	TX Mode 802.11ax(HE40) Mode Channel 38/46		
1	Mode 11	TX Mode 802.11ax(HE80) Mode Channel 42		
11053	Mode 12	TX Mode 802.11a Mode Channel 52/56/64		
	Mode 13	TX Mode 802.11n(HT20) Mode Channel 52/56/64		
	Mode 14	TX Mode 802.11n(HT40) Mode Channel 54/62		
	Mode 15	TX Mode 802.11ac(VHT20) Mode Channel 5256/64		
U-NII-2A	Mode 16	TX Mode 802.11ac(VHT40) Mode Channel 54/62		
	Mode 17	TX Mode 802.11ac(VHT80) Mode Channel 58		
	Mode 18	TX Mode 802.11ax(HE20) Mode Channel 5256/64		
HALL	Mode 19	TX Mode 802.11ax(HE40) Mode Channel 54/62		
	Mode 20	TX Mode 802.11ax(HE80) Mode Channel 58		
	Mode 21	TX Mode 802.11a Mode Channel 100/116/140/144		
	Mode 22	TX Mode 802.11n(HT20) Mode Channel 100/116/140/144		
THE STATE OF	Mode 23	TX Mode 802.11n(HT40) Mode Channel 102/110/134/142		
	Mode 24	TX Mode 802.11ac(VHT20) Mode Channel 100/116/140/144		
U-NII-2C	Mode 25	TX Mode 802.11ac(VHT40) Mode Channel 102/110/134/142		
	Mode 26	TX Mode 802.11ac(VHT80) Mode Channel 106/122/138		
111.	Mode 27	TX Mode 802.11ax(HE20) Mode Channel 100/116/140/144		
	Mode 28	TX Mode 802.11ax(HE40) Mode Channel 102/110/134/142		
E B	Mode 29	TX Mode 802.11ax(HE80) Mode Channel 106/122/138		
2.0	Mode 30	TX Mode 802.11a Mode Channel 149/157/165		
	Mode 31	TX Mode 802.11n(HT20) Mode Channel 149/157/165		
100	Mode 32	TX Mode 802.11n(HT40) Mode Channel 151/159		
	Mode 33	TX Mode 802.11ac(VHT20) Mode Channel 149/157/165		
U-NII-3	Mode 34	TX Mode 802.11ac(VHT40) Mode Channel 151/159		
3	Mode 35	TX Mode 802.11ac(VHT80) Mode Channel 155		
	Mode 36	TX Mode 802.11ax(HE20) Mode Channel 149/157/165		
	Mode 37	TX Mode 802.11ax(HE40) Mode Channel 151/159		
TO THE	Mode 38	TX Mode 802.11ax(HE80) Mode Channel 155 II RU configurations are tested, and only the worst full RU mode		

Note: Only full RU is supported or all RU configurations are tested, and only the worst full RU mode is recorded.

Page: 11 of 83

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 0 802.11n (HT40) Mode: MCS 0

802.11ac(VHT20) Mode: MCS 0/ Nss1 802.11ac(VHT40) Mode: MCS 0/ Nss1 802.11ac(VHT80) Mode: MCS 0/ Nss1 802.11ax(HE20) Mode: MCS 0/ Nss1 802.11ax(HE40) Mode: MCS 0/ Nss1 802.11ax(HE40) Mode: MCS 0/ Nss1 802.11ax(HE80) Mode: MCS 0/ Nss1

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 12 of 83

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Brank N. N. Marie	Test Software: ADB U-NII-1		
BA - J -		Parar	neters
Mode	Frequency (MHz)	Ant.1	Ant.
	5180	0x0a	
802.11a	5200	0x0a	1
	5240	0x09	1
	5180	0x0e	0x0
802.11n(HT20)	5200	0x0e	0x0
	5240	0x0e	0x0
902 44=/UT40)	5190	0x0a	0x0
802.11n(HT40)	5230	0x0c	0x0
	5180	0x0a	0x0
802.11ac(VHT20)	5200	0x0c	0x0
	5240	0x0c	0x0
000 44 co(\(\text{UIT40}\)	5190	0x09	0x0
802.11ac(VHT40)	5230	0x0c	0x0
802.11ac(VHT80)	5210	0x09	0x09
	5180	0x0a	0x0
802.11ax(HE20)	5200	0x0a	0x0
	5240	0x0a	0x0
200 44 (11540)	5190	0x0a	0x0
802.11ax(HE40)	5230	0x0a	0x0a
802.11ax(HE80)	5210	0x0a	0x0
	U-NII-2A		
Mode	Frequency (MHz)	Parameters	
Wiode	Frequency (WIFIZ)	Ant.1	Ant.
	5260	0x12	
802.11a	5280	0x12	1
	5320	0x10	
	5260	0x0e	0x0e
802.11n(HT20)	5280	0x0e	0x0e
	5320	0x0e	0x0
802.11n(HT40)	5270	0x0c	0x0
002.1111(11140)	5310	0x0c	0x0
A VIV	5260	0x0c	0x0
802.11ac(VHT20)	5280	0x0c	0x0
	5320	0x0c	0x0
	5270	0x0c	0x0
802 11ac(\/UT40\	5310	0x0a	0x0a
802.11ac(VHT40)		0x0a	0x0
802.11ac(VHT40) 802.11ac(VHT80)	5290		
	5290 5260	0x0a	
802.11ac(VHT80)	5260		0x0
	5260 5280	0x0a	0x0a
802.11ac(VHT80) 802.11ax(HE20)	5260 5280 5320	0x0a 0x0a	0x0a 0x0a 0x0a
802.11ac(VHT80)	5260 5280	0x0a	0x0a

Report No.: TBR-C-202502-0011-13 Page: 13 of 83

Mode	Executer as (BALL=)	Para	meters
Mode	Frequency (MHz)	Ant.1	Ant.
	5500	0x10	1
802.11a	5580	0x12	1
002.11a	5700	0x10	1
	5720	0x10	1
	5500	0x0e	0x0e
802.11n(HT20)	5580	0x0e	0x0e
00211111(11120)	5700	0x10	0x10
	5720	0x10	0x10
	5510	0x0c	0x0c
802.11n(HT40)	5550	0x0e	0x0e
002.1111(11140)	5670	0x0e	0x0e
	5710	0x12	0x12
	5500	0x0c	0x0c
802.11ac(VHT20)	5580	0x0c	0x0c
	5700	0x10	0x10
	5720	0x10	0x10
	5510	0x0a	0x0a
000 44 00 (/// IT40)	5550	0x0a	0x0a
802.11ac(VHT40)	5670	0x0a	0x0a
	5710	0x0c	0x0c
	5530	0x0a	0x0a
802.11ac(VHT80)	5610	0x0a	0x0a
	5690	0x0a	0x0a
	5500	0x0a	0x0a
902 44ev/UT20)	5580	0x0a	0x0a
802.11ax(HT20)	5700	0x0a	0x0a
	5720	0x0a	0x0a
	5510	0x12	0x12
000 44 (11740)	5550	0x12	0x12
802.11ax(HT40)	5670	0x12	0x12
	5710	0x12	0x12
	5530	0x0a	0x0a
802.11ax(HT80)	5610	0x0a	0x0a
, , , ,	5690	0x0a	0x0a

Report No.: TBR-C-202502-0011-13 Page: 14 of 83

Mada	Francisco (MIII-)	Para	meters
Mode	Frequency (MHz)	Ant.1	Ant.2
	5745	0x14	1
802.11a	5785	0x14	1
	5825	0x14	
	5745	0x13	0x13
802.11n(HT20)	5785	0x13	0x13
WID - WI	5825	0x13	0x13
802 11p/HT40)	5755	0x12	0x12
802.11n(HT40)	5795	0x12	0x12
	5745	0x13	0x13
802.11ac(VHT20)	5785	0x13	0x13
	5825	0x13	0x13
802.11ac(VHT40)	5755	0x12	0x12
802.11ac(VI1140)	5795	0x12	0x12
802.11ac(VHT80)	5775	0x12	0x12
	5745	0x13	0x13
802.11ax(HE20)	5785	0x13	0x13
	5825	0x13	0x13
802.11ax(HE40)	5755	0x12	0x12
002.11ax(nE40)	5795	0x12	0x12
802.11ax(HE80)	5775	0x12	0x12

