

Global United Technology Services Co., Ltd.

Report No.: GTS202206000036F02

TEST REPORT

Wyrestorm Technologies LLC **Applicant:**

23 Wood Rd, Round Lake, New York 12151, United States **Address of Applicant:**

Shen Zhen Proitav Technology Co., Ltd Manufacturer/Factory:

301-401, Building 16, Hejing Industrial Park, No.87, Hexiu West Address of

Road, Zhancheng Community, Fuhai St., Baoan District,

Shenzhen, China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: Video Bar

Model No.: APO-VX20-UC(VB10-A00)

Trade Mark: WyreStorm

FCC ID: 2A2CW-APO-VX20

FCC CFR Title 47 Part 15 Subpart E Section 15.407 **Applicable standards:**

Date of sample receipt: June 06, 2022

Date of Test: June 07, 2022-August 29, 2022

Date of report issue: August 29, 2022

PASS * Test Result:

In the configuration tested, the EUT complied with the standards specified above.

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	August 29, 2022	Original

Prepared By:	Tramlly	Date:	August 29, 2022
	Project Engineer		
Check By:	Labour on lund	Date:	August 29, 2022
	Reviewer		

3 Contents

			Page
1	CO	VER PAGE	1
2	VEE	RSION	
2			
3	CON	NTENTS	3
4	TES	ST SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	
5	GEN	NERAL INFORMATION	
Ĭ	5.1	GENERAL DESCRIPTION OF EUT	
	5.1	TEST MODE	
	5.3	TEST FACILITY	
	5.4	TEST LOCATION	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	DEVIATION FROM STANDARDS	6
6	TES	ST INSTRUMENTS LIST	7
7	TES	ST RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT:	9
	7.2	CONDUCTED EMISSIONS	
	7.3	EMISSION BANDWIDTH	13
	7.4	MAXIMUM CONDUCTED OUTPUT POWER	14
	7.5	Power Spectral Density	
	7.6	BAND EDGE	
	7.7	RADIATED EMISSION	
	7.8	FREQUENCY STABILITY	
8	TES	ST SETUP PHOTO	37
9	EUT	CONSTRUCTIONAL DETAILS	37

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203	PASS
AC Power Line Conducted Emission	FCC part 15.207	PASS
Emission Bandwidth	FCC part 15.407	PASS
Maximum Conducted Output Power	FCC part 15.407(a)(1)	PASS
Power Spectral Density	FCC part 15.407(a)(1)	PASS
Undesirable Emission	FCC part 15.407(b), 15.205/15.209	PASS
Radiated Emission	FCC part 15.205/15.209	PASS
Band Edge	FCC part 15.407(b)(1)	PASS
Frequency Stability	FCC part 15.407(g)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

Test Method: KDB 662911 D01 Multiple Transmitter Output v02r01

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz-30MHz	3.1dB	(1)
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	rtainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Video Bar	Video Bar				
Model No.:	APO-VX20-U	IC(VB10-A00)				
Serial No.:	WS16350000	WS1635000001				
Test sample(s) ID:	GTS2022060	000036-1				
Sample(s) Status:	Engineer san	nple				
Operation Frequency:	Band Mode Frequency Number of Range(MHz) channels					
	U-NII Band I	4				
Modulation technology:	OFDM					
Antenna Type:	Integral Anter	nna				
Antenna gain:	ANT 1: 2.34d	Bi				
	ANT 2: 0.78d	Bi				
Power supply:	Switch mode	power supply:				
	Model: S120-1A240500M2					
	Input: AC 100	Input: AC 100-240V, 50/60Hz, 2.0A				
	Output: DC 2	4.0V, 5.0A, 120.0W				

Channel list for 802.11ac(VHT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz

5.2 Test mode

Transmitting mode Keep the EUT in transmitting with modulation..

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate		
802.11ac(VHT20)	6/6.5 Mbps		

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, sBaoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number
Lenovo	Notebook PC	E40-80	N/A

5.6 Deviation from Standards

None.

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 22, 2022	April 21, 2023		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 21, 2022	March 20, 2023		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	April 22, 2022	April 21, 2023		
9	Coaxial Cable	GTS	N/A	GTS211	April 22, 2022	April 21, 2023		
10	Coaxial cable	GTS	N/A	GTS210	April 22, 2022	April 21, 2023		
11	Coaxial Cable	GTS	N/A	GTS212	April 22, 2022	April 21, 2023		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 22, 2022	April 21, 2023		
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023		
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023		
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023		
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023		
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 22, 2022	April 21, 2023		
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023		
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 30, 2021	Nov. 29, 2022		
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 22, 2022	April 21, 2023		
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17, 2021	Oct. 16, 2022		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17, 2021	Oct. 16, 2022		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17, 2021	Oct. 16, 2022		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023		
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 22, 2022	April 21, 2023		

Con	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 14, 2022	May 13, 2025			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 24, 2022	April 23, 2023			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 23, 2022	June 22, 2023			
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	April 22, 2022	April 21, 2023			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	JINCHUANG	GSP-8A	GTS639	April 28, 2022	April 27, 2023			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 15, 2022	April 14, 2023			
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 22, 2022	April 21, 2023			
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 2023			

