

TEST REPORT

Report No.	SST2504E0553			
Applicant:	SHENZHEN ELECTRON TECHNOLOGY CO., LTD.			
Address of Applicant:	Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.			
Product Name:	Smart Screen			
Trade Mark:	1			
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 ANSI C63.10-2020			
FCC ID:	2ABC5-E0090			
Test Report Form No:	SST-RD-7.5-02-E01(A/0)			
Date of sample receipt:	2025/3/12			
Date of Test:	2025/3/12 - 2025/4/22			
Date of report issued:	2025/4/27			

*The equipment complies with the requirements according to the standard(s) or Specification above, it is applicable only to the tested sample identified in the report.

*The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Version	Description	Date of Issue
V1.0	Original	2025/4/27

2 Contents

		Pag	е
1	cov	/ER PAGE	1
2	CON	ITENTS	3
3	TES	T SUMMARY	4
4	MEA	ASUREMENT UNCERTAINTY	4
5	GEN	IERAL INFORMATION	5
5. 5.	• •	CLIENT INFORMATION GENERAL DESCRIPTION OF EUT	
5.	-	TEST MODE(S)	6
5. 5.		TEST FACILITY DESCRIPTION OF SUPPORT UNITS	
5.	-	Additional Instructions	7
5. 5.		ANTENNA INFORMATION	
6	TEC	HNICAL REQUIREMENT AND MEASUREMENT DATA	8
6.	.1	GENERALLY REQUIREMENT	8
6.	.2	DUTY CYCLE	9
6.	.3	CONDUCTED PEAK OUTPUT POWER 1	-
6.		EMISSION BANDWIDTH1	
6.	100 m	Power Spectral Density	
6.	-	FREQUENCY STABILITY	
6. 6.		RADIATED SPURIOUS EMISSION	
6.			-
7	TES	Т SETUP PHOTO 2	1
8	EUT	CONSTRUCTIONAL DETAILS	1
	IEX A	TEST INSTRUMENTS LIST	2

3 Test Summary

Test items	Basics standards	Result
Antenna requirement	FCC part 15.203	PASS
Automatically discontinue transmission	FCC part 15.407(c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	PASS
99% Bandwidth	Report only	PASS
Emission Bandwidth	FCC part 15.407(a)	PASS
Peak Transmit Power	FCC part 15.407(a)(1)(2)	PASS
Power Spectral Density	FCC part 15.407(a) (1)(2)	PASS
Undesirable Emission	FCC part 15.407(b), 15.205/15.209	PASS
Radiated Emission	FCC part 15.205/15.209	PASS
Frequency Stability	FCC part 15.407(g)	PASS

Notes:

1: NA =Not Applicable

2: Determining compliance based on the results of the compliance measurement, not taking into account measurement uncertainty. If necessary, the applicant shall informing test lab in advance 3: Additions, Deviations and Exclusions from Standards: None.

4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty (±) (k=2, 95%)			
Output Power, Conducted	0.9	0.54		
Power Spectral Density, Conducted	1.:	28		
Spurious Emissions, Conducted	1.:	28		
Padiated Emissiona(<10Hz)	9kHz~30MHz	2.6		
Radiated Emissions(<1GHz)	30MHz~1GHz	5.08		
	1GHz~6GHz	4.02		
Radiated Emissions(>1GHz)	6GHz~18GHz	4.62		
	18GHz~40GHz	4.7		
Occupied Bandwidth	1.14			
Conducted Emissions—AC mains	9kHz~150KHz	1.76		
Conducted Emissions—AC mains	150kHz~30MHz	2.52		
Conducted Emissions—Telecom	2.0	64		

5 General Information

5.1 Client Information

Applicant: Address of applicant:	SHENZHEN ELECTRON TECHNOLOGY CO., LTD. Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang Street, Bao'an, Shenzhen, China.
Manufacturer: Address of	Same as applicant
Manufacturer:	Same as applicant
Factory: Address of Factory:	Same as applicant Same as applicant

5.2 General Description of EUT

Product Name:	Smart Screen		
Model No.:	NW1699T		
Test sample(s) ID:	2503110107		
Sample(s) Status:	Continuously transmitter		
S/N:	1		
Hardware version:	1		
Software version:	1		
Operation Frequency:	5180MHz~5240MHz		
Technical specific:	802.11a, 802.11n, 802.11ac, 802.11ax		
Supported bandwidth:	20MHz, 40MHz, 80MHz		
Modulation technology:	OFDM(A)		
Antenna gain:	Refer to section 5.7 for details		
Power supply:	SWITCHING ADAPTOR		
	MODEL: FJ-SW126G1202000U		
	INPUT: 100-240V, 50/60Hz, 0.6A		
	OUTPUT: DC 12V, 2A		