Page: 15 of 83

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB
RF Power-Conducted	Level Accuracy: Above 1000MHz	±0.95 dB
Power Spectral Density- Conducted	Level Accuracy: Above 1000MHz	±3dB
Occupied Bandwidth	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±3.8%
Unwanted Emission- Conducted	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±2.72 dB
Temperature	TARY TO BE	±0.6°C
Humidity		±4%
Supply voltages		±2%
Time		±4%

Page: 16 of 83

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202502-0011-13 Page: 17 of 83

2. Test Summary

Standard Section	Took Home	To at Oamenta (a)	local access a set	Damark
FCC	Test Item	Test Sample(s)	Judgment	Remari
FCC 15.207(a)	Conducted Emission	RW-C-202502-0011-1-1#	PASS	N/A
FCC 15.209 & 15.407(b)	Radiated Unwanted Emissions	RW-C-202502-0011-1-1#	PASS	N/A
FCC 15.203	Antenna Requirement	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.407(a)	-26dB Emission Bandwidth	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.407(a)	99% Occupied Bandwidth	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.407(e)	-6dB Min Emission Bandwidth	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.407(a)	Maximum Conducted Output Power	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.407(a)	Power Spectral Density	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.407(b)& 15.205	Emissions in Restricted Bands	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.407(b)&15.209	Conducted Unwanted Emissions	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.407(g)	Frequency Stability	RW-C-202502-0011-1-2#	PASS	N/A
	On Time and Duty Cycle	RW-C-202502-0011-1-2#	1	N/A

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V3.2.22

Report No.: TBR-C-202502-0011-13 Page: 18 of 83

4. Test Equipment and Test Site

Test Site						
No.	Test Site	Manufacturer	Specification	Used		
TB-EMCSR001	Shielding Chamber #1	YIHENG	7.5*4.0*3.0 (m)	V		
TB-EMCSR002	Shielding Chamber #2	YIHENG	8.0*4.0*3.0 (m)	V		
TB-EMCCA001	3m Anechoic Chamber #A	ETS	9.0*6.0*6.0 (m)	X		
TB-EMCCB002	3m Anechoic Chamber #B	YIHENG	9.0*6.0*6.0 (m)	V		

Conducted Emissi	on Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 17, 2024	Jun. 16, 2025
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 17, 2024	Jun. 16, 2025
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 17, 2024	Jun. 16, 2025
LISN	Rohde & Schwarz	ENV216	101131	Jun. 17, 2024	Jun. 16, 2025
Radiation Emissio	n Test (B Site)				130
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 29, 2024	Aug. 28, 2025
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 20, 2025	Feb. 19, 2026
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Nov. 13, 2023	Nov. 12, 2025
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Jun. 14, 2024	Jun. 13, 2026
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 27, 2024	Feb. 26, 2026
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 14, 2024	Jun. 13, 2026
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Aug. 29, 2024	Aug. 28, 2025
HF Amplifier	Tonscend	TAP051845	AP21C806141	Aug. 29, 2024	Aug. 28, 2025
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 29, 2024	Aug. 28, 2025
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Attenuator	YINSAIGE	DC-18G 10dB	DC18G	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Aug. 29, 2024	Aug. 28, 2025
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Aug. 29, 2024	Aug. 28, 2025
Vector Signal Generator	Agilent	N5182A	MY50141294	Aug. 29, 2024	Aug. 28, 2025
Analog Signal Generator	Agilent	N5181A	MY48180463	Aug. 29, 2024	Aug. 28, 2025
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Aug. 29, 2024	Aug. 28, 2025
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Aug. 29, 2024	Aug. 28, 2025

Report No.: TBR-C-202502-0011-13 Page: 19 of 83

1137	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Aug. 29, 2024	Aug. 28, 2025
DE Dawer Career	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Aug. 29, 2024	Aug. 28, 2025
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Aug. 29, 2024	Aug. 28, 2025
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Aug. 29, 2024	Aug. 28, 2025
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Aug. 29, 2024	Aug. 28, 2025
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A

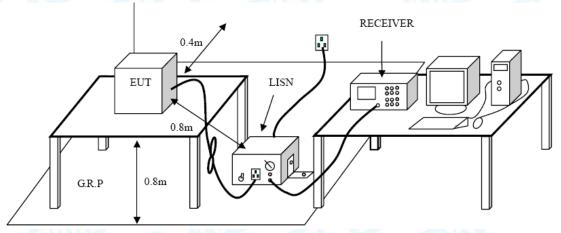
Page: 20 of 83

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

F	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.

Page: 21 of 83

● The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 22 of 83

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.407(b)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz			
		Measurement Distance (meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

General field strength limits at frequencies above 30 MHz			
Frequency Field strength Measure		Measurement Distance	
(MHz)	(µV/m at 3 m)	(meters)	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

General field strength limits at frequencies Above 1000MHz			
Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

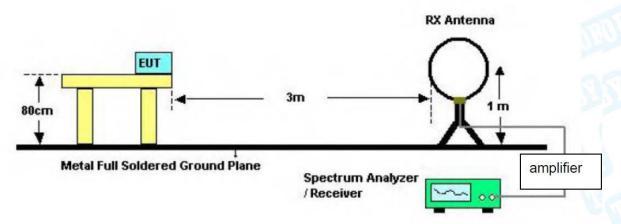
Note:

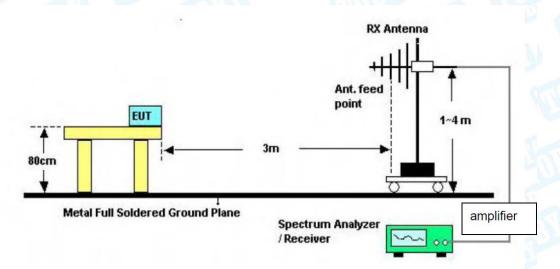
- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power

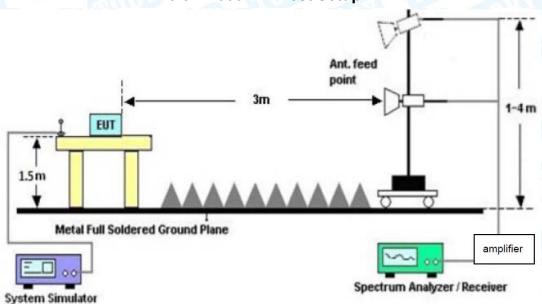
Page: 23 of 83

limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.



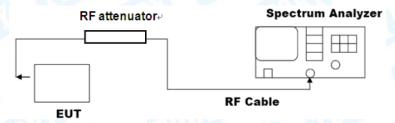

Page: 24 of 83

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Page: 25 of 83

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 26 of 83

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

Conducted measurement please refer to the external appendix report of 5G Wi-Fi.

Page: 27 of 83

7. Restricted Bands and Band Edge Requirement

7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.407(b)

7.1.2 Test Limit

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
	-27(Note 2)	68.3
E70E . E00E	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
	27(Note 2)	122.3

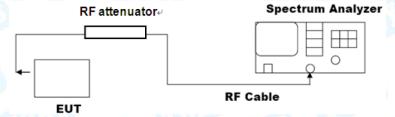
NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.


Page: 28 of 83

amplifier

7.2 Test Setup

Radiated measurement Ant. feed point Metal Full Soldered Ground Plane

Conducted measurement

7.3 Test Procedure

---Radiated measurement

1.5m

System Simulator

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 29 of 83

--- Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to

determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies

 \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for

frequencies > 1000 MHz).

- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

7.6 Test Data

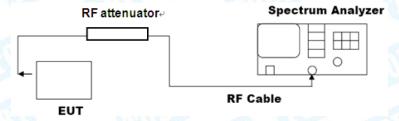
Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Please refer to the Attachment C inside test report.

