

Fig.15-1 Z-Scan at power reference point

LTE Band 12 Body Rear Low with QPSK_10MHz_1RB_ High

Date/Time: 2016-1-6 Electronics: DAE4 Sn786 Medium: Body750 MHz Medium parameters used (interpolated): f = 711 MHz; σ = 0.908 S/m; ϵ_r = 43.845; ρ = 1000 kg/m³ Ambient Temperature:22.0°C Liquid Temperature:21.5°C Communication System: LTE_FDD Frequency: 711 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(6, 6, 6);

Rear side High 1BR_High/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.790 W/kg

Rear side High 1BR_High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.869 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.706 W/kg; SAR(10 g) = 0.432 W/kg

Maximum value of SAR (measured) = 0.736 W/kg

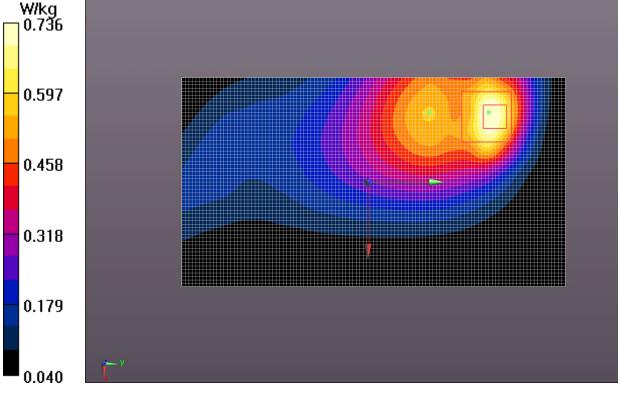


Fig.16 LTE Band 12

Fig.16-1 Z-Scan at power reference point (Band 12)

Wi-Fi 802.11b Left Cheek Channel 11

Date/Time: 2016-1-31 Electronics: DAE4 Sn786 Medium: Head 2450 Medium parameters used: f = 2412 MHz; σ = 1.823 S/m; ϵ_r = 38.564; ρ = 1000 kg/m³ Ambient Temperature:22.0°C Liquid Temperature:21.5°C Communication System: WiFi Frequency: 2462 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.55, 4.55, 4.55);

Left Cheek High/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.881 W/kg

Left Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.680 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 1.83 W/kg SAR(1 g) = 0.768 W/kg; SAR(10 g) = 0.354 W/kg Maximum value of SAR (measured) = 0.851 W/kg

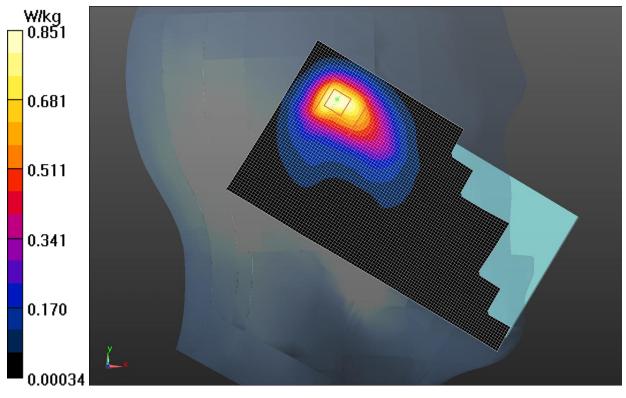
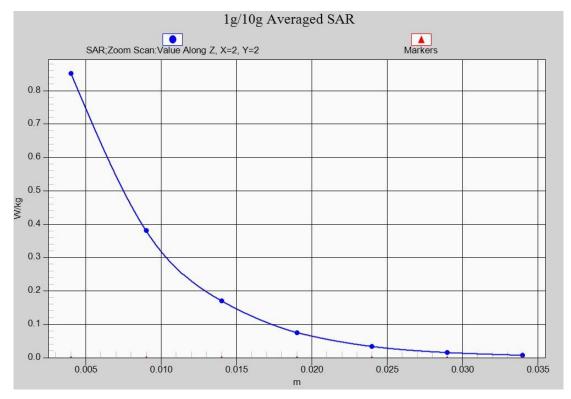



Fig.17 Wi-Fi 2450 MHz CH11

Wi-Fi 802.11b Body Rear Channel 11

Date/Time: 2016-1-31 Electronics: DAE4 Sn786 Medium: 2450Body MHz Medium parameters used: f = 2412 MHz; σ = 1.965 S/m; ϵ_r = 50.793; ρ = 1000 kg/m³ Ambient Temperature:22.0°C Liquid Temperature:21.5°C Communication System: WiFi Frequency: 2462 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.26, 4.26, 4.26);

Rear side High/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.296 W/kg

Rear side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.419 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.595 W/kg SAR(1 g) = 0.266 W/kg; SAR(10 g) = 0.129 W/kg Maximum value of SAR (measured) = 0.283 W/kg