Channel list	Channel list for 802.11						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180MHz	54	5270MHz	104	5520MHz	122	5610MHz
38	5190MHz	56	5280MHz	106	5530MHz	124	5620MHz
40	5200MHz	58	5290MHz	108	5540MHz	126	5630MHz
42	5210MHz	60	5300MHz	110	5550MHz	128	5640MHz
44	5220MHz	62	5310MHz	112	5560MHz	132	5660MHz
46	5230MHz	64	5320MHz	116	5580MHz	134	5670MHz
48	5240MHz	100	5500MHz	118	5590MHz	136	5680MHz
52	5260MHz	102	5510MHz	120	5600MHz	140	5700MHz

5.3 Test mode(s)

Mode 1:	continuously transmitting, with its lowest data rate which emit the max power level
Mode 2:	
Mode 3:	

5.4 Test Facility

	FCC Accredited Lab
The test facility is	Test Firm Registration Number: 638130 Designation Number: CN1359
recognized, certified,	IC Registration Lab
or accredited by these organizations:	CAB Identifier No.CN0154
	A2LA Accreditation Lab
	Certificate No.:7057.01

	Name
	GuangDong Set Sail Testing Co., Ltd.
Test Performed at:	Address
	101, No.19, Tianxin Hudie 1st Road, Huangjiang Town, Dongguan, Guangdong,
	China

5.5 Description of Support Units

Device Type	Brand	Model	Series No.	Note
Notebook PC	HP	ZHAN 66P		

5.6 Additional Instructions

Test Software	Special test command	l provided by manufactu	urer(adb command)	
Command version	V1.0			
Power level setup	Default			

5.7 Antenna Information

Ant	Manufacturer	Model	Antenna Type	Antenna Gain (dBi)	Note
1	Shenzhen Yishengbang Technology Co., Ltd	/	IPEX	2.92	WiFi, BT

All above information provided by the applicant which is fully responsible for those information.

5.8 Others

The laboratory responsible for all the information provided in the report, except those information provided by the applicant.

The applicant shall fully responsible for the information they provided.

The report would be invalid without a stamp of test laboratory and the signatures of compiler and approver. The laboratory has not been responsible for the sampling stage; the test report merely corresponds to the test sample received.

Any objection to the test report shall submitted to the test laboratory within 15 days from the date of receipt of the report.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

6 Technical Requirement and Measurement Data

6.1 Generally requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407 requirement:

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Reference to the appendix II for details

15.407(c) requirement:

The applicant declares that the device (FCC Part 15 Subpart E Section 15.407) shall automatically discontinue transmission in cases of absence of information to transmit, or operational failure.

6.2 Duty Cycle

Limit
Report for use
Block diagram of Test Setup
Spectrum Analyzer E-U-T Non-Conducted Table
Ground Reference Plane
Test Instrument Refer to Annex A for details Test Procedures
The transmitter output connected to the Spectrum Analyzer. Test according to <mark>Procedu</mark> re B.2 in KDB 789033 D02 v02r01.
1.RBW=8 MHz(the largest available value) 2.VBW=8 MHz(>RBW) 3.SPAN = 0 Hz 4.Detector = Peak 5.Number of points in sweep: 30001 6.Trace mode: Clear write 7.Measure T _{total} and T _{on} 8.Calculate Duty Cycle = T _{on} /T _{total} and Duty Cycle Factor = 10log(1/Duty Cycle)
Verdict
Pass

6.3 Conducted Peak Output Power

Limit	
Frequency band(MHz)	Maximum conducted power
5150-5250	≤1W(30dBm) for master device
	≤250Mw(23.98dBm) for client device
5250-5350	≤250Mw(23.98dBm) for client device or 11dBm+10logB*
5470-5725	≤250Mw(23.98dBm) for client device or 11dBm+10logB*
Remark: *Where B is the 26dB emission	
· · ·	must be measured over any interval of continuous transmission
using instrumentation calibrated in terms Block diagram of Test Setup	s of an tims-equivalent voltage.
Power	
	E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instrument	
Refer to Annex A for details	
Test Procedures	
Test applies to ANSI C63.10 & KDB 789	033 D02 v02r01
Verdict	
Pass	

