

4.4 26dB Bandwidth and 99% Occupied Bandwidth

4.4.1 Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)								
Test Method:	KDB789033 D02 General UNII Te Rules v02r01 Section C	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C							
Limit:	No restriction limits	TIME							
Test Setup:	Spectrum Analyzer Et	NG HUAKTESTING							
Test Mode:	Transmitting mode with modulation								
Test Procedure:	 KDB789033 D02 General UNII To Rules v02r01 Section C Set to the maximum power setting EUT transmit continuously. Make the measurement with the second resolution bandwidth RBW = 1% In order to make an accurate measurement. Measure and record the results in 	g and enable the spectrum analyzer's EBW, VBW≥3RBW, asurement.							
Test Result:	N/A TESTING NAME OF THE PARTY O	TESTING W. TESTING							

4.4.2 Test Instruments

RF Test Room								
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due			
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025			
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025			
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025			
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.4.3 Test Result

N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.5 Power Spectral Density

4.5.1 Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)	-0				
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F	(ESTI				
Limit:	≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz					
Test Setup:	Spectrum Analyzer EUT	STING				
Test Mode:	Transmitting mode with modulation					
Test Procedure:	1. Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. 2. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. 3. Allow the sweeps to continue until the trace stabilizes 4. Use the peak marker function to determine the maximum amplitude level. 5. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.					
Test Result:	PASS					

4.5.2 Test Instruments

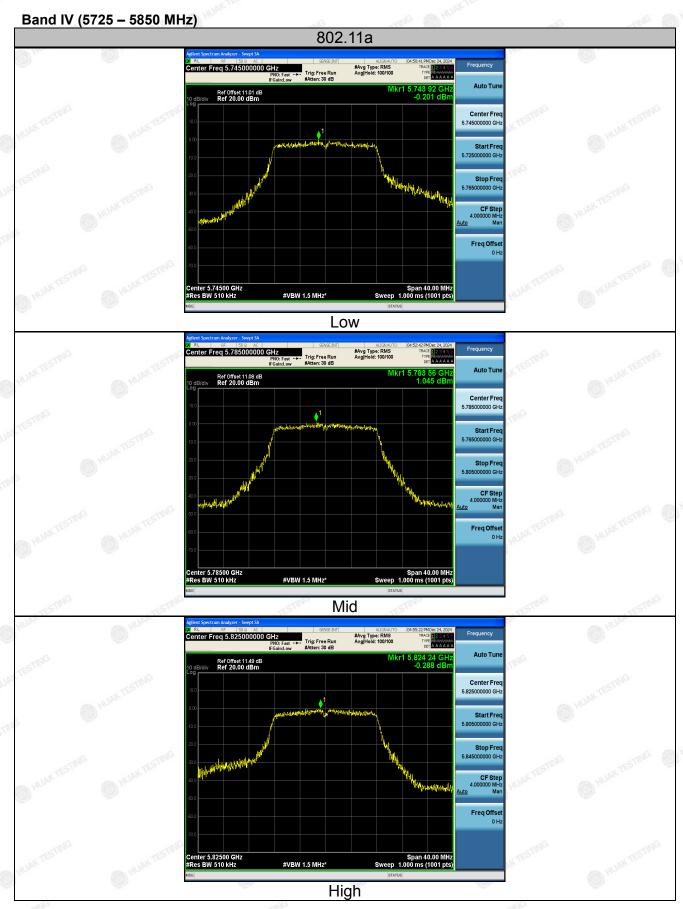
RF Test Room									
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due				
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025				
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025				
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025				
RF Test Software	Tonscend	JS1120-3 Version 3.5.39	HKE-083	N/A	N/A				

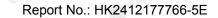
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.5.3 Test Data