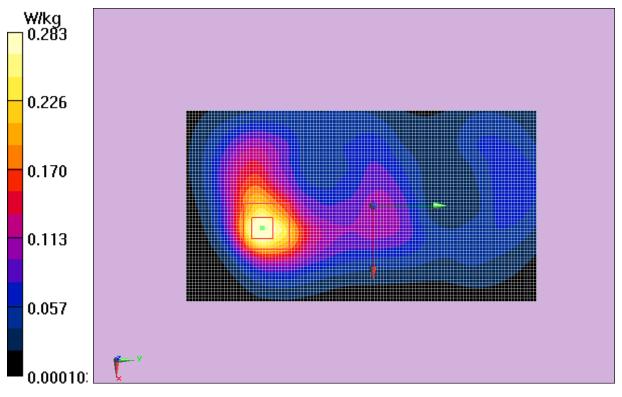
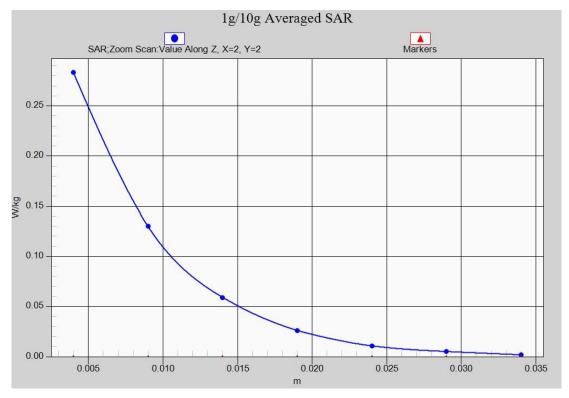
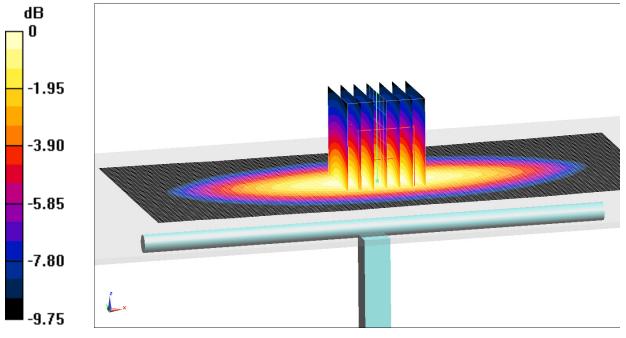



Fig.18 Wi-Fi 2450 MHz CH11


ANNEX B System Verification Results

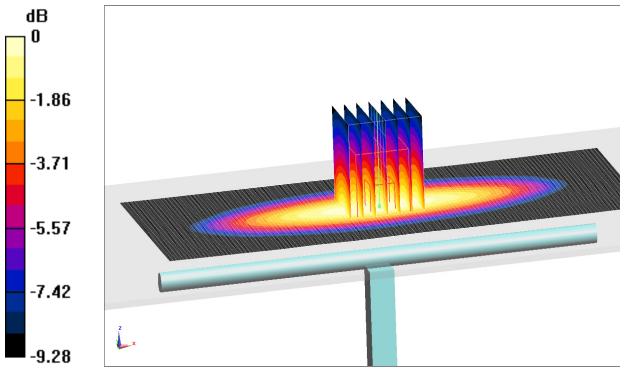
750MHz

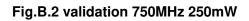

Date: 2016-1-6 Electronics: DAE4 Sn786 Medium: Head 750 MHz Medium parameters used: f = 750 MHz; σ = 0.88 mho/m; ϵ_r = 42.20; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(6, 6, 6)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 50.126 V/m; Power Drift = -0.04 dB Fast SAR: SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (interpolated) = 2.30 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.126 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 2.99 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.25 W/kg

0 dB = 2.25 W/kg = 3.52 dB W/kg

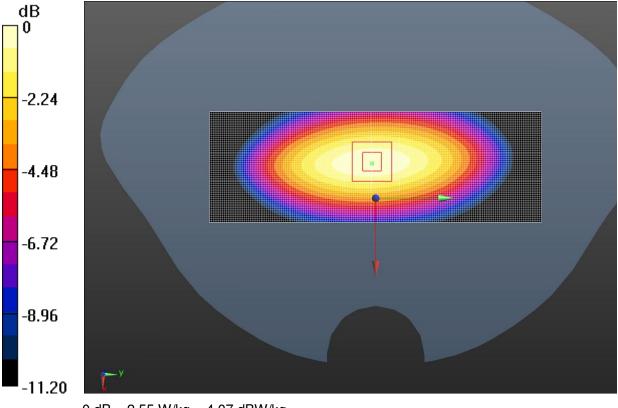



Date: 2016-1-6 Electronics: DAE4 Sn786 Medium: Body750 MHz Medium parameters used: f = 750 MHz; σ = 0.941 mho/m; ϵ_r = 56.68; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(6.13, 6.13, 6.13)

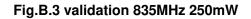
System Validation/Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 51.795 V/m; Power Drift = -0.02 dB Fast SAR: SAR(1 g) = 2.26 W/kg; SAR(10 g) = 1.50 W/kg Maximum value of SAR (interpolated) = 2.49 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.795 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.01 W/kg SAR(1 g) = 2.25 W/kg; SAR(10 g) = 1.49 W/kg Maximum value of SAR (measured) = 2.36 W/kg

0 dB = 2.36 W/kg = 3.73 dB W/kg



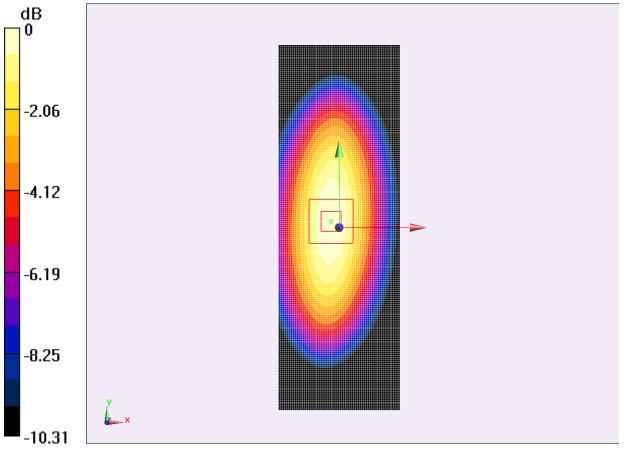
Date/Time: 2016-1-5 Electronics: DAE4 Sn786 Medium: Head 900 MHz Medium parameters used (interpolated): f = 835 MHz; σ = 0.922 S/m; ϵ_r = 40.182; ρ = 1000 kg/m³ Ambient Temperature:22.0°C Liquid Temperature:21.5°C Communication System: CW_TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(6, 6, 6); Calibrated: 2015-10-30