Page: 30 of 83

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.407(a) & FCC Part 15.407(e)

8.1.2 Test Limit

Test Item	Limit	Frequency Range (MHz)
MI CELL	N/A	5150~5250
26 Bandwidth		5250~5350
		5500~5725
6 dB Bandwidth	>500kHz	5725~5850
	N/A	5150~5250
000/ Dandwidth		5250~5350
99% Bandwidth		5500~5725
		5725~5850

8.2 Test Setup

8.3 Test Procedure

---Emission bandwidth

- The procedure for this method is as follows:
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

NOTE—The automatic bandwidth measurement capability of a spectrum analyzer or an EMI receiver may be employed if it implements the functionality described in the preceding items.

Page: 31 of 83

--- DTS bandwidth

• The steps for the first option are as follows:

- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- ●The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum

Page: 32 of 83

until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

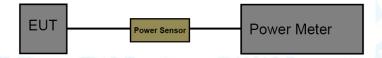
Please refer to the description of test mode.

8.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.

Page: 33 of 83

9. Maximum Conducted Output Power


- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard

FCC Part 15.407(a)

9.1.2 Test Limit

	FCC Part 15 Sub	part E(15.407)		
Limit	Frequency Range(MHz)			
	5150~5250	5250~5350	5500~5725	5725~5850
Max Conducted TX Power	Master Device: 1 Watt(30dBm) Client Device: 250mW(24dBm)	24dBm (250 mW) or 11 dBm+ 10 log B, whichever is lower (B= 26-dB emission BW)		1 Watt (30dBm)
Max E.I.R.P	4 W (36 dBm) with 6 dBi antenna 200 W (53 dBm) for fixed P-t-P application with 23 dBiantenna Additional rule for outdoor operation: Max_EIRP< 125 mW(21 dBm) at any elevation angle > 30°from horizon	. 1 W (30 dBm) with 6 dBi antenna		4 W (36 dBm) witl 6 dBi antenna
TPC	NO	YES, if Max_EIRP ≥ 500 mW (27 dBm) and able to lower EIRP below 24dBm NO, if Max_EIRP < 500mW (27dBm)		NO

9.2 Test Setup

9.3 Test Procedure

- The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.
- 9.4 Deviation From Test Standard
 No deviation
- 9.5 EUT Operating Mode

Please refer to the description of test mode.

Report No.: TBR-C-202502-0011-13 Page: 34 of 83

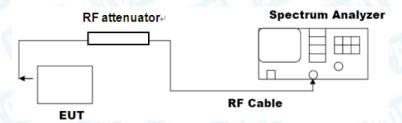
9.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.

Page: 35 of 83

10. Power Spectral Density Test

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.407(a)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	Master Device: 17dBm/MHz Client Device: 11dBm/MHz	5150~5250
	11dBm/MHz	5250~5350
	11dBm/MHz	5500~5725
	30dBm/500kHz	5725~5850

10.2 Test Setup

10.3 Test Procedure

- ●Notwithstanding that some regulatory requirements refer to peak power spectral density (PPSD), in some cases the intent is to measure the maximum value of the time average of the power spectral density during a period of continuous transmission. The procedure for this method is as follows:
- a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power..."(This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)
- b) Use the peak search function on the instrument to find the peak of the spectrum.
- c) Make the following adjustments to the peak value of the spectrum, if applicable:
- 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.

Page: 36 of 83

2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

- d) The result is the PPSD.
- e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities.95 This requirement also permits use of resolution bandwidths less than 1 MHz"provided that the measured power is integrated to show the total power over the measurement bandwidth"(i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:
- 1) Set RBW≥1 / T, where T is defined in 12.2 a).
- 2) Set VBW ≥ [3*RBW].
- 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

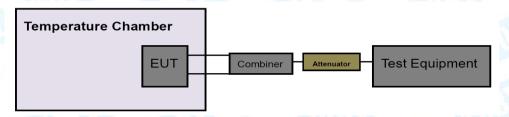
10.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.

Page: 37 of 83

11. Frequency Stability

11.1 Test Standard and Limit


11.1.1 Test Standard

FCC Part 15.407(g)

11.1.2 Test Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user manual.

11.2 Test Setup

11.3 Test Procedure

- Determining compliance with the peak excursion requirement shall be done by confirming that the ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed the regulatory requirement. 96 The procedure for this method is as follows:
- a) The following guidance for limiting the number of tests applies only to peak excursion measurements:
- 1) Testing each modulation mode on a single channel in a single operating band is sufficient to determine compliance with the peak excursion requirement. (If all modulation modes are not available on a single channel in a single band, then testing must be extended to other channels and bands as needed to ensure that all modulation modes are tested.)
- 2) Tests must include all variations in signal structure, such as:
 - i) All signal types [e.g., direct sequence spread spectrum (DSSS) and OFDM].
 - ii) All modulation types [e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), 16-QAM, 64-QAM, and 256-QAM].
 - iii) All bandwidth modes.
 - iv) All variations in signal parameters (e.g., changes in subcarrier spacing or number of subcarriers).
- 3) For a given signal structure, testing of multiple error-correction coding rates is not required (e.g., 1/2, 2/3, and 3/4).

Page: 38 of 83

4) For MIMO devices, testing of a single output port is sufficient to determine compliance with the peak excursion requirement. If a given signal structure can be exercised with various combinations of spatial multiplexing (such as different numbers of spatial streams), beamforming, and cyclic delay diversity, peak excursion tests are not required to include those variations.

- b) The procedure is as follows:
- 1) Set the span of the spectrum analyzer or EMI receiver to view the entire emission bandwidth or occupied bandwidth.
- 2) Find the maximum of the peak-max-hold spectrum:
 - i) Set RBW = 1MHz.
 - ii) VBW = 3MHz.
 - iii) Detector = peak.
 - iv) Trace mode = max-hold.
 - v) Allow the sweeps to continue until the trace stabilizes.
 - vi) Use the peak search function to find the peak of the spectrum.
- 3) Use the procedure found in 12.5 to measure the PPSD.
- 4) Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD.

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

11.6 Test Data

Please refer to the external appendix report of 5G Wi-Fi.

Page: 39 of 83

12. Antenna Requirement

12.1 Test Standard and Limit

12.1.1 Test Standard

FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

12.2 Deviation From Test Standard

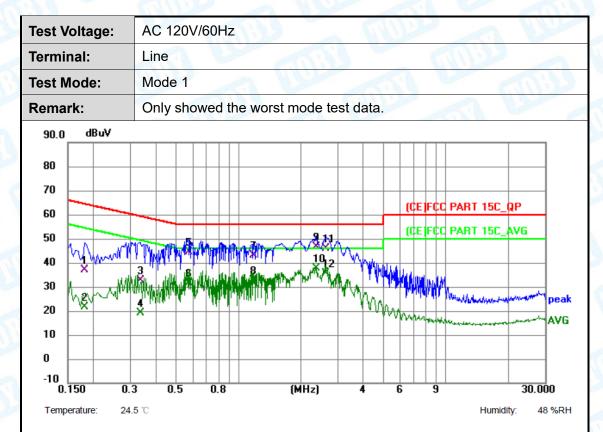
No deviation

12.3 Antenna Connected Construction

The gains of the antenna used for transmitting is Please refer to page 8, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

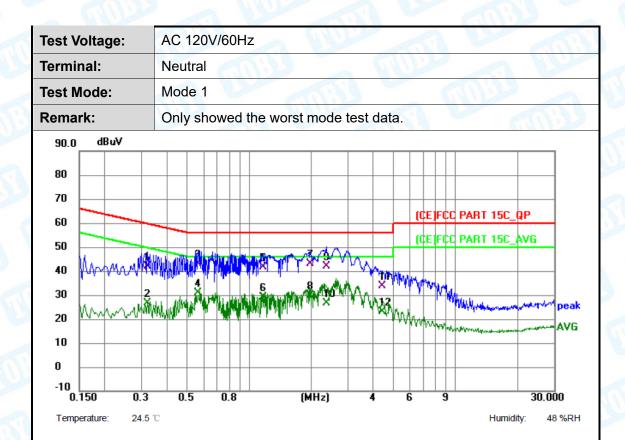
12.4 Test Data

The EUT antenna is a Dipole Antenna. It complies with the standard requirement.