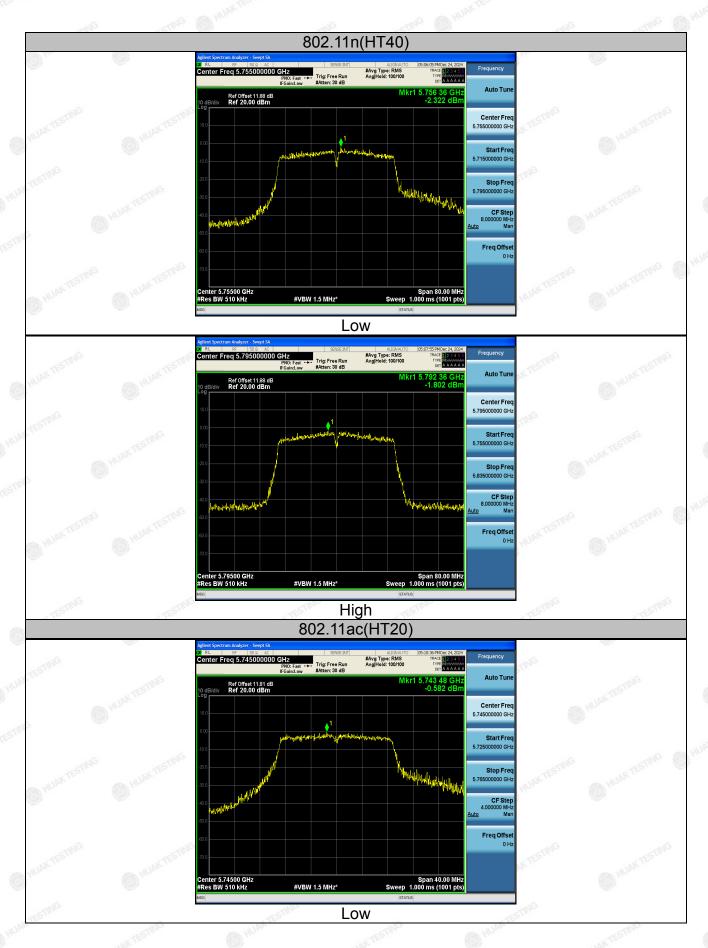
ANT. 1

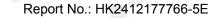

Report No.: HK2412177766-5E

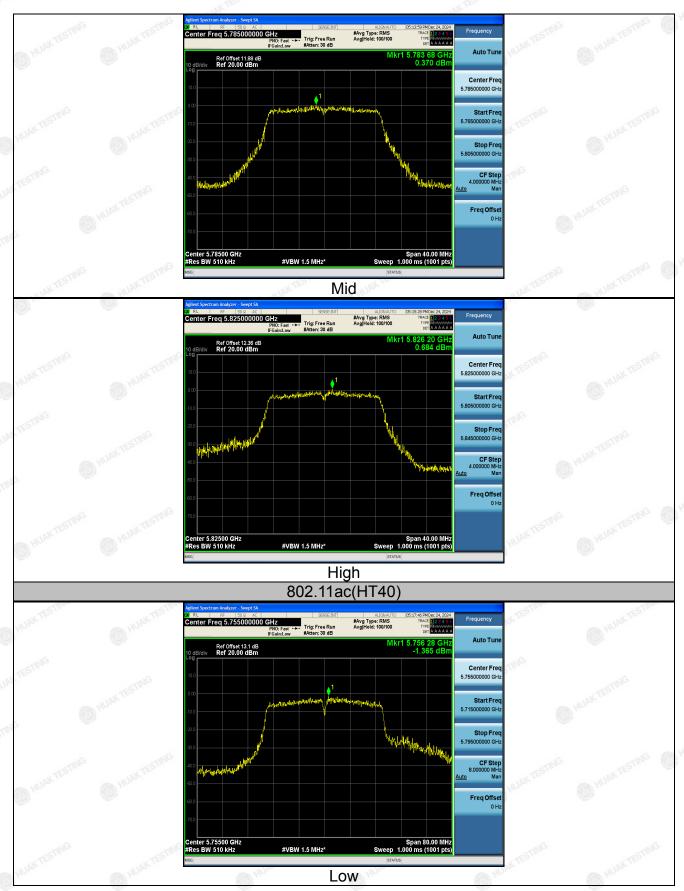

Configuration Band IV (5725 - 5850 MHz)									
Mode	Test channel	Level [dBm/510kHz]	10log(500/ 510)	Power Spectral Density	Limit (dBm/500kHz)	Result			
802.11a	CH149	-0.20	-0.086	-0.286	30 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PASS			
802.11a	CH157	1.05	-0.086	0.964	30	PASS			
802.11a	CH165	-0.29	-0.086	-0.376	30	PASS			
802.11n(HT20)	CH149	-1.49	-0.086	-1.576	30	PASS			
802.11n(HT20)	CH157	-0.54	-0.086	-0.626	30	PASS			
802.11n(HT20)	CH165	-0.78	-0.086	-0.866	30	PASS			
802.11n(HT40)	CH151	-2.32	-0.086	-2.406	30	PASS			
802.11n(HT40)	CH159	-1.80	-0.086	-1.886	30	PASS			
802.11ac(HT20)	CH149	-0.58	-0.086	-0.666	30	PASS			
802.11ac(HT20)	CH157	0.37	-0.086	0.284	30	PASS			
802.11ac(HT20)	CH165	0.68	-0.086	0.594	30	PASS			
802.11ac(HT40)	CH151	-1.37	-0.086	-1.456	30	PASS			
802.11ac(HT40)	CH159	-0.76	-0.086	-0.846	30	PASS			
802.11ac(HT80)	CH155	-1.99	-0.086	-2.076	30	PASS			
802.11ax(HE20)	CH149	2.01	-0.086	1.924	30	PASS			
802.11ax(HE20)	CH157	4.34	-0.086	4.254	30	PASS			
802.11ax(HE20)	CH165	3.41	-0.086	3.324	30	PASS			
802.11ax(HE40)	CH151	0.02	-0.086	-0.066	30	PASS			
802.11ax(HE40)	CH159	0.89	-0.086	0.804	30 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PASS			
802.11ax(HE80)	CH155	-1.50	-0.086	-1.586	30	PASS			

Note: 1.Power Spectral Density= Level [dBm/510kHz]+ (10log(Limit RBW/Test RBW))
2. Instrument attenuation and cable loss See test diagram

Test plots as follows:


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.