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 22, 2022	April 21, 2023			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 22, 2022	April 21, 2023			
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 22, 2022	April 21, 2023			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 22, 2022	April 21, 2023			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 22, 2022	April 21, 2023			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 22, 2022	April 21, 2023			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 22, 2022	April 21, 2023			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 22, 2022	April 21, 2023			

Ge	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 25, 2022	April 24, 2023			
2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023			

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement:	FCC Part15 C Section 15.203
-----------------------	-----------------------------

15.203 requirement:

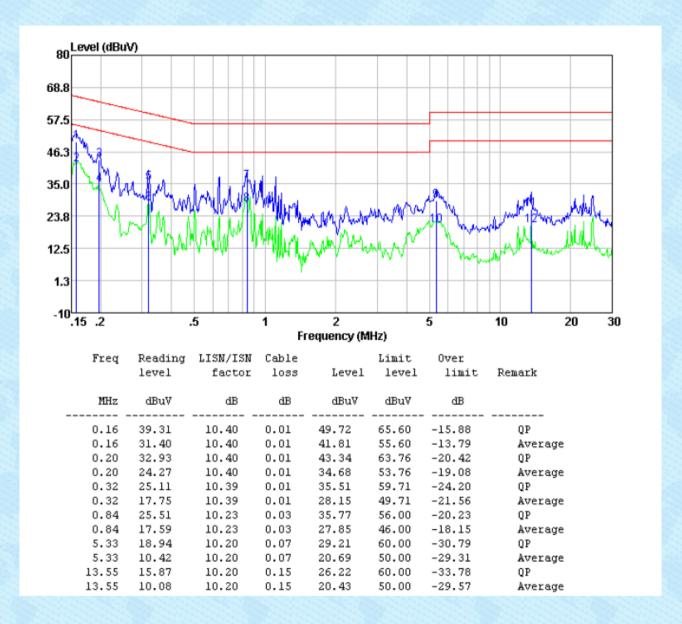
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

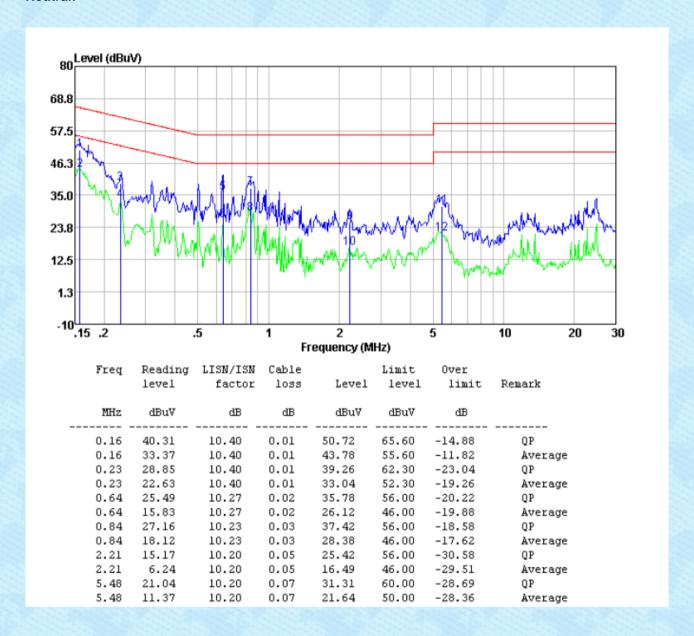
The antenna is integral antenna, reference to the appendix II for details.

7.2 Conducted Emissions

Total Dana Sanarat	F00 P	Charles and the second						
Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10							
Test Frequency Range:		150KHz to 30MHz						
Class / Severity:	Class B							
Receiver setup:	RBW=9KHz, VBW=30KHz		(15) 0					
Limit:	Frequency range (MHz)		(dBuV)					
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
Test procedure	* Decreases with the logarithr The E.U.T and simulators are							
	impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.							
Test setup:	Refer	ence Plane						
	LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test							
	AUX Equipment E. Test table/Insulation pl	U.T EMI Receiver						
Test Instruments:	AUX Equipment Test table/Insulation pl Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilizati	U.T EMI Receiver						
	AUX Equipment Test table/Insulation pl Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilizati Test table height=0.8m	U.T EMI Receiver						
Test Instruments: Test mode: Test environment:	AUX Equipment Test table/Insulation pl Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilizati Test table height=0.8m Refer to section 5.10 for details	U.T EMI Receiver						
Test mode:	AUX Equipment Test table/Insulation pl Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilizatir Test table height=0.8m Refer to section 5.10 for details	U.T EMI Receiver	Iter — AC power					

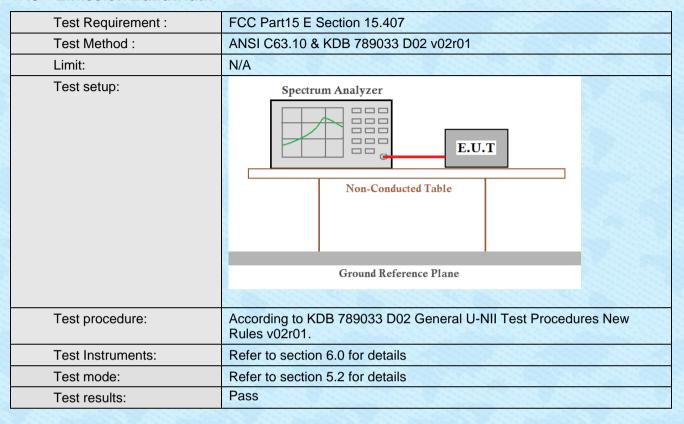

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:


All antennas have test, only the worst case ANT 1 report.