Antenna Type					
Permanent attached antenna					
⊠Unique connector antenna					
☐Professional installation antenna					

Page: 40 of 83

Attachment A-- Conducted Emission Test Data


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.181	27.52	9.54	37.06	64.44	-27.38	QP
2	0.181	12.04	9.54	21.58	54.44	-32.86	AVG
3	0.335	23.20	9.47	32.67	59.33	-26.66	QP
4	0.335	9.71	9.47	19.18	49.33	-30.15	AVG
5	0.573	34.96	9.47	44.43	56.00	-11.57	QP
6	0.573	22.02	9.47	31.49	46.00	-14.51	AVG
7	1.181	33.56	9.65	43.21	56.00	-12.79	QP
8	1.181	23.09	9.65	32.74	46.00	-13.26	AVG
9	2.364	37.02	9.59	46.61	56.00	-9.39	QP
10 *	2.364	28.04	9.59	37.63	46.00	-8.37	AVG
11	2.634	36.32	9.60	45.92	56.00	-10.08	QP
12	2.634	25.80	9.60	35.40	46.00	-10.60	AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 41 of 83

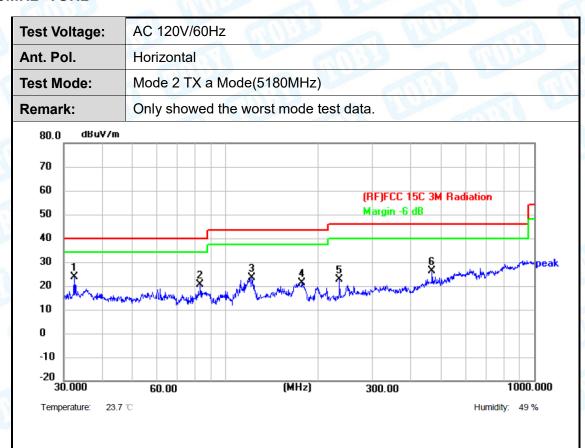
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBuV	dBuV	dB	Detector
1	0.321	32.46	9.47	41.93	59.68	-17.75	QP
2	0.321	17.23	9.47	26.70	49.68	-22.98	AVG
3 *	0.564	33.73	9.47	43.20	56.00	-12.80	QP
4	0.564	21.26	9.47	30.73	46.00	-15.27	AVG
5	1.176	32.08	9.48	41.56	56.00	-14.44	QP
6	1.176	19.74	9.48	29.22 46.00	46.00	-16.78	AVG
7	1.972	33.45	9.50	42.95	56.00	-13.05	QP
8	1.972	20.24	9.50	29.74	46.00	-16.26	AVG
9	2.360	32.37	9.54	41.91	56.00	-14.09	QP
10	2.360	16.91	9.54	26.45	46.00	-19.55	AVG
11	4.429	24.10	9.52	33.62	56.00	-22.38	QP
12	4.429	13.35	9.52	22.87	46.00	-23.13	AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 42 of 83

Attachment B-- Unwanted Emissions Data

---Radiated Unwanted Emissions


9 KHz~30 MHz

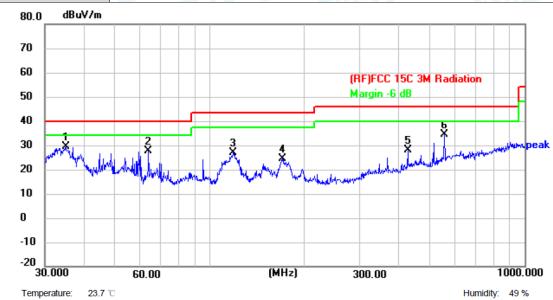
From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	32.4060	47.67	-23.79	23.88	40.00	-16.12	peak	Р
2	82.9384	48.33	-27.62	20.71	40.00	-19.29	peak	Р
3	121.9753	46.51	-23.28	23.23	43.50	-20.27	peak	Р
4	177.5089	44.13	-22.95	21.18	43.50	-22.32	peak	Р
5	234.1682	46.75	-24.14	22.61	46.00	-23.39	peak	Р
6	467.2350	43.41	-17.16	26.25	46.00	-19.75	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 43 of 83

7	Test Voltage:	AC 120V/60Hz
N	Ant. Pol.	Vertical
ø	Test Mode:	Mode 2 TX a Mode(5180MHz)
	Remark:	Only showed the worst mode test data.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	35.0048	53.31	-23.91	29.40	40.00	-10.60	peak	Р
2	63.9827	51.73	-24.19	27.54	40.00	-12.46	peak	Р
3	118.6012	50.42	-23.56	26.86	43.50	-16.64	peak	Р
4	170.1947	46.78	-22.16	24.62	43.50	-18.88	peak	Р
5	426.5210	45.88	-17.96	27.92	46.00	-18.08	peak	Р
6	556.7743	48.87	-14.40	34.47	46.00	-11.53	peak	Р

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 44 of 83

Above 1GHz

Only showed the worst mode test data.

Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V		
Ant. Pol.	Horizontal		60037
Test Mode:	TX 802.11a Mode 5180M	1Hz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5182.000	57.80	-5.61	52.19	68.30	-16.11	peak	Р
2	6304.000	54.17	-3.72	50.45	68.30	-17.85	peak	Р
3 *	9619.000	47.44	5.85	53.29	68.30	-15.01	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5180	MHz (U-NII-1)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5182.000	58.42	-5.61	52.81	68.30	-15.49	peak	Р
2	9721.000	45.89	5.17	51.06	68.30	-17.24	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Page: 45 of 83

	AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS							
	Temperature:	24.6°C	Relative Humidity:	51%				
V	Test Voltage:	DC 3.3V	C 3.3V					
	Ant. Pol.	Horizontal		1000				
	Test Mode:	TX 802.11a Mode 5200M	IHz (U-NII-1)	Carrier S				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5199.000	54.37	-5.68	48.69	68.30	-19.61	peak	Р
2	6304.000	52.98	-3.72	49.26	68.30	-19.04	peak	Р
3 *	9347.000	46.27	5.26	51.53	68.30	-16.77	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

AND DESCRIPTION OF THE PARTY OF	AND A REAL PROPERTY.		
Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V		
Ant. Pol.	Vertical	TUU	1
Test Mode:	TX 802.11a Mode 5200l	MHz (U-NII-1)	A MILL

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	5199.000	58.42	-5.68	52.74	68.30	-15.56	peak	Р
2	9160.000	48.05	4.18	52.23	68.30	-16.07	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Page: 46 of 83

and the same of th			
Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V		TO VIDE
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11a Mode	e 5240MHz (U-NII-1)	em in

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5237.237	58.71	-5.25	53.46	68.30	-14.84	peak	Р
2	6309.309	51.44	-3.61	47.83	68.30	-20.47	peak	Р
3	9440.440	45.30	6.16	51.46	68.30	-16.84	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

AND THE RESERVE OF THE PARTY OF	AND A REAL PROPERTY.		
Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V	THE PARTY OF	
Ant. Pol.	Vertical	TUUR	
Test Mode:	TX 802.11a Mod	de 5240MHz (U-NII-1)	A Alle

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	5250.000	58.34	-5.10	53.24	68.30	-15.06	peak	Р
2	8803.000	49.32	2.26	51.58	68.30	-16.72	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 47 of 83

Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V	HULL	
Ant. Pol.	Horizontal	Will see	3 100
Test Mode:	TX 802.11a Mode 5260N	MHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5250.000	56.91	-5.10	51.81	68.30	-16.49	peak	Р
2	6304.000	54.16	-3.72	50.44	68.30	-17.86	peak	Р
3 *	9449.000	45.78	6.29	52.07	68.30	-16.23	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V		
Ant. Pol.	Vertical		Cana
Test Mode:	TX 802.11a Mode 5260M	IHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5250.000	57.73	-5.10	52.63	68.30	-15.67	peak	Р
2 *	9449.000	46.85	6.29	53.14	68.30	-15.16	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 48 of 83

Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V		73 100
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11a Mod	de 5280MHz (U-NII-2A)	Carrier S