FICATION

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

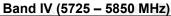
Low

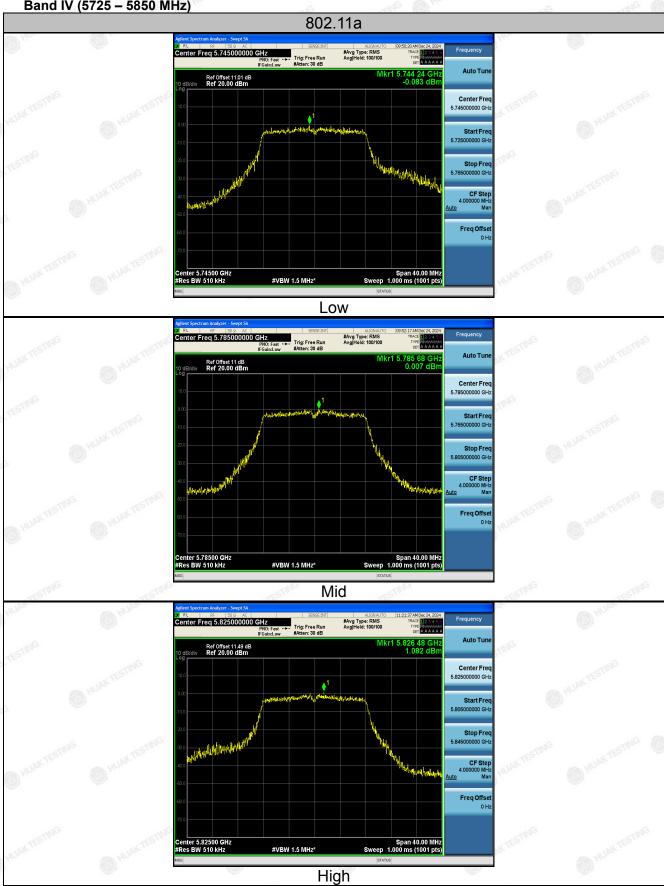
#VBW 1.5 MHz*

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

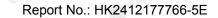
Low

#VBW 1.5 MHz*

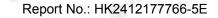

ANT. 2

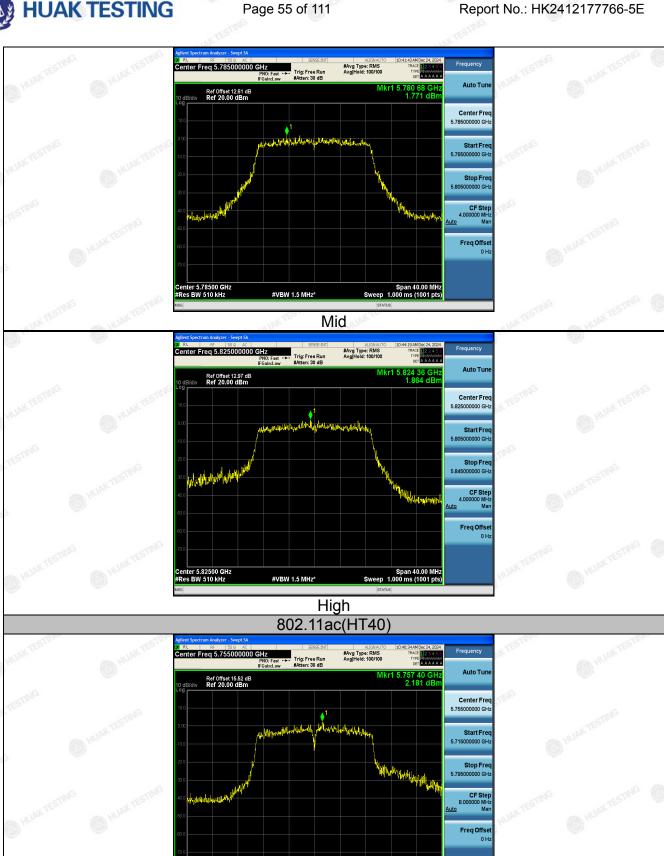

ANI. Z										
Configuration Band IV (5725 - 5850 MHz)										
Mode	Test channel	Level [dBm/510kHz]	10log(500/5 10)	Power Spectral Density	Limit (dBm/500kH z)	Result				
802.11a	CH149	-0.08	-0.086	-0.166	30 🚳 🗥	PASS				
802.11a	CH157	0.01	-0.086	-0.076	30	PASS				
802.11a	CH161	1.08	-0.086	0.994	30 , , , ,	PASS				
802.11n(HT20)	CH149	-1.52	-0.086	-1.606	30	PASS				
802.11n(HT20)	CH157	-0.97	-0.086	-1.056	30	PASS				
802.11n(HT20)	CH161	0.92	-0.086	0.834	30 mg	PASS				
802.11n(HT40)	CH151	-1.45	-0.086	-1.536	30	PASS				
802.11n(HT40)	CH159	-2.10	-0.086	-2.186	30	PASS				
802.11ac(HT20)	CH149	0.29	-0.086	0.204	5m [©] 30	PASS				
802.11ac(HT20)	CH157	1.77	-0.086	1.684	30 🔘 🗥	PASS				
802.11ac(HT20)	CH161	1.86	-0.086	1.774	30	PASS				
802.11ac(HT40)	CH151	2.18	-0.086	2.094	30	PASS				
802.11ac(HT40)	CH159	1.37	-0.086	1.284	30	PASS				
802.11ac(HT80)	CH155	-0.15	-0.086	-0.236	30	PASS				
802.11ax(HE20)	CH149	1.64	-0.086	1.554	7755TH 30	PASS				
802.11ax(HE20)	CH157	2.43	-0.086	2.344	30	PASS				
802.11ax(HE20)	CH161	2.11	-0.086	2.024	30	PASS				
802.11ax(HE40)	CH151	0.80	-0.086	0.714	5 mg 30	PASS				
802.11ax(HE40)	CH159	-0.28	-0.086	-0.366	30 💍 🗥	PASS				
802.11ax(HE80)	CH155	-1.92	-0.086	-2.006	30	PASS				

Note: 1.Power Spectral Density= Level [dBm/510kHz]+ (10log(Limit RBW/Test RBW))
2. Instrument attenuation and cable loss See test diagram

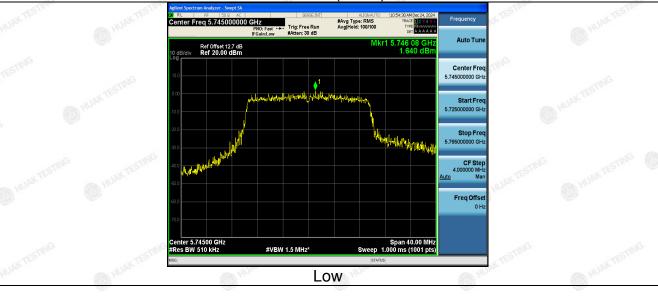

Test plots as follows:

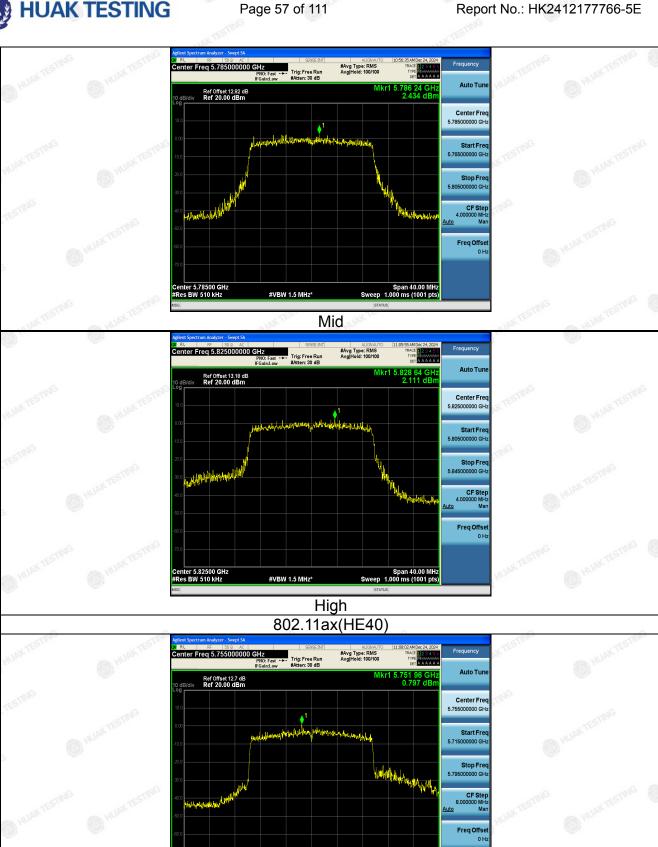





The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

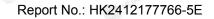


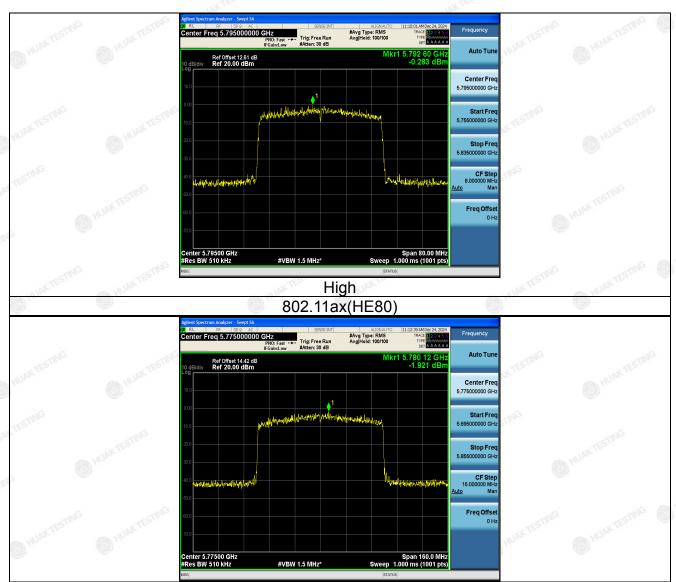



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Low

#VBW 1.5 MHz*





The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Low

#VBW 1.5 MHz*

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

For MIMO antenna port 1+antenna port 2

Report No.: HK2412177766-5E

Configuration Band IV (5725 - 5850 MHz)

