

RF Test Report

For

Applicant Name:

Shenzhen Xiang Xiang Yu Technology Co.,Ltd

Address:

Address:

EUT Name:

Brand Name:

Workshop 301, No. 6, Qinhui Road, Gushu Community,Xixiang Subdistrict,Baoan, Shenzhen, 518126 China Bluetooth wireless stereo headset / XY-17

Model Number: XY-17 Series Model Number: XY-18, XY-19, Y40, Y20

Issued By

Company Name:

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: Test Standards: BTF230807R01101 47 CFR Part 15.247

Test Conclusion: FCC ID: Test Date: Date of Issue: Pass 2AXCT-XY-17 2023-08-01 to 2023-08-15 2023-08-16

Prepared By:

Date:

Approved By:

Date:

hris C (Shenzk Chris Liu / Project Engineer 2023-08-16 Ryan.CJ / EMC Manager

2023-08-16

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 1 of 79

Test Report Number: BTF230807R01001

Revision History				
Version	Issue Date	Revisions Content		
R_V0	2023-08-16	Original		
			1.00	

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 79BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Table of Contents

1	INTR	ODUCTION	5
	1.1	Identification of Testing Laboratory	
	1.2	Identification of the Responsible Testing Location	
	1.3	Announcement	
2	PRO	DUCT INFORMATION	
	2.1	Application Information	
	2.2	Manufacturer Information	
	2.3 2.4	Factory Information General Description of Equipment under Test (EUT)	0 6
	2.4	Technical Information	
3		MARY OF TEST RESULTS	
	3.1	Test Standards	
	3.2	Uncertainty of Test	
	3.3	Summary of Test Result	
4	TEST	۲ CONFIGURATION	9
	4.1	Test Equipment List	9
	4.2	Test Auxiliary Equipment	
	4.3	Test Modes	
5	EVAL	LUATION RESULTS (EVALUATION)	15
	5.1	Antenna requirement	15
		5.1.1 Conclusion:	15
6	RAD	IO SPECTRUM MATTER TEST RESULTS (RF)	16
	6.1	Conducted Emission at AC power line	16
		6.1.1 E.U.T. Operation:	
		6.1.2 Test Setup Diagram:	
		6.1.3 Test Data:	
	6.2	Occupied Bandwidth	
		6.2.1 E.U.T. Operation:6.2.2 Test Setup Diagram:	
		6.2.3 Test Data:	
	6.3	Maximum Conducted Output Power	
	0.0	6.3.1 E.U.T. Operation:	
		6.3.2 Test Setup Diagram:	
		6.3.3 Test Data:	22
	6.4	Channel Separation	23
		6.4.1 E.U.T. Operation:	
		6.4.2 Test Setup Diagram:	
		6.4.3 Test Data:	
	6.5	Number of Hopping Frequencies	
		6.5.1 E.U.T. Operation:6.5.2 Test Setup Diagram:	
		6.5.3 Test Data:	
	6.6	Dwell Time	
	010	6.6.1 E.U.T. Operation:	
		6.6.2 Test Setup Diagram:	
		6.6.3 Test Data:	28
	6.7	Emissions in non-restricted frequency bands	29

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 3 of 79BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

7 8

Test Report Number: BTF230807R01001

		6.7.1 E.U.T. Operation:	
		6.7.2 Test Setup Diagram:	
		6.7.3 Test Data:	
	6.8	Band edge emissions (Radiated)	
		6.8.1 E.U.T. Operation:	
		6.8.2 Test Setup Diagram:	
		6.8.3 Test Data:	
	6.9	Emissions in restricted frequency bands (below 1GHz)	
		6.9.1 E.U.T. Operation:	
		6.9.2 Test Setup Diagram:	
		6.9.3 Test Data (Between 9KHz – 30 MHz):	
		6.9.4 Test Data (Between 30MHz – 1GHz):	
	6.10	Emissions in restricted frequency bands (above 1GHz)	
		6.10.1 E.U.T. Operation:	
		6.10.2 Test Setup Diagram:	
		6.10.3 Test Data:	
7	TEST	T SETUP PHOTOS	
8		CONSTRUCTIONAL DETAILS (EUT PHOTOS)	
APPI			

1 Introduction

1.1 Identification of Testing Laboratory

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.	
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Ta Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number: +86-0755-23146130	
Fax Number: +86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.		
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China		
Phone Number:	+86-0755-23146130		
Fax Number:	+86-0755-23146130		
FCC Registration Number:	518915		
Designation Number:	CN1330		

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Product Information 2

Application Information 2.1

Company Name: Shenzhen Xiang Xiang Yu Technology Co.,Ltd	
Address:	Workshop 301, No. 6, Qinhui Road, Gushu Community,Xixiang Subdistrict,Baoan, Shenzhen, 518126 China

2.2 Manufacturer Information

Company Name:	Shenzhen Xiang Xiang Yu Technology Co.,Ltd
Address:	Workshop 301, No. 6, Qinhui Road, Gushu Community,Xixiang Subdistrict,Baoan, Shenzhen, 518126 China

Factory Information 2.3

Company Name: Shenzhen Xiang Xiang Yu Technology Co.,Ltd	
Address:	Workshop 301, No. 6, Qinhui Road, Gushu Community,Xixiang Subdistrict,Baoan, Shenzhen, 518126 China

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Bluetooth wireless stereo headset
Test Model Number:	XY-17
Series Model Number: XY-18, XY-19, Y40, Y20	
Model Different .:	These model names, color of appearance and charging case are different, but the circuit and the electronic construction are the same from the main model, declared by the manufacturer.
Hardware Version: DXC-T8445_AD6973D-V2.0	
Software Version: BT5.3	

Technical Information 2.5

Power Supply:	DC 3.7V by battery, USB 5V charging
Power Adaptor:	N/A
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	79
Channel Separation:	1MHz
Modulation Type:	GFSK, π/4 DQPSK
Antenna Type:	SMD ANT
Antenna Gain [#] :	2.7dBi

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MH
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MH
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MH
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MH
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MH
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MH
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MH
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MH:
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MH
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MH:
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MH
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MH
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MH
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: 47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

3.2 Uncertainty of Test

Item	Measurement Uncertainty				
Conducted Emission (150 kHz-30 MHz)	±2.64dB				
The following measurement uncertainty levels have been estimated for tests performed on the EUT as					
specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately					

3.3 Summary of Test Result

the 95% confidence level using a coverage factor of k=2

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15.247	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.215(c)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
Emissions in restricted frequency bands (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d)	Pass

Test Configuration 4

Test Equipment List 4.1

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23		
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23		

Occupied Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Maximum Conducted Output Power						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

Channel Separation					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 9 of 79

Test Report Number: BTF230807R01001

RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Number of Hopping Frequencies						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

Dwell Time					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 7BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Emissions in non-restricted frequency bands					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Band edge emissions	(Radiated)				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 11 of 7BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Emissions in restricted frequency bands (below 1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23	
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27	
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23	
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	1	/	
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23	
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21	
EZ_EMC	Frad	FA-03A2 RE+	/	/	/	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27	
Loop Antenna	SCHWARZBECK	FMZB1519B	00191	2022-06-12	2024-06-11	
Electric and Magnetic Field Analyzer	Narda	EHP-200A	180ZX11001	2023-04-06	2024-04-05	

Emissions in restricted frequency bands (above 1GHz)								
Equipment Manufacturer		Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent UF1-SMAS 0m		21101566	2022-11-24	2023-11-23			
RE Cable REBES Talent		UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	RE Cable REBES Talent		21101568	2022-11-24	2023-11-23			
RE Cable	RE Cable REBES Talent		21101576	2022-11-24	2023-11-23			
RE Cable REBES Talent		UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23			
POSITIONAL CONTROLLERSKETHorn AntennaSCHWARZBECKEMI TEST RECEIVERROHDE&SCHWA RZ		PCI-GPIB	/	1	/			
		BBHA9170	01157	2021-11-28	2023-11-27			
		ESCI7	101032	2022-11-24	2023-11-23			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 12 of 7BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230807R01001

SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 13 of 79BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

4.2 Test Auxiliary Equipment

Title	Manufacturer	Model No.	Serial No.
Adapter	Huawei	HW-100225C00	/

4.3 Test Modes

No.	Test Modes	Description
TM1	TX-GFSK (Non-Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
TM2	TX-Pi/4DQPSK (Non-Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.
TM3	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
TM4	TX-Pi/4DQPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

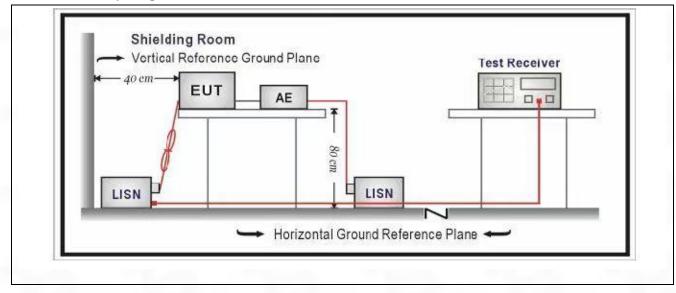
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

5.1.1 Conclusion:

The antenna is SMD antenna, the best case gain of the antennas is 2.7dBi, reference to the Internal Photos for details