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5284.000	57.35	-5.39	51.96	68.30	-16.34	peak	Р
2 *	6304.000	57.53	-3.72	53.81	68.30	-14.49	peak	Р

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V		
Ant. Pol.	Vertical		4000
Test Mode:	TX 802.11a Mode 5280	MHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5284.000	57.54	-5.39	52.15	68.30	-16.15	peak	Р
2	8990.000	48.23	2.98	51.21	68.30	-17.09	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 49 of 83

	AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS						
	Temperature:	24.6°C	Relative Humidity:	51%			
V	Test Voltage:	DC 3.3V	C 3.3V				
	Ant. Pol.	Horizontal		1000			
	Test Mode:	TX 802.11a Mode 5320M	1Hz (U-NII-2A)	Carrier S			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5318.000	57.39	-5.47	51.92	68.30	-16.38	peak	Р
2	6304.000	54.88	-3.72	51.16	68.30	-17.14	peak	Р
3 *	9364.000	47.88	5.41	53.29	68.30	-15.01	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

ALCOHOL S MA SIGN			
Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V	The same of the sa	
Ant. Pol.	Vertical	TUDE	
Test Mode:	TX 802.11a Mod	de 5320MHz (U-NII-2A)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5318.000	57.78	-5.47	52.31	68.30	-15.99	peak	Р
2	7052.000	53.18	-2.29	50.89	68.30	-17.41	peak	Р
3	9211.000	47.89	4.06	51.95	68.30	-16.35	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 50 of 83

Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V		73 100
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11a Mod	de 5500MHz (U-NII-2C)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5505.000	58.51	-5.70	52.81	68.30	-15.49	peak	Р
2	6304.000	54.15	-3.72	50.43	68.30	-17.87	peak	Р
3	9449.000	45.79	6.29	52.08	68.30	-16.22	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

AND THE RESERVE OF THE PARTY OF	APP A R M M M MARK		
Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V	The same of the sa	
Ant. Pol.	Vertical	TUDE	
Test Mode:	TX 802.11a Mod	de 5500MHz (U-NII-2C)	A Alle

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5505.000	58.49	-5.70	52.79	68.30	-15.51	peak	Р
2	9211.000	47.78	4.06	51.84	68.30	-16.46	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Page: 51 of 83

S S	Temperature:	24.6°C	Relative Humidity:	51%			
	Test Voltage:	DC 3.3V	C 3.3V				
	Ant. Pol.	Horizontal	Horizontal				
	Test Mode:	TX 802.11a Mode 5580M	IHz (U-NII-2C)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5590.000	61.93	-5.47	56.46	68.30	-11.84	peak	Р
2 *	5590.000	53.68	-5.47	48.21	54.00	-5.79	AVG	Р
3	9432.000	45.15	6.02	51.17	68.30	-17.13	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

AND THE RESERVE OF THE PARTY OF	APP A N O N N MARK		
Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V	The same of the sa	
Ant. Pol.	Vertical	TUUR	
Test Mode:	TX 802.11a Mod	de 5580MHz (U-NII-2C)	A Alle

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5573.000	60.72	-5.45	55.27	68.30	-13.03	peak	Р
2 *	5573.000	55.66	-5.45	50.21	54.00	-3.79	AVG	Р
3	8701.000	48.94	2.33	51.27	68.30	-17.03	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 52 of 83

S S	Temperature:	24.6°C	Relative Humidity:	51%				
	Test Voltage:	DC 3.3V	C 3.3V					
15	Ant. Pol.	Horizontal	Horizontal					
	Test Mode:	TX 802.11a Mode 5700MHz (U-NII-2C)						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5692.000	60.21	-4.47	55.74	68.30	-12.56	peak	Р
2 *	5692.000	54.12	-4.47	49.65	54.00	-4.35	AVG	Р
3	6304.000	54.25	-3.72	50.53	68.30	-17.77	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

AND THE RESERVE OF THE PARTY OF	APP A N O N N MARK		
Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V	THE PARTY OF	
Ant. Pol.	Vertical	TUUR	
Test Mode:	TX 802.11a Mod	de 5700MHz (U-NII-2C)	A Alle

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5692.000	60.82	-4.47	56.35	68.30	-11.95	peak	Р
2 *	5692.000	54.16	-4.47	49.69	54.00	-4.31	AVG	Р
3	7137.000	52.35	-1.76	50.59	68.30	-17.71	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 53 of 83

Temperature:	24.6°C	Relative Humidity:	51%			
Test Voltage:	DC 3.3V	The same of the sa				
Ant. Pol.	Horizontal		73 1			
Test Mode:	TX 802.11a Mode 5745N	802.11a Mode 5745MHz (U-NII-3)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5743.000	62.62	-4.61	58.01	68.30	-10.29	peak	Р
2 *	5743.000	56.62	-4.61	52.01	54.00	-1.99	AVG	Р
3	6304.000	54.67	-3.72	50.95	68.30	-17.35	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	24.6°C	Relative Humidity:	51%			
Test Voltage:	DC 3.3V					
Ant. Pol.	Vertical					
Test Mode:	TX 802.11a Mode 5745M	X 802.11a Mode 5745MHz (U-NII-3)				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5743.000	60.64	-4.61	56.03	68.30	-12.27	peak	Р
2 *	5743.000	54.75	-4.61	50.14	54.00	-3.86	AVG	Р
3	9381.000	46.04	5.46	51.50	68.30	-16.80	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 54 of 83

Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V		73 100
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11a Mod	de 5785MHz (U-NII-3)	Carrier S

										_
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
	1	5794.000	61.65	-4.31	57.34	68.30	-10.96	peak	Р	
	2 *	5794.000	55.51	-4.31	51.20	54.00	-2.80	AVG	Р	
	3	6304.000	55.07	-3.72	51.35	68.30	-16.95	peak	Р	
	4	9670.000	47.37	5.10	52.47	68.30	-15.83	peak	Р	

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V	TUUD	100
Ant. Pol.	Vertical	WIND:	A A A A
Test Mode:	TX 802.11a Mode 5785N	ИНz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5794.000	60.07	-4.31	55.76	68.30	-12.54	peak	Р
2 *	5794.000	54.38	-4.31	50.07	54.00	-3.93	AVG	Р
3	7137.000	53.00	-1.76	51.24	68.30	-17.06	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 55 of 83

Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V		73 100
Ant. Pol.	Horizontal		1000
Test Mode:	TX 802.11a Mode 5825	MHz (U-NII-3)	(1)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5828.000	60.03	-4.39	55.64	68.30	-12.66	peak	Р
2 *	5828.000	54.72	-4.39	50.33	54.00	-3.67	AVG	Р
3	6304.000	56.65	-3.72	52.93	68.30	-15.37	peak	Р

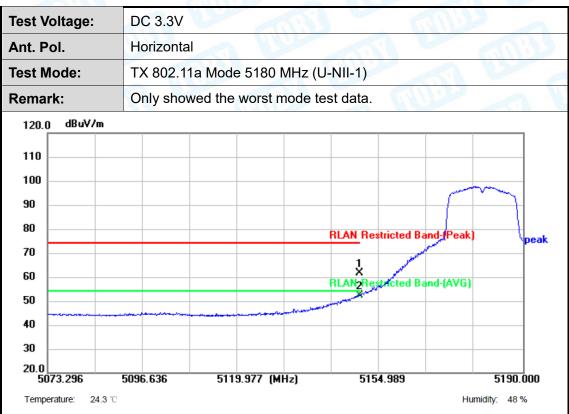
Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	24.6°C	Relative Humidity:	51%
Test Voltage:	DC 3.3V		
Ant. Pol.	Vertical		CEMPS .
Test Mode:	TX 802.11a Mode 5825M	IHz (U-NII-3)	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5828.000	58.59	-4.39	54.20	68.30	-14.10	peak	Р
2 *	5828.000	53.08	-4.39	48.69	54.00	-5.31	AVG	Р
3	7052.000	53.50	-2.29	51.21	68.30	-17.09	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with high pass filter (Pass Frequency: 2.8-18G and 18GHz-40GHz) is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.