Mode Test Channel		Power Density (dBm)	Limit (dBm)	Result	
802.11n(HT20)	CH149	1.42	30	PASS	
802.11n(HT20)	CH157	2.17 TESTING	30	PASS	
802.11n(HT20)	CH161	3.08	30	PASS	
802.11n(HT40)	CH151	1.06	30	PASS	
802.11n(HT40)	CH159	0.98	30	PASS	
802.11ac(HT20)	CH149	2.80	30	PASS	
802.11ac(HT20)	CH157	4.05	30	PASS	
802.11ac(HT20)	CH161	4.23	30 HUME TESTIN	PASS	
802.11ac(HT40)	CH151	3.68	30	PASS	
802.11ac(HT40)	CH159	3.36	30	PASS	
802.11ac(HT80)	CH155	1.95	30	PASS	
802.11ax(HE20)	CH149	4.75	30	PASS	
802.11ax(HE20)	CH157	6.41	30	PASS	
802.11ax(HE20)	CH161	5.73	30	PASS	
802.11ax(HE40)	CH151	3.35	30	PASS	
802.11ax(HE40)	CH159	3.27	isting 30 Willeling	PASS	
802.11ax(HE80)	CH155	1.22	30	PASS	

Note:

Note: This product supports antenna 1 and antenna 2 launch, but only support 802.11 n/ac/ax for MIMO mode, not support 802.11 a for MIMO mode.

^{1.} According to KDB 662911, Result power = 10log(10(ant1/10+10(ant2/10)).

^{2.} Result unit: W, The end result is converted to units of dBm.

Limit=30dBm-(direction gain-6dBi)=30dBm

4.6 Band Edge

4.6.1 Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407						
Test Method:	ANSI C63.10 2013						
Limit:	(1)For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted bands should complies 15.209.						
Test Setup:	Ant. feed point 1.5 m Ground Plane Receiver Amp.						
Test Mode:	Transmitting mode with modulation						
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 						

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet.

Test Result:

PASS

Report No.: HK2412177766-5E

4.6.2 Test Instruments

Radiated Emission Test Site (966)									
Name of Equipment Manufacturer Model Serial Number		Calibration Date	Calibration Due						
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025				
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 20, 2024	Feb. 19, 2025				
Preamplifier	EMCI	EMC051845S	HKE-006	Feb. 20, 2024	Feb. 19, 2025				
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 20, 2024	Feb. 19, 2025				
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 20, 2024	Feb. 19, 2025				
6dB Attenuator	Pasternack	6db	HKE-184	Feb. 20, 2024	Feb. 19, 2025				
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 20, 2024	Feb. 19, 2025				
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	Feb. 20, 2026				
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	Feb. 20, 2026				
Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026				
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	N/A	N/A				
RSE Test Software	Tonscend	JS36-RSE 5.0.0	HKE-184	N/A	N/A				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.6.3 Test Data

All modes of operation were investigated and the worst-case emissions of ANT.2 are reported.

Report No.: HK2412177766-5E

Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal:

rionzontal.		ALL HO.			AC.	All The	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
5650	53.19	-2.06	51.13	68.2	-17.07	peak	
5700	87.57	-1.96	85.61	105.2	-19.59	peak	
5720	95.45	-2.87	92.58	110.8	-18.22	peak	
5725	109.25	-2.14	107.11	122.2	-15.09	peak	
	Frequency (MHz) 5650 5700 5720	Frequency Meter Reading (MHz) (dBμV) 5650 53.19 5700 87.57 5720 95.45	Frequency Meter Reading Factor (MHz) (dBμV) (dB) 5650 53.19 -2.06 5700 87.57 -1.96 5720 95.45 -2.87	Frequency Meter Reading Factor Emission Level (MHz) (dBμV) (dB) (dBμV/m) 5650 53.19 -2.06 51.13 5700 87.57 -1.96 85.61 5720 95.45 -2.87 92.58	Frequency Meter Reading Factor Emission Level Limits (MHz) (dBμV) (dB) (dBμV/m) (dBμV/m) 5650 53.19 -2.06 51.13 68.2 5700 87.57 -1.96 85.61 105.2 5720 95.45 -2.87 92.58 110.8	Frequency Meter Reading Factor Emission Level Limits Margin (MHz) (dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 5650 53.19 -2.06 51.13 68.2 -17.07 5700 87.57 -1.96 85.61 105.2 -19.59 5720 95.45 -2.87 92.58 110.8 -18.22	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical::

F	requency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
Sille	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	5650	58.93	-2.06	56.87	68.2	-11.33	peak
	5700	87.12	-1.96	85.16	105.2	-20.04	peak
	5720	94.08	-2.87	91.21	110.8	-19.59	peak
HUAN	5725	110.97	-2.14	108.83	122.2	-13.37	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.8G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	109.41	-1.97	107.44	122.2	-14.76	peak
5855	94.25	-2.13	92.12	110.8	-18.68	peak
5875	86.36	-2.65	83.71	105.2	-21.49	peak
5925	51.87	-2.28	49.59	68.2	-18.61	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
S850	103.22	-1.97	101.25	122.2	-20.95	peak
5855	93.16	-2.13	91.03	110.8	-19.77	peak
5875	87.98	-2.65	85.33	105.2	-19.87	peak
5925	54.67	-2.28	52.39	68.2	-15.81	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11n20 Mode with 5.8G TX CH Low

Horizontal:

4	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
MA	5650	56.02	-2.06	53.96	68.2	-14.24	peak
	5700	89.15	-1.96	87.19	105.2	-18.01	peak
	5720	95.43	-2.87	92.56	110.8	-18.24	peak
	5725	113.82	-2.14	111.68	122.2	-10.52	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	56.95	-2.06	54.89	68.2	-13.31	peak
5700	96.08	-1.96	94.12	105.2	-11.08	peak
5720	95.15	-2.87	92.28	110.8	-18.52	peak
5725	111.22	-2.14	109.08	122.2	-13.12	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.8G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	109.13	-1.97	107.16	122.2	-15.04	peak
5855	93.52	-2.13	91.39	110.8	-19.41	peak
5875	97.14	-2.65	94.49	105.2	-10.71	peak
5925	53.02	-2.28	50.74	68.2	-17.46	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atah Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	107.63	-1.97	105.66	122.2	-16.54	peak
5855	94.42	-2.13	92.29	110.8	-18.51	peak
5875	88.93	-2.65	86.28	105.2	-18.92	peak
5925	56.61	-2.28	54.33	68.2	-13.87	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11n40 Mode with 5.8G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	58.89	-2.06	56.83	68.2	-11.37	peak
5700	91.25	-1.96	89.29	105.2	-15.91	peak
5720	93.16	-2.87	90.29	110.8	-20.51	peak
5725	110.77	-2.14	108.63	122.2	-13.57	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5650	58.94	-2.06	56.88	68.2	-11.32	peak
5700	91.55	-1.96	89.59	105.2	-15.61	peak
5720	98.36	-2.87	95.49	110.8	-15.31	peak
5725	111.87	-2.14	109.73	122.2	-12.47	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.8G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tyra
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	106.25	-1.97	104.28	122.2	-17.92	peak
5855	92.09	-2.13	89.96	110.8	-20.84	peak
5875	88.87	-2.65	86.22	105.2	-18.98	peak
5925	53.93	-2.28	51.65	68.2	-16.55	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Freque	ncy	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz	<u>z</u>) 💮	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850)	106.21	-1.97	104.24	122.2	-17.96	peak
585	HUAKT	92.74	-2.13	90.61	110.8	-20.19	peak
587	5	88.96	-2.65	86.31	105.2	-18.89	peak
592	5	53.83	-2.28	51.55	68.2	-16.65	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11ac20 Mode with 5.8G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	56.01	-2.06	53.95	68.2	-14.25	peak
5700	87.82	-1.96	85.86	105.2	-19.34	peak
5720	95.39	-2.87	92.52	110.8	-18.28	peak
5725	108.17	-2.14	106.03	122.2	-16.17	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	56.45	-2.06	54.39	68.2	-13.81	peak
5700	90.98	-1.96	89.02	105.2	-16.18	peak
5720	94.21	-2.87	91.34	110.8	-19.46	peak
5725	110.35	-2.14	108.21	122.2	-13.99	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit

Operation Mode: TX CH High with 5.8G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	110.76	-1.97	108.79	122.2	-13.41	peak
5855	94.81	-2.13	92.68	110.8	-18.12	peak
5875	88.07	-2.65	85.42	105.2	-19.78	peak
5925	53.29	-2.28	51.01	68.2	-17.19	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

TES	requency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
\mathbb{N}^G	5850	109.52	-1.97	107.55	122.2	-14.65	peak
	5855	93.14	-2.13	91.01	110.8	-19.79	peak
	5875	87.38	-2.65	84.73	105.2	-20.47	peak
	5925	55.56	-2.28	53.28	68.2	-14.92	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11ac40 Mode with 5.8G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	57.39	-2.06	55.33	68.2	-12.87	peak
5700	88.28	-1.96	86.32	105.2	-18.88	peak
5720	92.19	-2.87	89.32	110.8	-21.48	peak
5725	109.21	-2.14	107.07	122.2	-15.13	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type	
5650	55.35	-2.06	53.29	68.2	-14.91	peak	
5700	87.22	-1.96	85.26	105.2	-19.94	peak	
5720	93.84	-2.87	90.97	110.8	-19.83	peak	
5725	110.16	-2.14	108.02	122.2	-14.18	peak	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = I evel-I imit

Operation Mode: TX CH High with 5.8G

Horizontal:

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotoctor Type
ALTE	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
.vG	5850	112.95	-1.97	110.98	122.2	-11.22	peak
5111	5855	92.75	-2.13	90.62	110.8	-20.18	peak
	5875	87.21	-2.65	84.56	105.2	-20.64	peak
	5925	57.03	-2.28	54.75	68.2	-13.45	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data dan Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	112.92	-1.97	110.95	122.2	-11.25	peak
5855	92.38	-2.13	90.25	110.8	-20.55	peak
5875	88.07	-2.65	85.42	105.2	-19.78	peak
5925	58.46	-2.28	56.18	68.2	-12.02	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11ac80 Mode with 5.8G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	— Detector Type
5650	56.51	-2.06	54.45	68.2	-13.75	peak
5700	88.32	-1.96	86.36	105.2	-18.84	peak
5720	93.98	-2.87	91.11	110.8	-19.69	peak
5725	108.55	-2.14	106.41	122.2	-15.79	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	— Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
5650	57.29	-2.06	55.23	68.2	-12.97	peak
5700	89.37	-1.96	87.41	105.2	-17.79	peak
5720	94.06	-2.87	91.19	110.8	-19.61	peak
5725	108.25	-2.14	106.11	122.2	-16.09	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.8G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	113.88	-1.97	111.91	122.2	-10.29	peak
5855	92.49	-2.13	90.36	110.8	-20.44	peak
5875	88.32	-2.65	85.67	105.2	-19.53	peak
5925	55.08	-2.28	52.8	68.2	-15.4	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data data TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	109.69	-1.97	107.72	122.2	-14.48	peak
5855	93.51	-2.13	91.38	110.8	-19.42	peak
5875	88.34	-2.65	85.69	105.2	-19.51	peak
5925	55.22	-2.28	52.94	68.2	-15.26	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

Operation Mode: 802.11ax20 Mode with 5.8G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atas Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5650	57.58	-2.06	55.52	68.2	-12.68	peak
5700	89.08	-1.96	87.12	105.2	-18.08	peak
5720	94.71	-2.87	91.84	110.8	-18.96	peak
5725	111.47	-2.14	109.33	122.2	-12.87	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
5650	58.93	-2.06	56.87	68.2	-11.33	peak	
5700	91.88	-1.96	89.92	105.2	-15.28	peak	
5720	93.05	-2.87	90.18	110.8	-20.62	peak	
5725	110.21	-2.14	108.07	122.2	-14.13	peak	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

ON THE

Operation Mode: TX CH High with 5.8G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	109.36	-1.97	107.39	122.2	-14.81	peak
5855	94.29	-2.13	92.16	110.8	-18.64	peak
5875	87.07	-2.65	84.42	105.2	-20.78	peak
5925	55.51	-2.28	53.23	68.2	-14.97	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
5850	110.32	-1.97	108.35	122.2	-13.85	peak
5855	93.49	-2.13	91.36	110.8	-19.44	peak
5875	88.36	-2.65	85.71	105.2	-19.49	peak
5925	54.51	-2.28	52.23	68.2	-15.97	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11ax40 Mode with 5.8G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor Emission Leve		Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	57.74	-2.06	55.68	68.2	-12.52	peak
5700	87.08	-1.96	85.12	105.2	-20.08	peak
5720	94.29	-2.87	91.42	110.8	-19.38	peak
5725	109.86	-2.14	107.72	122.2	-14.48	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
5650	56.05	-2.06	53.99	68.2	-14.21	peak
5700	89.18	-1.96	87.22	105.2	-17.98	peak
5720	93.29	-2.87	90.42	110.8	-20.38	peak
5725	110.25	-2.14	108.11	122.2	-14.09	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.8G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	- Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
5850	110.65	-1.97	108.68	122.2	-13.52	peak
5855	94.77	-2.13	92.64	110.8	-18.16	peak
5875	89.94	-2.65	87.29	105.2	-17.91	peak
5925	55.23	-2.28	52.95	68.2	-15.25	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