6 Radio Spectrum Matter Test Results (RF)

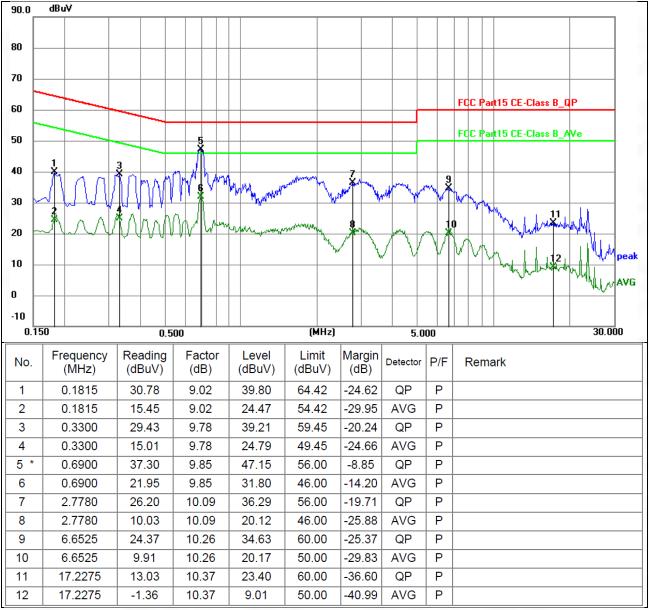

6.1 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b that is designed to be connected to frequency voltage that is conducte or frequencies, within the band 150 the following table, as measured u stabilization network (LISN).	o the public utility (AC) po d back onto the AC powe 0 kHz to 30 MHz, shall no	ower line, the radio er line on any frequency ot exceed the limits in	
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices			
	Frequency of emission (MHz)	Conducted limit (dBµV)		
		Quasi-peak	Average	
Test Limit:	0.15-0.5	66 to 56*	56 to 46*	
i est limit:	0.5-5	56	46	
	5-30	60	50	
	*Decreases with the logarithm of the	ne frequency.		

6.1.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.3 °C
Humidity:	58.7 %
Atmospheric Pressure:	1010 mbar

6.1.2 Test Setup Diagram:



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

6.1.3 Test Data:

Note: All the mode have been tested, and only the worst case of GFSK 2402MHz mode are in the report TM1 / Line: Line / Band: 2.4G / BW: 1 / CH: L

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 3.Mesurement Level = Reading level + Correct Factor, Margin = Mesurement Level – Limit.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

90.0	dBuV								
80 -									
70 -									
60 -									FCC Part15 CE-Class B_QP
50 -									FCC Part15 CE-Class B_AVe
40 -			, i i i i i i i i i i i i i i i i i i i						
30 🛆	ДVЛ	VANM	m how	Malanman	month the		NH NA	9	
20 =	1 m	Ann	A.A.	how we have a second	۴ _	ρψr \ 	heu. Mea	W	
10					and the second s	-marken y	\mathcal{N}		Mym. When My My pea
									" V Tolan halada Marsave
-10									
0.15	0	0.5	00		(MHz)		5.0	oo	30.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1860	30.88	9.39	40.27	64.21	-23.94	QP	Р	
2	0.1860	15.38	9.39	24.77	54.21	-29.44	AVG	P	
3	0.3209	28.58	9.55	38.13	59.68	-21.55	QP	P	
4	0.3209	14.29	9.55	23.84	49.68	-25.84	AVG	P	
5 *	0.6990	33.37	9.62	42.99	56.00	-13.01	QP	P	
6	0.6990	16.45	9.62	26.07	46.00	-19.93	AVG	P	
7	1.9725	24.89	10.04	34.93	56.00	-21.07	QP	P	
8	1.9725	6.64	10.04	16.68	46.00	-29.32	AVG	P	
9	5.6895	19.79	10.23	30.02	60.00	-29.98	QP	P	
10	5.6895	4.99	10.23	15.22	50.00	-34.78	AVG	P	
11	11.0670	9.97	10.19	20.16	60.00	-39.84	QP	Р	
12	11.0670	-4.66	10.19	5.53	50.00	-44.47	AVG	P	

TM1 / Line: Neutral / Band: 2.4G / BW: 1 / CH: L

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

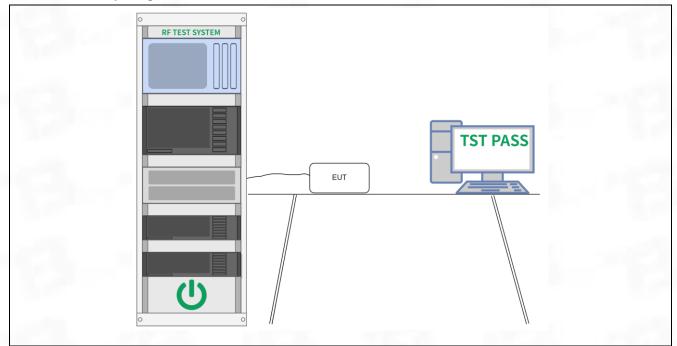
3.Mesurement Level = Reading level + Correct Factor, Margin = Mesurement Level - Limit.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 18 of 79

6.2 Occupied Bandwidth

•	
Test Requirement:	Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	Occupied bandwidth—relative measurement procedure
Test Limit:	Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the treference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-x

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 19 of 7BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



	k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).
--	---

6.2.1 E.U.T. Operation:

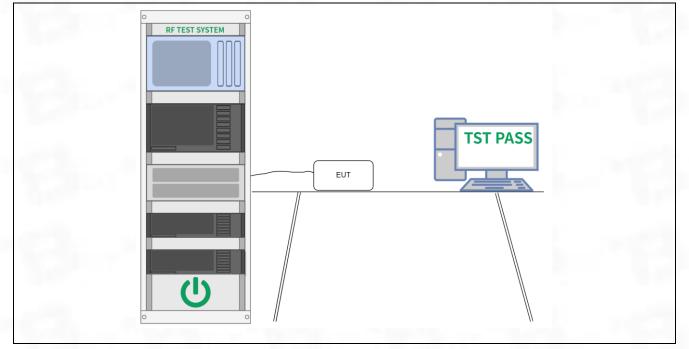
Operating Environment:	
Temperature:	25.6 °C
Humidity:	54.8 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.

6.3 Maximum Conducted Output Power


Test Requirement:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	Output power test procedure for frequency-hopping spread-spectrum (FHSS) devices
Test Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

6.3.1 E.U.T. Operation:

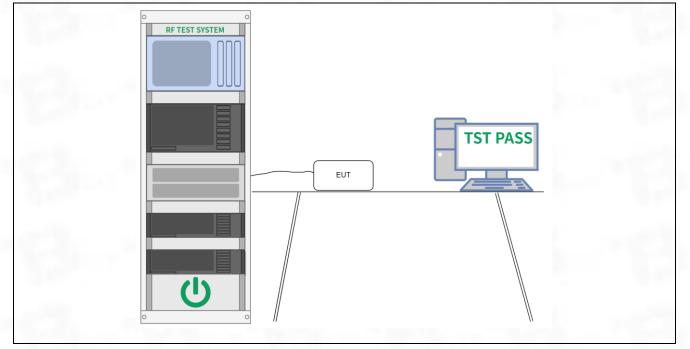
Operating Environment:		
Temperature:	25.6 °C	
Humidity:	54.8 %	
Atmospheric Pressure:	1010 mbar	

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.

6.4 Channel Separation


Test Requirement:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	Carrier frequency separation
Test Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.4.1 E.U.T. Operation:

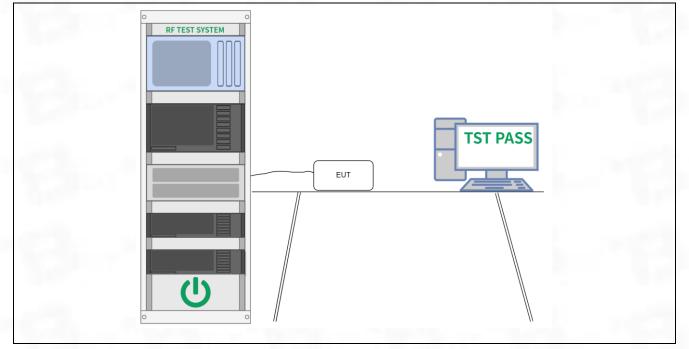
Operating Environment:	
Temperature:	25.6 °C
Humidity:	54.8 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Please Refer to Appendix for Details.

Number of Hopping Frequencies 6.5


Test Requirement:	Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	Number of hopping frequencies
Test Limit:	Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

6.5.1 E.U.T. Operation:

Operating Environment:				
Temperature:	25.6 °C	1.00		
Humidity:	54.8 %	100	1000	
Atmospheric Pressure:	1010 mbar			

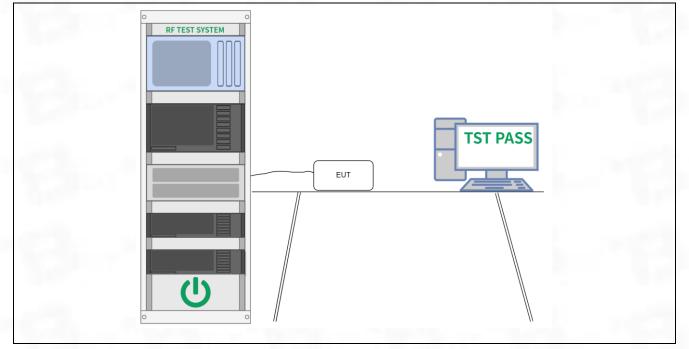
6.5.2 Test Setup Diagram:

6.5.3 Test Data:

Please Refer to Appendix for Details.