Line:

Neutral:



Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Emission Bandwidth

Measurement Data: The detailed test data see Appendix for WIFI_5G.

7.4 Maximum Conducted Output Power

Test Requirement	FCC Part15 E Section	15.407			
Test Method :	ANSI C63.10 & KDB 789033 D02 v02r01				
FCC Limit:	Frequency band (MHz)	Limit			
	5150-5250	≤1W(30dBm) for master device			
		≤250Mw(23.98dBm) for client device ≤250Mw(23.98dBm) for client device or			
	5250-5350	11dBm+10logB*			
	5470-5725	≤250Mw(23.98dBm) for client device or 11dBm+10logB*			
		s the 26Db emission bandwidth in MHz.			
		ucted output power must be measured over any s transmission using instrumentation calibrated in			
	terms of an rms-equi	valent voltage.			
IC Limit:		shall not exceed 200 mW or 10 + 10 log10B, dBm, ss. B is the 99% emission bandwidth in megahertz			
Test setup:	Power Meter				
		E.U.T			
	Non-Conduct	ed Table			
	Ground Refere	nce Plane			
Test procedure:	Measurement using	an RF average power meter			
	meter with a t	s may be performed using a wideband RF power hermocouple detector or equivalent if all of the ed below are satisfied			
	a) The EUT is with a constar	s configured to transmit continuously or to transmit nt duty cycle.			
		s when the EUT is transmitting, it must be tits maximum power control level.			
		ation period of the power meter exceeds the od of the transmitted signal by at least a factor of			
		ter does not transmit continuously, measure the of the transmitter output signal as described in			
		average power of the transmitter. This is an average over both the on and off periods of r.			
		asurement in dBm by adding 10 log(1/x) where x is (e.g., 10log(1/0.25) if the duty cycle is 25 percent).			
Test Instruments:	Refer to section 6.0 fo	or details			
Test mode:	Refer to section 5.2 fo	or details			
Test results:	Pass				

Measurement Data: The detailed test data see Appendix for WIFI_5G.

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.40)7					
Test Method :	ANSI C63.10 & KDB 789033 D02 v02r01						
FCC Limit:	Frequency band (MHz)	Limit					
	5150-5250	≤17dBm in 1MHz for master device					
		≤11dBm in 1MHz for client device					
	5250-5350	≤11dBm in 1MHz for client device					
	5470-5725	≤11dBm in 1MHz for client device					
		wer spectral density is measured as a ect connection of a calibrated test instrument it.					
IC Limit:	e.i.r.p. spectral density s band.	hall not exceed 10 dBm in any 1.0 MHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test procedure:	being tested by following measuring maximum co analyzer or EMI receive SA-2, SA-3, or alternativincluding, the step labeled. 2) Use the peak search furthe spectrum. 3) Make the following adjust applicable: a) If Method SA-2 or SA where x is the duty cycle b) If Method SA-3 Alternused in step E)2)g)(viii),	er spectrum for the EUT operating mode g the instructions in section E)2) for inducted output power using a spectrum r: select the appropriate test method (SA-1, wes to each) and apply it up to, but not ed, "Compute power". Inction on the instrument to find the peak of estments to the peak value of the spectrum, if e.2 Alternative was used, add 10 log(1/x), e, to the peak of the spectrum. Inative was used and the linear mode was add 1 dB to the final result to compensate en linear averaging and power averaging.					
	4) The result is the PSD.	en intear averaging and power averaging.					
Test Instruments:							
Test Instruments: Test mode:	4) The result is the PSD.	ils					

Measurement Data: The detailed test data see Appendix for WIFI_5G.

7.6 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 and 15.205						
Test Method:	ANSI C63.10						
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver setup:	Frequency 30MHz-1GHz Above 1GHz	Detector Quasi-peak Peak AV	RBW 120KHz 1MHz 1MHz	VBW 300KHz 3MHz 3MHz	Remark Quasi-peak Value Peak Value Average Value		
Limit:	Frequency Limit (dBuV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value Above 1GHz 68.2 Peak Value Undesirable emission limits: (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band. (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz. a. The EUT was placed on the top of a rotating table 1.5 m above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was past 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak valu						
Test Procedure:							

Test setup:	For radiated emissions above 1GHz
	Tum Table of the T
	Receiver-Preamplifier-
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.
- The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows: E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

Above 1GHz

ANT 1:

Worse case mode:		802.11ac(VHT20)		Test Frequency:		5180MHz	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
5150	50.05	-3.63	45.56	68.20	-22.64	peak	H
5150	45.88	-3.63	41.71	54.00	-12.29	AVG	Н
5150	51.89	-3.63	47.87	68.20	-20.33	peak	V
5150	45.14	-3.63	40.79	54.00	-13.21	AVG	V

Worse case mode:		802.11ac(VHT20)		Test Frequency:		5240MHz	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
5350	48.76	-3.59	45.17	68.20	-23.03	peak	Н
5350	45.33	-3.59	41.74	54.00	-12.26	AVG	H
5350	50.23	-3.59	46.64	68.20	-21.56	peak	V
5350	43.93	-3.59	40.34	54.00	-13.66	AVG	V