TES	Frequency	Meter Reading	Factor Emission Level		Limits	Margin	Detector Type
7	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
TING	5850	111.86	-1.97	109.89	122.2	-12.31	peak
	5855	94.57	-2.13	92.44	110.8	-18.36	peak
	5875	89.82	-2.65	87.17	105.2	-18.03	peak
	5925	60.15	-2.28	57.87	68.2	-10.33	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11ax80 Mode with 5.8G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
5650	58.31	-2.06	56.25	68.2	-11.95	peak
5700	89.29	-1.96	87.33	105.2	-17.87	peak
5720	94.06	-2.87	91.19	110.8	-19.61	peak
5725	110.15	-2.14	108.01	122.2	-14.19	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	- Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
5650	58.84	-2.06	56.78	68.2	-11.42	peak
5700	94.39	-1.96	92.43	105.2	-12.77	peak
5720	95.12	-2.87	92.25	110.8	-18.55	peak
5725	111.77	-2.14	109.63	122.2	-12.57	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.8G

Horizontal:

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
ALT	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
. 10	5850	109.54	-1.97	107.57	122.2	-14.63	peak	
500	5855	94.36	-2.13	92.23	110.8	-18.57	peak	
	5875	89.83	-2.65	87.18	105.2	-18.02	peak	
	5925	52.98	-2.28	50.7	68.2	-17.5	peak	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

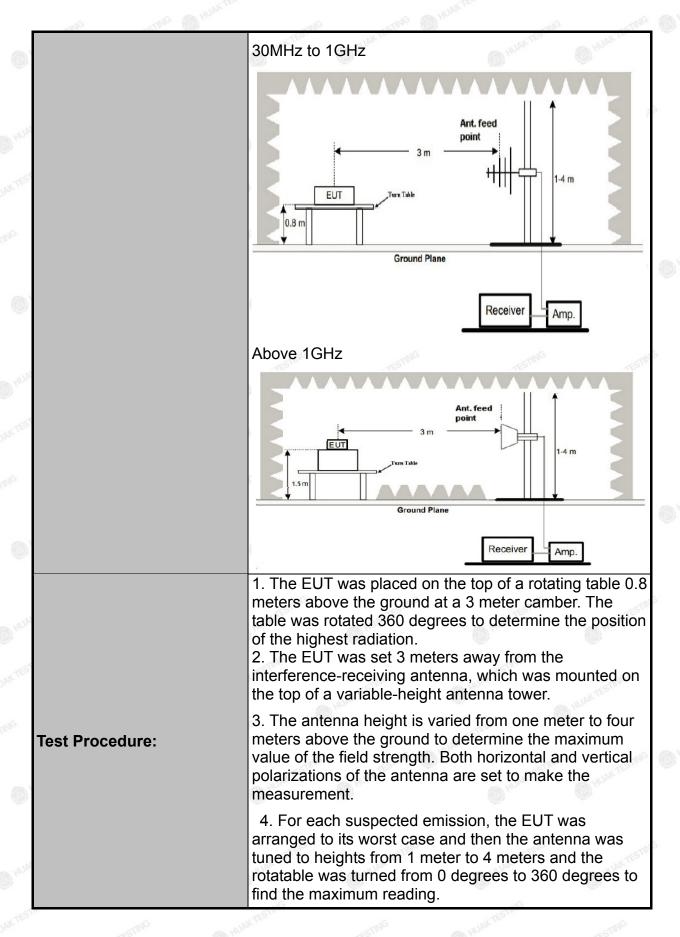
TES	requency	Meter Reading	Factor	Emission Level	on Level Limits		Detector Type
13.	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
TING	5850	110.93	-1.97	108.96	122.2	-13.24	peak
	5855	93.36	-2.13	91.23	110.8	-19.57	peak
	5875	89.51	-2.65	86.86	105.2	-18.34	peak
	5925	55.87	-2.28	53.59	68.2	-14.61	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

4.7 Spurious Emission

4.7.1.1 Test Specification

Test Requirement:	FCC CFR47	Part 15 Se	ction 15.	407 & 1	5.209 & 15.205	
Test Method:	KDB 789033	D02 v02r0	01	HUAR	HUPA	
Frequency Range:	9kHz to 40G	Hz		CTING		
Measurement Distance:	3 m	y TESTING	M HI	DK TES	V TESTING	
Antenna Polarization:	Horizontal &	Vertical		.6	(1) HUMA	
Operation Mode:	Transmitting	mode with	modulat	ion		
	Frequency 9kHz- 150kHz	Detector Quasi-peak	RBW 200Hz	VBW 1kHz	Remark Quasi-peak Value	
Receiver Setup:	150kHz- 30MHz 30MHz-1GHz	Quasi-peak Quasi-peak	9kHz 120KHz	30kHz 300KHz	Quasi-peak Value Quasi-peak Value	
	TING	Peak	1MHz	3MHz	Peak Value	
	Above 1GHz	Peak	1MHz	10Hz	Average Value	
Limit:	an e.i.r.p. of -2 (2) For transm emissions outs an e.i.r.p. of -2 (3) For transm emissions outs an e.i.r.p. of -2 (4) For transm (i) All emission MHz or more at to 10 dBm/MH from 25 MHz at to a level of 15 edge, and from linearly to a lev ands should of the limit of free ands should of the limit of transm (i) All emission MHz or more at the limit of free ands should of the limit of free ands should of the limit of the limit of free ands should of the limit	side of the 5. 27 dBm/MHz itters operatiside of the 5. 27 dBm/MHz itters operatiside of the 5. 27 dBm/MHz itters operatiside of the 5. 27 dBm/MHz itters operatis shall be limited be or belowed to be a shall be limited belowed to be a shall be limited below the shall be a sha	15-5.35 G . ng in the \$ 15-5.35 G . ng in the \$ 47-5.725 G . ng in the \$ hited to a l ow the bar above or ow the bar above or ow the bar at 5 MHz we or below n/MHz at 1 w 1GHz at 209.	Hz band s 5.25-5.35 Hz band s 5.47-5.725 GHz band s 6.725-5.85 evel of -2 nd edge in the below the sel of the band s the band s nd which	Shall not exceed GHz band: All shall not exceed GHz band: All shall not exceed GHz band: All shall not exceed GHz band: At 55 acreasing linearly band edge, and acreasing linearly below the band d edge increasing	
Test Setup:	For radiated emissions below 30MHz RX Antenna Ground Plane Receiver					


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

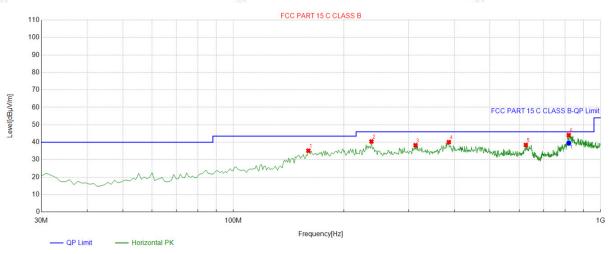
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Report No.: HK2412177766-5E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Report No.: HK2412177766-5E

THIS STATE (III)	THE STATE OF STATE
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be
	reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Results:	PASS


4.7.2 Test Data

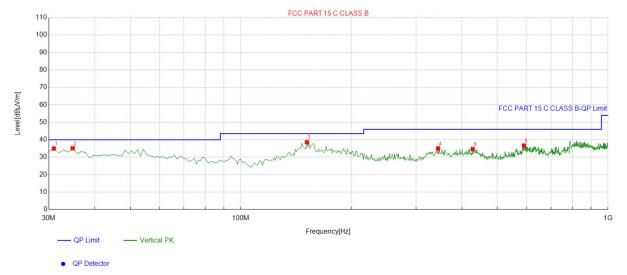
All the test modes completed for test. The worst case of Radiated Emission; the test data of this mode was reported.