6.6 Dwell Time

Test Requirement: Feguency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. Test Method: Time of occupancy (dwell time) Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. Test Limit: O.4 seconds within a period 0.4 seconds multiplied by the number of hopping channels are used. The UT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be < channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. b) RBW shall be < channels spacing alonger sweep time to show two successive hops on a channel. c) Sweep: As necessary to capture the entire dwell time per hop. If this value varies with different	Test Requirement: channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. Test Method: Time of occupancy (dwell time) Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Spar: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger leave might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. Procedure: Procedure: Repeat the measurement using a longer sweep time to determine the number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hopping channels, etc.), then repeat this test for each variatio		
Procedure: Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops in the period specified in the requirements) = (number of hops in the period specified in the transmit time per hop multiplied by the number of hops proceified in the requirements. If the number of hops in a specific time varies with	Procedure: Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified	Test Requirement:	channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15
Test Limit: channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. c) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops in the period specified in the requirements) = (number of hops in the period specified in the requirements / analyzer sweep time) <td>Test Limit: channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. The sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) =</td> <td>Test Method:</td> <td>Time of occupancy (dwell time)</td>	Test Limit: channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. The sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) =	Test Method:	Time of occupancy (dwell time)
 Procedure: analyzer settings: a) Span: Zero span, centered on a hopping channel. b) REW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation	 Procedure: analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = 	Test Limit:	channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15
	The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.	Procedure:	 analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.


6.6.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.6 °C	
Humidity:	54.8 %	
Atmospheric Pressure:	1010 mbar	

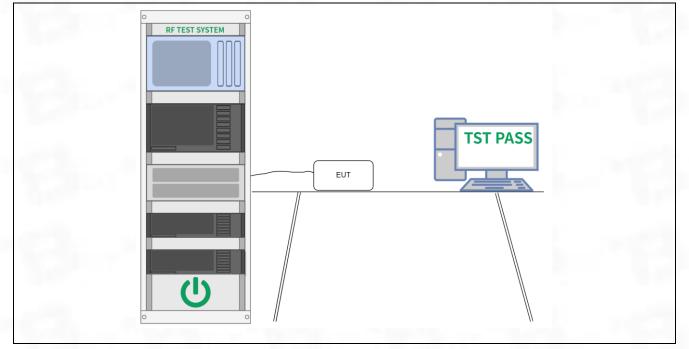
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 27 of 7BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Please Refer to Appendix for Details.

6.7 Emissions in non-restricted frequency bands


Test Requirement:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	Conducted spurious emissions test methodology
Test Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

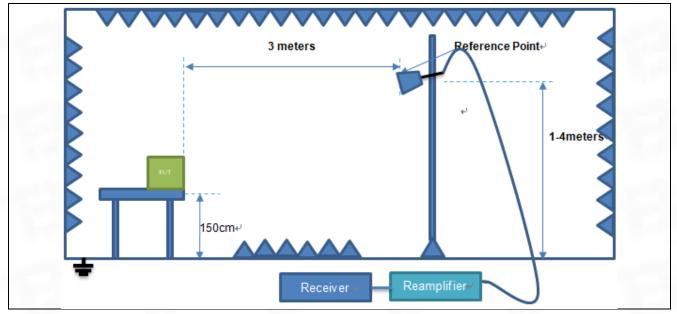
6.7.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.6 °C
Humidity:	54.8 %
Atmospheric Pressure:	1010 mbar

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

Please Refer to Appendix for Details.


Band edge emissions (Radiated) 6.8

Test Requirement:	15.205(a), must also cor	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Method:	Radiated emissions test	S	the second se				
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
Test Limit:	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	radiators operating unde 54-72 MHz, 76-88 MHz,	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.					
Procedure:	ANSI C63.10-2013 sect	ANSI C63.10-2013 section 6.6.4					

6.8.1 E.U.T. Operation:

Operating Environment:					
Temperature:	25.2 °C				
Humidity:	57.4 %				
Atmospheric Pressure:	1010 mbar				

6.8.2 Test Setup Diagram:

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.8.3 Test Data:

TM1 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2310.000	68.21	-30.59	37.62	74.00	-36.38	peak	Р
2	2390.000	69.28	-30.49	38.79	74.00	-35.21	peak	Р
3	2400.000	72.37	-30.48	41.89	74.00	-32.11	peak	Р

TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2310.000	70.56	-30.59	39.97	74.00	-34.03	peak	Р
2	2390.000	69.60	-30.49	39.11	74.00	-34.89	peak	Р
3	2400.000	74.32	-30.48	43.84	74.00	-30.16	peak	Р

TM1 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2483.500	74.11	-30.39	43.72	74.00	-30.28	peak	Р
2	2500.000	70.74	-30.37	40.37	74.00	-33.63	peak	Р

TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2483.500	75.73	-30.39	45.34	74.00	-28.66	peak	Р
2	2500.000	70.79	-30.37	40.42	74.00	-33.58	peak	Р

Remarks:

1. Mesurement Level = Reading level + Correct Factor, Margin = Mesurement Level - Limit.

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 32 of 79

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2310.000	69.99	-30.59	39.40	74.00	-34.60	peak	Р
2	2390.000	69.73	-30.49	39.24	74.00	-34.76	peak	Р
3	2400.000	73.07	-30.48	42.59	74.00	-31.41	peak	Р

TM2 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: L

TM2 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2310.000	68.77	-30.59	38.18	74.00	-35.82	peak	Р
2	2390.000	70.34	-30.49	39.85	74.00	-34.15	peak	Р
3	2400.000	72.51	-30.48	42.03	74.00	-31.97	peak	Р

TM2 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2483.500	75.04	-30.39	44.65	74.00	-29.35	peak	Р
2	2500.000	71.96	-30.37	41.59	74.00	-32.41	peak	Р

TM2 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2483.500	74.63	-30.39	44.24	74.00	-29.76	peak	Р
2	2500.000	70.10	-30.37	39.73	74.00	-34.27	peak	Р

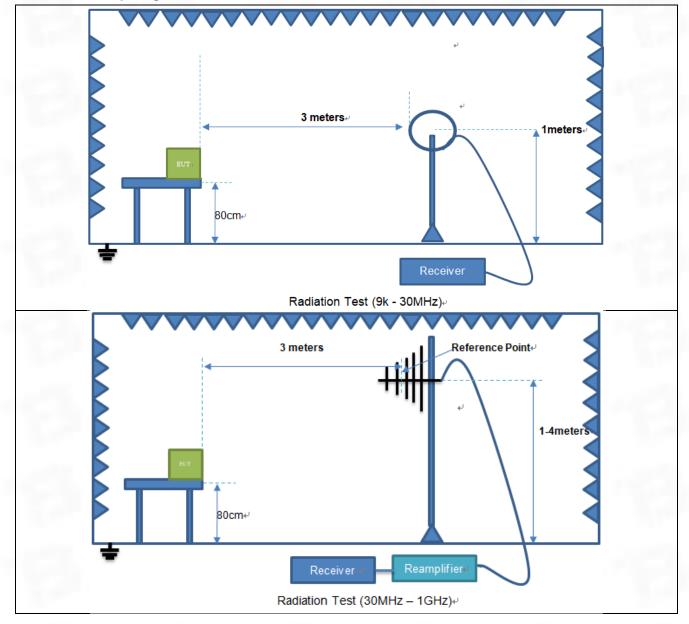
Remarks:

1. Mesurement Level = Reading level + Correct Factor, Margin = Mesurement Level – Limit.

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

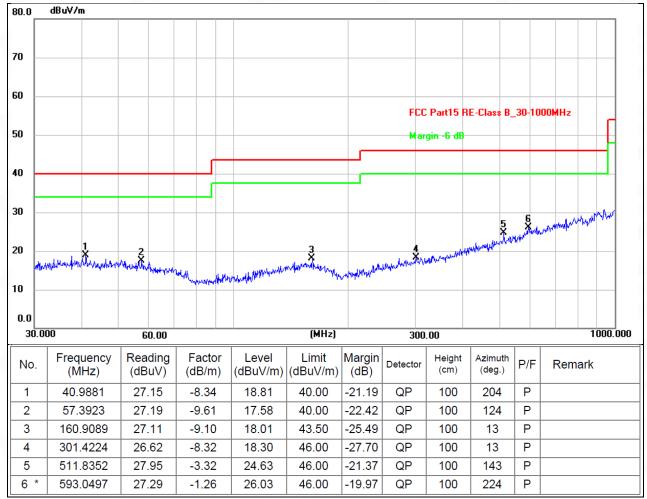
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 33 of 79


6.9 Emissions in restricted frequency bands (below 1GHz)

Test Requirement:	15.205(a), must also co	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).							
Test Method:	Radiated emissions test	Radiated emissions tests							
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
Test Limit:	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	radiators operating unde 54-72 MHz, 76-88 MHz,	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.							
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4							
6.9.1 E.U.T. Operation	n:	the second s							

Operating Environment:					
Temperature:	25.2 °C				
Humidity:	57.4 %				
Atmospheric Pressure:	1010 mbar				