Page: 56 of 83

Attachment C-- Restricted Bands Requirement Test Data

Radiation Test

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector	P/F
1	5150.000	42.09	19.66	61.75	74.00	-12.25	peak	Р
2 *	5150.000	32.76	19.66	52.42	54.00	-1.58	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202502-0011-13 Page: 57 of 83

5190.000

Test Voltage:	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5180 MHz (U-NII-1)
Remark:	Only showed the worst mode test data.
120.0 dBuV	m
110	
100	
90	
80	RLAN Restricted Band-(Peak)
70	1
60	RLAN_Restricted Band-(AVG)

24.3 ℃ Humidity: 48 % Temperature:

5154.989

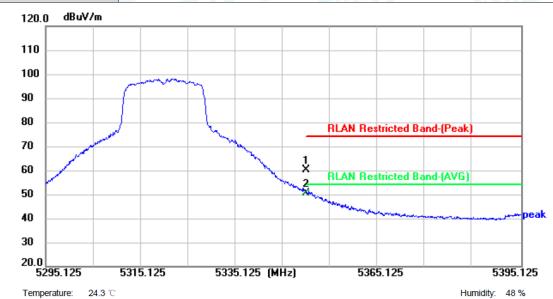
5119.977 (MHz)

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
ŀ	1	5150.000	40.57	19.66	60.23	74.00	-13.77	peak	Р
	2 *	5150.000	31.21	19.66	50.87	54.00	-3.13	AVG	Р

50 40 30

20.0 5073.296

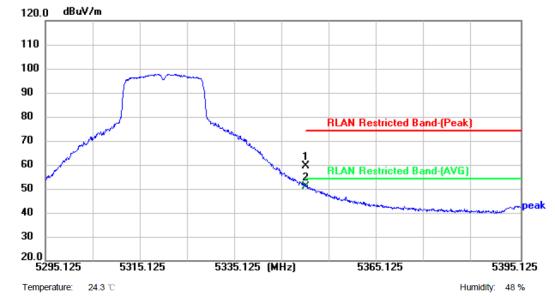
5096.636


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 58 of 83

Annual Control			
Test Voltage:	DC 3.3V		
Ant. Pol.	Horizontal		6 Brief
Test Mode:	TX 802.11a Mode 5320 MHz (U-NII-2A)	MARIA	
Remark:	Only showed the worst mode test data.		Miles I
	·		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	40.18	20.07	60.25	74.00	-13.75	peak	Р
2 *	5350.000	30.34	20.07	50.41	54.00	-3.59	AVG	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Page: 59 of 83

Test Voltage:	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5320 MHz (U-NII-2A)
Remark:	Only showed the worst mode test data.
120.0 dBuV/m	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector	P/F
1	5350.000	39.46	20.07	59.53	74.00	-14.47	peak	Р
2 *	5350.000	30.94	20.07	51.01	54.00	-2.99	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Page: 60 of 83

Test Voltage:	DC 3.3V		
Ant. Pol.	Horizontal		
Test Mode:	X 802.11n(HT40) Mode 5190 MHz (U-NII-1) (Ant.1+Ant.2)		
Remark:	Only showed the worst mode test data.		
120.0 dBuV/m			
110			
100			
90	Interest and the second second second		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5150.000	33.60	19.66	53.26	74.00	-20.74	peak	Р
2 *	5150.000	32.24	19.66	51.90	54.00	-2.10	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Report No.: TBR-C-202502-0011-13 Page: 61 of 83

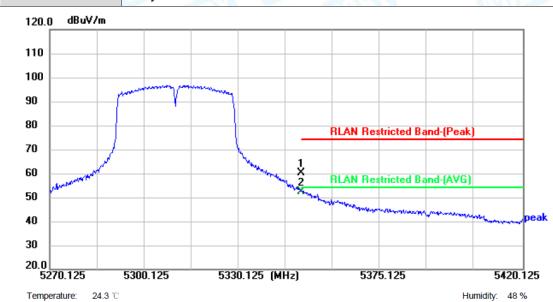
Humidity: 48 %

Test Voltage:	DC 3.3V			
Ant. Pol.	Vertical		WILL STREET	
Test Mode:	TX 802.1	In(HT40) Mode 5190	MHz (U-NII-1) (Ant.1	+Ant.2)
Remark:	Only show	ved the worst mode t	est data.	any.
120.0 dBuV/n	1			
110				
100				
90			many many many	markey
80			RIAN Restricted Band-(Peak)
70				
60		Barren Wharman	RLAN Restricted Band-(AVG) peal
50		And the state of t		
40				
30				
20.0 5099.234	5122.574	5145.915 (MHz)	5180.927	5215.938

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5150.000	32.55	19.66	52.21	74.00	-21.79	peak	Р
2 *	5150.000	30.67	19.66	50.33	54.00	-3.67	AVG	Р

24.3 ℃

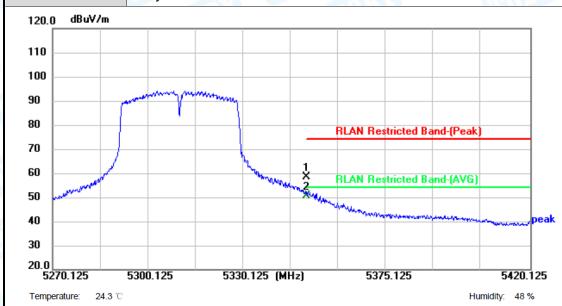
Temperature:


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 62 of 83

Test Voltage:	DC 3.3V
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5310 MHz (U-NII-2A) (Ant.1+Ant.2)
Remark:	Only showed the worst mode test data.

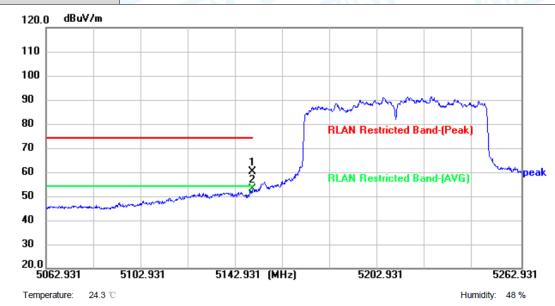
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5350.000	40.08	20.07	60.15	74.00	-13.85	peak	Р
2 *	5350.000	32.20	20.07	52.27	54.00	-1.73	AVG	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Page: 63 of 83

ACCURATION TO THE PROPERTY OF THE PERSON OF	
Test Voltage:	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5310 MHz (U-NII-2A) (Ant.1+Ant.2)
Remark:	Only showed the worst mode test data.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin	Detector	P/F
1	5350.000	38.49	20.07	58.56	74.00	` '	peak	Р
2 *	5350.000	30.45	20.07	50.52	54.00	-3.48	AVG	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Page: 64 of 83

Ę	Test Voltage:	DC 3.3V
	Ant. Pol.	Horizontal
	Test Mode:	TX 802.11ac(VHT80) Mode 5210 MHz (U-NII-1) (Ant.1+Ant.2)
	Remark:	Only showed the worst mode test data.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5150.000	40.46	19.66	60.12	74.00	-13.88	peak	Р
2 *	5150.000	33.22	19.66	52.88	54.00	-1.12	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Report No.: TBR-C-202502-0011-13 Page: 65 of 83

5262.931

Test Voltage:	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT80) Mode 5210 MHz (U-NII-1) (Ant.1+Ant.2)
Remark:	Only showed the worst mode test data.
120.0 dBuV/	n
110	
100	
90	- manual photos and
80	RLAN Restricted Band-(Peak)
70	
60	RLAN Restricted Band-(AVG)

Humidity: 48 % **24.3** ℃ Temperature:

5202.931

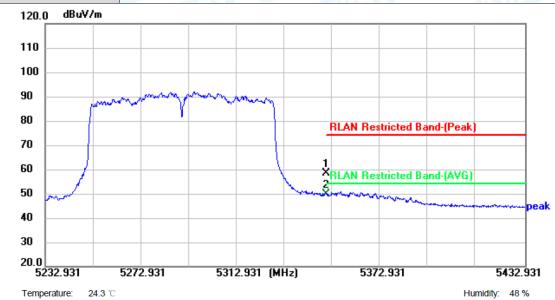
5142.931 (MHz)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5150.000	36.70	19.66	56.36	74.00	-17.64	peak	Р
2 *	5150.000	32.81	19.66	52.47	54.00	-1.53	AVG	Р