Configuration/Area Scan (61x181x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Fast SAR: SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (interpolated) = 2.52 W/kg

Configuration/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.239 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 3.71 W/kg SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.5 W/kg

Maximum value of SAR (measured) = 2.55 W/kg

0 dB = 2.55 W/kg = 4.07 dBW/kg



Date/Time: 2016-1-6 Electronics: DAE4 Sn786 Medium: Body 850 MHz Medium parameters used (interpolated): f = 835 MHz; σ = 0.97 S/m; ϵ_r = 53.49; ρ = 1000 kg/m³ Ambient Temperature:22.6°C Liquid Temperature:22.1°C Communication System: CW_TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(6.13, 6.13, 6.13)

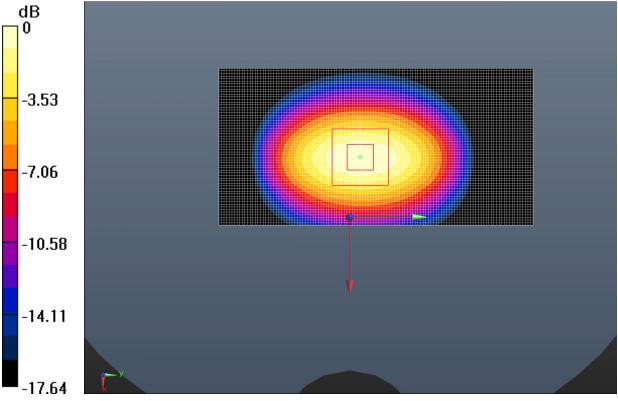
Configuration/Area Scan (61x181x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Fast SAR: SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.51 W/kg Maximum value of SAR (interpolated) = 2.64 W/kg

Configuration/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.989 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.64 W/kg

0 dB = 2.64 W/kg = 4.22 dBW/kg

Fig.B.4 validation 835MHz 250mW

1800MHz Date/Time: 2016-1-6 Electronics: DAE4 Sn786 Medium: Head 1800 MHz Medium parameters used: f = 1800 MHz; σ = 1.43 S/m; ϵ_r = 38.356; ρ = 1000 kg/m³ Ambient Temperature:22.0°C Liquid Temperature:21.5°C Communication System: CW_TMC Frequency: 1800 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(5.06, 5.06, 5.06); Calibrated: 2015-10-30


Configuration/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Fast SAR: SAR(1 g) = 9.70 W/kg; SAR(10 g) = 5.23 W/kg Maximum value of SAR (interpolated) = 11.0 W/kg

Configuration/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 78.358 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 18.4 W/kg

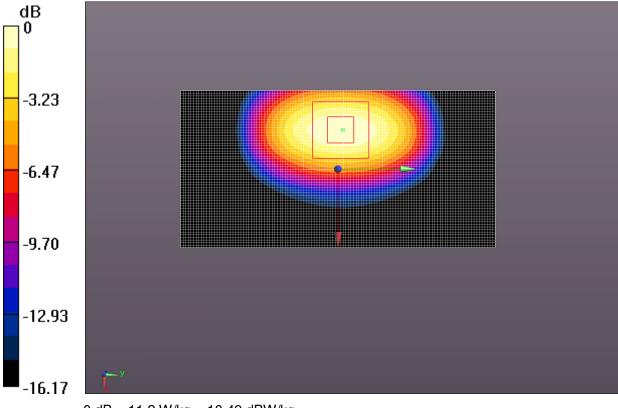
SAR(1 g) = 9.77 W/kg; SAR(10 g) = 5.05 W/kg

Maximum value of SAR (measured) = 11.0 W/kg

0 dB = 11.0 W/kg = 10.41 dBW/kg

Fig.B.5 validation 1800MHz 250mW

1800MHz Date/Time: 2016-1-7 Electronics: DAE4 Sn786 Medium: 1800 Body Medium parameters used: f = 1800 MHz; σ = 1.474 S/m; ϵ_r = 51.017; ρ = 1000 kg/m³ Ambient Temperature:22.0°C Liquid Temperature:21.5°C Communication System: CW_TMC Frequency: 1800 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.75, 4.75, 4.75); Calibrated: 2015-10-30


Configuration/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Fast SAR: SAR(1 g) = 9.91 W/kg; SAR(10 g) = 5.25 W/kg Maximum value of SAR (interpolated) = 11.2 W/kg

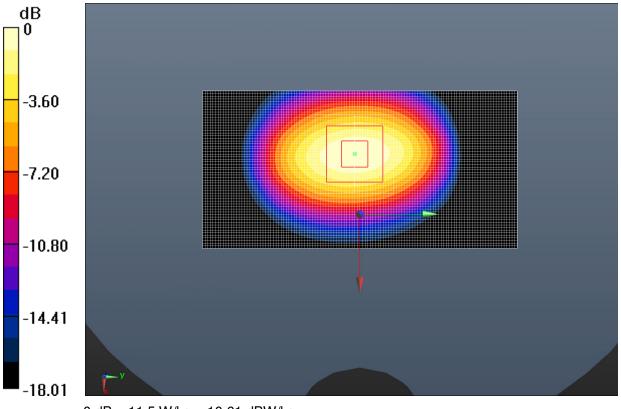
Configuration/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 27.597 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.92 W/kg; SAR(10 g) = 5.27 W/kg