6.4 Emission Bandwidth

Limit
Report only
Block diagram of Test Setup
Spectrum Analyzer E.U.T Non-Conducted Table
Ground Reference Plane Test Instrument
Refer to Annex A for details
Test Procedures
 a) Set RBW = shall be in the range of 1% to 5% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max-hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is in the range of 1% to 5%. Verdict Pass

6.5 Power Spectral Density

Limit	
Frequency band (MHz)	Maximum power spectral density
	<17dBm in 1MHz for master device
5150-5250	≤11dBm in 1MHz for client device
5250-5350	≤11dBm in 1MHz for client device
5470-5725	≤11dBm in 1MHz for client device
Block diagram of Test Setup	
Spectrum Ana	alyzer
	E.U.T Non-Conducted Table
Gr	ound Reference Plane
Test Instrument Refer to Annex A for details	
Test Procedures	EUT operating mode being tested by following the instruction
but not including, the step labeled, "Compute conducted output power measurement was p b) Use the peak search function on the instru- c) Make the following corrections to the peak 1) If method SA-2 or SA-2A was used, then a the spectrum. 2) If method SA-3A was used and the linear result to compensate for the difference betwe d) The result is the PPSD. e) The procedure in item a) through item c) re MHz measurement bandwidth specified by s use of resolution bandwidths less than 1 MHz total power over the measurement bandwidth"	value of the spectrum, if applicable: add [10 log (1 / D)], where D is the duty cycle, to the peak of mode was used in step h) of 12.4.2.7, add 1 dB to the fina
1) Set RBW \geq 1 / T, where T is defined in 12.2	2 a).
2) Set VBW ≥ [3 × RBW].	
,	asurements are performed during a period of continuous
transmission or are corrected upward for duty	
transmission or are corrected upward for duty Verdict	

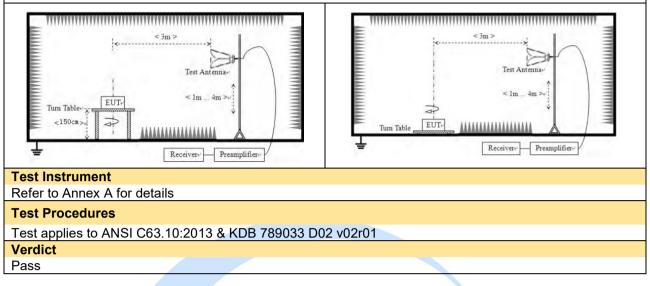
6.6 Frequency Stability

Limit

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified **Block diagram of Test Setup** Temperature Chamber EUT Spectrum analyzer Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector **Test Instrument** Refer to Annex A for details

Test Procedures Test applies to ANSI C63.10, FCC Part 2.1055

Verdict Pass


6.7 Radiated Spurious Emission

Frequency (MHz)	Field strength (microvolts/meter))	Measurement distance (meters)
0.009-0.490	2400/F(kHz)		300
0.490-1.705	24000/F(kHz)		30
1.705-30.0	30		30
30-88	100 **		3
88-216	150 **		3
216-960	200 **		3
Above 960	500		3
this section shall not be MHz. However, operat e.g., §§ 15.231 and 15. The emission limits sho detector except for the limits in these three bar Undesirable emission be attenuated in accord (1)For transmitters oper shall not exceed an e.i.	located in the frequency band tion within these frequency b 241. wwn in the above table are bas frequency bands 9-90 kHz, 1 nds are based on measurement limits: the maximum emission dance with the following limits: rating in the 5.15–5.25 GHz bas r.p. of –27 dBm/MHz.	ts 54–72 MH ands is per ed on meas 10-490 kHz nts employir ons outside and: All emis	from intentional radiators operating unde lz, 76–88 MHz, 174–216 MHz or 470–800 mitted under other sections of this part urements employing a CISPR quasi-peal and above 1000 MHz. Radiated emission og an average detector. of the frequency bands of operation sha asions outside of the 5.15–5.35 GHz band asions outside of the 5.15–5.35 GHz band
band shall not exceed a	erating in the 5.47–5.725 GHz an e.i.r.p. of –27 dBm/MHz.	z band: All e	emissions outside of the 5.47–5.725 GH
Block diagram of Test	t Setup	1	
⊠For tabl	e-top equipment		For floor standing equipment
For radiated emissions	from 9kHz to 30MHz		
		1	
Tum Table	< 3m > Test Antenna Im Receiver	Tum Tat	< 3m > Test Antenna Im EUT- Receiver-
E Turn Table	n Table-'	Turn Tak	Test Antenna
For radiated emissions	n Table-'		Test Antenna