50 40 30

20.0 5062.931

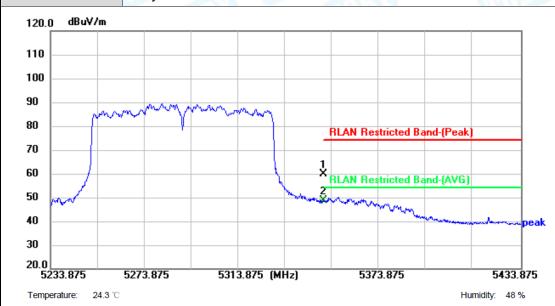
5102.931


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 66 of 83

Test Voltage:	DC 3.3V
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT80) Mode 5290 MHz (U-NII-2A) (Ant.1+Ant.2)
Remark:	Only showed the worst mode test data.
120.0 dBuV/m	

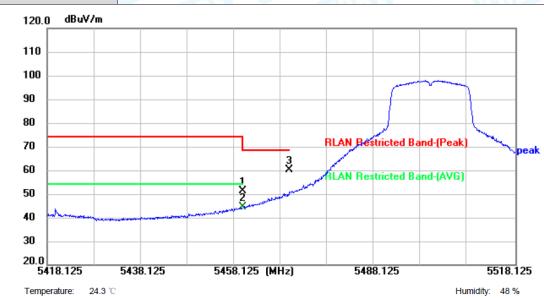
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5350.000	38.44	20.07	58.51	74.00	` '	peak	Р
2 *	5350.000	29.72	20.07	49.79	54.00	-4.21	AVG	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Page: 67 of 83

ACCURATION NAME OF TAXABLE PARTY.	
Test Voltage:	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT80) Mode 5290 MHz (U-NII-2A) (Ant.1+Ant.2)
Remark:	Only showed the worst mode test data.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5350.000	39.58	20.07	59.65	74.00	-14.35	peak	Р
2 *	5350.000	28.58	20.07	48.65	54.00	-5.35	AVG	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Page: 68 of 83

ACCURATION TO THE PROPERTY OF THE PERSON OF	
Test Voltage:	DC 3.3V
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5500 MHz (U-NII-2C)
Remark:	Only showed the worst mode test data.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5460.000	31.12	20.12	51.24	68.30	-17.06	peak	Р
2	5460.000	24.25	20.12	44.37	54.00	-9.63	AVG	Р
3 *	5470.000	40.13	20.07	60.20	68.30	-8.10	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Report No.: TBR-C-202502-0011-13 Page: 69 of 83

est Voltage:	DC 3.3V			
nt. Pol.	Vertical	ans)	THE PARTY OF THE P	Alle
est Mode:	TX 802.11	a Mode 5500 MHz (l	J-NII-2C)	
emark:	Only show	ed the worst mode to	est data.	an's
120.0 dBuV/m	,			
110				
100				
90				
80				
70			RLAN Restricted Band-(Peak)	peak
60		3 ×	"ARLAN Restricted Band-(AVG)	
50		Server and the server		
40	Andrew Andrew	The state of the s		
30				
20.0 5418.125	5438.125	5458.125 (MHz)	5488.125	5518.125

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5460.000	29.40	20.12	49.52	68.30	-18.78	peak	Р
2 *	5460.000	24.43	20.12	44.55	54.00	-9.45	AVG	Р
3	5470.000	37.29	20.07	57.36	68.30	-10.94	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TBR-C-202502-0011-13 Page: 70 of 83

5544.625

Test Voltage:	DC 3.3V
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5510 MHz (U-NII-2C) (Ant.1+Ant.2)
Remark:	Only showed the worst mode test data.
120.0 dBuV/m	
110	
100	
90	from many to manning
80	
70	RLAN Restricted Band-(Peak
60	MAN Restricted Band-(AVG)
50	Ž

Temperature:	24.3 °C	Humidity:	48 %

5499.625

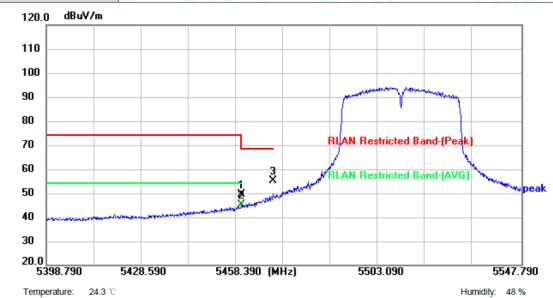
5454.625 (MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5460.000	29.99	20.12	50.11	68.30	-18.19	peak	Р
2 *	5460.000	24.23	20.12	44.35	54.00	-9.65	AVG	Р
3	5470.000	38.29	20.07	58.36	68.30	-9.94	peak	Р

40 30

20.0 5394.625

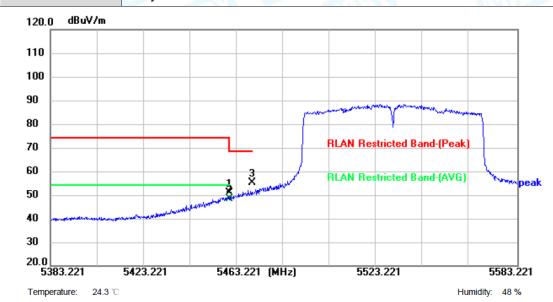
5424.625


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 71 of 83

S S	Test Voltage:	DC 3.3V
	Ant. Pol.	Vertical
	Test Mode:	TX 802.11n(HT40) Mode 5510 MHz (U-NII-2C) (Ant.1+Ant.2)
	Remark:	Only showed the worst mode test data.

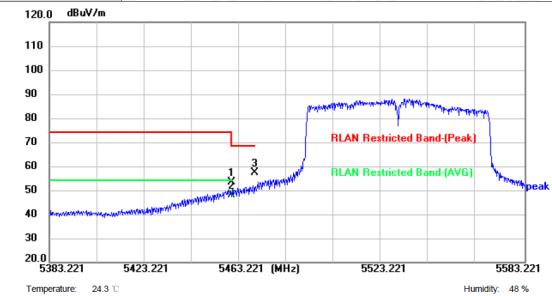
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5460.000	29.40	20.12	49.52	68.30	-18.78	peak	Р
2 *	5460.000	25.16	20.12	45.28	54.00	-8.72	AVG	Р
3	5470.000	35.23	20.07	55.30	68.30	-13.00	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Page: 72 of 83

	AND THE PERSON	
Ant	Test Voltage:	DC 3.3V
	Ant. Pol.	Horizontal
	Test Mode:	TX 802.11ac(VHT80) Mode 5530 MHz (U-NII-2C) (Ant.1+Ant.2)
	Remark:	Only showed the worst mode test data.

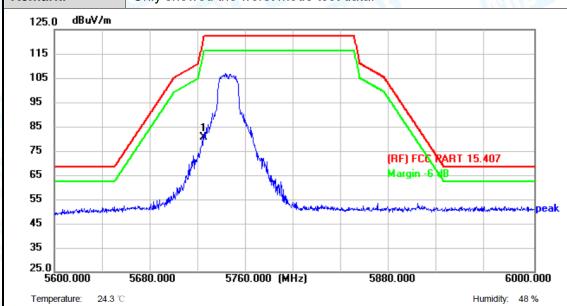
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5460.000	30.73	20.12	50.85	68.30	-17.45	peak	Р
2 *	5460.000	28.22	20.12	48.34	54.00	-5.66	AVG	Р
3	5470.000	35.14	20.07	55.21	68.30	-13.09	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Page: 73 of 83

Test Voltage:	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT80) Mode 5530 MHz (U-NII-2C) (Ant.1+Ant.2)
Remark:	Only showed the worst mode test data.
120.0 dBuV/m	
110	

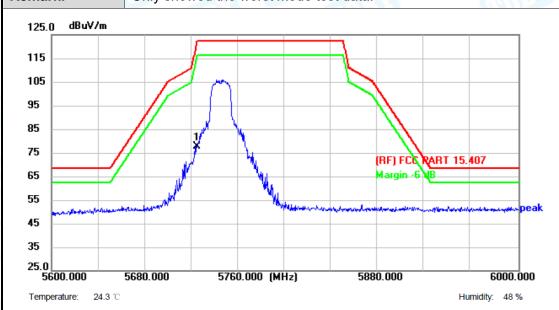
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5460.000	33.20	20.12	53.32	68.30	-14.98	peak	Р
2 *	5460.000	28.09	20.12	48.21	54.00	-5.79	AVG	Р
3	5470.000	37.34	20.07	57.41	68.30	-10.89	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Page: 74 of 83

Test Voltage:	DC 3.3V
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5745 MHz (U-NII-3)
Remark:	Only showed the worst mode test data.