Maximum value of SAR (measured) = 11.2 W/kg

0 dB = 11.2 W/kg = 10.49 dBW/kg

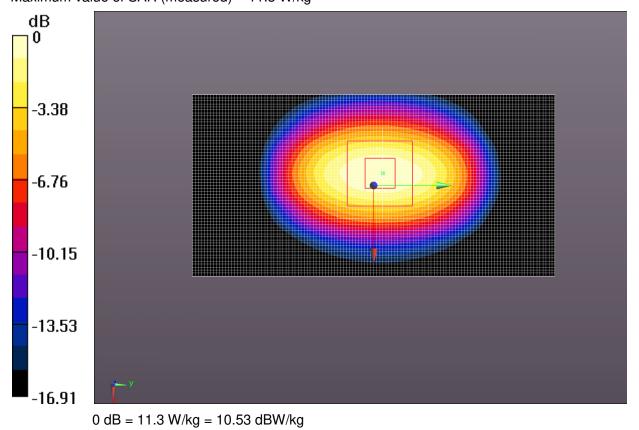

Fig.B.6 validation 1800MHz 250mW

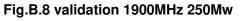
Date/Time: 2016-1-12 Electronics: DAE4 Sn786 Medium: 1900 Head Medium parameters used: f = 1900 MHz; σ = 1.441 S/m; ϵ_r = 41.068; ρ = 1000 kg/m³ Ambient Temperature:22.0°C Liquid Temperature:21.5°C Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.96, 4.96, 4.96); Calibrated: 2015-10-30

Configuration/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Fast SAR: SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.44 W/kg Maximum value of SAR (interpolated) = 11.5 W/kg

Configuration/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 81.578 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 19.4 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.25 W/kg Maximum value of SAR (measured) = 11.5 W/kg

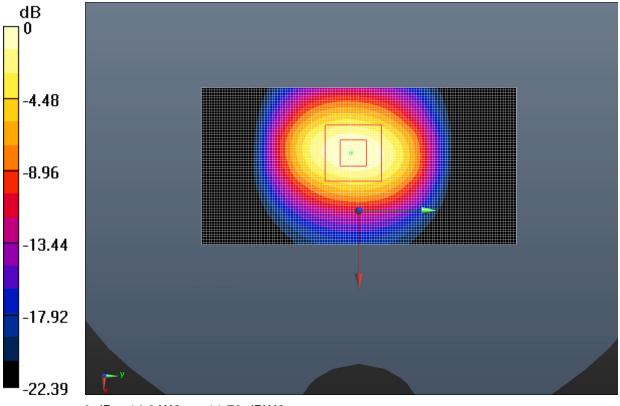
0 dB = 11.5 W/kg = 10.61 dBW/kg




Date/Time: 2016-1-31 Electronics: DAE4 Sn786 Medium: 1900 Body Medium parameters used: f = 1900 MHz; σ = 1.543 S/m; ϵ_r = 50.79; ρ = 1000 kg/m³ Ambient Temperature:22.0°C Liquid Temperature:21.5°C Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.5, 4.5, 4.5); Calibrated: 2015-10-30

Configuration/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Fast SAR: SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.22 W/kg Maximum value of SAR (interpolated) = 11.5 W/kg

Configuration/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 82.385 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.22 W/kg Maximum value of SAR (measured) = 11.3 W/kg

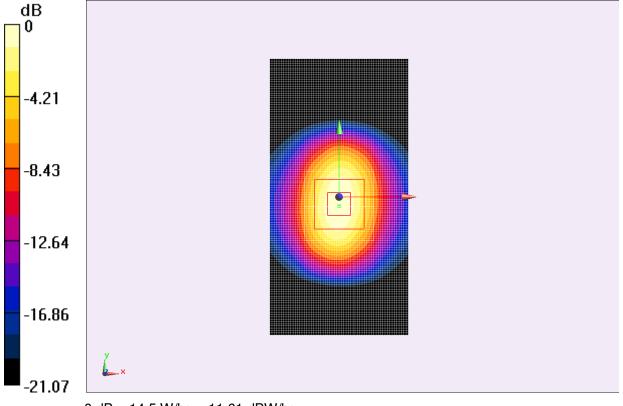


Date/Time: 2016-1-31 Electronics: DAE4 Sn786 Medium: Head 2450 Medium parameters used: f = 2450 MHz; σ = 1.83 S/m; ϵ_r = 37.712; ρ = 1000 kg/m³ Ambient Temperature:22.0°C Liquid Temperature:21.5°C Communication System: CW_TMC Frequency: 2450 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.55, 4.55, 4.55); Calibrated: 2015-10-30

Configuration/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Fast SAR: SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.12 W/kg Maximum value of SAR (interpolated) = 15.3 W/kg

Configuration/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 80.455 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.03 W/kg Maximum value of SAR (measured) = 14.9 W/kg

0 dB = 14.9 W/kg = 11.73 dBW/kg

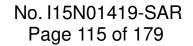


Date: 2016-1-31 Electronics: DAE4 Sn786 Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.98 S/m; ϵ_r = 50.22; ρ = 1000 kg/m³ Ambient Temperature:22.3°C Liquid Temperature:21.8°C Communication System: CW_TMC Frequency: 2450 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.26, 4.26, 4.26);

Configuration/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 86.639 V/m; Power Drift = 0.18 dB Fast SAR: SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (interpolated) = 16.5 W/kg

Configuration/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.639 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 29.7 W/kg SAR(1 g) = 13.42 W/kg; SAR(10 g) = 6.29 W/kg Maximum value of SAR (measured) = 14.5 W/kg