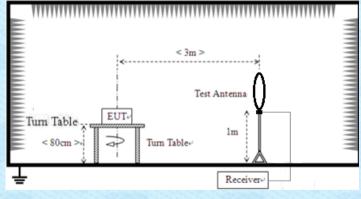
ANT 2:

Worse case mode:		802.11ac(VHT20)		Test Frequency:		5180MHz	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150	49.76	-3.63	46.13	68.20	-22.07	peak	Н
5150	45.78	-3.63	42.15	54.00	-11.85	AVG	Н
5150	52.47	-3.63	48.84	68.20	-19.36	peak	V
5150	45.07	-3.63	41.44	54.00	-12.56	AVG	V

	Worse case mode:		802.11ac(VHT20)		Test Frequency:		5240MHz	
0.000	Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
	5350	48.39	-3.59	44.80	68.20	-23.40	peak	Н
	5350	45.78	-3.59	42.19	54.00	-11.81	AVG	Н
	5350	50.02	-3.59	46.43	68.20	-21.77	peak	V
ę,	5350	43.84	-3.59	40.25	54.00	-13.75	AVG	V

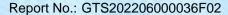
7.7 Radiated Emission

Test Requirement :	FCC Part15 C Section 15.209 and 15.205						
Test Method :	ANSI C63.10						
	9kHz to 40GHz						
Test Frequency Range:							
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver setup:	Frequency 9kHz-150KHz	Detector Quasi-peak	RBW 200Hz	VBW 1kHz	Value Quasi-peak Value		
	150kHz-30MHz	Quasi-peak Quasi-peak	9kHz	30kHz	Quasi-peak Value		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value		
		Peak	1MHz	3MHz	Peak Value		
	Above 1GHz	AV	1MHz	3MHz	Average Value		
FCC Limit:	Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters) 0.009-0.490 2400/F(kHz) 300 1.705-30.0 30 30-88 100** 88-216 150** 216-960 200** Above 960 500 3 The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.						
Test Procedure:	1GHz and 1. meter camber position of the position of the EUT was antenna, where an antenna town 3. The antennation the ground the gr	f the EUT. procedure as the est procedure: procedure as the est procedure: procedure as the est procedure: procedure as the est procedure; procedure as the est and the rotable table and vertical and vertical easurement. Procedure as the est procedure as the est procedure: procedure as test setup of the est procedure as test setup of the est procedure.	top of a rot ove 1GHz) as rotated 36 tion. away from ed on the to d from one e maximum polarization on, the EUT was turned as set to Pelaximum HoEUT in peaking could be reported. Ovould be relie method as graph above	ating table above the estable above the estable above the estable are to forward and to heights for the are to heights for the estable above as stopped and the estable above as specified estable above as specified estable above as specified estable above above as specified estable above as specified estable above as the estable above as specified estable above above above as specified estable above as specified estable above as the estable above	(0.8m for below ground at a 3 to determine the ence-receiving able-height ur meters above the field strength. Interna are set to ged to its worst from 1 meter to 4 to grees to 360. Function and the peak the emissions that by one using and then reported		

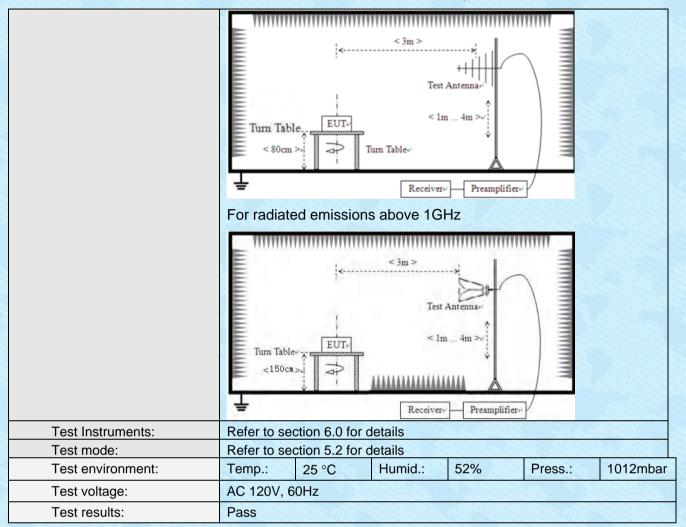

use as declared by the provider.

- The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
- 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) where:

Pg is the generator output power into the substitution antenna.