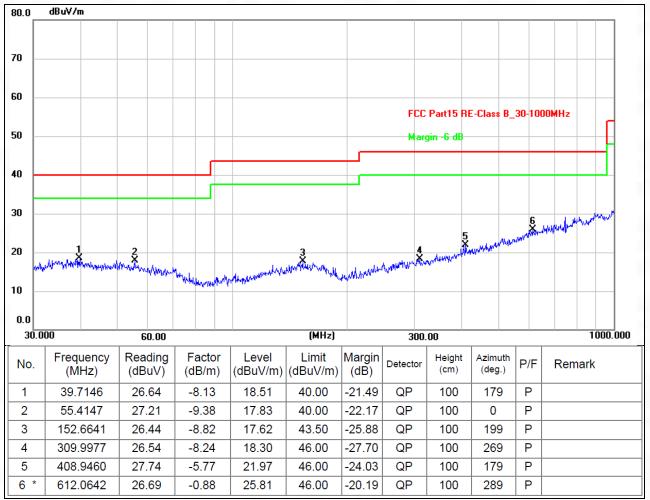
6.9.2 Test Setup Diagram:


6.9.3 Test Data (Between 9KHz - 30 MHz):

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

6.9.4 Test Data (Between 30MHz – 1GHz):

Note: All the mode have been tested, and only the worst case of GFSK 2402MHz mode are in the report TM1 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: L



Remarks:

1. Mesurement Level = Reading level + Correct Factor, Margin = Mesurement Level – Limit.

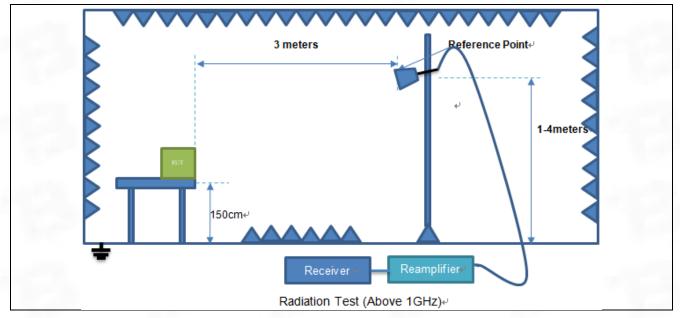
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: L

Remarks:

1. Mesurement Level = Reading level + Correct Factor, Margin = Mesurement Level - Limit.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.


6.10 Emissions in restricted frequency bands (above 1GHz)

Test Requirement:	15.205(a), must also cor	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).								
Test Method:	Radiated emissions test	Radiated emissions tests								
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)							
	0.009-0.490	2400/F(kHz)	300							
	0.490-1.705	24000/F(kHz)	30							
	1.705-30.0	30	30							
	30-88	100 **	3							
Test Limit:	88-216	150 **	3							
	216-960	200 **	3							
	Above 960	500	3							
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.									
Procedure:	ANSI C63.10-2013 sect	ion 6.6.4								

6.10.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.2 °C
Humidity:	57.4 %
Atmospheric Pressure:	1010 mbar

6.10.2Test Setup Diagram:

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

6.10.3Test Data:

TM1 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4804.000	86.00	-27.92	58.08	74.00	-15.92	peak	Р
2	4804.000	68.38	-27.92	40.46	54.00	-13.54	AVG	Р
3	7206.000	74.34	-24.85	49.49	74.00	-24.51	peak	Р
4	9608.000	74.53	-23.49	51.04	74.00	-22.96	peak	Р
5	12010.000	73.71	-22.16	51.55	74.00	-22.45	peak	Р

TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4804.000	85.92	-27.92	58.00	74.00	-16.00	peak	Р
2	4804.000	74.63	-27.92	46.71	54.00	-7.29	AVG	Р
3	7206.000	74.10	-24.85	49.25	74.00	-24.75	peak	Р
4	9608.000	75.63	-23.49	52.14	74.00	-21.86	peak	Р
5	12010.000	72.42	-22.16	50.26	74.00	-23.74	peak	Р

TM1 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4882.000	87.81	-27.66	60.15	74.00	-13.85	peak	Р
2	4882.000	68.93	-27.66	41.27	54.00	-12.73	AVG	Р
3	7323.000	75.68	-24.83	50.85	74.00	-23.15	peak	Р
4	9764.000	74.89	-24.11	50.78	74.00	-23.22	peak	Р
5	12205.000	72.94	-22.20	50.74	74.00	-23.26	peak	Р

TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4882.000	85.04	-27.66	57.38	74.00	-16.62	peak	Р
2	4882.000	68.31	-27.66	40.65	54.00	-13.35	AVG	Р
3	7323.000	74.13	-24.83	49.30	74.00	-24.70	peak	Р
4	9764.000	75.82	-24.11	51.71	74.00	-22.29	peak	Р
5	12205.000	72.75	-22.20	50.55	74.00	-23.45	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 39 of 7BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4960.000	86.83	-27.41	59.42	74.00	-14.58	peak	Р
2	4960.000	69.06	-27.41	41.65	54.00	-12.35	AVG	Р
3	7440.000	76.52	-24.79	51.73	74.00	-22.27	peak	Р
4	9920.000	74.30	-23.95	50.35	74.00	-23.65	peak	Р
5	12400.000	74.44	-21.71	52.73	74.00	-21.27	peak	Р

TM1 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H

TM1 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4960.000	84.77	-27.41	57.36	74.00	-16.64	peak	Р
2	4960.000	74.48	-27.41	47.07	54.00	-6.93	AVG	Р
3	7440.000	75.04	-24.79	50.25	74.00	-23.75	peak	Р
4	9920.000	74.37	-23.95	50.42	74.00	-23.58	peak	Р
5	12400.000	74.31	-21.71	52.60	74.00	-21.40	peak	Р

Remarks:

1. Mesurement Level = Reading level + Correct Factor, Margin = Mesurement Level - Limit.

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4804.000	87.80	-27.92	59.88	74.00	-14.12	peak	Р
2	4804.000	74.98	-27.92	47.06	54.00	-6.94	AVG	Р
3	7206.000	74.56	-24.85	49.71	74.00	-24.29	peak	Р
4	9608.000	75.42	-23.49	51.93	74.00	-22.07	peak	Р
5	12010.000	73.42	-22.16	51.26	74.00	-22.74	peak	Р

TM2 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: L

TM2 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4804.000	86.63	-27.92	58.71	74.00	-15.29	peak	Р
2	4804.000	73.88	-27.92	45.96	54.00	-8.04	AVG	Р
3	7206.000	76.24	-24.85	51.39	74.00	-22.61	peak	Р
4	9608.000	75.11	-23.49	51.62	74.00	-22.38	peak	Р
5	12010.000	72.73	-22.16	50.57	74.00	-23.43	peak	Р

TM2 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4882.000	86.76	-27.66	59.10	74.00	-14.90	peak	Р
2	4882.000	68.95	-27.66	41.29	54.00	-12.71	AVG	Р
3	7323.000	74.16	-24.83	49.33	74.00	-24.67	peak	Р
4	9764.000	75.02	-24.11	50.91	74.00	-23.09	peak	Р
5	12205.000	72.41	-22.20	50.21	74.00	-23.79	peak	Р

TM2 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4882.000	85.18	-27.66	57.52	74.00	-16.48	peak	Р
2	4882.000	71.10	-27.66	43.44	54.00	-10.56	AVG	Р
3	7323.000	74.47	-24.83	49.64	74.00	-24.36	peak	Р
4	9764.000	76.64	-24.11	52.53	74.00	-21.47	peak	Р
5	12205.000	74.59	-22.20	52.39	74.00	-21.61	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 41 of 7BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4960.000	87.85	-27.41	60.44	74.00	-13.56	peak	Р
2	4960.000	71.45	-27.41	44.04	54.00	-9.96	AVG	Р
3	7440.000	76.53	-24.79	51.74	74.00	-22.26	peak	Р
4	9920.000	75.93	-23.95	51.98	74.00	-22.02	peak	Р
5	12400.000	73.34	-21.71	51.63	74.00	-22.37	peak	Р

TM2 / Polarization: Horizontal / Band: 2.4G / BW: 1 / CH: H

TM2 / Polarization: Vertical / Band: 2.4G / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4960.000	86.36	-27.41	58.95	74.00	-15.05	peak	Р
2	4960.000	69.97	-27.41	42.56	54.00	-11.44	AVG	Р
3	7440.000	74.87	-24.79	50.08	74.00	-23.92	peak	Р
4	9920.000	76.68	-23.95	52.73	74.00	-21.27	peak	Р
5	12400.000	73.11	-21.71	51.40	74.00	-22.60	peak	Р

Remarks:

1. Mesurement Level = Reading level + Correct Factor, Margin = Mesurement Level - Limit.

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

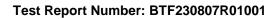
7 Test Setup Photos

Reference to the appendix Test Setup Photos for details.