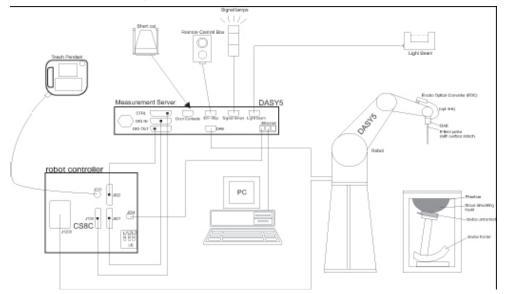
0 dB = 14.5 W/kg = 11.61 dBW/kg



The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

14610 211 4								
Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)				
750	Head	2.13	2.12	0.47				
750	Body	2.26	2.25	0.44				
835	Head	2.34	2.36	-0.85				
835	Body	2.41	2.42	-0.41				
1800	Head	9.70	9.77	-0.72				
1800	Body	9.91	9.92	-0.10				
1900	Head	10.2	10.2	0.00				
1900	Body	10.1	10.0	1.00				
2450	Head	13.2	13.1	0.76				
2450	Body	13.40	13.42	-0.15				

Table B.1 Comparison between area scan and zoom scan for system verification



ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

No. I15N01419-SAR Page 116 of 179

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

· · • • • • • • • • • • • • • • • • • •	
Model:	ES3DV3, EX3DV4
Frequency	10MHz — 6.0GHz(EX3DV4)
Range:	10MHz — 4GHz(ES3DV3)
Calibration:	In head and body simulating tissue at
	Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4
	± 0.2 dB(30 MHz to 4 GHz) for ES3DV3
Dynamic Range:	10 mW/kg — 100W/kg
Probe Length:	330 mm
Probe Tip	
Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)
Tip-Center:	1 mm (2.0mm for ES3DV3)
Application:	SAR Dosimetry Testing
	Compliance tests of mobile phones
	Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed ©Copyright. All rights reserved by CTTL.

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm^2 .

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.6 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.7 Server for DASY 4

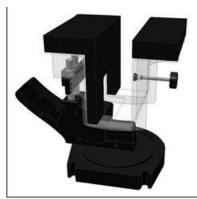
Picture C.8 Server for DASY 5

C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss


POM material having the following dielectric

parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.9-2: Laptop Extension

Picture C.9-1: Device Holder Kit

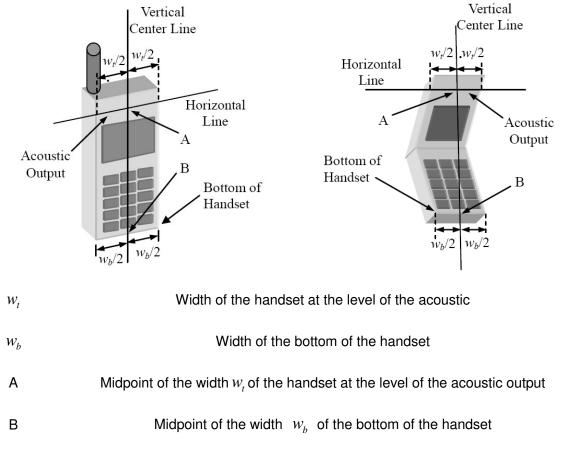
C.4.5 Phantom

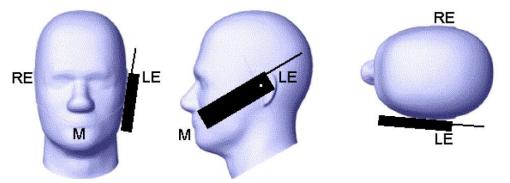
The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

No. I15N01419-SAR Page 120 of 179

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

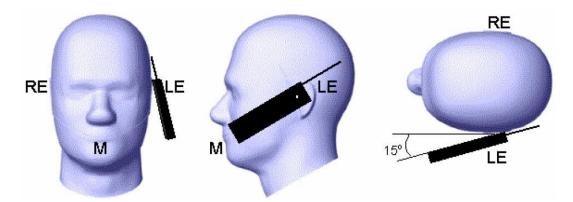
Shell Thickness:2 ± 0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x l000 x 500 mm (H x L x W)Available:Special


Picture C.10: SAM Twin Phantom


ANNEX D Position of the wireless device in relation to the phantom

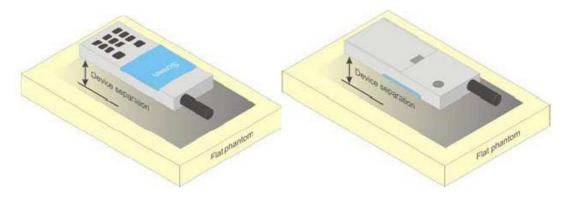
D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.



Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset

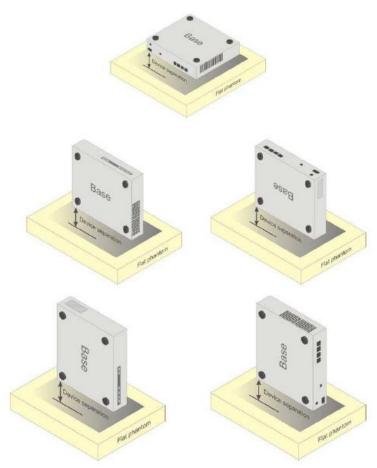
Picture D.2 Cheek position of the wireless device on the left side of SAM



Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4 Test positions for body-worn devices

D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 700-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

					Sue Equiva	iont matte			
Frequency	835	835	1900	1900	2450	2450	5800	5800	
(MHz)	Head	Body	Head	Body	Head	Body	Head	Body	
Ingredients (% by weight)									
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53	
Sugar	56.0	45.0	\	\	\	\	\	\	
Salt	1.45	1.4	0.306	0.13	0.06	0.18	\	\	
Preventol	0.1	0.1	\	\	\	\	\	\	
Cellulose	1.0	1.0	\	\	\	\	\	\	
Glycol	1	1	44.452	29.96	41.15	27.22			
Monobutyl	\	1	44.402	29.90	41.15	21.22	١	\	
Diethylenglycol	1	1	1	1	1	1			
monohexylether	\	\	۸	١	١	١	17.24	17.24	
Triton X-100	\	\	\	\	\	\	17.24	17.24	
Dielectric	c=41 5	c=55.0	c=40.0	c=52.2	c=20.2	c=50.7			
Parameters	ε=41.5 σ=0.00	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7 σ=1.05	ε=35.3	ε=48.2	
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95	σ=5.27	σ=6.00	
						-	•		

Note: There are a little adjustment respectively for 750, 1800, 2600, based on the recipe of closest frequency in table E.1

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System validation							
Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)			
3151	Head 750MHz	Nov. 7, 2015	750 MHz	OK			
3151	Head 900MHz	Nov. 7, 2015	850 MHz	OK			
3151	Head 1750MHz	Nov. 8, 2015	1750 MHz	OK			
3151	Head 1900MHz	Nov. 8, 2015	1900 MHz	OK			
3151	Head 2450MHz	Nov. 10, 2015	2450 MHz	OK			
3151	Body 750MHz	Nov. 7, 2015	750 MHz	OK			
3151	Body 900MHz	Nov. 7, 2015	850 MHz	OK			
3151	Body 1750MHz	Nov. 8, 2015	1750 MHz	OK			
3151	Body 1900MHz	Nov. 8, 2015	1900 MHz	OK			
3151	Body 2450MHz	Nov. 10, 2015	2450 MHz	OK			

Table F.1: System Validation

ANNEX G DAE Calibration Certificate

DAE4 SN:786 Calibration Certificate

Add: No.51 Xu	CALIBRATION LABORATORY ueyuan Road, Haidian District, Beijing, 100191, China	
Tel: +86-10-62. E-mail: cttl@ch	2304633-2218 Fax: +86-10-62304633-2209	LIBRATIO No. L0570
Client : CT	TL(South Branch) Certificate No: Z15-97191	
CALIBRATION	CERTIFICATE	a he sh
Object	DAE4 - SN: 786	
Calibration Procedure(s)) FD-Z11-2-002-01	
	Calibration Procedure for the Data Acquisition Electronics (DAEx)	
Calibration date:	November 16, 2015	
measurements(SI). The r pages and are part of the All calibrations have be humidity<70%.	een conducted in the closed laboratory facility: environment temperature(the follow
measurements(SI). The r pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us	measurements and the uncertainties with confidence probability are given on t e certificate.	the follow (22±3)℃ a
measurements(SI). The r pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards	measurements and the uncertainties with confidence probability are given on t e certificate. een conducted in the closed laboratory facility: environment temperature(sed (M&TE critical for calibration)	(22±3)℃ a
measurements(SI). The r pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards	measurements and the uncertainties with confidence probability are given on t e certificate. een conducted in the closed laboratory facility: environment temperature(sed (M&TE critical for calibration) ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calib 1971018 06-July-15 (CTTL, No:J15X04257) July-16	(22±3)℃ a
measurements(SI). The r pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	measurements and the uncertainties with confidence probability are given on t e certificate. een conducted in the closed laboratory facility: environment temperature(sed (M&TE critical for calibration) ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibr	(22±3)℃ a
measurements(SI). The r pages and are part of the All calibrations have be humidity<70%.	measurements and the uncertainties with confidence probability are given on tecrtificate. een conducted in the closed laboratory facility: environment temperature(sed (M&TE critical for calibration) ID # Cal Date(Calibrated by, Certificate No.) 1971018 06-July-15 (CTTL, No:J15X04257) July-16 Name Function	(22±3)℃ a

Certificate No: Z15-97191

Page 1 of 3

No. I15N01419-SAR Page 127 of 179

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z15-97191

Page 2 of 3

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Res	solution nomi	nal		
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measuremen	t parameters:	Auto Zero	Time: 3 sec; Meas	uring time: 3 sec

Calibration Factors	X	Y	Z
High Range	405.093 ± 0.15% (k=2)	$404.316 \pm 0.15\%$ (k=2)	403.963 ± 0.15% (k=2)
Low Range	3.97218 ± 0.7% (k=2)	3.97265 ± 0.7% (k=2)	3.96261 ± 0.7% (k=2)