Test setup:

For radiated emissions from 9kHz to 30MHz

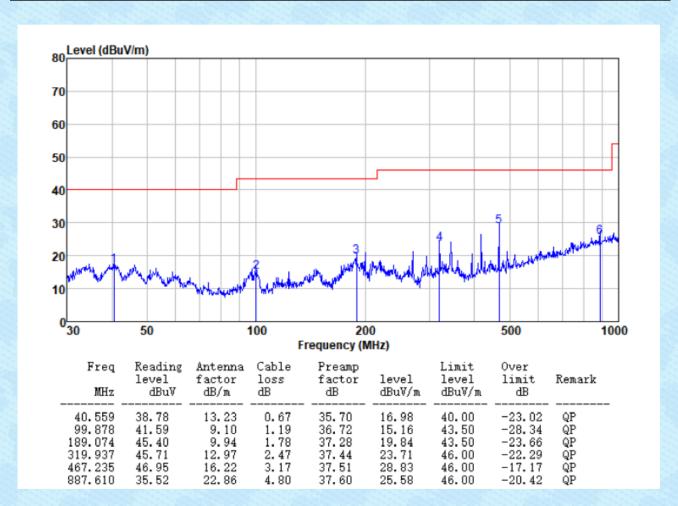


For radiated emissions from 30MHz to1GHz

Page 21 of 37

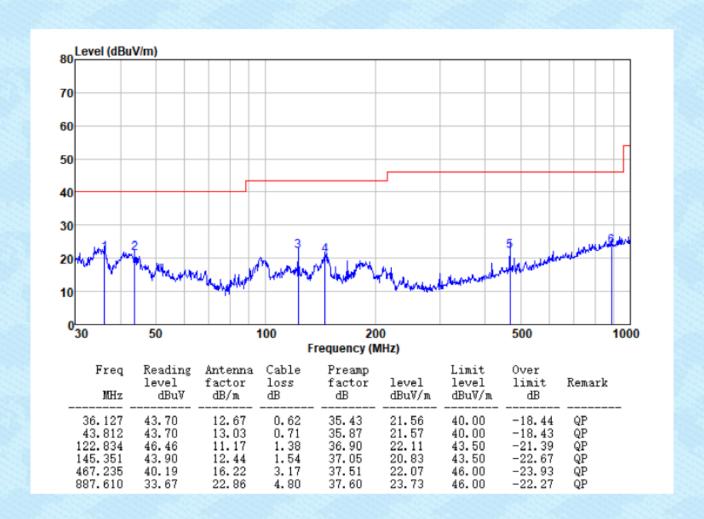
Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

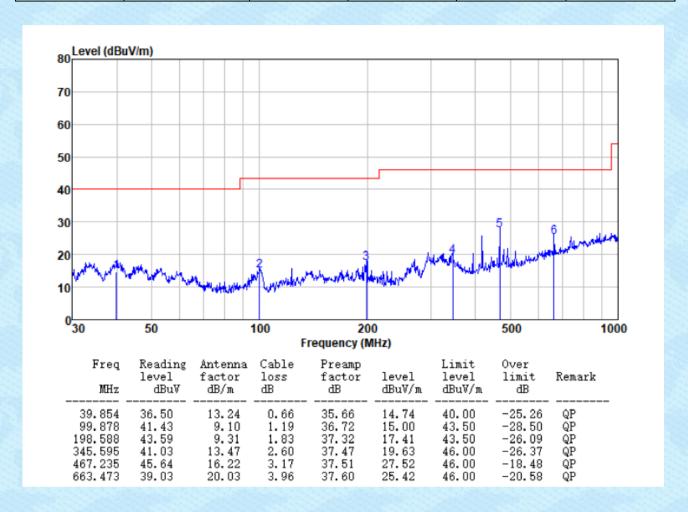

Measurement Data:

9 kHz ~ 30 MHz

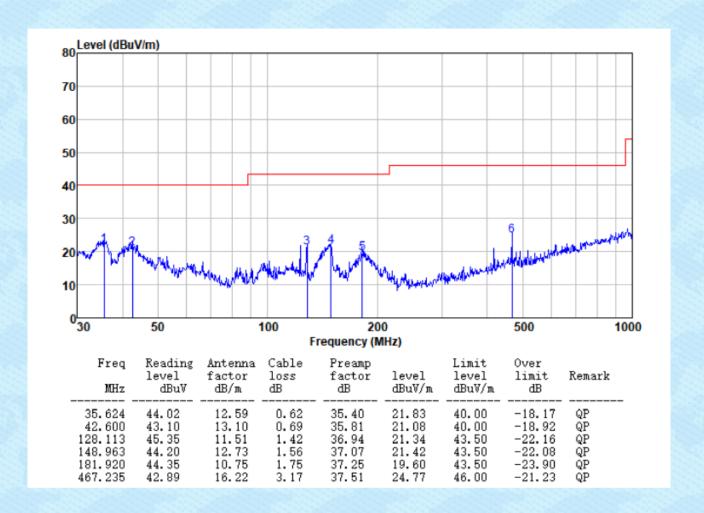
The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


ANT 1: 30MHz~ 1GH

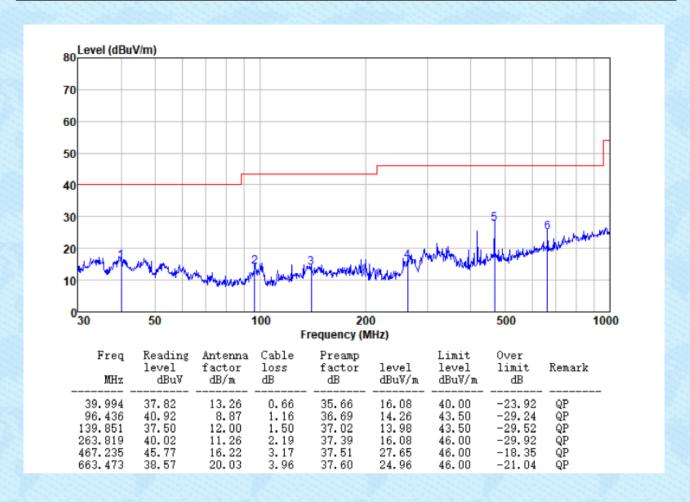
Test mode:	802.11ac(VHT20)	Test channel:	Lowest	Polarziation:	Horizontal