8 EUT Constructional Details (EUT Photos)

Reference to the appendix External Photos and Internal Photos for details.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 43 of 79BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



Test Report Number: BTF230807R01001

Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 44 of 7BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

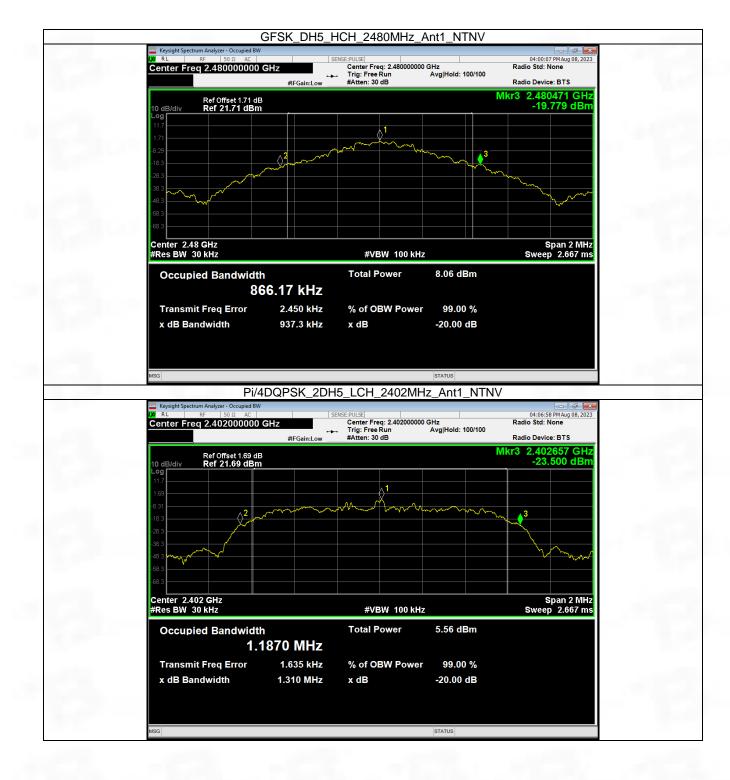
Page 44 of 79

1. Bandwidth

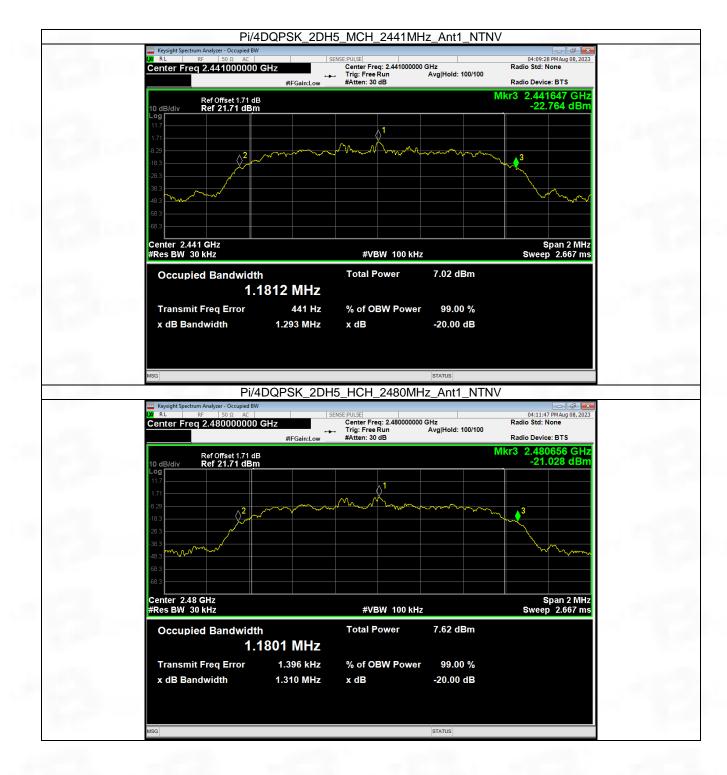
1.1 OBW

1.1.1 Test Result

Mode	ТХ Туре	Frequency (MHz)	Packet Type	ANT	20dB Bandwidth (MHz) Result	99% Occupied Bandwidth (MHz) Result	Verdict
		2402	DH5	1	0.934	0.85478	Pass
GFSK	SISO	2441	DH5	1	0.9408	0.86173	Pass
		2480	DH5	1	0.9373	0.86617	Pass
100 B 100		2402	2DH5	1	1.31	1.1870	Pass
Pi/4DQPSK	SISO	2441	2DH5	1	1.293	1.1812	Pass
		2480	2DH5	1	1.31	1.1801	Pass



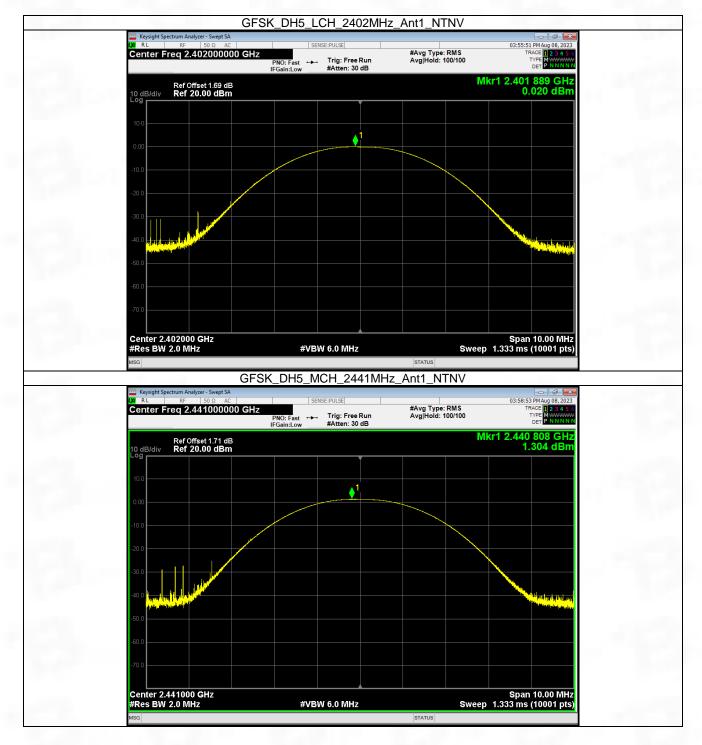
1.1.2 Test Graph


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. E101 -201 and 201 Building 1 Block 2 Tantou Industrial Bark, Tantou Community, Sanggang Street, Bacian Di

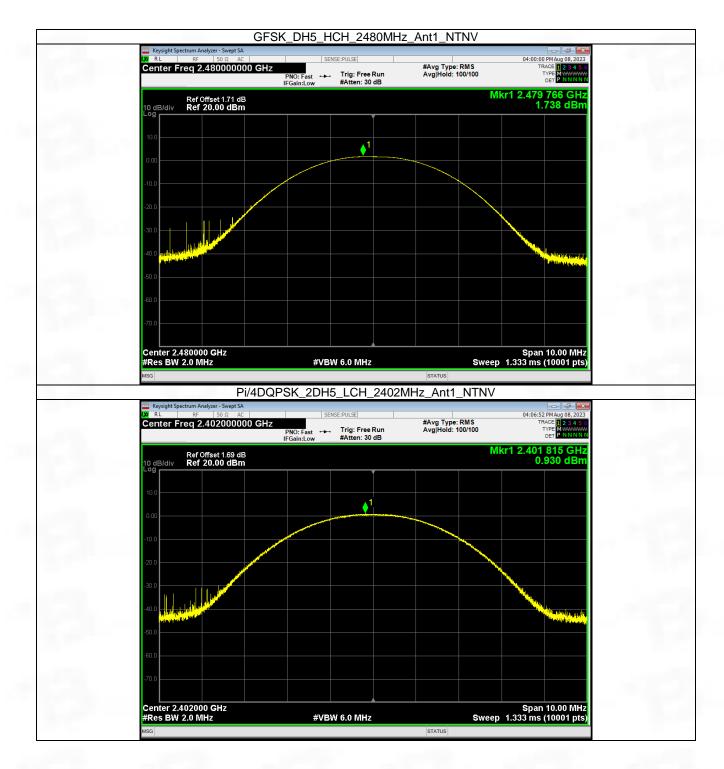
Page 48 of 79

2. Maximum Conducted Output Power

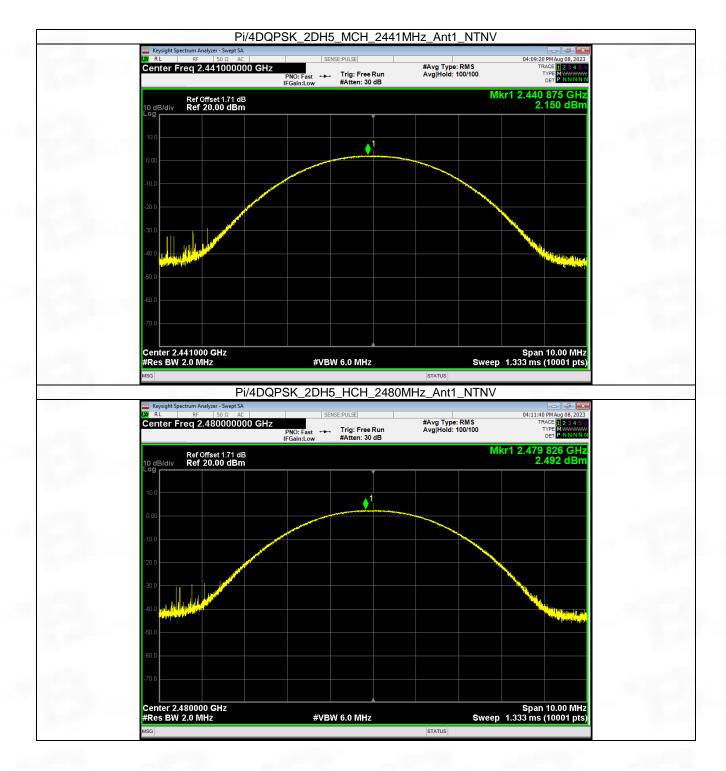

2.1 Power

2.1.1 Test Result

Mode	TX	Frequency	Packet	Maximum Peak Conduc	ted Output Power (dBm)	Verdict
Mode	Туре	(MHz)	Туре	ANT1	Limit	verdici
		2402	DH5	0.02	<=20.97	Pass
GFSK	SISO	2441	DH5	1.3	<=20.97	Pass
		2480	DH5	1.74	<=20.97	Pass
10 million 100 mil		2402	2DH5	0.93	<=20.97	Pass
Pi/4DQPSK	SISO	2441	2DH5	2.15	<=20.97	Pass
		2480	2DH5	2.49	<=20.97	Pass
Note1: Antenn	a Gain: An	t1: 2.7dBi:				