Connector Angle

8°±1°
1

Certificate No: Z15-97191

Page 3 of 3

ANNEX H Probe Calibration Certificate

Probe ES3DV3-SN:3151 Calibration Certificate

	LSD		C-MRA CNAS
Add: No. 51 Vuon	CALIBRAT	on LABORATORY rict, Beijing, 100191, China	
Tel: +86-10-62304 E-mail: cttl@china	633-2218 Fax: +	86-10-62304633-2209	CALIBRATION No. L0570
	TL(South Bran		-97160
CALIBRATION C	ERTIFICAT	E	
Object	ES2DV	2 CN:2464	
	E03DV.	3 - SN:3151	
Calibration Procedure(s)	ED.711	-2-004-01	
		ion Procedures for Dosimetric E-field Probes	
Calibration data:			
Calibration date:	October	30, 2015	
	ertificate.	he closed laboratory facility: environment	temperature(22±3)°C and
pages and are part of the c All calibrations have been humidity<70%. Calibration Equipment used	ertificate. n conducted in t l (M&TE critical fo	r calibration)	temperature(22±3)°C and
pages and are part of the c All calibrations have been humidity<70%. Calibration Equipment used Primary Standards	ertificate. 1 conducted in t 1 (M&TE critical fo 1D #	r calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
pages and are part of the constraints have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	ertificate. 1 conducted in t 1 (M&TE critical fo ID # 101919	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16
pages and are part of the c All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ertificate. 1 conducted in t 1 (M&TE critical fo ID # 101919 101547	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16
pages and are part of the c All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	ertificate. 1 conducted in t 1 (M&TE critical fo ID # 101919 101547 101548	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16 Jun-16
pages and are part of the c All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator	ertificate. 1 conducted in t 1 (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16
pages and are part of the c All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	ertificate. 1 conducted in t 1 (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16
pages and are part of the c All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	ertificate. a conducted in t (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16
pages and are part of the control of	ertificate. a conducted in t (M&TE critical fo ID# 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15) 27-Jan-15(SPEAG, No.DAE4-771_Jan15)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16
pages and are part of the c All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4	ertificate. a conducted in t (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 771 ID #	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16 Jan -16
pages and are part of the c All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	ertificate. a conducted in t (M&TE critical fo ID# 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 771 ID# 6201052605	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15) 27-Jan-15(SPEAG, No.DAE4-771_Jan15) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16 Jan -16 Scheduled Calibration
pages and are part of the c All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	ertificate. a conducted in t (M&TE critical fo ID# 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 771 ID# 6201052605	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15) 27-Jan-15(SPEAG, No.DAE4-771_Jan15) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04255)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16 Jan -16 Scheduled Calibration Jun-16
pages and are part of the c All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	ertificate. a conducted in t (M&TE critical fo ID# 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 771 ID # 6201052605 MY46110673	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.JZ14-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15) 27-Jan-15(SPEAG, No.DAE4-771_Jan15) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04255) 03-Feb-15 (CTTL, No.J15X00728)	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16 Jan -16 Scheduled Calibration Jun-16 Feb-16
pages and are part of the c All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	ertificate. a conducted in t (M&TE critical fo ID# 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 771 ID# 6201052605 MY46110673 Name	r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 13-Mar-14(TMC,No.J214-1103) 13-Mar-14(TMC,No.JZ14-1104) 27-Feb-15(SPEAG,No.EX3-7307_Feb15) 27-Jan-15(SPEAG, No.DAE4-771_Jan15) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04255) 03-Feb-15 (CTTL, No.J15X00728) Function	Scheduled Calibration Jun-16 Jun-16 Jun-16 Mar-16 Mar-16 Feb-16 Jan -16 Scheduled Calibration Jun-16 Feb-16

Certificate No: Z15-97160

Page 1 of 11

No. I15N01419-SAR Page 130 of 179

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z15-97160

Page 2 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn
 E-mail: cttl@chinattl.com

Probe ES3DV3

SN: 3151

Calibrated: October 30, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z15-97160

Page 3 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3151

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2) A	1.19	1.27	1.20	±10.8%
DCP(mV)B	102.8	103.1	103.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	260.1	±2.2%
		Y	0.0	0.0	1.0		269.1	
		Z	0.0	0.0	1.0		261.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z15-97160

Page 4 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3151

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.00	6.00	6.00	0.55	1.15	±12%
900	41.5	0.97	6.05	6.05	6.05	0.31	1.63	±12%
1450	40.5	1.20	5.23	5.23	5.23	0.27	1.70	±12%
1750	40.1	1.37	5.06	5.06	5.06	0.52	1.32	±12%
1900	40.0	1.40	4.96	4.96	4.96	0.56	1.32	±12%
2000	40.0	1.40	4.83	4.83	4.83	0.40	1.61	±12%
2300	39.5	1.67	4.68	4.68	4.68	0.90	1.00	±12%
2450	39.2	1.80	4.55	4.55	4.55	0.68	1.21	±12%
2600	39.0	1.96	4.39	4.39	4.39	0.56	1.41	±12%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z15-97160

Page 5 of 11

2600

52.5

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3151

Relative Conductivity Depth^G Unct. f [MHz]^C ConvF X ConvF Y Alpha^G ConvF Z Permittivity F (S/m) F (mm) (k=2) 750 55.5 0.96 6.13 6.13 6.13 0.45 1.33 ±12% 900 55.0 1.05 5.91 5.91 5.91 0.38 1.55 ±12% 1450 54.0 1.30 5.15 5.15 5.15 0.38 1.61 ±12% 1750 53.4 1.49 4.75 4.75 4.75 0.53 1.37 ±12% 1900 53.3 1.52 4.50 4.50 4.50 0.52 1.42 ±12% 2000 53.3 1.52 4.50 4.50 4.50 0.56 1.39 $\pm 12\%$ 2300 52.9 1.81 4.32 4.32 4.32 0.90 1.10 ±12% 2450 52.7 1.95 4.26 4.26 4.26 0.71 1.24 ±12%

4.00

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation

4.00

4.00

0.55

1.49

±12%

formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies

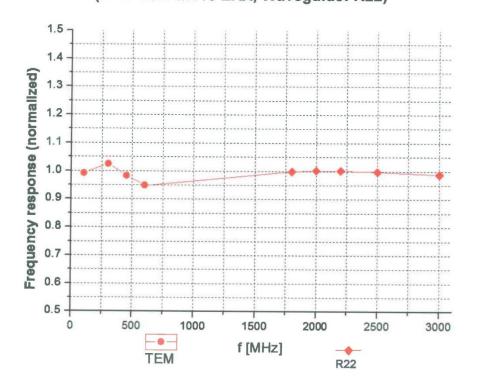
between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