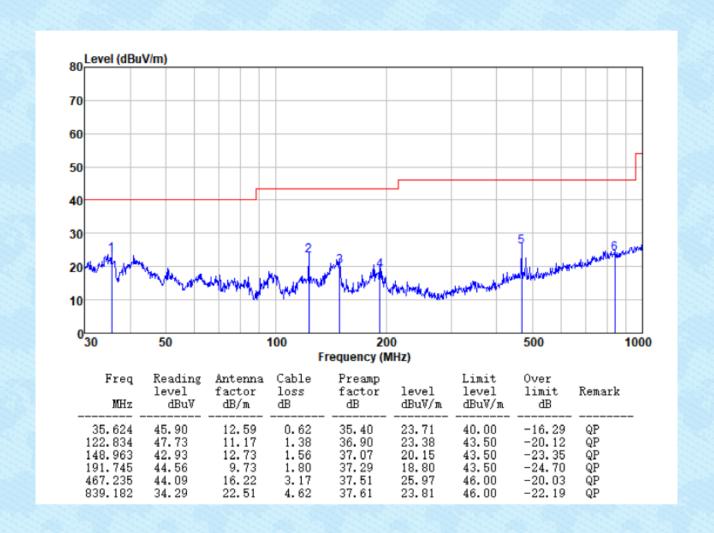
Test mode:	802.11ac(VHT20)	Test channel:	Lowest	Polarziation:	Vertical



Test mode:	802.11ac(VHT20)	Test channel:	Middle	Polarziation:	Horizontal

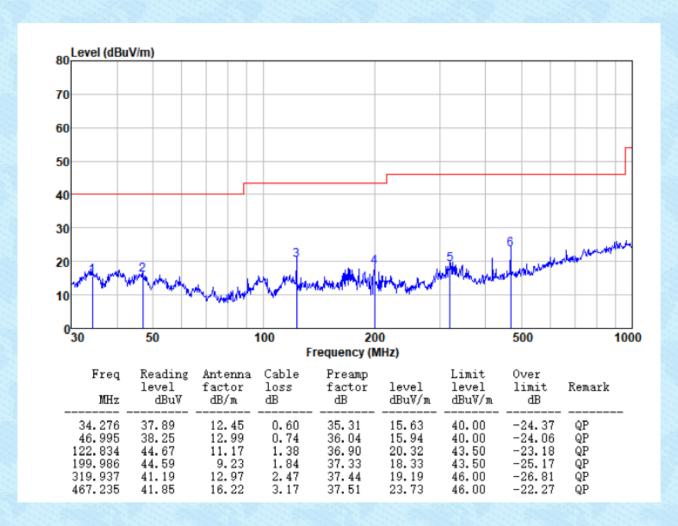


Test mode:	802.11ac(VHT20)	Test channel:	Middle	Polarziation:	Vertical

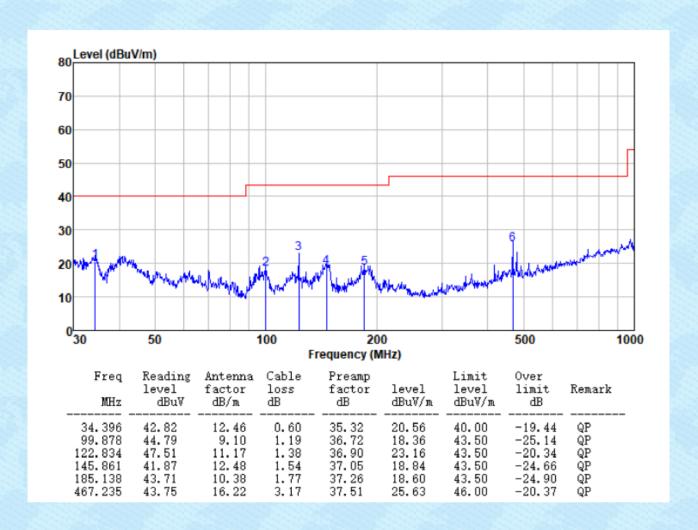


						ı
Test mode:	802.11ac(VHT20)	Test channel:	Highest	Polarziation:	Horizontal	

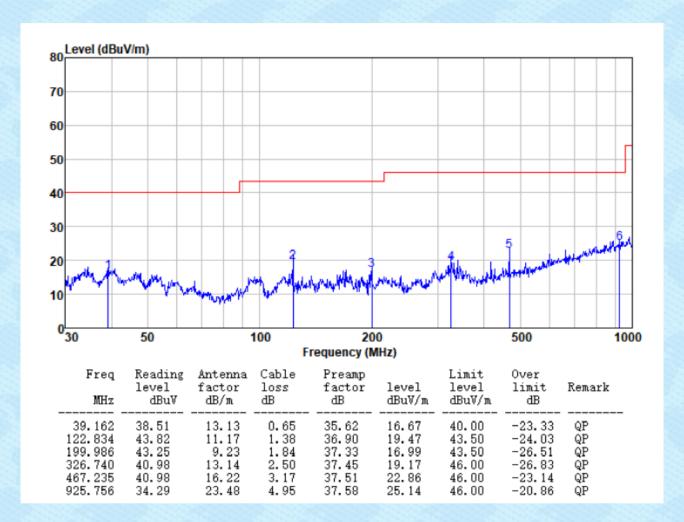
						i
Test mode:	802.11ac(VHT20)	Test channel:	Highest	Polarziation:	Vertical	