Report No.: HK2412177766-5E

Below 1GHz

Horizontal

QP Detector


Suspe	Suspected List											
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle				
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	160.11011	-17.68	52.82	35.14	43.50	8.36	100	192	Horizontal			
2	237.78778	-13.77	54.24	40.47	46.00	5.53	100	92	Horizontal			
3	313.52352	-11.54	49.83	38.29	46.00	7.71	100	195	Horizontal			
4	386.34634	-9.19	49.24	40.05	46.00	5.95	100	267	Horizontal			
5	626.17617	-5.35	43.78	38.43	46.00	7.57	100	117	Horizontal			
6	819.39939	-2.65	46.75	44.10	46.00	1.90	100	292	Horizontal			

Final [Final Data List										
	Freq.	Factor	QP Reading	QP Value	QP Limit	QP Margin	Height	Angle			
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	819.3993	-2.65	42.13	39.48	46.00	6.52	100	292	Horizontal		

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Suspe	Suspected List										
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle			
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	30.970971	-15.75	50.72	34.97	40.00	5.03	100	131	Vertical		
2	34.854855	-14.84	49.96	35.12	40.00	4.88	100	139	Vertical		
3	151.37137	-18.06	56.65	38.59	43.50	4.91	100	139	Vertical		
4	344.59459	-10.15	45.19	35.04	46.00	10.96	100	134	Vertical		
5	428.09809	-8.77	43.43	34.66	46.00	11.34	100	329	Vertical		
6	590.25025	-6.27	42.95	36.68	46.00	9.32	100	55	Vertical		

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
TESTING AND H	AK	HUAK TESTING
HUAK	14 Take	HUAK
	w _C	-TING
WAKTE		JAK TES

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

LOW CH 149 (802.11 a Mode with 5.8G)/5745
All modes of operation were investigated and the worst-case of Ant. 2 are reported.

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	53.16	-4.59	48.57	68.2	-19.63	peak
11096	49.07	4.21	53.28	74	-20.72	peak
11096	38.94	4.21	43.15	54	-10.85	AVG

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	。 (dBμV/m)	(dBµV/m)	(dB)	Detector Type
3368	58.08	-4.59	53.49	68.2	-14.71	peak
11096	54.32	4.21	58.53	74	-15.47	peak
11096	36.71	4.21	40.92	54	-13.08	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH157 (802.11 a Mode with 5.8G)/5785

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	58.25	-4.59	53.66	68.2	-14.54	peak
10523	51.39	4.21	55.6	68.2	-12.6	peak

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data My TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	57.17	-4.59	52.58	68.2	-15.62	peak
10523	52.44	4.21	56.65	68.2	-11.55	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH 165 (802.11a Mode with 5.8G)/5825

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	57.09	-4.59	52.5	74	-21.5	peak
2705	49.81	-4.59	45.22	54	-8.78	AVG
11717	54.23	4.84	59.07	74	-14.93	peak
11717	36.19	4.84	41.03	54	-12.97	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = _evel-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	- Detector Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
2705	59.78	-4.59	55.19	74	-18.81	peak	
2705	44.52	-4.59	39.93	54	-14.07	AVG	
11717	50.07	4.84	54.91	74	-19.09	peak	
11717	38.98	4.84	43.82	54	-10.18	AVG	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11n20 Mode All modes of operation were investigated and the worst-case of MIMO are reported. LOW CH 149

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	61.32	-4.59	56.73	68.2	-11.47	peak
11096	57.45	4.21	61.66	74	-12.34	peak
11096	40.86	4.21	45.07	54	-8.93	AVG

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	63.12	-4.59	58.53	68.2	-9.67	peak
11096	55.33	4.21	59.54	74	-14.46	peak
11096	37.56	4.21	41.77	54	-12.23	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	- Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
3172	62.79	-4.59	58.2	68.2	-10	peak
10523	53.81	4.21	58.02	68.2	-10.18	peak

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data Law Turn
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	56.02	-4.59	51.43	68.2	-16.77	peak
10523	54.87	4.21	59.08	68.2	-9.12	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH165

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	59.75	-4.59	55.16	74	-18.84	peak
2705	48.94	-4.59	44.35	54	-9.65	AVG
11717	56.18	4.84	61.02	74	-12.98	peak
11717	38.71	4.84	43.55	54	-10.45	AVG

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	60.36	-4.59	55.77	74	-18.23	peak
2705	47.54	-4.59	42.95	54	-11.05	AVG
11717	52.89	4.84	57.73	74	-16.27	peak
11717	37.02	4.84	41.86	54	-12.14	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11n40 Mode All modes of operation were investigated and the worst-case of MIMO are reported. LOW CH 151

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	62.75	-4.59	58.16	68.2	-10.04	peak
11096	61.82	4.21	66.03	74	-7.97	peak
11096	39.18	4.21	43.39	54	-10.61	AVG

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	63.09	-4.59	58.5	68.2	-9.7	peak
11096	56.42	4.21	60.63	74	-13.37	peak
11096	38.39	4.21	42.6	54	-11.4	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH159

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotagtor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	58.76	-4.59	54.17	68.2	-14.03	peak
10523	52.55	4.21	56.76	68.2	-11.44	peak

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	57.36	-4.59	52.77	68.2	-15.43	peak
10523	51.88	4.21	56.09	68.2	-12.11	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac20 Mode

All modes of operation were investigated and the worst-case of MIMO are reported. LOW CH 149

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data eter Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	61.72	-4.59	57.13	68.2	-11.07	peak
11096	51.94	4.21	56.15	74	-17.85	peak
11096	34.26	4.21	38.47	54	-15.53	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
3368	61.08	-4.59	56.49	68.2	-11.71	peak
11096	57.48	4.21	61.69	74	-12.31	peak
11096	37.87	4.21	42.08	54	-11.92	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
3172	61.52	-4.59	56.93	68.2	-11.27	peak
10523	53.19	4.21	57.4	68.2	-10.8	peak

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	59.08	-4.59	54.49	68.2	-13.71	peak
10523	52.92	4.21	57.13	68.2	-11.07	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH165

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	61.44	-4.59	56.85	74	-17.15	peak
2705	49.56	-4.59	44.97	54	-9.03	AVG
11717	55.78	4.84	60.62	74	-13.38	peak
11717	39.05	4.84	43.89	54	· -10.11	AVG

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

voi tiodi.						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	59.24	-4.59	54.65	74	-19.35	peak
2705	47.87	-4.59	43.28	54	-10.72	AVG
11717	52.63	4.84	57.47	74	-16.53	peak
11717	38.91	4.84	43.75	54	-10.25	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac40 Mode