2.16

Certificate No: Z15-97160

Page 6 of 11

No. I15N01419-SAR Page 135 of 179

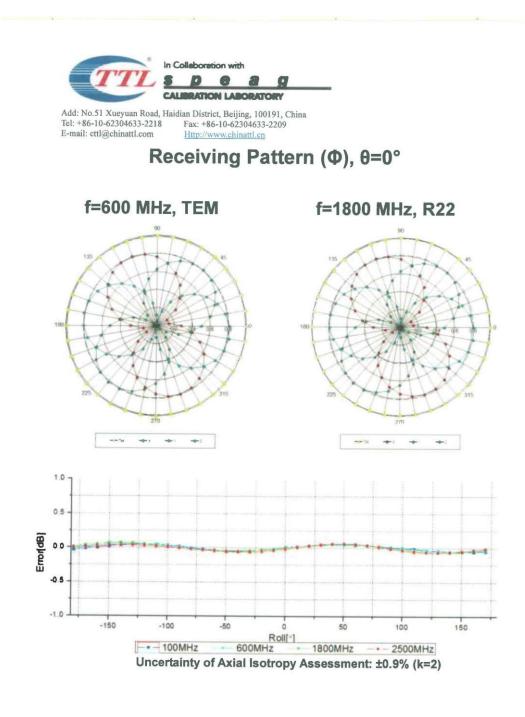


 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

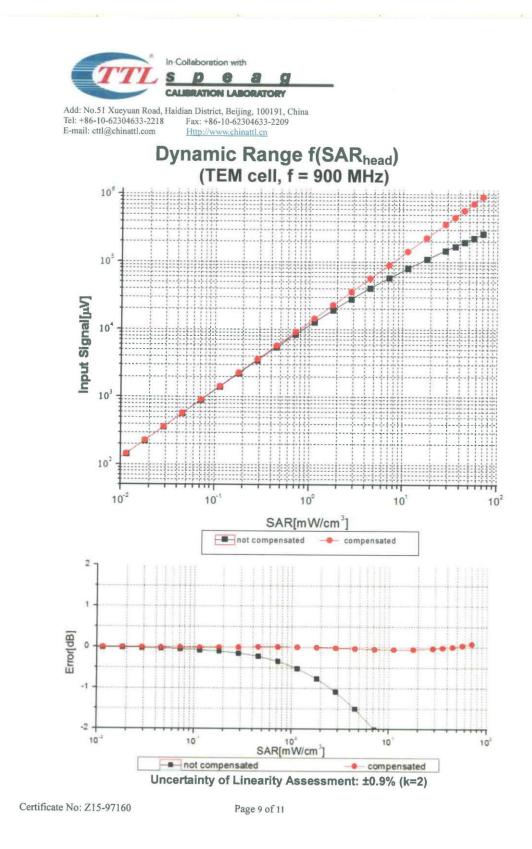
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: Z15-97160

Page 7 of 11

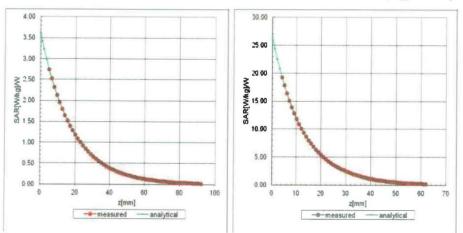


Certificate No: Z15-97160

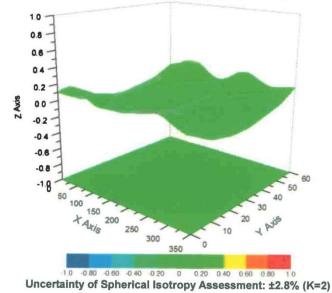
Page 8 of 11

No. I15N01419-SAR Page 137 of 179

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China


 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>


Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z15-97160

Page 10 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3151

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	85.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: Z15-97160

Page 11 of 11

ANNEX I DIPOLE CALIBRATION CERTIFICATE

750 MHz Dipole Calibration Certificate

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A US37292783 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A US37292783 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A US37292783 09-Oct-13 (No. 217-01828) Oct-14 Paterence 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01921) Apr-15 Fype-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 Paference Probe ES3DV3 SN: 2005 30-Dec-13 (No. E3-3205_Dec13) Dec-14 OAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15	Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14 Oct-14
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	ID # GB37480704	09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration	Calibration Equipment used (M&T Primary Standards	ID #		Scheduled Calibration
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration)	Calibration Equipment used (M&T		Cal Date (Cortificate No.)	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.				
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).				
	Calibration date:	August 28, 2014		
	Colibration data:	August 29, 2014		
Calibration procedure for dipole validation kits above 700 MHz	Sanstation procedure(s)		dure for dipole validation kits abo	ve 700 MHz
Calibration procedure(s) QA CAL-05.v9	Calibration procedure(s)	QA CAL-05.v9		
Dbject D750V3 - SN: 1017	Object	D750V3 - SN: 101	17	

No. I15N01419-SAR Page 141 of 179

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS

BRP

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service
 Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1017_Aug14

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.2 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.31 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.39 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.4 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.75 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.49 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.85 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1017_Aug14

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2 Ω - 0.5 jΩ	
Return Loss	- 30.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω - 2.9 jΩ	
Return Loss	- 28.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.034 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 22, 2010

Certificate No: D750V3-1017_Aug14

Page 4 of 8