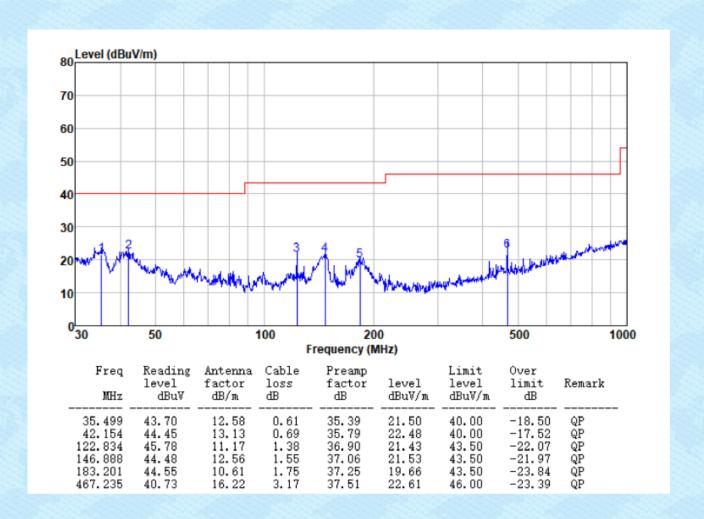
ANT 2:


30MHz~1GHz

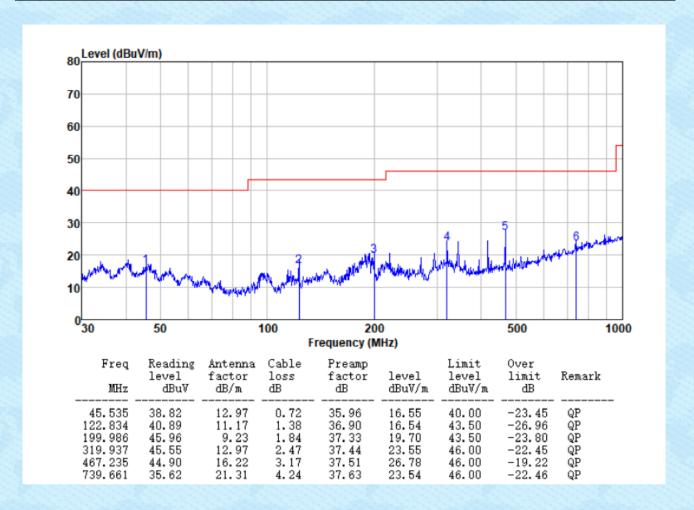
Test mode: 802.11ac(VHT20)	Test channel: Lo	Lowest	Polarziation:	Horizontal
----------------------------	------------------	--------	---------------	------------



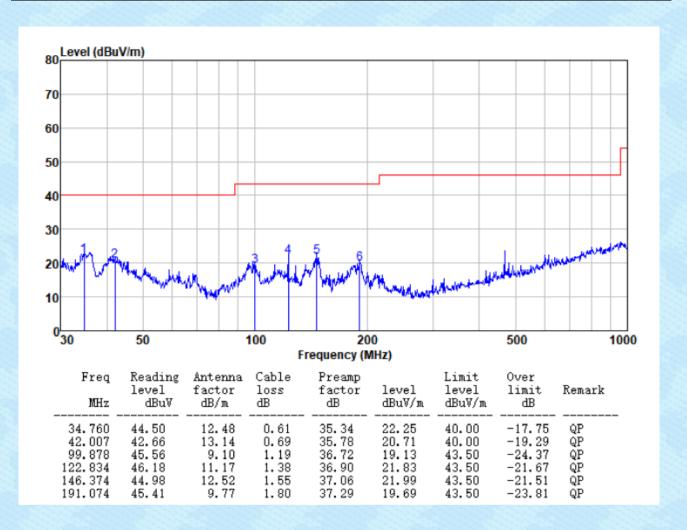
Test mode: 802.11ac(VHT2) Test channel:	Lowest	Polarziation:	Vertical
--------------------------	-----------------	--------	---------------	----------



Test mode: 802.11ac(VHT20)	Test channel:	Middle	Polarziation:	Horizontal
----------------------------	---------------	--------	---------------	------------



Test mode:	802.11ac(VHT20)	Test channel:	Middle	Polarziation:	Vertical



Test mode:	802.11ac(VHT20)	Test channel:	Highest	Polarziation:	Horizontal
Tost mode.	002.11ac(V11120)	rest charmer.	riigiicst	i diaiziation.	Horizontal

Test mode:	802.11ac(VHT20)	Test channel:	Highest	Polarziation:	Vertical

Above 1GHz

ANT 1:

	802.11ac(VHT20) 5180MHz					PK		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360	28.13	38.96	8.27	35.64	39.72	68.20	-28.48	Vertical
15540	29.21	38.40	10.57	35.35	42.83	68.20	-25.37	Vertical
10360	29.12	38.96	8.27	35.64	40.71	68.20	-27.49	Horizontal
15540	27.77	38.40	10.57	35.35	41.39	68.20	-26.81	Horizontal
	802.11ac(VHT20) 5180MHz					AV		
10360	18.90	38.96	8.27	35.64	30.49	54.00	-23.51	Vertical
15540	17.64	38.40	10.57	35.35	31.26	54.00	-22.74	Vertical
10360	19.56	38.96	8.27	35.64	31.15	54.00	-22.85	Horizontal
15540	22.57	38.40	10.57	35.35	36.19	54.00	-17.81	Horizontal

	802.11ac(VHT20) 5200MHz					PK		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	29.27	39.01	8.29	35.67	40.90	68.20	-27.30	Vertical
15600	29.21	38.30	10.62	35.36	42.77	68.20	-25.43	Vertical
10400	25.16	39.01	8.29	35.67	36.79	68.20	-31.41	Horizontal
15600	26.19	38.30	10.62	35.36	39.75	68.20	-28.45	Horizontal
8	302.11ac(V	HT20) 5200N	ЛHz			AV		
10400	20.94	39.01	8.29	35.67	32.57	54.00	-21.43	Vertical
15600	19.06	38.30	10.62	35.36	32.62	54.00	-21.38	Vertical
10400	19.39	39.01	8.29	35.67	31.02	54.00	-22.98	Horizontal
15600	20.71	38.30	10.62	35.36	34.27	54.00	-19.73	Horizontal

	802.11ac(VHT20) 5240MHz					PK		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	30.25	39.15	8.32	35.78	41.94	68.20	-26.26	Vertical
15720	27.69	38.00	10.72	35.37	41.04	68.20	-27.16	Vertical
10480	30.02	39.15	8.32	35.78	41.71	68.20	-26.49	Horizontal
15720	29.41	38.00	10.72	35.37	42.76	68.20	-25.44	Horizontal
	302.11ac(V	HT20) 5240N	ИНz			AV		
10480	20.09	39.15	8.32	35.78	31.78	54.00	-22.22	Vertical
15720	22.19	38.00	10.72	35.37	35.54	54.00	-18.46	Vertical
10480	17.41	39.15	8.32	35.78	29.10	54.00	-24.90	Horizontal
15720	19.43	38.00	10.72	35.37	32.78	54.00	-21.22	Horizontal

ANT 2:

	802.11ac(VHT20) 5180MHz				/HT20) 5180MHz PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360	27.58	38.96	8.27	35.64	39.17	68.20	-29.03	Vertical	
15540	29.44	38.40	10.57	35.35	43.06	68.20	-25.14	Vertical	
10360	29.21	38.96	8.27	35.64	40.80	68.20	-27.40	Horizontal	
15540	27.35	38.40	10.57	35.35	40.97	68.20	-27.23	Horizontal	
	802.11ac(V	HT20) 5180N	ЛНz			AV			
10360	19.19	38.96	8.27	35.64	30.78	54.00	-23.22	Vertical	
15540	17.76	38.40	10.57	35.35	31.38	54.00	-22.62	Vertical	
10360	19.12	38.96	8.27	35.64	30.71	54.00	-23.29	Horizontal	
15540	22.78	38.40	10.57	35.35	36.40	54.00	-17.60	Horizontal	

1	802.11ac(VHT20) 5200MHz					PK		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	29.76	39.01	8.29	35.67	41.39	68.20	-26.81	Vertical
15600	29.07	38.30	10.62	35.36	42.63	68.20	-25.57	Vertical
10400	25.09	39.01	8.29	35.67	36.72	68.20	-31.48	Horizontal
15600	26.57	38.30	10.62	35.36	40.13	68.20	-28.07	Horizontal
	802.11ac(V	HT20) 5200N	ИНz			AV		
10400	20.65	39.01	8.29	35.67	32.28	54.00	-21.72	Vertical
15600	18.94	38.30	10.62	35.36	32.50	54.00	-21.50	Vertical
10400	19.83	39.01	8.29	35.67	31.46	54.00	-22.54	Horizontal
15600	20.58	38.30	10.62	35.36	34.14	54.00	-19.86	Horizontal

	802.11ac(VHT20) 5240MHz					PK		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	30.20	39.15	8.32	35.78	41.89	68.20	-26.31	Vertical
15720	28.05	38.00	10.72	35.37	41.40	68.20	-26.80	Vertical
10480	29.77	39.15	8.32	35.78	41.46	68.20	-26.74	Horizontal
15720	29.29	38.00	10.72	35.37	42.64	68.20	-25.56	Horizontal
	802.11ac(V	HT20) 5240N	ЛHz			AV		
10480	20.47	39.15	8.32	35.78	32.16	54.00	-21.84	Vertical
15720	22.03	38.00	10.72	35.37	35.38	54.00	-18.62	Vertical
10480	17.32	39.15	8.32	35.78	29.01	54.00	-24.99	Horizontal
15720	19.72	38.00	10.72	35.37	33.07	54.00	-20.93	Horizontal

Notes:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. Test result margin more than 20dB under PK limit, then average measurement needn't be performed.

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)
Test Method:	ANSI C63.10, FCC Part 2.1055
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data: The detailed test data see Appendix for WIFI_5G.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---END---