2.1.2 Test Graph



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

3. Carrier Frequency Separation

3.1 Ant1

3.1.1 Test Result

				Ant1			
Mode	ТΧ	Frequency	Packet	Channel Separation	20dB Bandwidth	Limit	Verdict
wode	Туре	(MHz)	Туре	(MHz)	(MHz)	(MHz)	verdict
GFSK	SISO	2402	DH5	0.996	0.934	>=0.623	Pass
GFSK	SISO	2441	DH5	1	0.9408	>=0.627	Pass
GFSK	SISO	2480	DH5	1.004	0.9373	>=0.625	Pass
Pi/4DQPSK	SISO	2402	2DH5	1	1.31	>=0.873	Pass
Pi/4DQPSK	SISO	2441	2DH5	1	1.293	>=0.862	Pass
Pi/4DQPSK	SISO	2480	2DH5	1.006	1.31	>=0.873	Pass

3.1.2 Test Graph

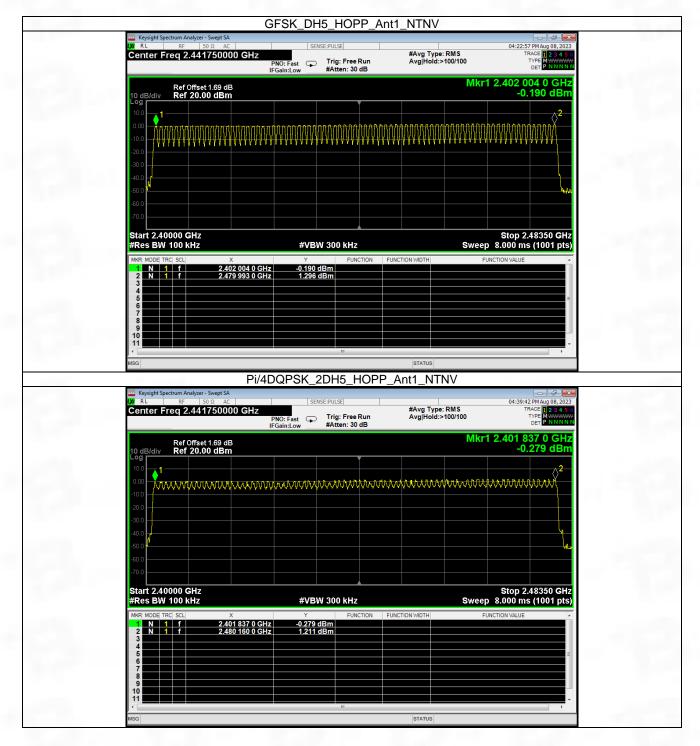
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 55 of 79

Page 56 of 79

4. Number of Hopping Frequencies

4.1 HoppNum


4.1.1 Test Result

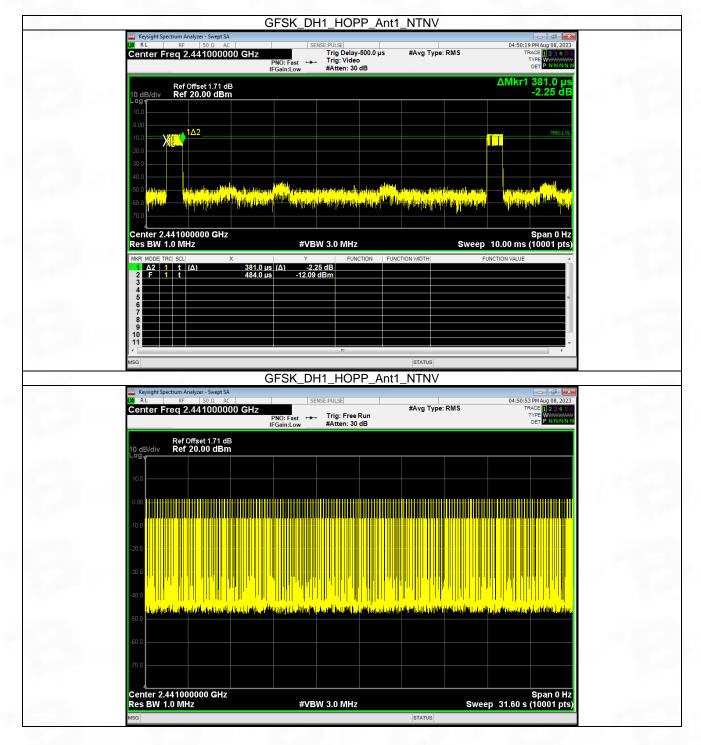
Mode	TX	Frequency	Packet	Num of Hoppir	ng Frequencies	Verdict
Mode	Туре	(MHz)	Туре	ANT1	Limit	Veruici
GFSK	SISO	HOPP	DH5	79	>=15	Pass
Pi/4DQPSK	SISO	HOPP	2DH5	79	>=15	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 57 of 79BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

4.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

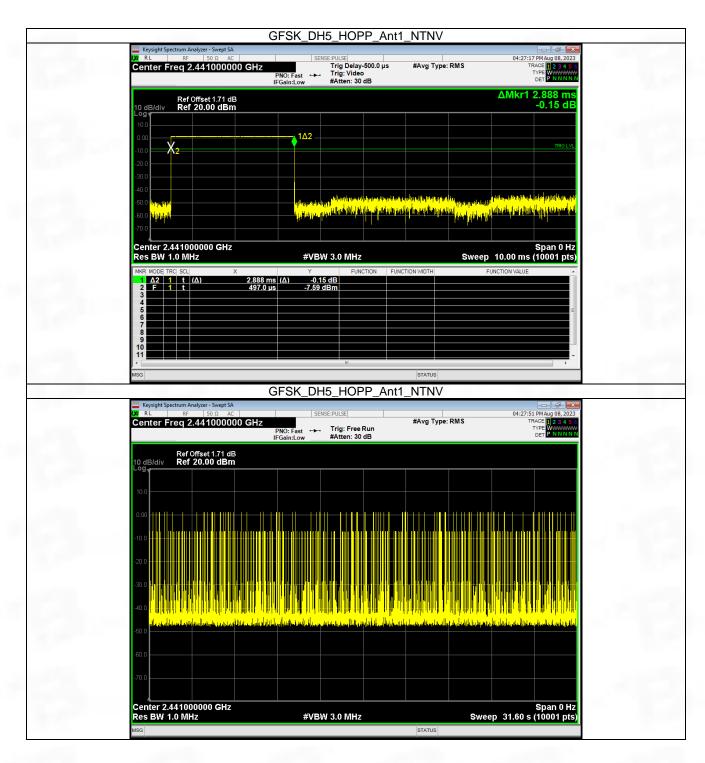
5. Time of Occupancy (Dwell Time)