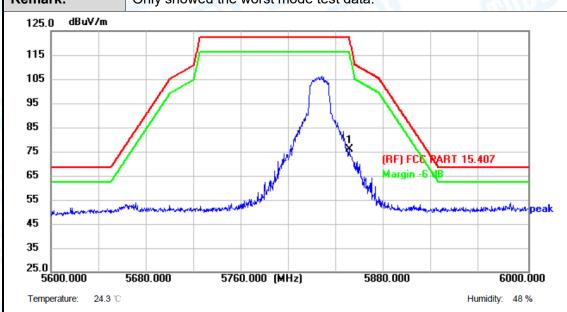
N	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1 *	5725.000	59.02	21.59	80.61	122.30	-41.69	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 75 of 83

1	Test Voltage:	DC 3.3V
\ 	Ant. Pol.	Vertical
	Test Mode:	TX 802.11a Mode 5745 MHz (U-NII-3)
	Remark:	Only showed the worst mode test data.

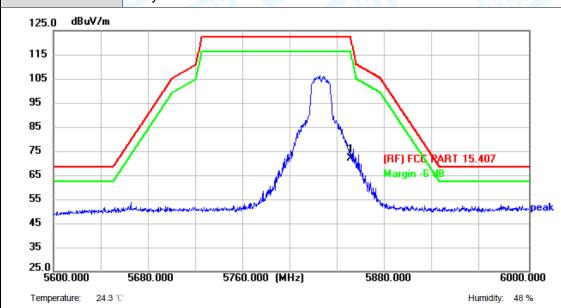
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5725.000	55.99	21.59	77.58	122.30	-44.72	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Page: 76 of 83

Test Voltage:	DC 3.3V
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5825 MHz (U-NII-3)
Remark:	Only showed the worst mode test data

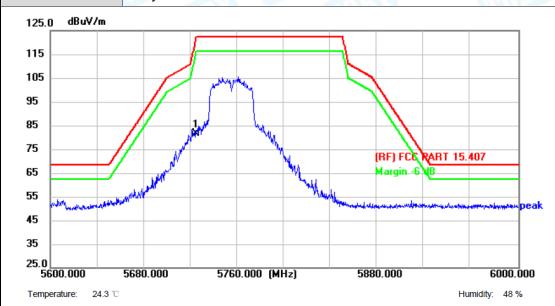
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5850.000	54.12	21.90	76.02	122.30	-46.28	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 77 of 83

	Test Voltage:	DC 3.3V
A III	Ant. Pol.	Vertical
	Test Mode:	TX 802.11a Mode 5825 MHz (U-NII-3)
	Remark:	Only showed the worst mode test data.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5850.000	49.92	21.90	71.82	122.30	-50.48	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 78 of 83

Test Voltage:	DC 3.3V
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5755 MHz (U-NII-3) (Ant.1+Ant.2)
Remark:	Only showed the worst mode test data.

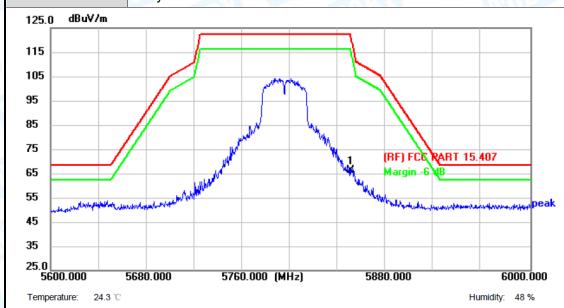
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5725.000	59.86	21.59	81.45	122.30	-40.85	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 79 of 83

AND THE PROPERTY OF THE PARTY O	
Test Voltage:	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5755 MHz (U-NII-3) (Ant.1+Ant.2)
Remark:	Only showed the worst mode test data.

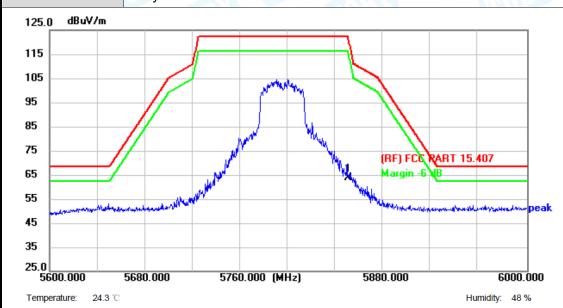
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	
1 *	5725.000	56.46	21.59	78.05	122.30	-44.25	peak	Р	


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 80 of 83

AND THE PROPERTY OF THE PARTY O	
Test Voltage:	DC 3.3V
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5795 MHz (U-NII-3) (Ant.1+Ant.2)
Remark:	Only showed the worst mode test data.

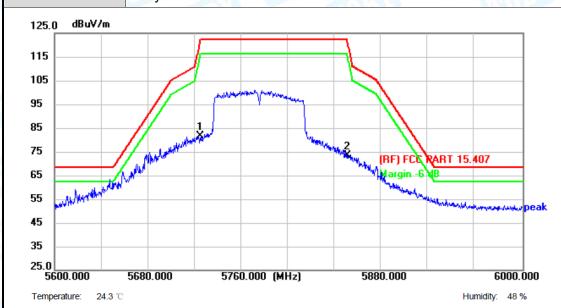
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5850.000	44.19	21.90	66.09	122.30	-56.21	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 81 of 83

AND THE PERSON NAMED IN COLUMN TO PERSON NAM	
Test Voltage:	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5795 MHz (U-NII-3) (Ant.1+Ant.2)
Remark:	Only showed the worst mode test data.

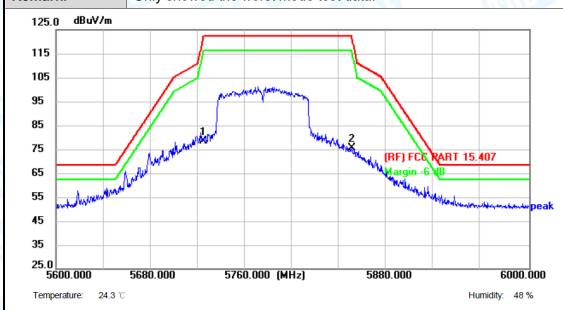
N	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1 *	5850.000	42.02	21.90	63.92	122.30	-58.38	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 82 of 83

ACCOUNT TO THE PERSON OF THE P	
Test Voltage:	DC 3.3V
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT80) Mode 5775 MHz (U-NII-3) (Ant.1+Ant.2)
Remark:	Only showed the worst mode test data.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5725.000	59.99	21.59	81.58	122.30	-40.72	peak	Р
2	5850.000	51.37	21.90	73.27	122.30	-49.03	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 83 of 83

	Test Voltage:	DC 3.3V
	Ant. Pol.	Vertical
ø	Test Mode:	TX 802.11ac(VHT80) Mode 5775 MHz (U-NII-3) (Ant.1+Ant.2)
ķ	Remark:	Only showed the worst mode test data.

No.	Frequency (MHz)		Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5725.000	56.90	21.59	78.49	122.30	-43.81	peak	Р
2	5850.000	53.65	21.90	75.55	122.30	-46.75	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

END OF THE REPORT----