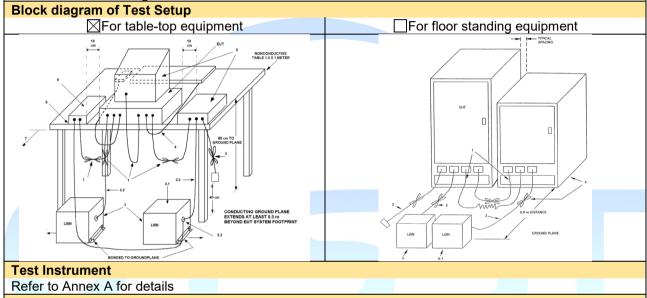
GuangDong Set Sail Testing Co., Ltd. 101, No.19, Tianxin Hudie 1st Road, Huangjiang Town, Dongguan, Guangdong, China Tel: (86)-0769-26622875 Email: sst@sstesting.cn

For radiated emissions above 1GHz

Note:

- 1. The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.
- 2. For those undesirable emission (in the Restricted Bands and out-of-band spurious) above 1GHz, According to KDB 789033 D02 v02r01 section II.G, as an alternative, antenna-port conducted measurements in conjunction with cabinet emissions tests will be permitted to demonstrate compliance.
- 3. The undesirable spurious emission range from 26GHz to 40GHz is as low as the cabinet noise, so there is no report, refer to appendix for details.
- 4. According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows: E[dBuV/m] = EIRP[dBm] + 95.2; For example, if EIRP = -27dBm E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

st mode		Mode 1		Polarity		Horizontal			
est voltage		AC 120V/	60Hz	Temp. /H	lum.	25 °C/60%	25 °C/60%		
90									
80									
70									
60									
							F		
الاً م 19									
[ɯ/̯ʎŋɡp]ləvəl] 40		•				•	56		
30		²	let torsul.			للواري	Address Marries M		
		MUN	Mana Mana and		In the Marth a strath water the	Hanna Jake on a shift he saw have			
20			A FLORAN PATRIANI.		1111 Walak I. I day to a war	Ale adulate where the re-			
	head where is the second in the second in the second	annon the the	I MANA MANANA	White Anthening and the White	(1) The second sec				
20 10	hendrokasisinga puraka nadarakki nama ba	normal (MIII)	1. MANALALA MANANA	Wilderhaminanon anna 1944					
		runnadal (1)	100M	Whitesterilesenmanadatith			1G		
10	M	Horizontal PK	100M	Frequency[Hz]			1G		
10	M		100M	Frequency[Hz]			1G		
10	M QP Limit		100M	Frequency[Hz]			1G		
10	M QP Limit		100M	Frequency[Hz]			1G		
10 0 30	M — QP Limit — • QP Detector Freq.	Horizontal PK Factor	QP Value	QP Limit	QP Margin				
10	M — QP Limit — • QP Detector	Horizontal PK				Polarity	1G Verdict		
10 0 30	M — QP Limit — • QP Detector Freq.	Horizontal PK Factor	QP Value	QP Limit	QP Margin				
10 0 30	M QP Limit • QP Detector Freq. [MHz]	Horizontal PK Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Polarity	Verdict		
10 0 30 NO. 1	M 	Horizontal PK Factor [dB] 8.59	QP Value [dBµV/m] 32.33	QP Limit [dBµV/m] 40.00	QP Margin [dB] 7.67	Polarity Horizontal	Verdict PASS		
10 0 30 NO. 1 2	M — QP Limit • QP Detector Freq. [MHz] 77.9151 81.334	Horizontal PK Factor [dB] 8.59 8.41	QP Value [dBµV/m] 32.33 35.89	QP Limit [dBµV/m] 40.00 40.00	QP Margin [dB] 7.67 4.11	Polarity Horizontal Horizontal	Verdict PASS PASS		
10 0 30 NO. 1 2 3	M - QP Limit • QP Detector Freq. [MHz] 77.9151 81.334 197.973	Factor [dB] 8.59 8.41 11.99	QP Value [dBµV/m] 32.33 35.89 32.38	QP Limit [dBµV/m] 40.00 40.00 43.50	QP Margin [dB] 7.67 4.11 11.12	Polarity Horizontal Horizontal Horizontal	Verdict PASS PASS PASS		
10 0 30 NO. 1 2 3 4	M — QP Limit • QP Detector Freq. [MHz] 77.9151 81.334 197.973 593.6472	Horizontal PK Factor [dB] 8.59 8.41 11.99 20.76	QP Value [dBµV/m] 32.33 35.89 32.38 40.62	QP Limit [dBµV/m] 40.00 40.00 43.50 46.00	QP Margin [dB] 7.67 4.11 11.12 5.38	Polarity Horizontal Horizontal Horizontal Horizontal	Verdict PASS PASS PASS PASS		


st mode	ult(30M~1GHz) e	Mode 1		Polarity		Vertical		
	st voltage AC 120					25 °C/60%		
90 80 70 60 [Lunningp]eaan 40								
30 20 10 0	M M M M M M M M M M M M M M M M M M M		100M	Frequency[Hz]	www.marakater	len and an and a second second	1 6	
	QP Limit QP Detector	Vertical PK						
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Polarity	Verdict	
1	78.3258	8.50	33.93	40.00	6.07	Vertical	PASS	
_ ·	82.1939	8.57	35.65	40.00	4.35	Vertical	PASS	
2		15.52	35.30	46.00	10.70	Vertical	PASS	
	311.9967		41.82 46.00		4.18	Vertical	PASS	
2	311.9967 593.6472	20.76	41.82	46.00			17,00	
2 3			41.82 42.47	46.00 46.00	3.53	Vertical	PASS	
2 3 4	593.6472	20.76				Vertical Vertical		

6.8 Conducted Emissions

Frequency ((MHz)	Quasi-peak	Average
0.15~0.	50	66 to 56*	56 to 46*
0.50~5.	0	56	46
5.0~30)	60	50

If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the equipment under test shall be deemed to meet both limits and the measurement using the receiver with an average detector need not be carried out

Test Procedures

The measurement was performed in a shield room.

Measured levels of ac power-line conducted emission shall be the radio-noise voltage from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), as terminated into a 50 Ω EMI receiver or spectrum analyzer. All radio-noise voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord or calibrated extension cord by the use of mating plugs and receptacles on the EUT and LISN, if used. The manufacturer shall test equipment with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended. For measurements using a LISN, the 50 Ω measuring port is terminated into a 50 Ω EMI receiver or spectrum analyzer. All other ports are terminated into 50 Ω loads.

Table top devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz. Verdict Pass

Fest mode		N.4.	1. 1			le ritu i			ine		
		Mod		1-		larity			ine	20/	
est voltage		AC	120V/60H	٦Z	lei	mp. /Hun	n.	2	25 °C/60	J%	
120 110 100 90 80 70 60 50 40 20 10 -10 -20 150k	w.v W.V		12 hywwyran arybar 12 hywrwyr w warbar	programme and a second	(L)	(HZ)		10M			
		AV Limit AV Detect AV Detect AI Data Freq.	List QP Value	QP Limit	QP Margin	AV Value	AV Limit	AV Margin	Туре		
	NO.										
		[MHz]	[dBµV]	[dBµV]	[dB]	[dBµV]	[dBµV]	[dB]			
	1	0.303	43.19	60.16	16.97	27.21	50.16	22.95	L		
	1 2	0.303	43.19 43.19	<u> </u>	16.97 16.97	27.21 27.21		22.95 22.95	L		
	1	0.303	43.19	60.16	16.97	27.21	50.16	22.95			
	1 2	0.303	43.19 43.19	60.16 60.16	16.97 16.97	27.21 27.21	50.16 50.16	22.95 22.95	L		
	1 2 3	0.303 0.303 0.3165	43.19 43.19 42.44	60.16 60.16 59.80	16.97 16.97 17.36	27.21 27.21 23.10	50.16 50.16 49.80	22.95 22.95 26.70	L		
	1 2 3 4	0.303 0.303 0.3165 0.3165	43.19 43.19 42.44 42.44	60.16 60.16 59.80 59.80	16.97 16.97 17.36 17.36	27.21 27.21 23.10 23.10	50.16 50.16 49.80 49.80	22.95 22.95 26.70 26.70	L L L		

Test mode		Мос				larity			leutral		
Fest voltage		AC	120V/60	Hz	Tei	mp. /Hun	n.	2	5 °C/60)%	
	QP Limit QP Detector	AV Limit AV Detect		ултанарияла ултанарияла ултанарияла ултанарияла ултанарияла им 1 М — AV	(N) (N) 	1. (H2)		10M			
		al Data									
	NO.	Freq. [MHz]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Туре		
	1	0.2895	43.14	60.54	17.40	25.98	50.54	24.56	N		
	2	0.3075	45.10	60.04	14.94	29.56	50.04	20.48	N		
	3	0.3705	46.98	58.49	11.51	34.27	48.49	14.22	N		
	4	0.384	51.63	58.19	6.56	37.16	48.19	11.03	N		
	5	0.4245	47.17	57.36	10.19	32.33	47.36	15.03	N		
	6	0.483	43.77	56.29	12.52	27.91	46.29	18.38	N		
	L			1	1		1	1	<u>. </u>		
Note: Final Lev Factor= LISN F Only the worst (actor +	Cable Lo	oss								

Report No.: SST2504E0553

Test Setup Photo Reference to the appendix I for details. 7

EUT Constructional Details 8 Reference to the **appendix II** for details.

Annex A -- Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date		
3m Semi- Anechoic Chamber	BOST	966	1	3 years	2023.01.07		
Control Room	BOST	333	/	3 years	2023.01.07		
Breiband TRILOG Messantenne	Schwarzbeck	VULB 9162	00556	1 year	2025.04.19		
Broad-band Horn Antenna	Schwarzbeck	BBHA 9120 D	02783	1 year	2025.04.19		
EMI Test Receiver	R&S	ESU8	100372	1 year	2025.04.17		
Amplifier (1-18GHz)	TSTPASS	LNA10180G45	TSAM2303003	1 year	2025.04.17		
Spectrum Analyzer	keysight	N9020A	MY51280659	1 year	2025.04.17		
Amplifier (40G)	RFsystem	TRLA- 180400G45B	23060801	1 year	2025.04.18		
Broadband Horn Antenna(40G)	Schwarzbeck	BBHA9170	01306	1 year	2025.04.19		
Spectrum analyzer	R&S	FSV40-N	101791	1 year	2025.04.17		
Loop Antenna	Schwarzbeck	FMZB 1513-60B	1513-60B 044	1 year	2025.04.18		
5W 6dB attenuator	1	DC-6GHz	1	Internal calibration	1		
Thermohygrometer	КТЈ	TA218A	879030	1 year	2025.04.21		
EMI Test Software	Tonscend	TS+	V5.0	1	/		

Conducted Emission						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date	
Shielding Room	BOST	854	/	3 year	2023.01.07	
EMI Test Receiver	R&S	ESR3	103057	1 year	2025.04.17	
LISN	R&S	ENV 216	102832	1 year	2025.04.17	
ISN	Schwarzbeck	NTFM 8158	00347	1 year	2025.04.17	
ISN	Schwarzbeck	CAT3 8158	00279	1 year	2025.04.17	
ISN	Schwarzbeck	CAT5 8158	00524	1 year	2025.04.17	
Sensor probe	TCTEST	CSP 9160A	81837	1 year	2025.04.17	
High impedance capacitive voltage probe	Schwarzbeck	CVP 9222C	00221	1 year	2025.04.22	
Voltage probe	Schwarzbeck	TK 9420	01304	1 year	2025.04.17	
Antenna port test assembly	1	DC-3GHz	1	Internal calibration	/	
Thermohygrometer	KTJ	TA218A	879036	1 year	2025.04.21	
EMI Test Software	Tonscend	TS+	V4.0	/	/	

RF conducted							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date		
Shielding Room	BOST	543	/	3 year	2023.01.07		
Spectrum analyzer	keysight	N9020A	MY51280659	1 year	2025.04.17		
Analog signal source	Agilent	N5181A	MY48180054	1 year	2025.04.17		
Vector signal source	keysight	N5172B	MY57281610	1 year	2025.04.17		
Thermohygrometer	KTJ	TA218A	879032	1 year	2025.04.21		
Spectrum analyzer	R&S	FSV40-N	/	1 year	2025.04.17		
Power meter 1	TST	TST V2	/	1 year	2025.04.17		
Test Software	TST PASS	TST PASS	V2.0	/	/		
Temperature and humidity chamber	Guangdong fenghe	FH-TH-1000	FH24032017	1 year	2024.04.26		

END OF REPORT