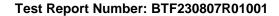

5.1 Ant1

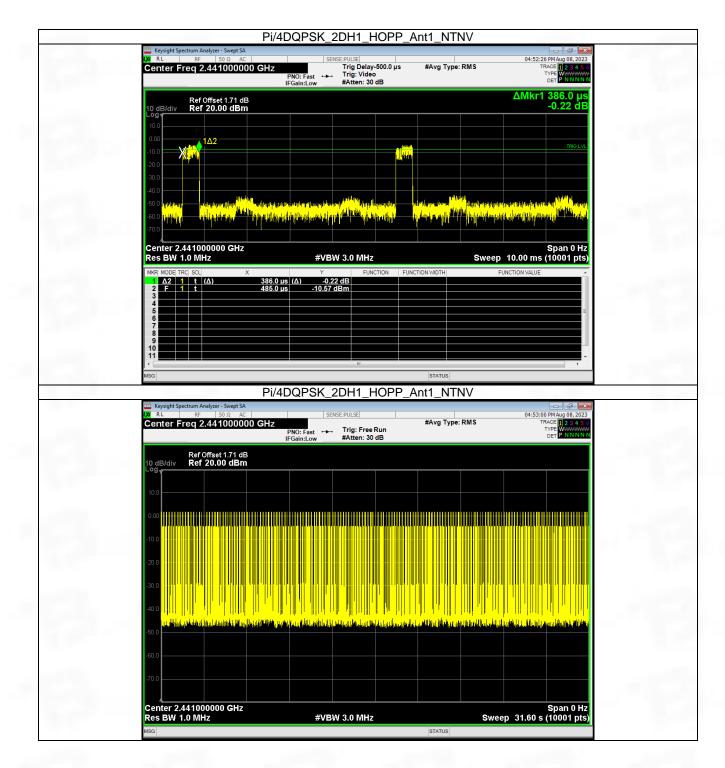
5.1.1 Test Result

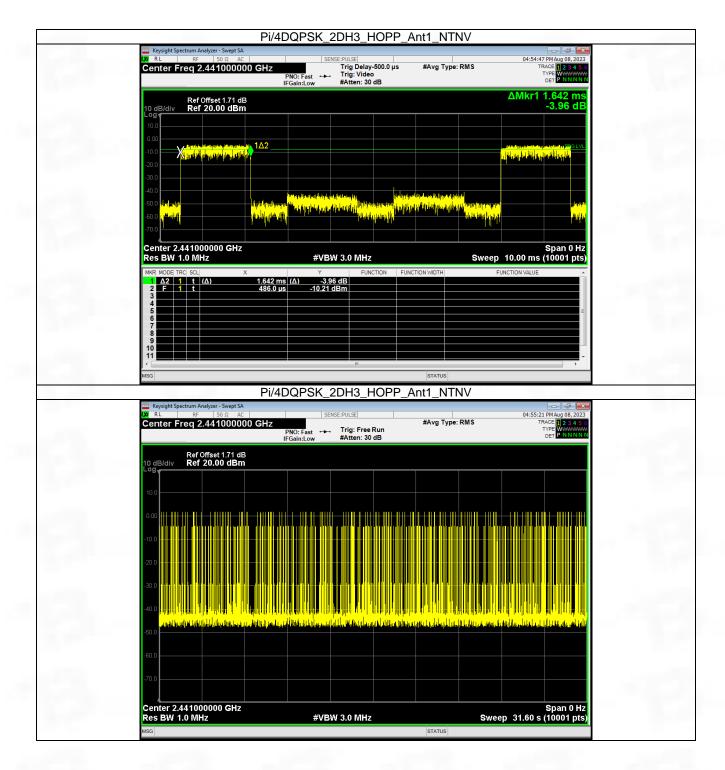
	Ant1									
Mode	ТΧ	Frequency	Packet	Duration of	Observation	Num of Pulse in	Dwell	Limit	Verdict	
wode	e Type (MHz)		Туре	Single Pulse (ms)	Period (s)	Observation Period	Time (ms)	(ms)	verdict	
			DH1	0.381	31.600	319	121.539	<=400	Pass	
GFSK	SISO	HOPP	DH3	1.638	31.600	172	281.736	<=400	Pass	
			DH5	2.888	31.600	99	285.912	<=400	Pass	
Condition of the			2DH1	0.386	31.600	320	123.52	<=400	Pass	
Pi/4DQPSK	SISO	HOPP	2DH3	1.642	31.600	150	246.3	<=400	Pass	
The second second			2DH5	2.886	31.600	100	288.6	<=400	Pass	

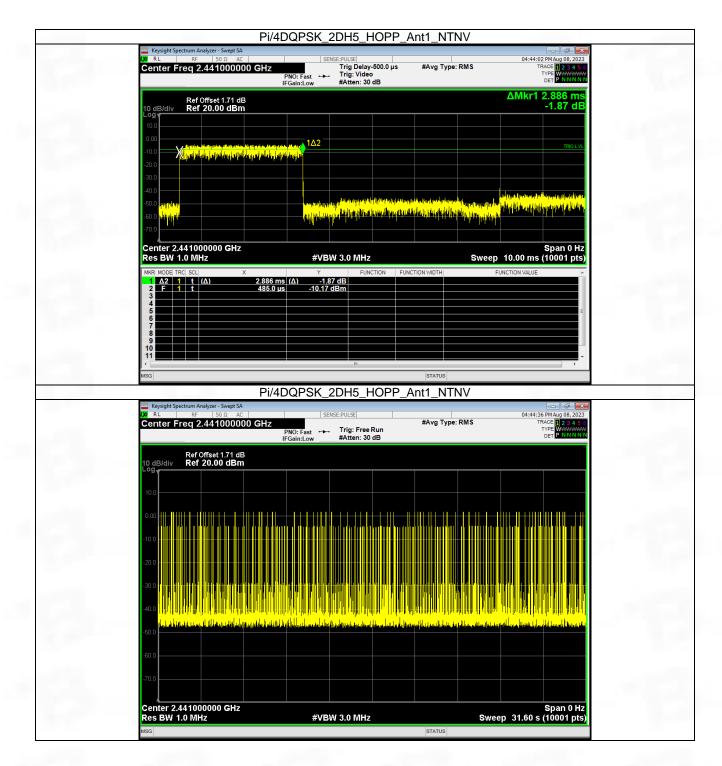
5.1.2 Test Graph


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.




Page 61 of 79





6. Unwanted Emissions In Non-restricted Frequency Bands

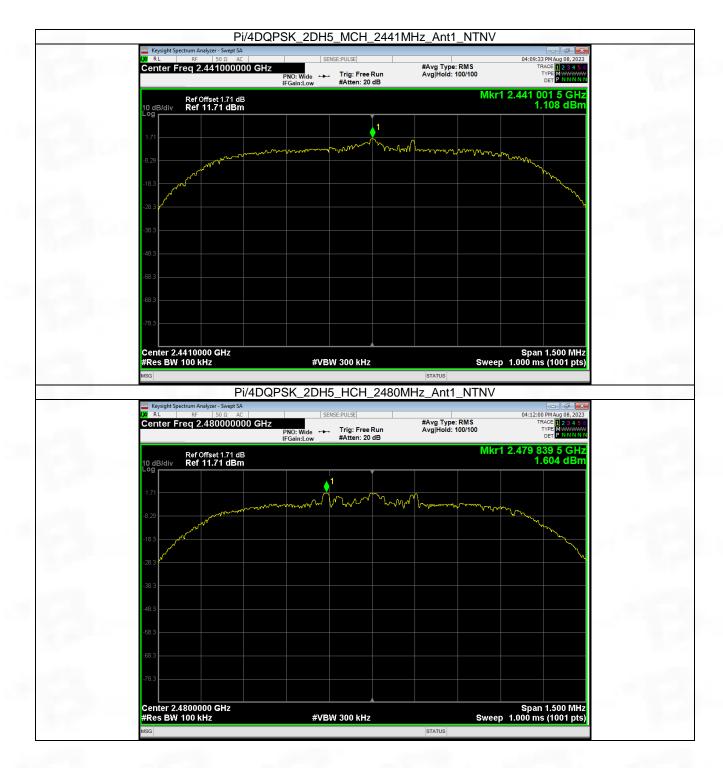
6.1 Ref

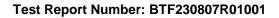
6.1.1 Test Result

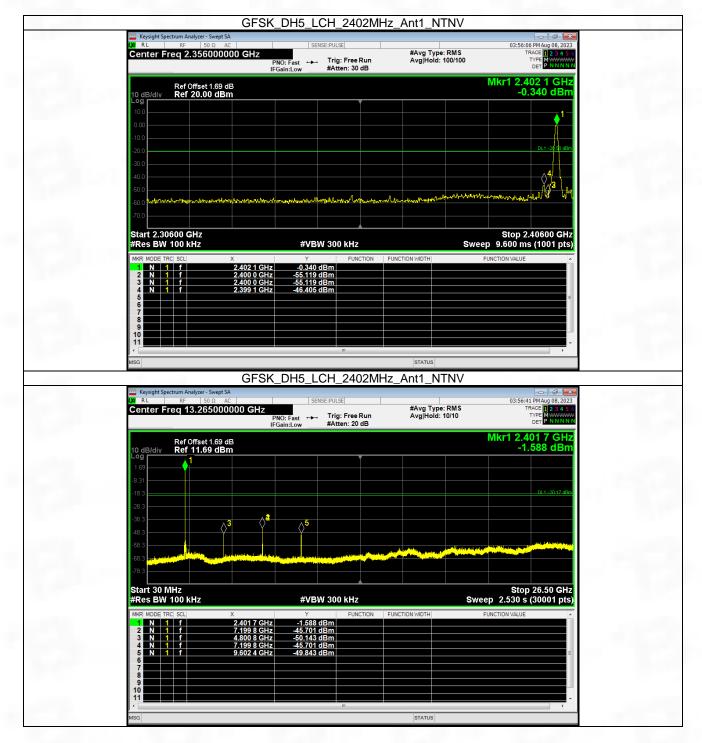
Mode	TX Type	Frequency (MHz)	Packet Type	ANT	Level of Reference (dBm)
	туре	2402	DH5	1	N= /
0501/	0100		-	1	-0.17
GFSK	SISO	2441	DH5	1	1.06
		2480	DH5	1	1.51
		2402	2DH5	1	-0.24
Pi/4DQPSK	SISO	2441	2DH5	1	1.11
		2480	2DH5	1	1.60

Note1: Refer to FCC Part 15.247 (d) and ANSI C63.10-2013, the channel contains the maximum PSD level was used to establish the reference level.