All modes of operation were investigated and the worst-case of MIMO are reported. LOW CH 151

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	61.26	-4.59	56.67	68.2	-11.53	peak
11096	58.15	4.21	62.36	74	-11.64	peak
11096	36.73	4.21	40.94	54	-13.06	AVG

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	61.92	-4.59	57.33	68.2	-10.87	peak
11096	57.18	4.21	61.39	74	-12.61	peak
11096	39.02	4.21	43.23	54	-10.77	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH159

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotootor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
3172	58.36	-4.59	53.77	68.2	-14.43	peak
10523	52.88	4.21	57.09	68.2	-11.11	peak

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data War Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	57.74	-4.59	53.15	68.2	-15.05	peak
10523	51.56	4.21	55.77	68.2	-12.43	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac80 Mode

All modes of operation were investigated and the worst-case of MIMO are reported. CH 155

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	60.18	-4.59	55.59	68.2	-12.61	peak
11096	57.26	4.21	61.47	74	-12.53	peak
11096	36.72	4.21	40.93	54	-13.07	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	62.57	-4.59	57.98	68.2	-10.22	peak
11096	54.96	4.21	59.17	74	-14.83	peak
11096	37.32	4.21	41.53	54	-12.47	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = evel-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ax20 Mode All modes of operation were investigated and the worst-case of MIMO are reported. **LOW CH 149**

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. C. CONTESTIN
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	62.87	-4.59	58.28	68.2	-9.92	peak
11096	50.49	4.21	54.7	74	-19.3	peak
11096	38.06	4.21	42.27	54	-11.73	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
3368	61.28	-4.59	56.69	68.2	-11.51	peak
11096	56.35	4.21	60.56	74	-13.44	peak
11096	37.07	4.21	41.28	54	-12.72	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin =

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotoctor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	62.57	-4.59	57.98	68.2	-10.22	peak
10523	53.25	4.21	57.46	68.2	-10.74	peak

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	58.33	-4.59	53.74	68.2	-14.46	peak
10523	54.92	4.21	59.13	68.2	-9.07	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH165

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tyna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
2705	61.18	-4.59	56.59	74	-17.41	peak
2705	48.23	-4.59	43.64	54	-10.36	AVG
11717	55.09	4.84	59.93	74	-14.07	peak
11717	38.48	4.84	43.32	54	· -10.68	AVG

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	58.36	-4.59	53.77	74	-20.23	peak
2705	45.68	-4.59	41.09	54	-12.91	AVG
11717	52.71	4.84	57.55	74	-16.45	peak
11717	37.52	4.84	42.36	54	-11.64	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ax40 Mode
All modes of operation were investigated and the worst-case of MIMO are reported.

Horizontal:

LOW CH 151

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	60.23	-4.59	55.64	68.2	-12.56	peak
11096	59.35	4.21	63.56	74	-10.44	peak
11096	36.97	4.21	41.18	54	-12.82	AVG

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	63.88	-4.59	59.29	68.2	-8.91	peak
11096	55.36	4.21	59.57	74	-14.43	peak
11096	37.52	4.21	41.73	54	-12.27	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH159

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	62.78	-4.59	58.19	68.2	-10.01	peak
10523	53.22	4.21	57.43	68.2	-10.77	peak

Report No.: HK2412177766-5E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotactor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	59.25	-4.59	54.66	68.2	-13.54	peak
10523	50.97	4.21	55.18	68.2	-13.02	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ax80 Mode

All modes of operation were investigated and the worst-case of MIMO are reported. CH 155

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	60.28	-4.59	55.69	68.2	-12.51	peak
11096	57.17	4.21	61.38	74	-12.62	peak
11096	37.34	4.21	41.55	54	-12.45	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	62.96	-4.59	58.37	68.2	-9.83	peak
11096	55.72	4.21	59.93	74	-14.07	peak
11096	39.86	4.21	44.07	54	-9.93	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

C FIL

Report No.: HK2412177766-5E

4.8 Frequency Stability Measurement

4.8.1 Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)					
Test Method:	ANSI C63.10: 2013					
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.					
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply					
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.					
Test Result:	PASS THE WINTESTING WHITESTING WINTESTING					
Remark:	N/A					

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

AFICATION

Report No.: HK2412177766-5E

Test Result as follows:

Mode	Voltage (V)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
	40.8V	5744.987	-13	5824.971	-29
5.8G Band	48.0V	5745.014	14	5825.025	25
O HOM	55.2V	5745.007	7	5824.987	-13

Report No.: HK2412177766-5E

PROCESS.	District Control of the Control of t	D. * BUSICAL		Partition 1	PROCESS C
Mode	Temperature (°C)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
3	-30	5744.989	-11	5824.984	-16
HUAKTE	-20	5744.981	-19	5824.979	-21
	-10	5744.985	-15	5825.024	24
V TESTING	O HUAK	5745.013	13	5825.015	15
5.8G Band	10	5744.982	-18	5825.023	23
	20	5745.027	27	5824.985	-15
STING - MAKTESTI	30	5744.964	-36	5825.014	14
	40	5744.977	-23	5825.007	7
	50	5745.027	27	5825.012	12

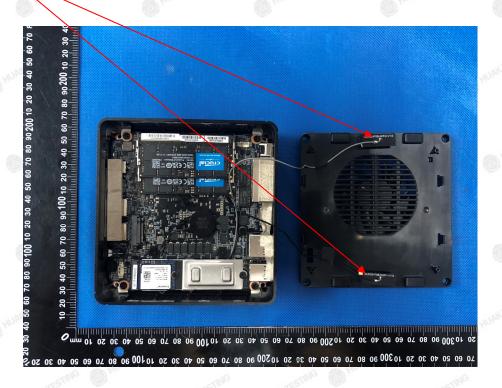
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.9 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.249, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Report No.: HK2412177766-5E


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is FPC antenna, need professional installation, not easy to remove. It conforms to the standard requirements. and the best case gain of the antenna is Antenna port 1: 2.17dBi and Antenna port 2: -3.69dBi.

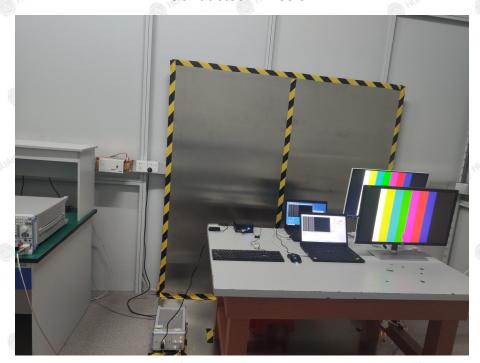
WIFI ANTENNA

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5. Photographs of Test Setup

Radiated Emission

Report No.: HK2412177766-5E



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

Report No.: HK2412177766-5E

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.