6.1.2 Test Graph

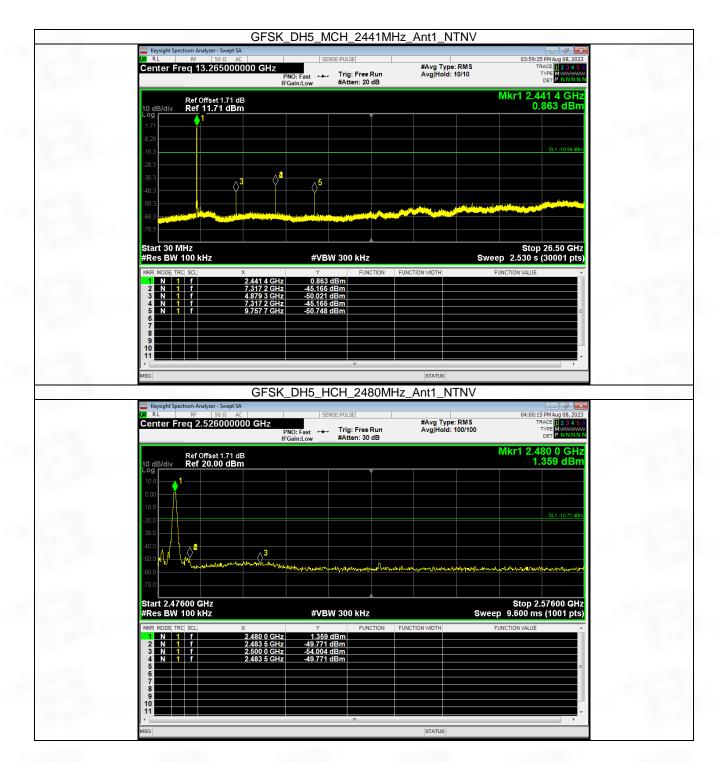



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


6.2 CSE

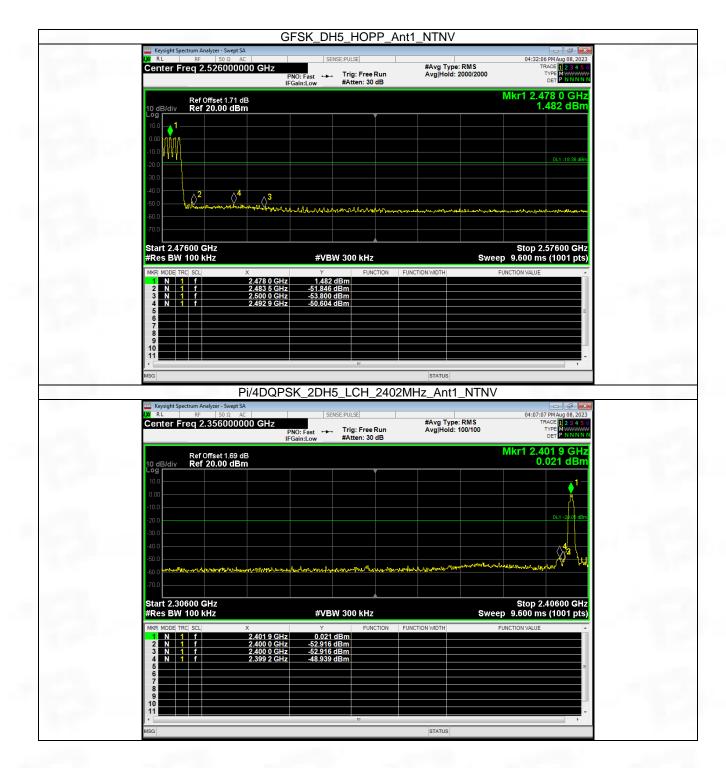
6.2.1 Test Result

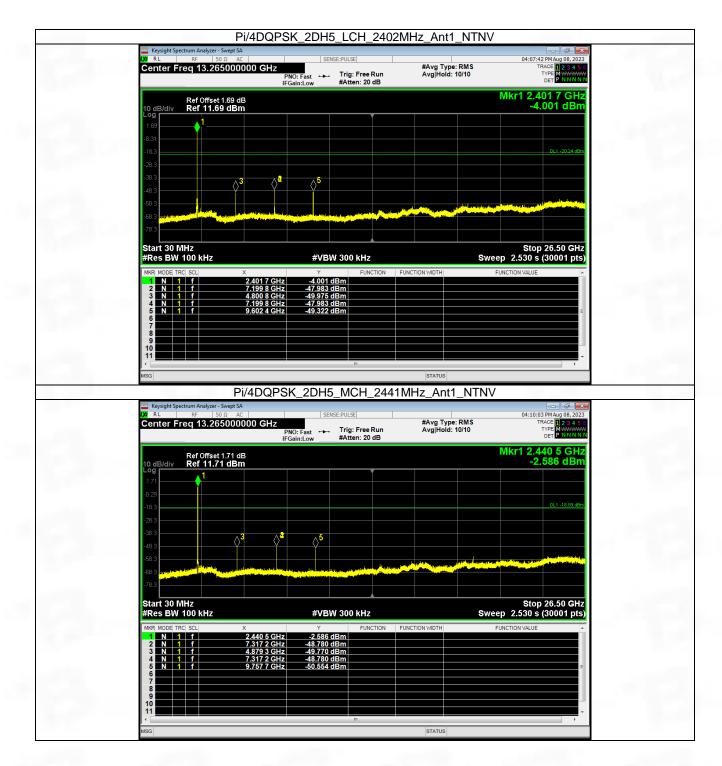
Mode	TX	Frequency	Packet	ANT	Level of Reference	Limit	Verdict
	Туре	(MHz)	Туре		(dBm)	(dBm)	
		2402	DH5	1	-0.17	-20.17	Pass
GFSK	SISO	2441	DH5	1	1.06	-18.94	Pass
		2480	DH5	1	1.51	-18.49	Pass
		2402	2DH5	1	-0.24	-20.24	Pass
Pi/4DQPSK	SISO	2441	2DH5	1	1.11	-18.89	Pass
		2480	2DH5	1	1.60	-18.40	Pass
Note1: Refer to	FCC Part 1	5.247 (d) and AN	ISI C63.10-2	013, the cha	annel contains the maximur	m PSD level w	vas used to
establish the re	ference leve	el.					



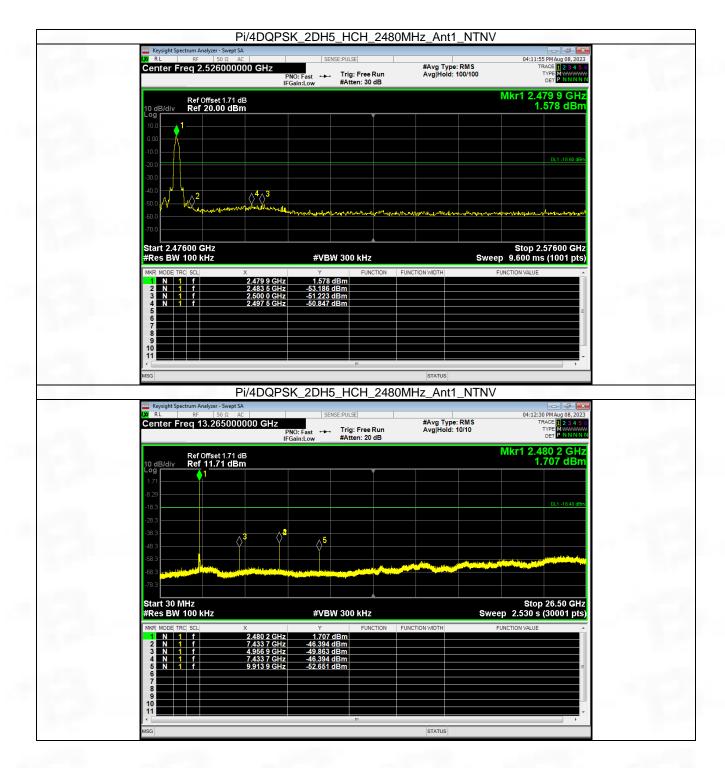
6.2.2 Test Graph

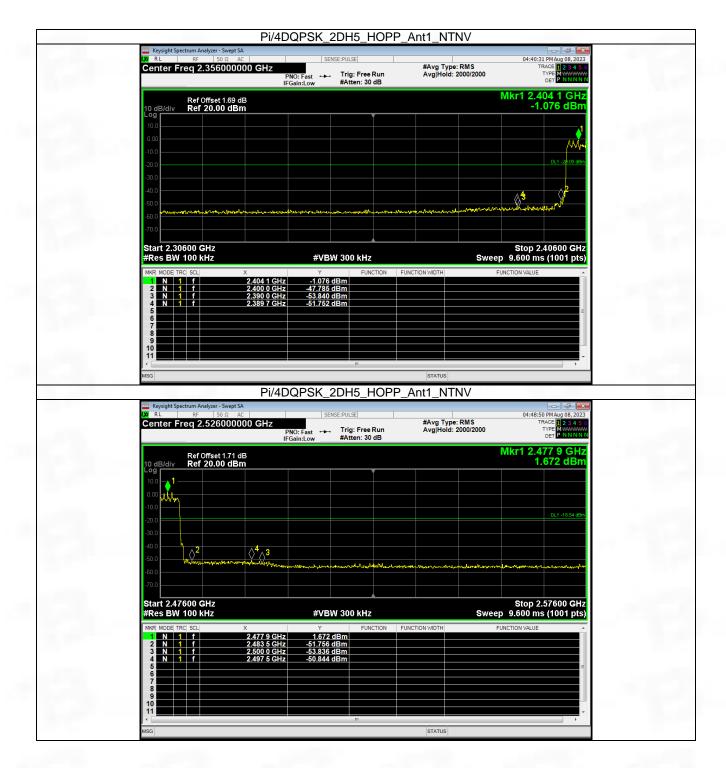

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


Page 72 of 79

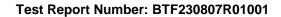


Page 73 of 79





Page 77 of 79


7. Form731

7.1 Form731

7.1.1 Test Result

Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)
2402	2480	0.00177	2.49

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 78 of 79BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --