# **REPORT ON**

Limited FCC CFR 47: Parts 15, 22 and 24 and Industry Canada RSS-132 and 133 Testing of a SAGEM Communications MC2004a Handset

# COMMERCIAL-IN-CONFIDENCE

# FCC ID: M9HMC2004A

Report No OR615015/01 Issue 3

May 2006



COMMERCIAL-IN-CONFIDENCE

TUV Product Service Ltd, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: <u>www.tuvps.co.uk</u>; <u>www.babt.com</u>

**REPORT ON** Limited FCC CFR 47: Parts 15, 22 and 24 and Industry Canada RSS-132 and 133 Testing of a SAGEM Communications MC2004a Handset

Report No OR615015/01 Issue 3

May 2006

FCC ID: M9HMC2004A

PREPARED FOR

SAGEM Communications 2, rue du Petit Albi - BP 28250 95801 Cergy pontoise Cedex France

PREPARED BY

timeno

**J Plummer** Technical Author

**APPROVED BY** 

**K Adsetts** Authorised Signatory

T J Pither Authorised Signatory

DATED

16<sup>th</sup> May 2006

This report has been up issued due to additional testing

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47: Parts 15, 22 and 24. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineers;

S Bennett

R Carr



Harrisor

Report Number OR615015/01 Issue 3



# CONTENTS

# Section

# Page No

| 1    | REPORT SUMMARY                                     |    |
|------|----------------------------------------------------|----|
| 1.1  | Status                                             | 4  |
| 1.2  | Introduction                                       | 6  |
| 1.3  | Brief Summary of Results                           | 8  |
| 1.4  | Product Information                                | 10 |
| 1.5  | Test Conditions                                    | 10 |
| 1.6  | Deviations from the Standard                       | 11 |
| 1.7  | Modification Record                                | 11 |
| 1.8  | Alternative Test Site                              | 11 |
| 2    | TEST DETAILS                                       |    |
|      | FCC Part 15 B, Industry Canada RSS-132 and RSS-133 |    |
| 2.1  | Spurious Radiated Emissions (Enclosure Port)       | 13 |
| 2.2  | Conducted Emissions                                | 17 |
|      | FCC Part 22 and Industry Canada RSS-132            |    |
| 2.3  | Effective Radiated Power (Conducted)               | 25 |
| 2.4  | Maximum Peak Output Power (EIRP Method)            | 27 |
| 2.5  | Modulation Characteristics                         | 29 |
| 2.6  | Occupied Bandwidth                                 | 33 |
| 2.7  | Spurious Emissions at Antenna Terminals (+/- 1MHz) | 35 |
| 2.8  | Radiated Spurious Emissions                        | 39 |
| 2.9  | Conducted Spurious Emissions                       | 42 |
| 2.10 | Frequency Stability Under Temperature Variations   | 50 |
| 2.11 | Frequency Stability Under Voltage Variations       | 52 |
|      | FCC Part 24 and Industry Canada RSS-133            |    |
| 2.12 | Maximum Peak Output Power (EIRP)                   | 54 |
| 2.13 | Maximum Peak Output Power (Conducted)              | 56 |
| 2.14 | Modulation Characteristics                         | 58 |
| 2.15 | Occupied Bandwidth                                 | 62 |
| 2.16 | Spurious Emissions at Antenna Terminals (+/- 1MHz) | 64 |
| 2.17 | Radiated Spurious Emissions                        | 68 |
| 2.18 | Conducted Spurious Emissions                       | 71 |
| 2.19 | Frequency Stability Under Temperature Variations   | 81 |
| 2.20 | Frequency Stability Under Voltage Variations       | 82 |
| 3    | TEST EQUIPMENT                                     |    |
| 3.1  | Test Equipment                                     | 84 |
| 3.2  | Measurement Uncertainty                            | 88 |
| 4    | PHOTOGRAPHS                                        |    |
| 4.1  | Photographs of Equipment                           | 89 |
| 5    | ACCREDITATION, DISCLAIMERS AND COPYRIGHT           |    |
| 5.1  | Accreditation, Disclaimers and Copyright           | 98 |



**SECTION 1** 

# **REPORT SUMMARY**

Limited FCC CFR 47: Parts 15, 22 and 24 and Industry Canada RSS-132 and 133 Testing of a SAGEM Communications MC2004a Handset



| 1.1 | STATUS                         |                                                                                                                                                                                                                                                          |
|-----|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Equipment Under Test           | MC2004a Handset                                                                                                                                                                                                                                          |
|     | Objective                      | To undertake measurements to determine the Equipment Under Test's (EUT's) compliance with the specification.                                                                                                                                             |
|     | Name and Address of Client     | SAGEM Communications<br>Mobile Phones Research and Development<br>Mobile Communication Business Group<br>2, rue deu Petit Albi – BP 28250<br>95801 Cergy Pontoise Cedex<br>France                                                                        |
|     | Туре                           | Mobile Dual Band Handset                                                                                                                                                                                                                                 |
|     | Part Number(s)                 | Handset - MC2004a<br>Battery – 188973731<br>AC Charger (US) – 189107196<br>AC Charger (CE) – 189107154<br>AC Charger (UK) – 189107188<br>AC Charger (AUS) – 188692000<br>Mono Headset – 188448080<br>Cigar Adapter – 188718424<br>Data Cable - 188672363 |
|     | Serial Number(s)               | IMEI 01084300950022-5<br>IMEI 01084300950020-9<br>IMEI 01084300950019-1                                                                                                                                                                                  |
|     | Hardware Version               | V0x                                                                                                                                                                                                                                                      |
|     | Software Version               | L 5, 8B                                                                                                                                                                                                                                                  |
|     | Declared Variants              | None                                                                                                                                                                                                                                                     |
|     | Test Specification/Issue/Date  | FCC CFR 47: Part 15, Subpart B: 2003<br>FCC CFR 47: Part 22, Subpart H: 2004<br>FCC CFR 47: Part 24, Subpart D: 2004<br>RSS-132: Issue 1: 2002<br>RSS-133: Issue 3: 2005<br>RSS-Gen: 2005                                                                |
|     | Number of Items Tested         | Three                                                                                                                                                                                                                                                    |
|     | Security Classification of EUT | Commercial-in-Confidence                                                                                                                                                                                                                                 |
|     | Incoming Release<br>Date       | Declaration of Build Status<br>13 <sup>th</sup> March 2005                                                                                                                                                                                               |



#### 1.1 STATUS

Disposal

Order Number Date

Start of Test Finish of Test

**Related Documents** 

Held pending disposal

PTP 11<sup>th</sup> January 2006

22<sup>nd</sup> February 2006 4<sup>th</sup> May 2006

ANSI C63.4: 2001 RSS-212, Issue 1: 1999 SRSP-503, Issue 6: 2003 SRSP-510, Issue 3: 2003



## 1.2 INTRODUCTION

The information contained within this report is intended to show limited verification of compliance of the SAGEM Communications MC2004a Handset to the requirements of FCC Specification Parts 15, 22 and 24 and Industry Canada Radio Specifications RSS-132, RSS-133 and RSS-Gen.

Testing has been performed under the following site accreditations

FCC Accreditation 90987 Octagon House, Fareham Test Laboratory

Industry Canada Accreditation IC4270 Octagon House, Fareham Test Laboratory



#### 1.2 INTRODUCTION

# 1.2.1 Declaration of Build Status

|                                                                                     | MAIN EUT                                                                                  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| MANUFACTURING<br>DESCRIPTION                                                        | Dual Band Handset                                                                         |
| MANUFACTURER                                                                        | Sagem Communications                                                                      |
| TYPE                                                                                | Dual Band Handset                                                                         |
| PART NUMBER                                                                         | MC2004a                                                                                   |
| SERIAL NUMBER                                                                       | See Test pages                                                                            |
| HARDWARE VERSION                                                                    | V0X                                                                                       |
| SOFTWARE VERSION                                                                    | L5,8B                                                                                     |
| TRANSMITTER OPERATING<br>RANGE                                                      | GSM850: 824.2 to 848.8<br>GSM1900: 1850.2 to 1909.8                                       |
| RECEIVER OPERATING<br>RANGE                                                         | GSM850: 869.2 to 893.8<br>GSM1900: 1930.2 to 1989.8                                       |
| COUNTRY OF ORIGIN                                                                   | China                                                                                     |
| INTERMEDIATE<br>FREQUENCIES                                                         | None                                                                                      |
| ITU DESIGNATION OF                                                                  | 850 Band –                                                                                |
| EMISSION                                                                            | 1900 Band -                                                                               |
| HIGHEST INTERNALLY                                                                  | GSM 850 band : 1737.8 -1787.8 MHz                                                         |
| GENERATED FREQUENCY                                                                 | PCS 1900 band : 1929.9 - 1989.9 MHz                                                       |
| OUTPUT POWER (W or dBm)                                                             | GSM 850 band: Class 4 (PCL 5) 2W or 33 dBm<br>PCS 1900 band: Class 0 (PCL 0) 1W or 30 dBm |
| FCC ID                                                                              | M9HMC2004A                                                                                |
| INDUSTRY CANADA ID                                                                  | N/A                                                                                       |
| TECHNICAL DESCRIPTION<br>(a brief description of the<br>intended use and operation) | Dual Band handset                                                                         |
|                                                                                     | BATTERY/POWER SUPPLY                                                                      |
| MANUFACTURING                                                                       | Battery – Li-ION 730 mAh                                                                  |
| DESCRIPTION                                                                         | Power Supply – Dual Voltage 110-220V                                                      |
| MANUFACTURER                                                                        | Battery – Desay – Part no. 188973731                                                      |
| WANUFACIURER                                                                        | Power Supply – Astec Part no.189107196                                                    |
| VOLTAGE                                                                             | 3.9V nominal                                                                              |

Signature Mickael Robic

| Date               | 14/03/2006 |
|--------------------|------------|
| D of B S Serial No | OS615015   |

TUV Product Service Limited formally certifies that the manufacturer's declaration as reproduced in this report is a true and accurate record of the original received from the applicant.



# 1.3 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out is shown below.

#### FCC CFR 47: Part 15, Subparts B and C, RSS-132 and RSS-133 and RSS-Gen

| Test | Spec Clause |                                           | Test Description            | Decult |                  |
|------|-------------|-------------------------------------------|-----------------------------|--------|------------------|
| Test | FCC         | Industry Canada                           | Test Description            | Result | IMEI Number      |
| 2.1  | Part 15.109 | RSS-132, 6.6<br>RSS-133, 6.7<br>RSS-Gen 6 | Spurious Radiated Emissions | Pass   | 01084300950022-5 |
| 2.2  | Part 15.107 | RSS-Gen 7.2.2                             | Conducted Emissions         | Pass   | 01084300950020-9 |

## FCC CFR 47: Part 22, Subpart H and RSS-132

| Test | Spec Clause                                 |                 | Test Description                                      | Desult | Comments         |
|------|---------------------------------------------|-----------------|-------------------------------------------------------|--------|------------------|
| Test | FCC                                         | Industry Canada | Test Description                                      | Result | Comments         |
| 2.3  | Part 22.913 (a)                             | RSS-132, 4.4    | Effective Radiated Power –<br>Conducted               | Pass   | 01084300950019-1 |
| 2.4  | Part 22.913 (a)                             | RSS-132, 4.4    | Effective Radiated Power –Radiated (EIRP Method)      | Pass   | 01084300950022-5 |
| 2.5  | Part 22.1047(d)                             | RSS-132, 4.2    | Modulation Characteristics                            | Pass   | 01084300950019-1 |
| 2.6  | Part 22.1049,<br>Part 22.917 (b)            | RSS-132, 4.5    | Occupied Bandwidth                                    | Pass   | 01084300950019-1 |
| 2.7  | Part 22.1051,<br>Part 22.905<br>Part 22.917 | RSS-132, 4.5    | Spurious Emissions at Antenna<br>Terminals (+/- 1MHz) | Pass   | 01084300950019-1 |
| 2.8  | Part 22.1053,<br>Part 22.917                | RSS-132, 4.5    | Radiated Spurious Emissions                           | Pass   | 01084300950022-5 |
| 2.9  | Part 22.1051,<br>Part 22.917(a)             | RSS-132, 4.5    | Conducted Spurious Emissions                          | Pass   | 01084300950019-1 |
| 2.10 | Part 22.1055,<br>Part 22.355                | RSS-132, 4.3    | Frequency Stability Under<br>Temperature Variations   | Pass   | 01084300950019-1 |
| 2.11 | Part 22.1055,<br>Part 22.355                | RSS-132, 4.3    | Frequency Stability Under Voltage Variations          | Pass   | 01084300950019-1 |



## 1.3 BRIEF SUMMARY OF RESULTS

# FCC CFR 47: Part 24, Subpart E and RSS-133

| Test | Spec Clause                                | -                                    | Toot Description                                      | Result | Comments         |
|------|--------------------------------------------|--------------------------------------|-------------------------------------------------------|--------|------------------|
| Test | FCC                                        | Industry Canada                      | Test Description                                      | Result | Comments         |
| 2.12 | Part 22.1046<br>Part 24.232 (b)            | RSS-133, 4.3 and 6.4                 | Maximum Peak Output Power –<br>Radiated (EIRP Method) | Pass   | 01084300950022-5 |
| 2.13 | Part 2.1046<br>Part 24.232                 | RSS-133, 4.3 and 6.4                 | Maximum Peak Output Power -<br>Conducted              | Pass   | 01084300950019-1 |
| 2.14 | Part 2.1047(d)                             | RSS-133, 6.2                         | Modulation Characteristics                            | Pass   | 01084300950019-1 |
| 2.15 | Part 2.1049,<br>Part 24.238 (b)            | RSS-133. 2.6, 6.5<br>and RSS-Gen 4.4 | Occupied Bandwidth                                    | Pass   | 01084300950019-1 |
| 2.16 | Part 2.1051,<br>Part 24.229<br>Part 24.238 | RSS-133, 4.4 and 6.5                 | Spurious Emissions at Antenna<br>Terminals (+/- 1MHz) | Pass   | 01084300950019-1 |
| 2.17 | Part 22.1053,<br>Part 24.238               | RSS-133, 4.4 and 6.5                 | Radiated Spurious Emissions                           | Pass   | 01084300950022-5 |
| 2.18 | Part 2.1051,<br>Part 24.238 (a)            | RSS-133, 4.4 and 6.5                 | Conducted Spurious Emissions                          | Pass   | 01084300950019-1 |
| 2.19 | Part 2.1055,<br>Part 24.235                | RSS-133, 4.2 and 6.3                 | Frequency Stability Under<br>Temperature Variations   | Pass   | 01084300950019-1 |
| 2.20 | Part 2.1055,<br>Part 24.235                | RSS-133, 4.2 and 6.3                 | Frequency Stability Under Voltage Variations          | Pass   | 01084300950019-1 |



## 1.4 **PRODUCT INFORMATION**

#### 1.4.1 Technical Description

The Equipment Under Test (EUT) was a SAGEM Communications MC2004a Handset designed for communication in the GSM 850 and PCS 1900 networks.

#### 1.4.2 Modes of Operation

Modes of operation of the EUT during testing were as given in section 1.4.3:

#### 1.4.3 Test Configuration

Test Configuration – GSM 850 Mode

850MHz transmitting on the following channels and frequencies;Bottom Channel 128:824.20MHzMiddle Channel 189:836.40MHzTop Channel 251:848.80MHz850MHz receiving on the following channels and frequencies;Middle Channel 189:836.40MHz

Test Configuration – PCS 1900 Mode

1900MHz transmitting on the following channels and frequencies;Bottom Channel 512:1820.20MHzMiddle Channel 661:1880.00MHzTop Channel 810:1909.80MHz1900MHz receiving on the following channels and frequencies;Middle Channel 661:1880.00MHz

#### 1.5 TEST CONDITIONS

The EUT was set-up simulating a typical user installation at the Test Laboratory, as listed in Section 1.2 and tested in accordance with the applicable specification.

For all tests, the SAGEM Communications MC2004a Handset was powered via an AC adaptor.



## 1.6 DEVIATIONS FROM THE STANDARD

Not Applicable

#### 1.7 MODIFICATION RECORD

Not Applicable

# 1.8 ALTERNATIVE TEST SITE

Under our group UKAS Accreditation, TUV Product Service Ltd conducted the following tests at our Maplewood, Basingstoke Test Laboratory.

- FCC: Part 15.109, Spurious Radiated Emissions
- FCC: Part 15.107, Conducted Emissions
- FCC: Part 22.913(a), Effective Radiated Power (EIRP Method)
- FCC: Part 24.232(b), Maximum Peak Output Power (EIRP Method)
- FCC: Part 22.917, Radiated Spurious Emissions
- FCC: Part 24.238, Radiated Spurious Emissions



**SECTION 2** 

TEST RESULTS

Limited FCC CFR 47: Parts 15, 22 and 24 and Industry Canada RSS-132, 133 and Gen Testing of a SAGEM Communications MC2004a Handset



#### 2.1.1 Specification Reference

FCC CFR 47: Part 15 Subpart B, Section 15.109, Industry Canada RSS-132, 6.6 and RSS-133, 9

#### 2.1.2 Equipment Under Test

MC2004a Handset

#### 2.1.3 Date of Test

3<sup>rd</sup> March 2006 (Handset with US Charger) 4<sup>th</sup> May 2006 (Handset and Ancillary Equipment)

#### 2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.1.5 Test Procedure

Test Performed in accordance with ANSI C63.4 and RSS-212.

A preliminary profile of the Spurious Radiated Emissions was obtained by operating the EUT on a remotely controlled turntable within a semi-anechoic chamber. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations. The profiling produced a list of the worst-case emissions together with the EUT azimuth and antenna polarisation.

Using the information from the preliminary profiling of the EUT. The list of emissions was then confirmed or updated under Alternative Open Site conditions. Emission levels were maximised by adjusting the antenna height, antenna polarisation and turntable azimuth.

Emissions identified within the range 30MHz – 1GHz were then formally measured using a CISPR Quasi-Peak detector.

Emissions identified within the range 1GHz – 10GHz were then formally measured using Peak and Average Detectors, as appropriate.

The measurements were performed at a 3m distance unless otherwise stated.



#### 2.1.6 Test Results

Equipment Designation: Unintentional Radiator.

The EUT met the requirements of FCC CFR 47: Part 15 Subpart B, Section 15.109 and Industry Canada RSS-132, 6.6 and RSS-133, 9 for Spurious Radiated Emissions (30MHz – 20GHz).

Measurements were made with the EUT in GSM 850 Idle Mode.

#### EUT Receiving on Middle Channel (836.4MHz)

#### Handset with US Charger

No emissions were detected. Therefore a table of noise floor measurements is presented.

| Frequency | Antenna<br>Polarisation | Height | Azimuth | Quasi-Peak Result | Quasi-Peak Limit |
|-----------|-------------------------|--------|---------|-------------------|------------------|
| MHz       |                         | cm     | degree  | dBµV/m            | dBµV/m           |
| 35.0      | Vertical                | 100    | 000     | 22.7              | 40.0             |
| 227.0     | Vertical                | 100    | 000     | 18.7              | 46.0             |
| 419.0     | Vertical                | 100    | 000     | 27.1              | 46.0             |
| 611.0     | Vertical                | 100    | 000     | 31.5              | 46.0             |
| 800.0     | Vertical                | 100    | 000     | 34.8              | 46.0             |
| 900.0     | Vertical                | 100    | 000     | 36.4              | 46.0             |

## Handset with UK Charger

| Frequency | Antenna<br>Polarisation | Height | Azimuth | Quasi-Peak Result | Quasi-Peak Limit |
|-----------|-------------------------|--------|---------|-------------------|------------------|
| MHz       |                         | cm     | degree  | dBµV/m            | dBµV/m           |
| 54.43     | Vertical                | 100    | 270     | 31.7              | 40.0             |

No other emissions detected.

#### Handset with EU Charger

| Frequency | Antenna<br>Polarisation | Height | Azimuth | Quasi-Peak Result | Quasi-Peak Limit |
|-----------|-------------------------|--------|---------|-------------------|------------------|
| MHz       |                         | cm     | degree  | dBµV/m            | dBµV/m           |
| 58.02     | Vertical                | 100    | 137     | 19.6              | 40.0             |
| 69.60     | Vertical                | 100    | 137     | 21.7              | 40.0             |

No other emissions detected.



#### 2.1.6 Test Results - continued

## Handset with AUS Charger

| Frequency | Antenna<br>Polarisation | Height | Azimuth | Quasi-Peak Result | Quasi-Peak Limit |
|-----------|-------------------------|--------|---------|-------------------|------------------|
| MHz       |                         | cm     | degree  | dBµV/m            | dBµV/m           |
| 55.80     | Vertical                | 100    | 197     | 17.8              | 40.0             |

No other emissions detected.

#### Handset with DC Charger

No emissions were detected.

# Handset with Simple Hands Free, No Power Applied No emissions were detected.

#### USB Cable to Handset, Power Supplied

No emissions were detected.

Measurements were made with the EUT in PCS 1900 Idle Mode.

#### EUT Receiving on Middle Channel (1880.0MHz)

#### Handset with US Charger`

No emissions were detected. Therefore the noise floor measurements are presented below: -

| Frequency | Antenna<br>Polarisation | Height | Azimuth | Quasi-Peak Result | Quasi-Peak Limit |
|-----------|-------------------------|--------|---------|-------------------|------------------|
| MHz       |                         | cm     | degree  | dBµV/m            | dBµV/m           |
| 35.0      | Vertical                | 100    | 000     | 25.6              | 40.0             |
| 227.0     | Vertical                | 100    | 000     | 18.7              | 46.0             |
| 419.0     | Vertical                | 100    | 000     | 27.1              | 46.0             |
| 611.0     | Vertical                | 100    | 000     | 31.5              | 46.0             |
| 800.0     | Vertical                | 100    | 000     | 34.8              | 46.0             |
| 900.0     | Vertical                | 100    | 000     | 36.4              | 46.0             |

# Handset with UK Charger

| Frequency | Antenna<br>Polarisation | Height | Azimuth | Quasi-Peak Result | Quasi-Peak Limit |
|-----------|-------------------------|--------|---------|-------------------|------------------|
| MHz       |                         | cm     | degree  | dBµV/m            | dBµV/m           |
| 54.96     | Vertical                | 100    | 270     | 30.8              | 40.0             |

No other emissions detected.



#### 2.1.6 Test Results - continued

# Handset with EU Charger

| Frequency | Antenna<br>Polarisation | Height | Azimuth | Quasi-Peak Result | Quasi-Peak Limit |
|-----------|-------------------------|--------|---------|-------------------|------------------|
| MHz       |                         | cm     | degree  | dBµV/m            | dBµV/m           |
| 58.05     | Vertical                | 100    | 137     | 19.7              | 40.0             |
| 69.60     | Vertical                | 100    | 137     | 21.8              | 40.0             |

No other emissions detected.

#### Handset with AUS Charger

| Frequency | Antenna<br>Polarisation | Height | Azimuth | Peak Result | Quasi-Peak Limit |
|-----------|-------------------------|--------|---------|-------------|------------------|
| MHz       |                         | cm     | degree  | dBµV/m      | dBµV/m           |
| 56.13     | Vertical                | 100    | 197     | 18.7        | 40.0             |

No other emissions detected.

#### Handset with DC Charger

No emissions were detected.

Handset with Simple Hands Free, No Power Applied No emissions were detected.

# USB Cable to Handset, Power Supplied

No emissions were detected.



#### 2.2.1 Specification Reference

FCC CFR 47: Part 15 Subpart B, Section 15.107 and Industry Canada RSS-Gen 7.2.2

## 2.2.2 Equipment Under Test

MC2004a Handset

# 2.2.3 Date of Test

28<sup>th</sup> February 2006(Handset with US Charger) 3<sup>rd</sup> May 2006 (Handset and Ancillary Equipment)

#### 2.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.2.5 Test Procedure

Test performed in accordance with ANSI C63.4.

Conducted Emission Measurements were undertaken within the semi-anechoic chamber. Emissions were measured on the Live and Neutral Lines in turn.

Emissions were formally measured using a Quasi-Peak and Average Detectors, which meet the CISPR requirements. The details of the worst-case emissions for the Live and Neutral Lines are presented in the tables below.

The EUT was supplied from a 120V, 60Hz supply.



#### 2.2.6 Test Results

The EUT met the Class B requirements of FCC CFR 47: Part 15 Subpart B, Section 15.107 for Conducted Emissions on the Live and Neutral Lines.

Measurements were made with the EUT in GSM 850.

#### EUT in Idle Mode on Middle Channel (836.4MHz) – Live Line

#### Handset with US Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.175            | 50.9                        | 64.7                        | 30.2                     | 54.7                     |
| 0.220            | 48.9                        | 62.8                        | 28.3                     | 52.8                     |
| 0.240            | 52.9                        | 62.1                        | 33.8                     | 52.1                     |
| 0.270            | 49.6                        | 62.1                        | 28.3                     | 52.1                     |
| 0.285            | 49.5                        | 60.7                        | 29.0                     | 50.7                     |
| 0.545            | 44.8                        | 56.0                        | 33.3                     | 46.0                     |

The margin between the specification requirements and all other emissions were 14.0dB or more below the specified Quasi-Peak limit and 12.7dB or more below the Average limit.

### Handset with UK Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.164            | 56.1                        | 65.0                        | 34.9                     | 55.0                     |
| 0.170            | 55.0                        | 64.9                        | 33.5                     | 54.9                     |
| 0.193            | 51.4                        | 63.9                        | 34.8                     | 53.9                     |
| 0.336            | 45.6                        | 59.1                        | 24.2                     | 49.1                     |
| 0.433            | 45.8                        | 57.1                        | 25.5                     | 47.1                     |
| 0.464            | 45.8                        | 56.4                        | 25.9                     | 46.4                     |

The margin between the specification requirements and all other emissions were 13.9dB or more below the specified Quasi-Peak limit and 19.7dB or more below the Average limit.



#### 2.2.6 Test Results - Continued

#### Handset with EU Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.162            | 58.3                        | 65.4                        | 41.5                     | 55.4                     |
| 0.175            | 55.4                        | 64.8                        | 35.1                     | 54.8                     |
| 0.252            | 52.6                        | 64.1                        | 41.7                     | 54.1                     |
| 0.324            | 49.4                        | 61.6                        | 31.4                     | 51.6                     |
| 0.425            | 48.3                        | 59.6                        | 27.7                     | 49.6                     |
| 0.496            | 45.8                        | 58.3                        | 29.9                     | 48.3                     |

The margin between the specification requirements and all other emissions were 10.3dB or more below the specified Quasi-Peak limit and 17.5dB or more below the Average limit.

#### Handset with AUS Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.157            | 59.6                        | 65.7                        | 42.2                     | 55.7                     |
| 0.166            | 55.7                        | 65.2                        | 36.0                     | 55.2                     |
| 0.197            | 50.6                        | 63.9                        | 37.4                     | 53.9                     |
| 0.209            | 54.3                        | 63.2                        | 36.8                     | 53.2                     |
| 0.256            | 51.5                        | 61.6                        | 34.2                     | 51.6                     |
| 0.430            | 46.0                        | 57.1                        | 27.0                     | 47.1                     |

The margin between the specification requirements and all other emissions were 15.2dB or more below the specified Quasi-Peak limit and 19.7dB or more below the Average limit.

#### EUT in Idle Mode on Middle Channel (836.4MHz) – Neutral Line

#### Handset with US Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.185            | 55.6                        | 64.3                        | 33.4                     | 54.3                     |
| 0.230            | 52.8                        | 62.5                        | 32.0                     | 52.5                     |
| 0.275            | 48.3                        | 61.0                        | 28.1                     | 51.0                     |
| 0.540            | 43.8                        | 56.0                        | 30.3                     | 46.0                     |
| 0.590            | 43.7                        | 56.0                        | 30.2                     | 46.0                     |
| 1.200            | 43.3                        | 56.0                        | 28.6                     | 46.0                     |

The margin between the specification requirements and all other emissions were 12.7dB or more below the specified Quasi-peak limit and 17.4dB or more below the specified Average limit.



#### 2.2.6 Test Results - continued

#### Handset with UK Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.165            | 55.4                        | 65.2                        | 36.3                     | 55.2                     |
| 0.180            | 53.4                        | 64.5                        | 32.9                     | 54.5                     |
| 0.189            | 51.9                        | 64.1                        | 32.4                     | 54.1                     |
| 0.346            | 46.3                        | 59.1                        | 24.6                     | 49.1                     |
| 0.448            | 47.1                        | 56.9                        | 25.1                     | 46.9                     |
| 0.464            | 46.1                        | 56.6                        | 24.7                     | 46.6                     |

The margin between the specification requirements and all other emissions were 12.6dB or more below the specified Quasi-Peak limit and 21.3dB or more below the Average limit.

#### Handset with EU Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.153            | 59.0                        | 65.8                        | 42.7                     | 55.8                     |
| 0.168            | 55.7                        | 65.1                        | 34.1                     | 55.1                     |
| 0.209            | 53.1                        | 63.2                        | 37.1                     | 53.2                     |
| 0.334            | 48.1                        | 59.4                        | 31.4                     | 49.4                     |
| 0.410            | 47.7                        | 57.6                        | 28.6                     | 47.6                     |
| 0.435            | 47.7                        | 57.2                        | 27.4                     | 47.2                     |

The margin between the specification requirements and all other emissions were 11.3dB or more below the specified Quasi-Peak limit and 19.1dB or more below the Average limit.

# Handset with AUS Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.162            | 56.7                        | 65.4                        | 38.3                     | 55.4                     |
| 0.194            | 52.5                        | 63.9                        | 38.2                     | 53.9                     |
| 0.308            | 49.4                        | 60.0                        | 29.8                     | 50.0                     |
| 0.356            | 47.9                        | 58.8                        | 28.8                     | 48.8                     |
| 0.408            | 46.4                        | 57.7                        | 27.5                     | 47.7                     |
| 0.459            | 45.5                        | 56.7                        | 27.4                     | 46.7                     |

The margin between the specification requirements and all other emissions were 11.4dB or more below the specified Quasi-Peak limit and 16.7dB or more below the Average limit.



#### 2.2.6 Test Results - continued

Measurements were made with the EUT in PCS1900

#### EUT in Idle Mode on Middle Channel (1880.0MHz) – Live Line

#### Handset with US Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.170            | 49.3                        | 65.0                        | 25.2                     | 55.0                     |
| 0.235            | 50.3                        | 62.3                        | 21.9                     | 52.3                     |
| 0.310            | 44.7                        | 60.0                        | 19.8                     | 50.0                     |
| 0.380            | 41.2                        | 58.3                        | 18.9                     | 48.3                     |
| 0.455            | 38.0                        | 56.8                        | 17.7                     | 46.8                     |
| 0.515            | 37.3                        | 56.0                        | 19.6                     | 46.0                     |

The margin between the specification requirements and all other emissions were 18.8dB or more below the specified Quasi-Peak limit and 26.4dB or more below the Average limit.

#### Handset with UK Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.162            | 55.9                        | 65.4                        | 38.3                     | 55.4                     |
| 0.174            | 54.7                        | 64.8                        | 33.5                     | 54.8                     |
| 0.184            | 53.1                        | 64.3                        | 32.9                     | 54.3                     |
| 0.344            | 45.6                        | 59.1                        | 24.2                     | 49.1                     |
| 0.451            | 46.4                        | 56.9                        | 25.1                     | 46.9                     |
| 0.462            | 46.1                        | 56.7                        | 25.5                     | 46.7                     |

The margin between the specification requirements and all other emissions were 13.5dB or more below the specified Quasi-Peak limit and 21.6dB or more below the Average limit.



# 2.2.6 Test Results - Continued

#### Handset with EU Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.170            | 56.3                        | 65.0                        | 34.7                     | 55.0                     |
| 0.250            | 52.9                        | 61.8                        | 41.9                     | 51.8                     |
| 0.267            | 50.7                        | 61.2                        | 36.3                     | 51.2                     |
| 0.415            | 48.3                        | 57.5                        | 27.7                     | 47.5                     |
| 0.443            | 48.1                        | 57.0                        | 30.4                     | 47.0                     |
| 0.484            | 47.4                        | 56.3                        | 28.3                     | 46.3                     |

The margin between the specification requirements and all other emissions were 10.5dB or more below the specified Quasi-Peak limit and 18.7dB or more below the Average limit.

#### Handset with AUS Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.167            | 52.7                        | 65.1                        | 32.5                     | 55.1                     |
| 0.183            | 50.3                        | 64.3                        | 33.1                     | 54.3                     |
| 0.313            | 45.9                        | 59.9                        | 28.8                     | 49.9                     |
| 0.358            | 44.7                        | 58.8                        | 28.8                     | 48.8                     |
| 0.435            | 44.8                        | 57.2                        | 27.0                     | 47.2                     |
| 0.459            | 43.7                        | 56.7                        | 26.3                     | 46.7                     |

The margin between the specification requirements and all other emissions were 14.1dB or more below the specified Quasi-Peak limit and 17.8dB or more below the Average limit.



## 2.2.6 Test Results - Continued

## EUT in Idle Mode on Middle Channel (1880.0MHz) – Neutral Line

Measurements were made with the EUT in PCS1900

#### Handset with US Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.175            | 54.0                        | 64.7                        | 24.8                     | 54.7                     |
| 0.225            | 49.9                        | 62.6                        | 22.5                     | 52.6                     |
| 0.450            | 37.4                        | 56.9                        | 18.1                     | 46.9                     |
| 0.590            | 36.8                        | 56.0                        | 16.8                     | 46.0                     |
| 0.935            | 36.6                        | 56.0                        | 13.3                     | 46.0                     |
| 1.905            | 36.9                        | 56.0                        | 11.5                     | 46.0                     |

The margin between the specification requirements and all other emissions were 19.5dB or more below the specified Quasi-peak limit and 29.2dB or more below the specified Average limit.

#### Handset with UK Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.154            | 56.2                        | 65.8                        | 39.5                     | 55.8                     |
| 0.169            | 54.7                        | 65.0                        | 33.5                     | 55.0                     |
| 0.178            | 53.6                        | 64.6                        | 33.5                     | 54.6                     |
| 0.428            | 46.2                        | 57.3                        | 25.5                     | 47.3                     |
| 0.443            | 46.7                        | 57.0                        | 25.1                     | 47.0                     |
| 0.462            | 46.4                        | 56.7                        | 25.5                     | 46.7                     |

The margin between the specification requirements and all other emissions were 10.9dB or more below the specified Quasi-Peak limit and 18.9dB or more below the Average limit.



# 2.2.6 Test Results - Continued

#### Handset with EU Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.155            | 58.9                        | 65.7                        | 42.0                     | 55.7                     |
| 0.166            | 56.7                        | 65.2                        | 35.1                     | 55.2                     |
| 0.175            | 55.5                        | 64.7                        | 34.77                    | 54.7                     |
| 0.200            | 53.6                        | 62.8                        | 37.2                     | 52.8                     |
| 0.392            | 48.0                        | 58.0                        | 28.5                     | 48.0                     |
| 0.410            | 48.0                        | 57.6                        | 28.6                     | 47.6                     |

The margin between the specification requirements and all other emissions were 10.0dB or more below the specified Quasi-Peak limit and 15.0dB or more below the Average limit.

#### Handset with AUS Charger

| Frequency<br>MHz | Quasi-Peak<br>Level<br>dBµV | Quasi-Peak<br>Limit<br>dBµV | Average<br>Level<br>dBµV | Average<br>Limit<br>dBµV |
|------------------|-----------------------------|-----------------------------|--------------------------|--------------------------|
| 0.155            | 56.6                        | 65.7                        | 43.2                     | 55.7                     |
| 0.172            | 49.0                        | 64.9                        | 24.7                     | 54.9                     |
| 0.344            | 42.9                        | 59.1                        | 28.5                     | 49.1                     |
| 0.438            | 43.6                        | 57.1                        | 27.0                     | 47.1                     |
| 0.464            | 42.7                        | 56.6                        | 27.4                     | 46.6                     |
| 0.487            | 38.3                        | 56.2                        | 13.6                     | 46.2                     |

The margin between the specification requirements and all other emissions were 17.9dB or more below the specified Quasi-Peak limit and 17.3dB or more below the Average limit.



# 2.3 EFFECTIVE RADIATED POWER (CONDUCTED)

## 2.3.1 Specification Reference

FCC CFR 47: Part 22 Subpart H, Section 22.913 and Industry Canada RSS-132, 4.4

## 2.3.2 Equipment Under Test

MC2004a Handset

## 2.3.3 Date of Test

22<sup>nd</sup> February 2006

# 2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.3.5 Test Procedure

Using a spectrum analyser and attenuator(s), the output power of the EUT was measured at the antenna terminals. The EUT supports GMSK modulation scheme. The carrier was modulated by it's normal GMSK modulation and measurements performed with TS3 active.

The spectrum analyser RBW and VBW were set to 1MHz and the path loss measured and entered as a reference level offset.



# 2.3 EFFECTIVE RADIATED POWER (CONDUCTED)

# 2.3.6 Test Results

The EUT met the requirements of 22.913(a) and Industry Canada RSS-132, 4.4.

Maximum Power - GMSK 850 Mode

| Frequency | Output Power | Path Loss | Result | Result |
|-----------|--------------|-----------|--------|--------|
| MHz       | dBm          | dB        | dBm    | W      |
| 824.2     | +15.80       | +17.0     | +32.80 | 1.91   |
| 836.6     | +15.98       | +17.0     | +32.98 | 1.99   |
| 848.8     | +15.95       | +17.0     | +32.95 | 1.97   |

| Limit for FCC 22.913(a) | <7W or <+38.45dBm |
|-------------------------|-------------------|
| Limit for RSS-132       | <6.3W             |



# 2.4 MAXIMUM PEAK OUTPUT POWER (EIRP METHOD)

## 2.4.1 Specification Reference

FCC CFR 47: Part 22 Subpart H, Section 22.913(a) and Industry Canada RSS-132, 4.4

## 2.4.2 Equipment Under Test

MC2004a Handset

#### 2.4.3 Date of Test

12<sup>th</sup> May 2006

#### 2.4.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.4.5 Test Procedure

Test Performed in accordance with FCC CFR 47: Part 22.913(a).

The EUT contains an integral antenna and therefore the Maximum Peak Output Power was made using the EIRP method.

The Spectrum Analyser was tuned to the test frequency. The device Output Power setting was controlled as specified in the Product Information, Section 1.5 of this document. The device was then rotated through 360 degrees until the highest power level was observed in both horizontal and vertical polarisation. The device was then replaced with a substitution antenna, who's input signal level into the antenna was adjusted until the received level matched that of the previously detected emission.



# 2.4 MAXIMUM PEAK OUTPUT POWER (EIRP METHOD)

## 2.4.6 Test Results - continued

The EUT met the requirements of FCC CFR 47: Part 22 Subpart H, Section 22.913(a) and Industry Canada RSS-132, 4.4 for Maximum Peak Output Power.

Measurements were made with the EUT Transmitting in 850 GSM Mode.

| Frequency<br>(MHz) | Result EIRP<br>(dBm) | Result EIRP<br>(mW) |
|--------------------|----------------------|---------------------|
| 848.8              | 27.42                | 552                 |
| 836.4              | 28.58                | 721                 |
| 824.2              | 29.28                | 847                 |
| Limit              | <7W or <+38.45dBm    |                     |



#### 2.5.1 Specification Reference

FCC CFR 47: Part 24 Subpart E, Section 2.1047(d) and Industry Canada RSS-132, 4.2

# 2.5.2 Equipment Under Test

MC2004a Handset

# 2.5.3 Date of Test

22<sup>nd</sup> February 2006

# 2.5.4 Test Equipment Used

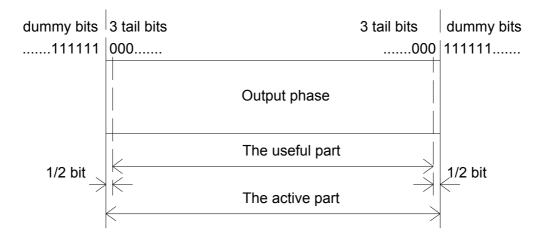
The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.5.5 Test Procedure

Two views are shown for the GMSK mode of operation. One view shows the active slot.. The other view shows the active slot(s) over a complete frame.



#### 2.5.5 Modulation Description - continued


#### Modulation format for GMSK

#### Modulating symbol rate

The modulating symbol rate is 1/T = 1.625/6 ksymb/s (i.e. approximately 270.833 ksymb/s), which corresponds to 1.625/6 kbit/s (i.e. 270.833 kbit/s). T is the symbol period.

#### Start and stop of the burst

Before the first bit of the bursts as defined in 3GPP TS 45.002 [3] enters the modulator, the modulator has an internal state as if a modulating bit stream consisting of consecutive ones (di = 1) had entered the differential encoder. Also after the last bit of the time slot, the modulator has an internal state as if a modulating bit stream consisting of consecutive ones (di = 1) had continued to enter the differential encoder. These bits are called dummy bits and define the start and the stop of the active and the useful part of the burst as illustrated in figure 1. Nothing is specified about the actual phase of the modulator output signal outside the useful part of the burst.



# Figure 1: Relation between active part of burst, tail bits and dummy bits. For the normal burst the useful part lasts for 147 modulating bits

# **Differential encoding**

Each data value  $d_i = [0, 1]$  is differentially encoded. The output of the differential encoder is:

 $\hat{d}_i = d_i \oplus d_{i-1} \qquad (d_i \in \{0,1\})$ 

where  $\oplus$  denotes modulo 2 addition. The modulating data value  $\alpha_i$  input to the modulator is:

$$\alpha_i = 1 - 2\hat{d}_i \quad (\alpha_i \in \{-1, +1\})$$



#### 2.5.5 Modulation Description - continued

#### Filtering

The modulating data values  $\alpha_i$  as represented by Dirac pulses excite a linear filter with impulse response defined by:

$$g(t) = h(t) * rect\left(\frac{t}{T}\right)$$

where the function rect(x) is defined by:

$$\operatorname{rect}\left(\frac{t}{T}\right) = \frac{1}{T} \qquad \operatorname{for}\left|t\right| < \frac{T}{2}$$

$$rect\left(\frac{t}{T}\right) = 0$$
 otherwise

and \* means convolution. 
$$h(t)$$
 is defined by:

$$h(t) = \frac{\exp\left(\frac{-t^2}{2\delta^2 T^2}\right)}{\sqrt{(2\pi)} \cdot \delta T}$$

where

 $\delta = \frac{\sqrt{\ln(2)}}{2\pi BT} \qquad and \ BT = 0.3$ 

where B is the 3 dB bandwidth of the filter with impulse response h(t). This theoretical filter is associated with tolerances defined in 3GPP TS 45.005 [4].

#### **Output phase**

The phase of the modulated signal is:

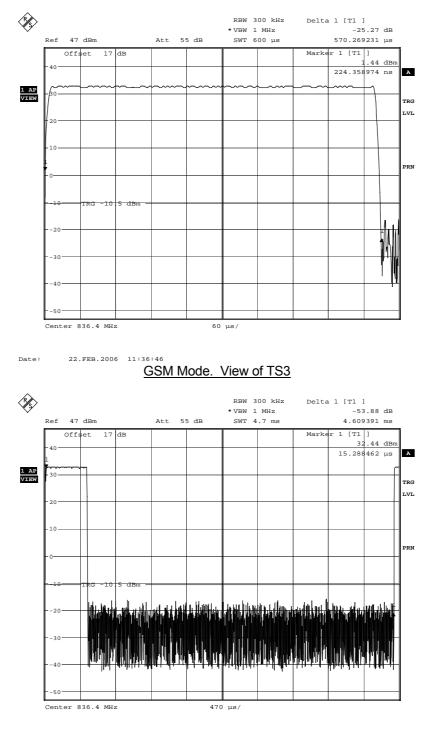
$$\varphi(t') = \sum_{i} \alpha_{i} \pi h \int_{-\infty}^{t'-iT} g(u) du$$

where the modulating index *h* is 1/2 (maximum phase change in radians is  $\pi/2$  per data interval). The time reference t' = 0 is the start of the active part of the burst as shown in figure 1. This is also the start of the bit period of bit number 0 (the first tail bit) as defined in 3GPP TS 45.002 [2].

#### Modulation

The modulated RF carrier, except for start and stop of the TDMA burst may therefore be expressed as:

$$x(t') = \sqrt{\frac{2E_c}{T}} \cdot \cos(2\pi f_0 t' + \varphi(t') + \varphi_0)$$


where  $E_C$  is the energy per modulating bit,  $f_0$  is the centre frequency and  $\varphi_0$  is a random phase and is constant during one burst.

Page 31 of 98



#### 2.5.7 Test Results

The EUT met the requirements of FCC CFR 47: Part 24 Subpart E, Section 2.1047(d) and Industry Canada RSS-132, 4.2



Date: 22.FEB.2006 11:38:36

# GSM Mode. View of One Complete Frame Showing TS3

Report Number OR615015/01 Issue 3



# 2.6 OCCUPIED BANDWIDTH

#### 2.6.1 Specification Reference

FCC CFR 47: Part 22 Subpart H, Section 2.1049(h), 22.917(b) and Industry Canada RSS-132, 4.5

# 2.6.2 Equipment Under Test

MC2004a Handset

### 2.6.3 Date of Test

22<sup>nd</sup> February 2006

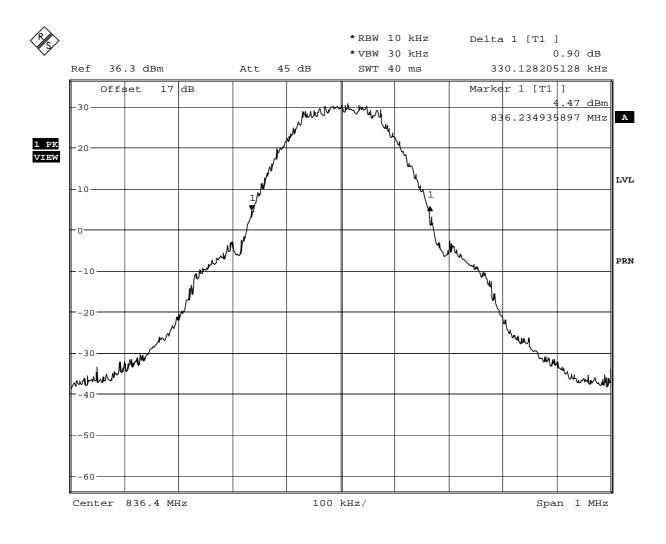
#### 2.6.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.6.5 Test Procedure

The EUT was transmitting at power control level 5. In GMSK mode, TS3 was active, using a resolution bandwidth of 10 kHz and a video bandwidth of 30 kHz, the –26dBc points were established and the emission bandwidth determined.

The plot below shows the resultant display from the Spectrum Analyser.




#### 2.6 OCCUPIED BANDWIDTH

#### 2.6.6 Test Results

The EUT met the requirements of FCC CFR 47: Part 22 Subpart H, Section 2.1049(h), 22.917(b) and Industry Canada RSS-132, 4.5

Occupied Bandwidth As Defined By The -26dBc Points



Date: 22.FEB.2006 12:06:08

Maximum Power – GSM 850



# 2.7 SPURIOUS EMISSIONS AT ANTENNA TERMINALS (+/-1MHz)

#### 2.7.1 Specification Reference

FCC CFR 47: Part 22 Subpart H, Section 2.1051, 22.905, 22.917 and Industry Canada RSS-132, 4.5

## 2.7.2 Equipment Under Test

MC2004a Handset

### 2.7.3 Date of Test

22<sup>nd</sup> February 2006

#### 2.7.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.7.5 Test Procedure

In accordance with 22.917(b) and 22.905, using a spectrum analyser and attenuator(s), the emissions were measured between the block edge frequency up to 1MHz away to ensure compliance with the 43 + 10 log P limit. Measurements were performed using a peak detector with the trace display set to Max Hold. A Resolution Bandwidth of at least 1% of the measured 26dB bandwidth was used, in this case 10kHz RBW and 30kHz VBW. The measured path loss was entered as a reference level offset into the Spectrum Analyser.



#### 2.7.6 Test Results

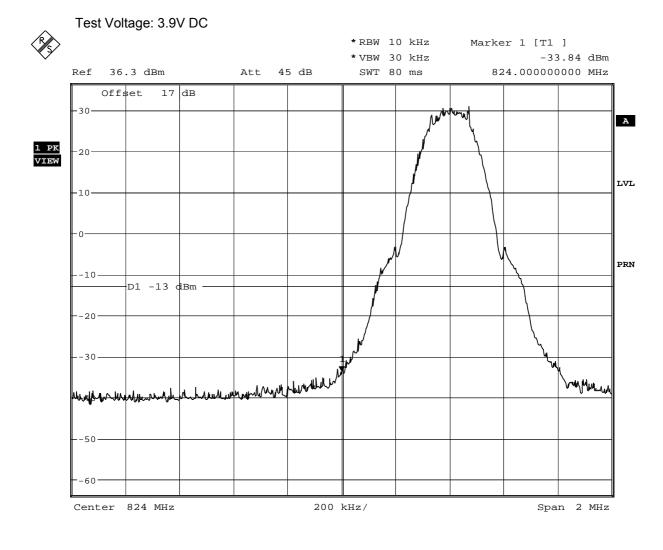
The EUT met the requirements of FCC CFR 47: Part 22 Subpart H, Section 2.1051, 22.905, 22.917 and Industry Canada RSS-132, 4.5

Below are the Frequency Blocks the EUT was tested against along with the tested channels.

Measurements were made with the EUT in GMSK 850 Mode.

#### Communication Channel Pair Blocks

| Frequency Block | Lower Block Edge Test                 | Upper Block Edge Test                 |  |
|-----------------|---------------------------------------|---------------------------------------|--|
| MHz             | Channels/Frequencies                  | Channels/Frequencies                  |  |
| 824.0 - 849.0   | Channel : 129<br>Frequency : 824.4MHz | Channel : 250<br>Frequency : 848.6MHz |  |


| Limit | ≤-13dBm at Block Edge  |
|-------|------------------------|
| Linit | = Teabin at Bleek Eage |

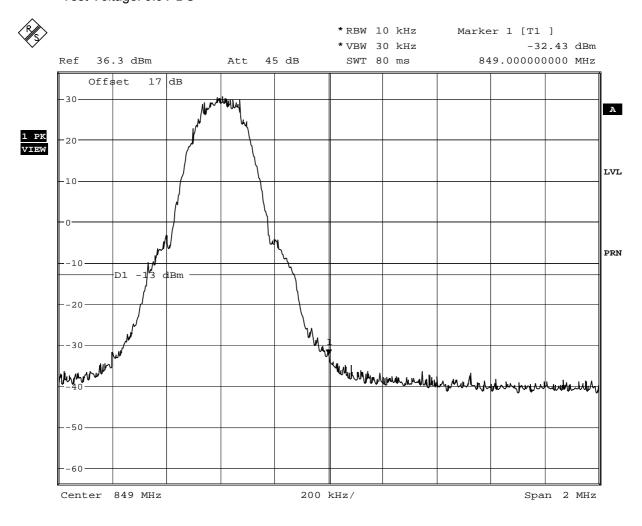
The measurement plots are shown on the following pages.



#### 2.7.6 Test Results - continued

Block Edge Measurement with EUT Transmitting on Power Level 5 On Channel 129, (824.4MHz)




Date: 22.FEB.2006 12:18:57

Block A GMSK Modulation 824.0 – 849.0MHz



#### 2.7.6 Test Results - continued

Block Edge Measurement with EUT Transmitting on Power Level 5 On Channel 250, (848.6MHz)



Test Voltage: 3.9V DC

Date: 22.FEB.2006 12:21:21

Block A GMSK Modulation 824.0 – 849.0MHz



# 2.8 RADIATED SPURIOUS EMISSIONS

#### 2.8.1 Equipment Reference

FCC CFR 47: Part 22 Subpart H, Section 22.917 and Industry Canada RSS-132, 4.5

#### 2.8.2 Equipment Under Test

MC2004a Handset

#### 2.8.3 Date of Test

3<sup>rd</sup> March 2006

# 2.8.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.8.5 Test Procedure

Test Performed in accordance with ANSI C63.4.

In order to determine the Radiated Emission Limits, measurements of transmitter power (P) were first carried out on the top, middle and bottom channels using a peak detector, and the results are shown in the following table.

A preliminary profile of the Spurious Radiated Emissions was obtained by operating the EUT on a remotely controlled turntable within the Anechoic Chamber. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations. The profiling produced a list of the worst-case emissions together with the EUT azimuth and antenna polarisation.

Using the information from the preliminary profiling of the EUT. The list of emissions was then confirmed or updated in the Anechoic Chamber (3 metres). Emission levels were maximised by adjusting the antenna height, antenna polarisation and turntable azimuth.

Emissions identified within the range 30MHz – 1GHz were then formally measured using a Peak detector.

Emissions identified within the range 1GHz – 10GHz were then formally measured using Peak and Average Detectors, as appropriate.

The measurements were performed at a 3m distance unless otherwise stated.



# 2.8 RADIATED SPURIOUS EMISSIONS

#### 2.8.6 Test Results

#### <u>30MHz – 1GHz Frequency Range</u>

Equipment Designation: Intentional Radiator.

The EUT met the requirements of FCC CFR 47: Part 22, Subpart H, 22.917 and Industry Canada RSS-132, 4.5 for Radiated Emissions (30MHz – 1GHz).

Measurements were made with the EUT in GSM 850 Mode.

#### EUT Transmitting on Bottom Channel (824.20MHz)

No emissions were detected. Therefore no table of results is presented.

# EUT Transmitting on Middle Channel (836.40MHz)

No emissions were detected. Therefore no table of results is presented.

# EUT Transmitting on Top Channel (848.80MHz)

No emissions were detected. Therefore no table of results is presented.



# 2.8 RADIATED SPURIOUS EMISSIONS

#### 2.8.6 Test Results - continued

#### <u>1GHz – 10GHz Frequency Range</u>

Equipment Designation: Intentional Radiator.

The EUT met the requirements of FCC CFR 47: Part 22, Subpart H, 22.917 and Industry Canada RSS-132, 4.5 for Radiated Emissions (1GHz – 10GHz).

Measurements were made with the EUT in GSM 850 Mode

#### EUT Transmitting on Bottom Channel (824.20MHz)

No emissions were detected. Therefore no table of results is presented.

# EUT Transmitting on Middle Channel (836.40MHz)

No emissions were detected. Therefore no table of results is presented.

# EUT Transmitting on Top Channel (848.80MHz)

No emissions were detected. Therefore no table of results is presented.



# 2.9 CONDUCTED SPURIOUS EMISSIONS

#### 2.9.1 Specification Reference

FCC CFR 47: Part 22 Subpart H, Section 2.1051, 22.917 (a) and Industry Canada RSS-132, 4.5

#### 2.9.2 Equipment Under Test

MC2004a Handset

#### 2.9.3 Date of Test

22<sup>nd</sup> February 2006

# 2.9.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.9.5 Test Procedure

In accordance with Part 2.1051 and 22.917, the spurious emissions from the antenna terminal were measured. The transmitter output power was attenuated using a combination of filters and attenuators and the frequency spectrum investigated from 9kHz to 9GHz. The EUT was set to transmit on full power on timeslot 3 for GMSK modulation. The EUT was tested on Bottom, Middle and Top channels on power level 5. The resolution and video bandwidths were set to 1MHz thus meeting the requirements of Part 22.917(b). The spectrum analyser detector was set to Max Hold.

From 9kHz to 1.5GHz, on maximum power, a 10dB attenuator was used. For measuring the range 1.5GHz to 9GHz, attenuators and a 1.5GHz high pass filter were used. This was to reduce saturation effects in the spectrum analyser.

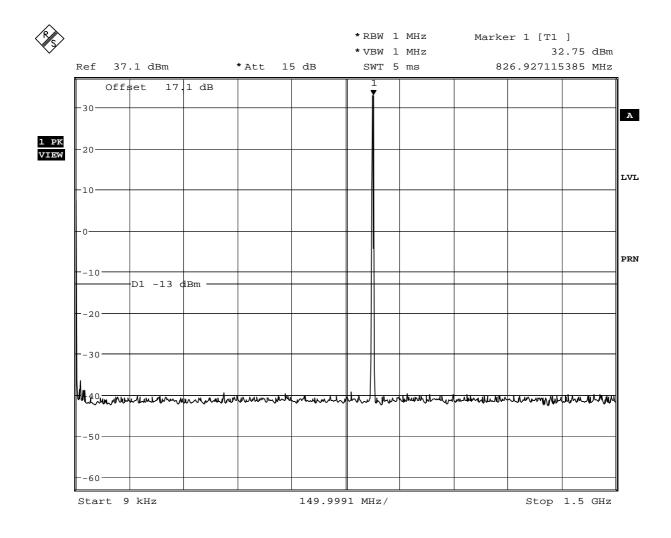
The maximum path loss across the measurement band was used as the reference level offset to ensure worst case.



#### 2.9 CONDUCTED SPURIOUS EMISSIONS

# 2.9.6 Test Results

The EUT met the requirements of FCC CFR 47: Part 22 Subpart H, Section 2.1051, 22.917 (a) and Industry Canada RSS-132, 4.5


See test plots.

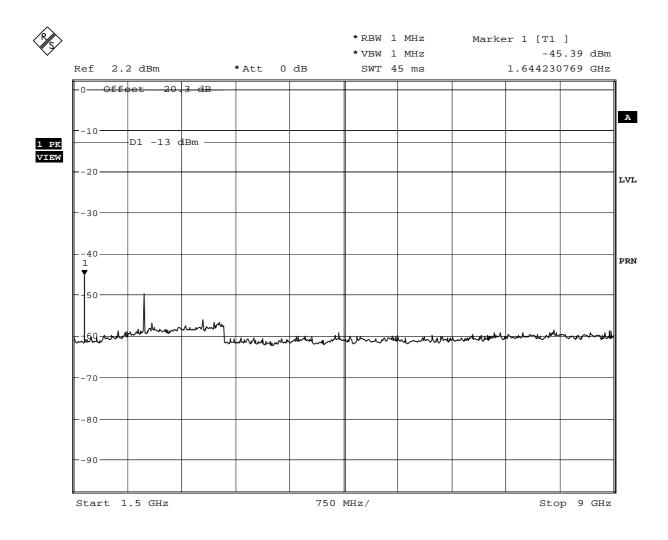
The plots on the following pages show the frequency spectrum from 9kHz to 9GHz of the EUT



#### 2.9 CONDUCTED SPURIOUS EMISSIONS

#### 2.9.6 Test Results




Date: 22.FEB.2006 14:56:24

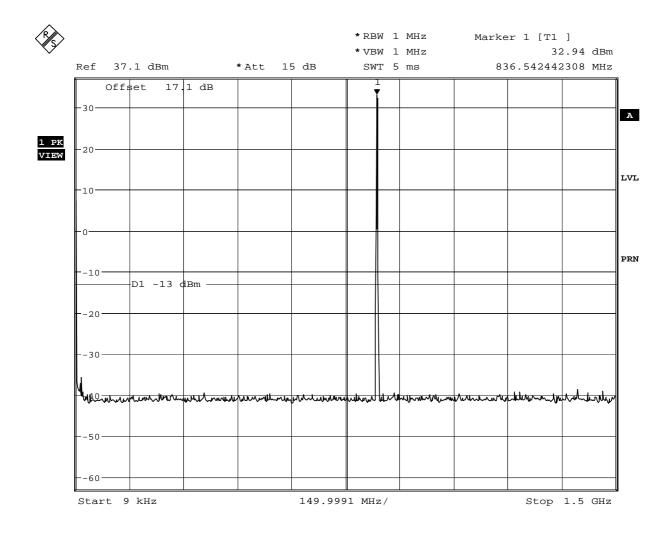
<u>Spurious Emissions (9kHz – 1.5GHz)</u> Channel 128, (824.2MHz) –Power Level 5 – GSM 850 Mode <u>3.9 V SUPPLY</u>



#### 2.9 CONDUCTED SPURIOUS EMISSIONS

#### 2.9.6 Test Results - continued




Date: 22.FEB.2006 14:47:53

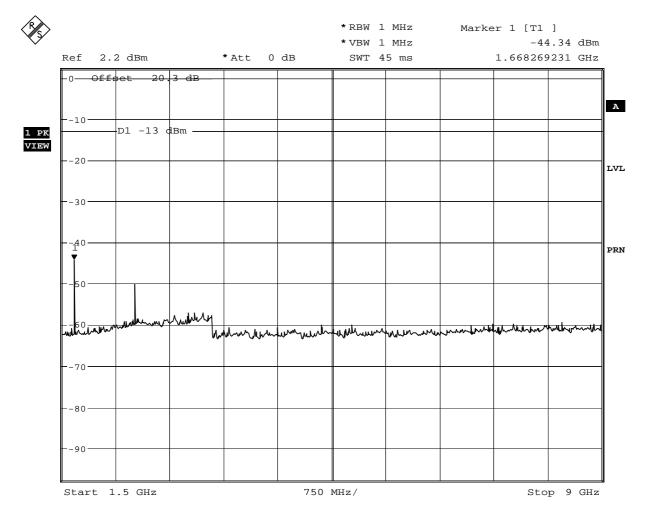
<u>Spurious Emissions (1.5GHz – 9GHz)</u> Channel 128 (824.2MHz) - Power Level 5- GSM 850 Mode <u>3.9 V SUPPLY</u>



#### 2.9 CONDUCTED SPURIOUS EMISSIONS

#### 2.9.6 Test Results - continued




Date: 22.FEB.2006 14:57:39

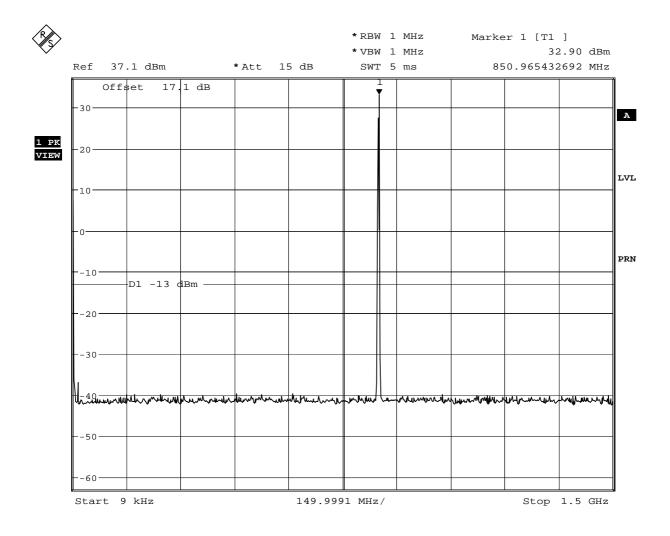
<u>Spurious Emissions (9kHz – 1.5GHz)</u> Channel 190 (836.6MHz) - Power Level 5 - GSM 850 Mode <u>3.9 V SUPPLY</u>



# 2.9 CONDUCTED SPURIOUS EMISSIONS

# 2.9.6 Test Results - continued




Date: 22.FEB.2006 14:49:32

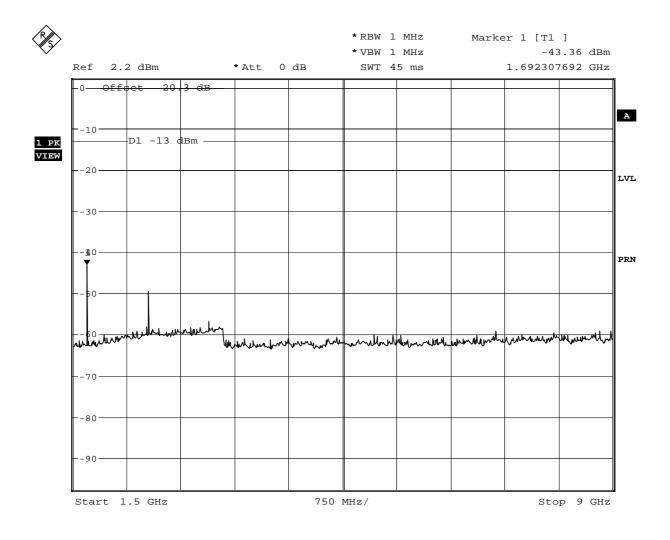
Spurious Emissions (4GHz - 9GHz) Channel 190 (836.6MHz) – Power Level 5 - GSM 850 Mode <u>3.9 V SUPPLY</u>



#### 2.9 CONDUCTED SPURIOUS EMISSIONS

#### 2.9.6 Test Results - continued




Date: 22.FEB.2006 14:58:27

<u>Spurious Emissions (9kHz – 1.5GHz)</u> Channel 251 (848.8MHz) - Power Level 5 - GSM 850 Mode <u>3.9 V SUPPLY</u>



#### 2.9 CONDUCTED SPURIOUS EMISSIONS

#### 2.9.6 Test Results - continued



Date: 22.FEB.2006 14:52:23

<u>Spurious Emissions (1.5GHz – 9GHz)</u> Channel 251 (848.8MHz) - Power Level 5 - GSM 850 Mode <u>3.9 V SUPPLY</u>



# 2.10 FREQUENCY STABILITY UNDER TEMPERATURE VARIATIONS

#### 2.10.1 Specification Reference

FCC CFR 47: Part 22 Subpart H, Section 2.1055, 22.355 and Industry Canada RSS-132, 4.3

2.10.2 Equipment Under Test

MC2004a Handset

#### 2.10.3 Date of Test

22<sup>nd</sup> February 2006

# 2.10.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.10.5 Test Procedure

#### GSM Mode

The EUT was set to transmit on power control level 5 with timeslot 3 active. A Digital Communication Analyser, (CMU200), was used to measure the frequency error. The maximum result was taken over 200 bursts. The temperature was adjusted between  $-30^{\circ}$ C and  $+50^{\circ}$ C in  $10^{\circ}$  steps as per 2.1055.



# 2.10 FREQUENCY STABILITY UNDER TEMPERATURE VARIATIONS

#### 2.10.6 Test Results

The EUT met the requirements of FCC CFR 47: Part 22 Subpart H, Section 2.1055, 22.355 and Industry Canada RSS-132, 4.3. The frequency stability of the EUT is sufficient to keep it within the authorised frequency blocks at any temperature interval across the measured range.

# 3.9V SUPPLY – GMSK 850 Mode

| Temperature Interval<br>℃ | Test Frequency<br>MHz | Deviation<br>Hz | Deviation from<br>+20 °C Hz | Limit<br>kHz |
|---------------------------|-----------------------|-----------------|-----------------------------|--------------|
| -30                       | 836.6                 | *               | *                           | ±2.092       |
| -20                       | 836.6                 | -28             | -6                          | ±2.092       |
| -10                       | 836.6                 | -25             | -3                          | ±2.092       |
| 0                         | 836.6                 | -20             | +2                          | ±2.092       |
| +10                       | 836.6                 | -24             | -2                          | ±2.092       |
| +20                       | 836.6                 | -22             | 0                           | ±2.092       |
| +30                       | 836.6                 | -22             | 0                           | ±2.092       |
| +40                       | 836.6                 | -23             | -1                          | ±2.092       |
| +50                       | 836.6                 | -25             | -3                          | ±2.092       |

\* The EUT does not operate at -30°C. Its lowest operating temperature is -25°C with -28Hz deviation from the nominal.



# 2.11 FREQUENCY STABILITY UNDER VOLTAGE VARIATIONS

#### 2.11.1 Specification Reference

FCC CFR 47: Part 22 Subpart H, Section 2.1055, 22.355 and Industry Canada RSS-132, 4.3

#### 2.11.2 Equipment Under Test

MC2004a Handset

#### 2.11.3 Date of Test

22<sup>nd</sup> February 2006

# 2.11.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.11.5 Test Procedure

The EUT was set to transmit on power control level 5 with measurements performed on timeslot 3. A Digital Communication Analyser, (CMU200), was used to measure the frequency error. The average result was taken over 200 bursts.

The voltage to the EUT was varied as shown in the table of results at a temperature of 20°C.



# 2.11 FREQUENCY STABILITY UNDER VOLTAGE VARIATIONS

#### 2.11.6 Test Results

The EUT met the requirements of FCC CFR 47: Part 22 Subpart H, Section 2.1055, 22.355 and Industry Canada RSS-132, 4.3.

# 3.9V SUPPLY GMSK 850 Mode

| DC Voltage<br>V | Test Frequency<br>MHz | Deviation<br>Hz | Deviation Limit<br>kHz |
|-----------------|-----------------------|-----------------|------------------------|
| -               | 836.4                 | -               | ± 2.091                |
| 3.90            | 836.4                 | -22             | ± 2.091                |
| 3.55            | 836.4                 | -23             | ± 2.091                |

#### <u>Remarks</u>

EUT complies with CFR 47 Part 22.355 and Industry Canada RSS-132, 4.3. The EUT does not exceed ±2.092kHz at the measured frequency either at nominal or voltage variation.



# 2.12 MAXIMUM PEAK OUTPUT POWER (EIRP METHOD)

#### 2.12.1 Specification Reference

FCC CFR 47: Part 24 Section 24.238(b) and Industry Canada RSS-133, 4.3 and 6.4

#### 2.12.2 Equipment Under Test

MC2004a Handset

#### 2.12.3 Date of Test

12<sup>th</sup> May 2006

# 2.12.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.12.5 Test Procedure

Test Performed in accordance with FCC CFR 47: Part 24.232(b).

The EUT contains an integral antenna and therefore the Maximum Peak Output Power was made using the EIRP method.

The Spectrum Analyser was tuned to the test frequency. The device Output Power setting was controlled as specified in the Product Information, Section 1.5 of this document. The device was then rotated through 360 degrees until the highest power level was observed in both horizontal and vertical polarisation. The device was then replaced with a substitution antenna, who's input signal level into the antenna was adjusted until the received level matched that of the previously detected emission.



# 2.12 MAXIMUM PEAK OUTPUT POWER (EIRP METHOD)

#### 2.12.6 Test Results - continued

The EUT met the requirements of FCC CFR 47: Part 24 Section 24.238(b) and Industry Canada RSS-133, 4.3 and 6.4 for Maximum Peak Output Power.

Measurements were made with the EUT in GSM 1900.

| Frequency<br>(MHz) | Result EIRP<br>(dBm) | Result EIRP<br>(mW) |
|--------------------|----------------------|---------------------|
| 1909.8             | 30.92                | 1.236               |
| 1880.0             | 32.56                | 1.803               |
| 1850.2             | 32.37                | 1.725               |
| Limit              | <2W or <+33dBm       |                     |



# 2.13 MAXIMUM PEAK OUTPUT POWER (CONDUCTED)

#### 2.13.1 Specification Reference

FCC CFR 47: Part 24 Subpart E, Section 24.132(b), 2.1046 and Industry Canada RSS-133, 4.3 and 6.4

#### 2.13.2 Equipment Under Test

MC2004a Handset

#### 2.13.3 Date of Test

22<sup>nd</sup> February 2006

#### 2.13.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.13.5 Test Procedure

Using a spectrum analyser and attenuator(s), the output power of the EUT was measured at the antenna terminals.

The EUT was set to transmit on power control level 0 with timeslot 3 active.

The spectrum analyser RBW and VBW were set to 1MHz and the path loss measured and entered as a reference level offset.



# 2.13 MAXIMUM PEAK OUTPUT POWER (CONDUCTED)

#### 2.13.6 Test Results

The EUT met the requirements of FCC CFR 47: Part 24 Subpart E, Section 24.132(b), 2.1046 and Industry Canada RSS-133, 4.3 and 6.4

#### Maximum Power - GMSK

| Frequency MHz | Output Power<br>dBm | Path Loss<br>dB | Result<br>dBm | Result<br>mW |
|---------------|---------------------|-----------------|---------------|--------------|
| 1850.2        | +12.56              | +17.7           | +30.26        | 1.06         |
| 1880.0        | +12.60              | +17.7           | +30.30        | 1.07         |
| 1909.8        | +12.55              | +17.7           | +30.25        | 1.06         |

| Limit | <2W or <+33dBm |
|-------|----------------|
|-------|----------------|

#### **Remarks**

EUT complies with CFR 47 2.1046 and 24.132(b) and Industry Canada RSS-133, 4.3 and 6.4. The EUT does not exceed 2W or +33dBm at the measured frequencies.



#### 2.14.1 Specification Reference

FCC CFR 47: Part 24 Subpart E, Section 2.1047(d) and Industry Canada RSS-133, 6.2

#### 2.14.2 Equipment Under Test

MC2004a Handset

#### 2.14.3 Date of Test

22<sup>nd</sup> February 2006

# 2.14.4 Test Equipment Used

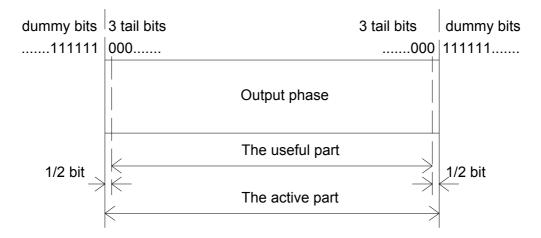
The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.14.5 Test Procedure

Two views are shown for the GSM mode of operation. One view shows the active slot. The other view shows the active slot(s) over a complete frame.



#### 2.14.5 Modulation Description


#### Modulation format for GMSK

#### Modulating symbol rate

The modulating symbol rate is 1/T = 1.625/6 ksymb/s (i.e. approximately 270.833 ksymb/s), which corresponds to 1.625/6 kbit/s (i.e. 270.833 kbit/s). T is the symbol period.

#### Start and stop of the burst

Before the first bit of the bursts as defined in 3GPP TS 45.002 [3] enters the modulator, the modulator has an internal state as if a modulating bit stream consisting of consecutive ones (di = 1) had entered the differential encoder. Also after the last bit of the time slot, the modulator has an internal state as if a modulating bit stream consisting of consecutive ones (di = 1) had continued to enter the differential encoder. These bits are called dummy bits and define the start and the stop of the active and the useful part of the burst as illustrated in figure 1. Nothing is specified about the actual phase of the modulator output signal outside the useful part of the burst.



# Figure 1: Relation between active part of burst, tail bits and dummy bits. For the normal burst the useful part lasts for 147 modulating bits

# **Differential encoding**

Each data value  $d_i = [0, 1]$  is differentially encoded. The output of the differential encoder is:

$$\hat{d}_i = d_i \oplus d_{i-1} \qquad (d_i \in \{0,1\})$$

where  $\oplus$  denotes modulo 2 addition. The modulating data value  $\alpha_i$  input to the modulator is:

$$\alpha_i = 1 - 2\hat{d}_i \quad (\alpha_i \in \{-1, +1\})$$

Report Number OR615015/01 Issue 3



#### 2.14.5 Modulation Description - continued

#### Filtering

The modulating data values  $\alpha_i$  as represented by Dirac pulses excite a linear filter with impulse response defined by:

$$g(t) = h(t) * rect\left(\frac{t}{T}\right)$$

where the function rect(x) is defined by:

$$rect\left(\frac{t}{T}\right) = \frac{1}{T}$$
 for  $\left|t\right| < \frac{T}{2}$ 

$$rect\left(\frac{t}{T}\right) = 0$$
 otherwise

and \* means convolution. 
$$h(t)$$
 is defined by:

$$h(t) = \frac{\exp\left(\frac{-t^2}{2\delta^2 T^2}\right)}{\sqrt{(2\pi)} \cdot \delta T}$$

 $\delta = \frac{\sqrt{\ln(2)}}{2\pi BT} \qquad and \ BT = 0.3$ 

where B is the 3 dB bandwidth of the filter with impulse response h(t). This theoretical filter is associated with tolerances defined in 3GPP TS 45.005 [4].

#### **Output phase**

The phase of the modulated signal is:

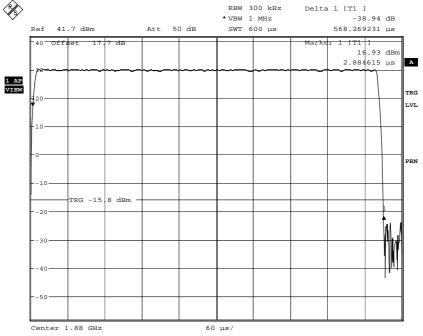
$$\varphi(t') = \sum_{i} \alpha_{i} \pi h \int_{-\infty}^{t' - iT} g(u) du$$

where the modulating index *h* is 1/2 (maximum phase change in radians is  $\pi/2$  per data interval). The time reference t' = 0 is the start of the active part of the burst as shown in figure 1. This is also the start of the bit period of bit number 0 (the first tail bit) as defined in 3GPP TS 45.002 [2].

#### Modulation

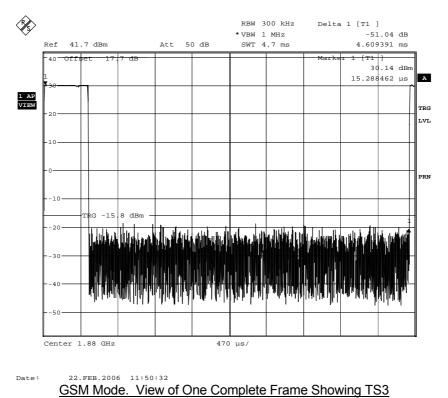
The modulated RF carrier, except for start and stop of the TDMA burst may therefore be expressed as:

$$x(t') = \sqrt{\frac{2E_c}{T}} \cdot \cos(2\pi f_0 t' + \varphi(t') + \varphi_0)$$


where  $E_C$  is the energy per modulating bit,  $f_0$  is the centre frequency and  $\varphi_0$  is a random phase and is constant during one burst.

Page 60 of 98




#### 2.14.6 Test Results

The EUT met the requirements of FCC CFR 47: Part 24 Subpart E, Section 2.1047(d) and Industry Canada RSS-133, 6.2



Date: 22.FEB.2006 11:52:08

GSM Mode. View of TS3



Report Number OR615015/01 Issue 3

Page 61 of 98



# 2.15 OCCUPIED BANDWIDTH

#### 2.15.1 Specification Reference

FCC CFR 47: Part 24 Subpart E, Section 24.238(b), 2.1049 and Industry Canada RSS-133, 2.6, 6.5 and RSS-Gen 4.4

# 2.15.2 Equipment Under Test

MC2004a Handset

#### 2.15.3 Date of Test

22<sup>nd</sup> February 2006

#### 2.15.4 Test Equipment Used

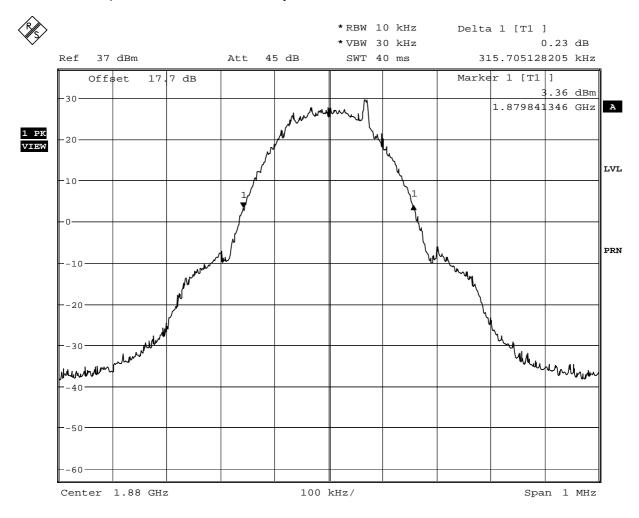
The major items of test equipment used for the above tests are identified in Section 3.1.

# 2.15.5 Test Procedure

The EUT was set to transmit on power control level 0 and measurements were made on Timeslot 3.

Using a resolution bandwidth of 10kHz and a video bandwidth of 30kHz, the –26dBc points were established and the emission bandwidth determined.

The plots below show the resultant display from the Spectrum Analyser.




#### 2.15 OCCUPIED BANDWIDTH

#### 2.15.6 Test Results

The EUT met the requirements of FCC CFR 47: Part 24 Subpart E, Section 24.238(b), 2.1049 and Industry Canada RSS-133, 2.6, 6.5 and RSS-Gen 4.4

Occupied Bandwidth As Defined By The - 26dBc Points



Date: 22.FEB.2006 11:59:13

Power Control Level 0 - GMSK



#### 2.16.1 Specification Reference

FCC CFR 47: Part 24 Subpart E, Section 24.229, 24.238, 2.1051 and Industry Canada RSS-133, 4.4 and 6.5

#### 2.16.2 Equipment Under Test

MC2004a Handset

#### 2.16.3 Date of Test

22<sup>nd</sup> February 2006

#### 2.16.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.16.5 Test Procedure

In accordance with Part 24.238 and 24.229, using a spectrum analyser and attenuator(s), the emissions were measured between the block edge frequency up to 1MHz away to ensure compliance with the 14 + 10 log P limit.

Measurements were performed using a peak detector with the trace display set to Max Hold. A RBW of at lease 1% of the measured 26dB bandwidth was used, in this case 10kHz resolution bandwidth and 30kHz video bandwidth.

The measured path loss was entered as a reference level offset into the Spectrum Analyser.

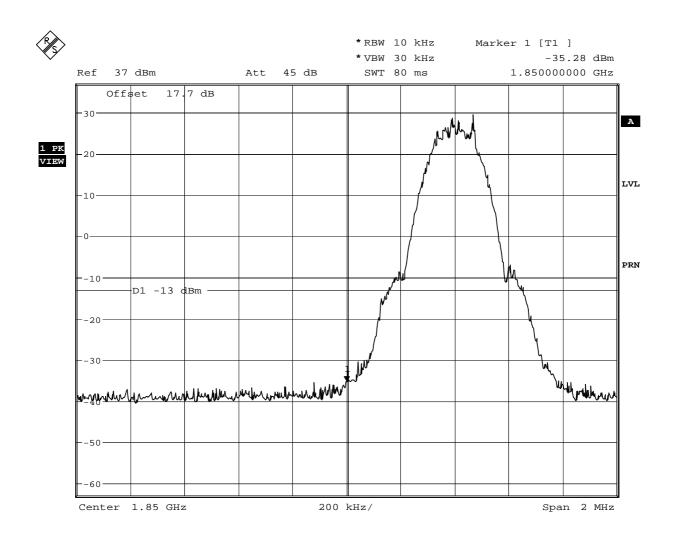


#### 2.16.6 Test Results

The EUT met the requirements of FCC CFR 47: Part 24 Subpart E, Section 24.229, 24.238, 2.1051 and Industry Canada RSS-133, 4.4 and 6.5

Below are the Frequency Blocks the EUT was tested against along with the tested channels.

| Frequency Block<br>MHz | Lower Block Edge Test<br>Channels/Frequencies | Upper Block Edge Test<br>Channels/Frequencies |
|------------------------|-----------------------------------------------|-----------------------------------------------|
| A                      | Channel : 513<br>Frequency : 1850.4 MHz       | -                                             |
| С                      | -                                             | Channel : 809<br>Frequency : 1909.6 MHz       |


| Limit | ≤-13dBm at Block Edge |
|-------|-----------------------|
|-------|-----------------------|

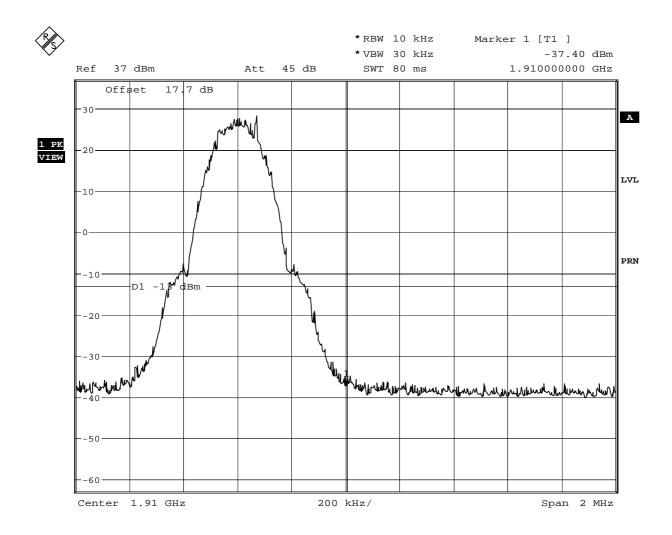
The measurement plots are shown on the following pages.



#### 2.16.6 Test Results - continued

Block Edge Measurement with EUT Transmitting on power control level 0 on Channel 513, (1850.4MHz)




Date: 22.FEB.2006 12:25:12

Block A GMSK Modulation



#### 2.16.6 Test Results - continued

Block Edge Measurement with EUT Transmitting on power control level 0 on Channel 809 (1909.6MHz)



Date: 22.FEB.2006 12:28:30

Block A GMSK Modulation



# 2.17 RADIATED SPURIOUS EMISSIONS

#### 2.17.1 Specification Reference

FCC CFR 47: Part 24 Subpart E, Section 24.238 and Industry Canada RSS-133, 4.4 and 6.5

#### 2.17.2 Equipment Under Test

MC2004a Handset

#### 2.17.3 Date of Test

3<sup>rd</sup> March 2006

# 2.17.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.17.5 Test Procedure

Test Performed in accordance with ANSI C63.4.

A preliminary profile of the Spurious Radiated Emissions was obtained by operating the EUT on a remotely controlled turntable within a semi-anechoic chamber. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations. The profiling produced a list of the worst-case emissions together with the EUT azimuth and antenna polarisation.

Using the information from the preliminary profiling of the EUT, the list of emissions was then confirmed or updated under Anechoic Chamber alternative open area test site conditions. Emission levels were maximised by adjusting the antenna height, antenna polarisation and turntable azimuth.

Emissions identified within the range 30MHz – 1GHz were then formally measured using a CISPR Quasi-Peak detector.

Emissions identified within the range 1GHz – 20GHz were then formally measured using Peak and Average Detectors, as appropriate.

The measurements were performed at a 3m distance unless otherwise stated.



# 2.17 RADIATED SPURIOUS EMISSIONS

#### 2.17.6 Test Results - continued

#### 30MHz – 1GHz Frequency Range

Equipment Designation: Intentional Radiator.

The EUT met the requirements of FCC Part 24.238 and Industry Canada RSS-133, 4.4 and 6.5 for Radiated Emissions (30MHz – 1GHz).

Measurements were made with the EUT in GPRS 1900 Mode

# EUT Transmitting on Bottom Channel (1850.2MHz)

No emissions were detected. Therefore no table of results is presented.

#### EUT Transmitting on Middle Channel (1880.0MHz)

No emissions were detected. Therefore no table of results is presented.

# EUT Transmitting on Top Channel (1909.8MHz)

No emissions were detected. Therefore no table of results is presented.



#### 2.17 RADIATED SPURIOUS EMISSIONS

#### 2.17.6 Test Results - continued

#### 1GHz – 20GHz Frequency Range

Equipment Designation: Intentional Radiator.

The EUT met the requirements of FCC Part 24.238 and Industry Canada RSS-133, 4.4 and 6.5 for Radiated Emissions (1GHz - 20GHz).

Measurements were made with the EUT in PCS 1900 Mode

#### EUT Transmitting on Bottom Channel (1850.2MHz)

| Frequency | Antenna<br>Polarisation | Height | Azimuth | Peak Result | Peak Limit |
|-----------|-------------------------|--------|---------|-------------|------------|
| MHz       |                         | cm     | degree  | dBm         | dBm        |
| 3700.0    | Horizontal              | 100    | 191     | -29.5       | -13.0      |
| 5550.0    | Vertical                | 100    | 036     | -40.1       | -13.0      |

#### EUT Transmitting on Middle Channel (1880.0MHz)

| Frequency | Antenna<br>Polarisation | Height | Azimuth | Peak Result | Peak Limit |
|-----------|-------------------------|--------|---------|-------------|------------|
| MHz       |                         | cm     | degree  | dBm         | dBm        |
| 3740.0    | Vertical                | 120    | 160     | -30.5       | -13.0      |
| 5609.0    | Vertical                | 100    | 180     | -39.6       | -13.0      |

# EUT Transmitting on Top Channel (1909.8MHz)

| Frequency | Antenna<br>Polarisation | Height | Azimuth | Peak Result | Peak Limit |
|-----------|-------------------------|--------|---------|-------------|------------|
| MHz       |                         | cm     | degree  | dBm         | dBm        |
| 3819.0    | Horizontal              | 100    | 189     | -39.9       | -13.0      |
| 5729.0    | Horizontal              | 100    | 211     | -40.3       | -13.0      |



# 2.18 CONDUCTED SPURIOUS EMISSIONS

#### 2.18.1 Specification Reference

FCC CFR 47: Part 24 Subpart E, Section 24.238(a), 2.1051 and Industry Canada RSS-133, 4.4 and 6.5

#### 2.18.2 Equipment Under Test

MC2004a Handset

#### 2.18.3 Date of Test

22<sup>nd</sup> February 2006

#### 2.18.4 Test Equipment Used

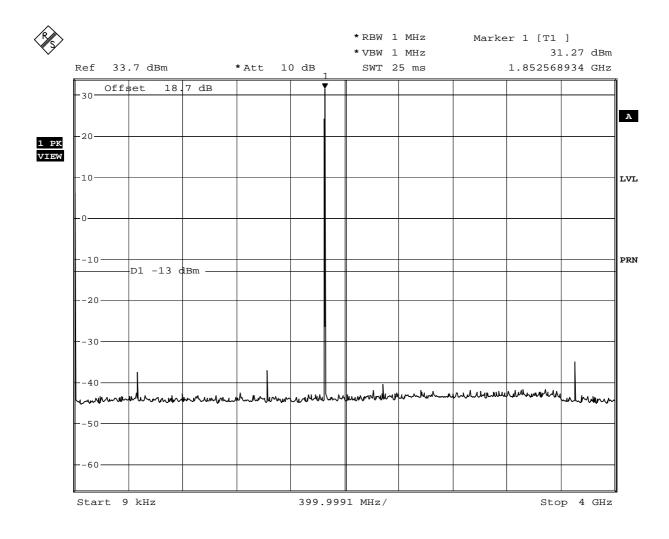
The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.18.5 Test Procedure

In accordance with Part 2.1051 and 24.238, the spurious emissions from the antenna terminal were measured. The transmitter output power was attenuated using a combination of filters and attenuators and the frequency spectrum investigated from 9kHz to 20 GHz. The EUT was set to transmit on power control level 0 with timeslot 3 active. The EUT was tested on Bottom, Middle and Top channels. The resolution and video bandwidths were set to 1MHz in accordance with Part 24.238. The spectrum analyser detector was set to Max Hold.

For measuring the range 9kHz to 4GHz, on maximum power, a 10dB attenuator was used. From 4 to 20GHz, attenuators and a 4GHz high pass filter were used.

The maximum path loss across the measurement band was used as the reference level offset to ensure worst case


#### 2.18.6 Test Results

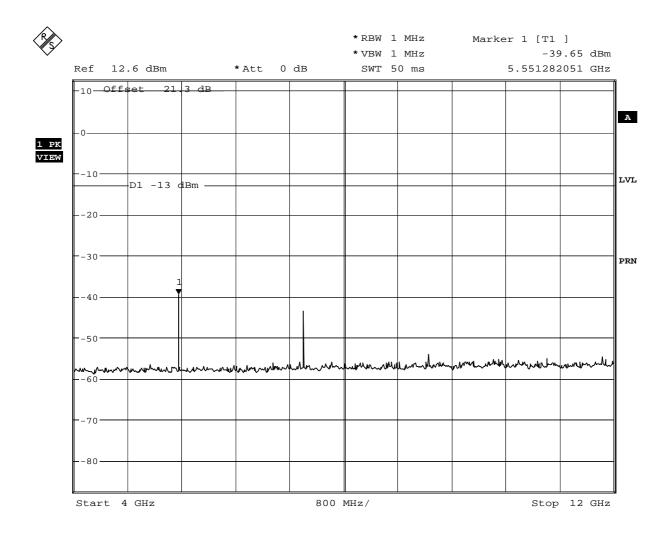
The EUT passed the requirements laid out in 24.238. The plots on the following pages show the frequency spectrum from 9kHz to 20GHz of the EUT.



## 2.18 CONDUCTED SPURIOUS EMISSIONS

### 2.18.6 Test Results - continued




Date: 22.FEB.2006 15:03:33

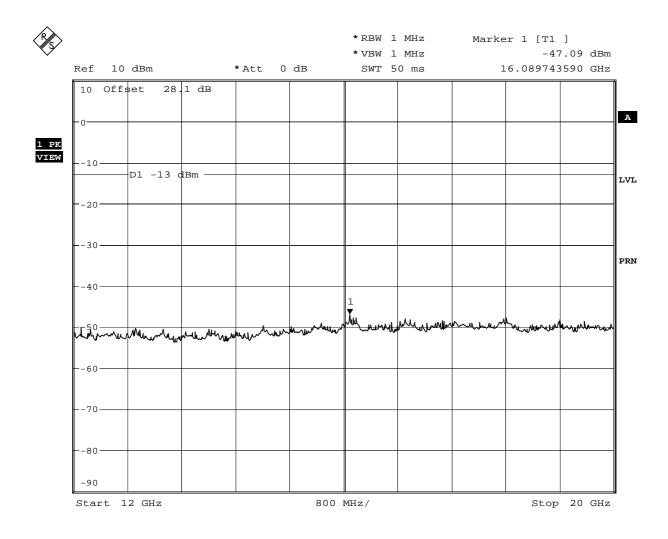
<u>Spurious Emissions (9kHz – 4GHz)</u> Channel 512 (1850.2MHz) – Power Control Level 0



## 2.18 CONDUCTED SPURIOUS EMISSIONS

#### 2.18.6 Test Results - continued




Date: 22.FEB.2006 13:24:47

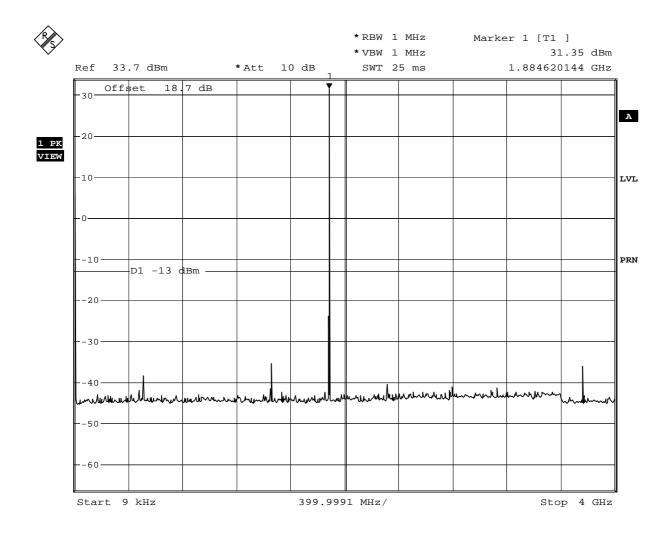
<u>Spurious Emissions (4GHz-12GHz)</u> Channel 512 (1850.2MHz) – Power Control Level 0



# 2.18 CONDUCTED SPURIOUS EMISSIONS

#### 2.18.6 Test Results - continued




Date: 22.FEB.2006 13:28:57

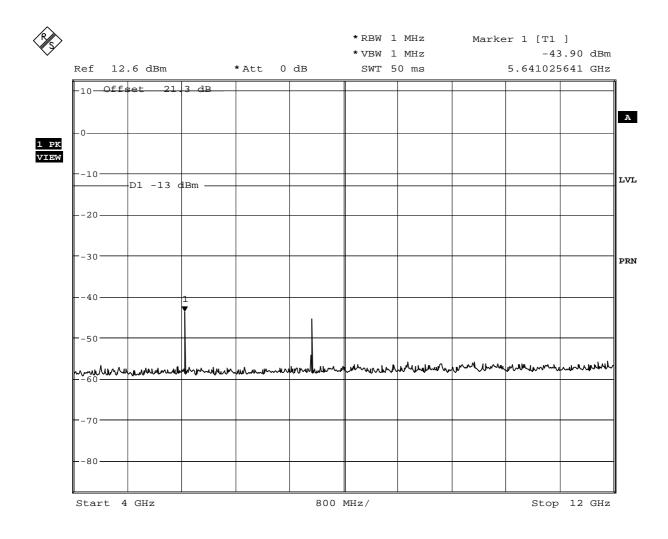
<u>Spurious Emissions (12GHz-20GHz)</u> Channel 512 (1850.2MHz) – Power Control Level 0



# 2.18 CONDUCTED SPURIOUS EMISSIONS

#### 2.18.6 Test Results - continued




Date: 22.FEB.2006 15:04:46

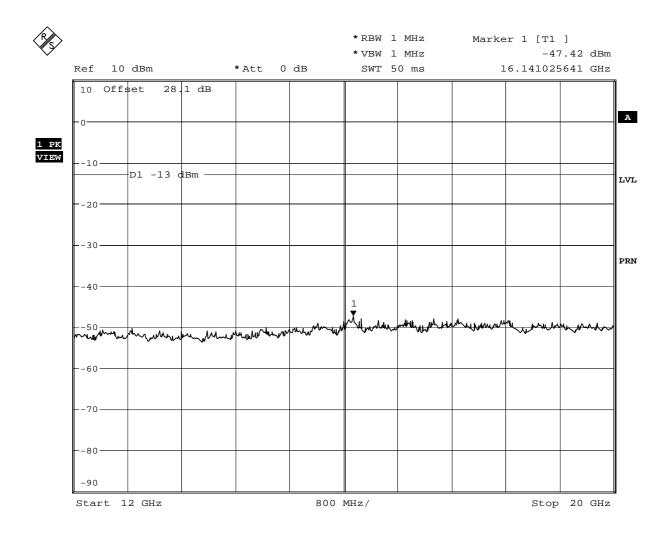
<u>Spurious Emissions (9kHz-4GHz)</u> Channel 661 (1880.0MHz) – Power Control Level 0



## 2.18 CONDUCTED SPURIOUS EMISSIONS

#### 2.18.6 Test Results - continued




Date: 22.FEB.2006 13:25:42

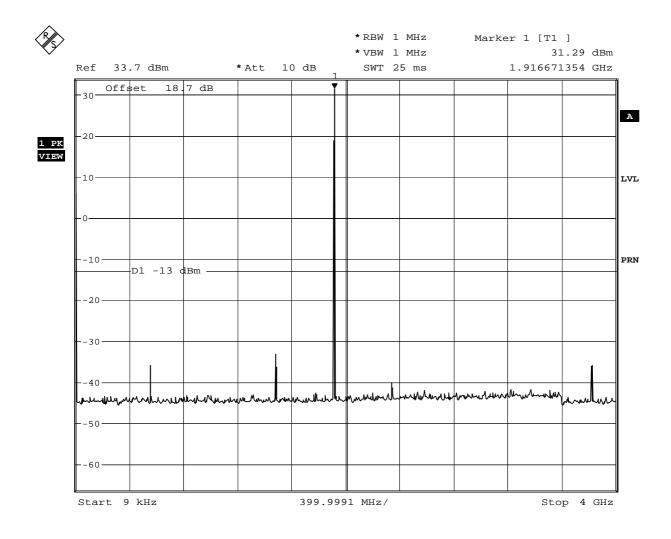
<u>Spurious Emissions (4GHz-12GHz)</u> Channel 661 (1880.0MHz) – Power Control Level 0



### 2.18 CONDUCTED SPURIOUS EMISSIONS

#### 2.18.6 Test Results - continued




Date: 22.FEB.2006 13:30:05

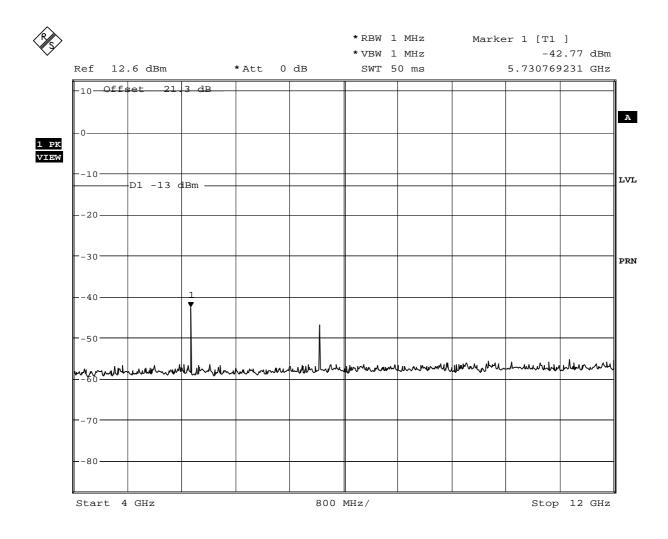
<u>Spurious Emissions (12GHz-20GHz)</u> Channel 661 (1880.0MHz) – Power Control Level 0



## 2.18 CONDUCTED SPURIOUS EMISSIONS

#### 2.18.6 Test Results - continued




Date: 22.FEB.2006 15:05:46

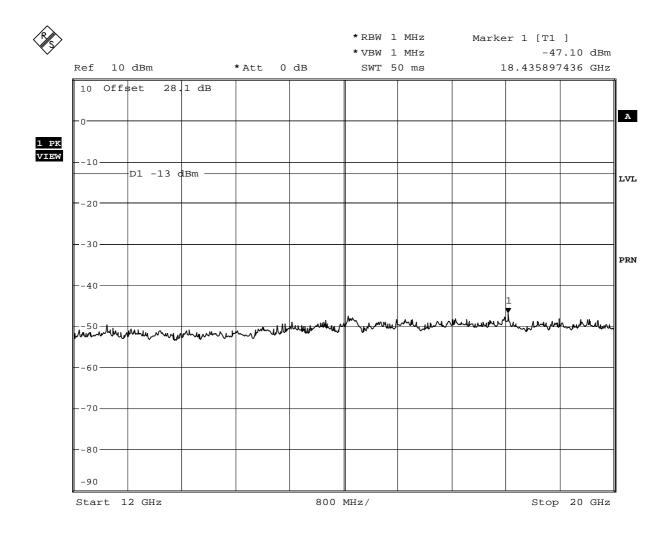
<u>Spurious Emissions (9kHz-4GHz)</u> Channel 810 (1909.8MHz) – Power Control Level 0



## 2.18 CONDUCTED SPURIOUS EMISSIONS

#### 2.18.6 Test Results - continued




Date: 22.FEB.2006 13:27:00

<u>Spurious Emissions (4GHz-12GHz)</u> Channel 810 (1909.8MHz) – Power Control Level 0



## 2.18 CONDUCTED SPURIOUS EMISSIONS

#### 2.18.6 Test Results - continued



Date: 22.FEB.2006 13:31:21

<u>Spurious Emissions (12GHz-20GHz)</u> Channel 810 (1909.8MHz) – Power Control Level 0



# 2.19 FREQUENCY STABILITY UNDER TEMPERATURE VARIATIONS

## 2.19.1 Specification Reference

FCC CFR 47: Part 24 Subpart E, Section 24.235, 2.1055 and RSS-133, 4.2 and 6.3

## 2.19.2 Equipment Under Test

MC2004a Handset

### 2.19.3 Date of Test

22<sup>nd</sup> February 2006

### 2.19.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

### 2.19.5 Test Procedure

The EUT was set to transmit on power control level 0 with measurements performed on Timeslot 3. A Digital Communications Analyser, (CMU200), was used to measure the Frequency Error. The maximum result of measurements made over 200 bursts was recorded.

The temperature was adjusted between -30°C and +50°C in 10° steps as per 2.1055.

# 2.19.6 Test Results

The EUT met the requirements of FCC CFR 47: Part 24 Subpart E, Section 24.235, 2.1055 and RSS-133, 4.2 and 6.3

| Temperature Interval | Test Frequency | Deviation | Deviation from | Limit      |
|----------------------|----------------|-----------|----------------|------------|
| °C                   | GHz            | Hz        | +20°C          | kHz        |
|                      |                |           | Hz             |            |
| - 30                 | 1.88           | *         | *              | See Note 1 |
| - 20                 | 1.88           | +25       | +47            | See Note 1 |
| - 10                 | 1.88           | +22       | +44            | See Note 1 |
| 0                    | 1.88           | +25       | +47            | See Note 1 |
| + 10                 | 1.88           | +23       | +45            | See Note 1 |
| + 20                 | 1.88           | -22       | 0              | See Note 1 |
| + 30                 | 1.88           | -30       | -8             | See Note 1 |
| + 40                 | 1.88           | -33       | -11            | See Note 1 |
| + 50                 | 1.88           | -35       | -13            | See Note 1 |

The EUT does not operate at -30°C. Its lowest operating temperature is -25°C with -28Hz deviation from the nominal.

Note 1 The fundamental must remain within the authorized frequency block.

\*



### 2.20 FREQUENCY STABILITY UNDER VOLTAGE VARIATIONS

#### 2.20.1 Specification Reference

FCC CFR 47: Part 24 Subpart E, Section 24.135(a), 2.1055 and Industry Canada RSS-133, 4.2 and 6.3

### 2.20.2 Equipment Under Test

MC2004a Handset

#### 2.20.3 Date of Test

22<sup>nd</sup> February 2006

#### 2.20.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.20.5 Test Procedure

The EUT was set to transmit on power control level 0 with measurements performed on Timeslot 3. A Digital Communications Analyser, (CMU200), was used to measure the Frequency Error. The maximum result of measurements made over 200 bursts was recorded. The temperature was set to +20°C. The voltage was varied as described in the results table.

#### 2.20.6 Test Results

The EUT met the requirements of FCC CFR 47: Part 24 Subpart E, Section 24.135(a), 2.1055 and Industry Canada RSS-133, 4.2 and 6.3

| DC Voltage | Test Frequency | Deviation | Deviation Limit  |
|------------|----------------|-----------|------------------|
| V          | GHz            | Hz        | kHz              |
| -          | 1.88           | -         | See Note 1 Below |
| 3.90       | 1.88           | -22       | See Note 1 Below |
| 3.55       | 1.88           | -20       | See Note 1 Below |

Note 1 The fundamental must remain within the authorized frequency block.



**SECTION 3** 

**TEST EQUIPMENT** 



List of absolute measuring and other principal items of test equipment.

| Instrument                                                      | Manufacturer                                 | Туре No               | TE<br>Number | Calibration<br>Due |  |
|-----------------------------------------------------------------|----------------------------------------------|-----------------------|--------------|--------------------|--|
| Section 2.7 and 2.16 Radio (T                                   | Section 2.7 and 2.16 Radio (Tx) - Block Edge |                       |              |                    |  |
| Radiocommunications Tester                                      | Rohde & Schwarz                              | CMU 200               | 39           | 07/07/2006         |  |
| Dual Power Supply Unit                                          | Hewlett Packard                              | 6253A                 | 84           | O/P MON            |  |
| Power Divider                                                   | Weinschel                                    | 1506A                 | 601          | O/P MON            |  |
| Signal Generator                                                | Rohde & Schwarz                              | SMR 40                | 1002         | 22/11/2006         |  |
| SMA-SMA Cable (2m)                                              | Reynolds                                     | 262-0248-2000         | 2399         | 21/07/2006         |  |
| SMA-SMA Cable (1m)                                              | Reynolds                                     | 262-0248-1000         | 2407         | 21/07/2006         |  |
| Multimeter                                                      | lso-tech                                     | Iso Tech IDM101       | 2424         | 10/08/2006         |  |
| Spectrum Analyser                                               | Rohde & Schwarz                              | FSU26                 | 2747         | 03/02/2007         |  |
| Hygrometer                                                      | Rotronic                                     | I-1000                | 2891         | 20/12/2006         |  |
| Attenuator dc - 18GHz                                           | Suhner                                       | 6810.17.B             | 2966         | 01/02/2007         |  |
| 20dB/2W Attenuator: dc -<br>12.4GHz                             | Weinschel                                    | 1                     | 3032         | 21/12/2006         |  |
| Sections 2.9 and 2.18 Radio (Tx) - Conducted Spurious Emissions |                                              |                       |              |                    |  |
| Radiocommunications Tester                                      | Rohde & Schwarz                              | CMU 200               | 39           | 07/07/2006         |  |
| Dual Power Supply Unit                                          | Hewlett Packard                              | 6253A                 | 84           | O/P MON            |  |
| Filter (High Pass, 4GHz)                                        | Sematron                                     | F-100-4000-5-R        | 564          | O/P MON            |  |
| Power Divider                                                   | Weinschel                                    | 1506A                 | 601          | O/P MON            |  |
| Signal Generator                                                | Rohde & Schwarz                              | SMR 40                | 1002         | 22/11/2006         |  |
| SMA-SMA Cable (2m)                                              | Reynolds                                     | 262-0248-2000         | 2399         | 21/07/2006         |  |
| SMA-SMA Cable (1m)                                              | Reynolds                                     | 262-0248-1000         | 2407         | 21/07/2006         |  |
| Multimeter                                                      | Iso-tech                                     | Iso Tech IDM101       | 2424         | 10/08/2006         |  |
| Spectrum Analyser                                               | Rohde & Schwarz                              | FSU26                 | 2747         | 03/02/2007         |  |
| FILTER HI PASS 71500                                            | RLC Electronics                              | RLC-F100-1500-S-<br>R | 2843         | 16/05/2006         |  |
| Hygrometer                                                      | Rotronic                                     | I-1000                | 2891         | 20/12/2006         |  |
| Attenuator dc - 18GHz                                           | Suhner                                       | 6810.17.B             | 2966         | 01/02/2007         |  |
| 20dB/2W Attenuator: dc -<br>12.4GHz                             | Weinschel                                    | 1                     | 3032         | 21/12/2006         |  |



| Instrument                                                                | Manufacturer    | Туре No         | TE<br>Number | Calibration<br>Due |
|---------------------------------------------------------------------------|-----------------|-----------------|--------------|--------------------|
| Sections 2.10, 2.11, 2.19 and 2.20 Radio (Tx) - Frequency Characteristics |                 |                 |              |                    |
| Radiocommunications Tester                                                | Rohde & Schwarz | CMU 200         | 39           | 07/07/2006         |
| Dual Power Supply Unit                                                    | Hewlett Packard | 6253A           | 84           | O/P MON            |
| Digital Temperature Indicator                                             | Fluke           | 51              | 412          | 21/09/2006         |
| Temperature Chamber                                                       | Montford        | 2F3             | 467          | O/P MON            |
| SMA-SMA Cable (2m)                                                        | Reynolds        | 262-0248-2000   | 2399         | 21/07/2006         |
| Multimeter                                                                | lso-tech        | Iso Tech IDM101 | 2424         | 10/08/2006         |
| Hygrometer                                                                | Rotronic        | I-1000          | 2891         | 20/12/2006         |
| Sections 2.5 and 2.14 Radio (Tx) - Modulation Characteristics             |                 |                 |              |                    |
| Radiocommunications Tester                                                | Rohde & Schwarz | CMU 200         | 39           | 07/07/2006         |
| Dual Power Supply Unit                                                    | Hewlett Packard | 6253A           | 84           | O/P MON            |
| Power Divider                                                             | Weinschel       | 1506A           | 601          | O/P MON            |
| Signal Generator                                                          | Rohde & Schwarz | SMR 40          | 1002         | 22/11/2006         |
| SMA-SMA Cable (2m)                                                        | Reynolds        | 262-0248-2000   | 2399         | 21/07/2006         |
| SMA-SMA Cable (1m)                                                        | Reynolds        | 262-0248-1000   | 2407         | 21/07/2006         |
| Multimeter                                                                | lso-tech        | Iso Tech IDM101 | 2424         | 10/08/2006         |
| Spectrum Analyser                                                         | Rohde & Schwarz | FSU26           | 2747         | 03/02/2007         |
| Hygrometer                                                                | Rotronic        | I-1000          | 2891         | 20/12/2006         |
| Attenuator dc - 18GHz                                                     | Suhner          | 6810.17.B       | 2966         | 01/02/2007         |
| 20dB/2W Attenuator:<br>dc - 12.4GHz                                       | Weinschel       | 1               | 3032         | 21/12/2006         |



| Instrument                          | Manufacturer                                          | Туре No         | TE<br>Number | Calibration<br>Due |  |
|-------------------------------------|-------------------------------------------------------|-----------------|--------------|--------------------|--|
| Sections 2.6 and 2.15 Radio (       | Sections 2.6 and 2.15 Radio (Tx) - Occupied Bandwidth |                 |              |                    |  |
| Radiocommunications Tester          | Rohde & Schwarz                                       | CMU 200         | 39           | 07/07/2006         |  |
| Dual Power Supply Unit              | Hewlett Packard                                       | 6253A           | 84           | O/P MON            |  |
| Power Divider                       | Weinschel                                             | 1506A           | 601          | O/P MON            |  |
| Signal Generator                    | Rohde & Schwarz                                       | SMR 40          | 1002         | 22/11/2006         |  |
| SMA-SMA Cable (2m)                  | Reynolds                                              | 262-0248-2000   | 2399         | 21/07/2006         |  |
| SMA-SMA Cable (1m)                  | Reynolds                                              | 262-0248-1000   | 2407         | 21/07/2006         |  |
| Spectrum Analyser                   | Rohde & Schwarz                                       | FSU26           | 2747         | 03/02/2007         |  |
| Hygrometer                          | Rotronic                                              | I-1000          | 2891         | 20/12/2006         |  |
| Attenuator dc - 18GHz               | Suhner                                                | 6810.17.B       | 2966         | 01/02/2007         |  |
| 20dB/2W Attenuator: dc -<br>12.4GHz | Weinschel                                             | 1               | 3032         | 21/12/2006         |  |
| Sections 2.3 and 2.13 Radio (       | Tx) - Power Characteris                               | stics           |              |                    |  |
| Radio communications<br>Tester      | Rohde & Schwarz                                       | CMU 200         | 39           | 07/07/2006         |  |
| Dual Power Supply Unit              | Hewlett Packard                                       | 6253A           | 84           | O/P MON            |  |
| Power Divider                       | Weinschel                                             | 1506A           | 601          | O/P MON            |  |
| Signal Generator                    | Rohde & Schwarz                                       | SMR 40          | 1002         | 22/11/2006         |  |
| SMA-SMA Cable (2m)                  | Reynolds                                              | 262-0248-2000   | 2399         | 21/07/2006         |  |
| SMA-SMA Cable (1m)                  | Reynolds                                              | 262-0248-1000   | 2407         | 21/07/2006         |  |
| Multimeter                          | lso-tech                                              | Iso Tech IDM101 | 2424         | 10/08/2006         |  |
| Spectrum Analyser                   | Rohde & Schwarz                                       | FSU26           | 2747         | 03/02/2007         |  |
| Attenuator dc - 18GHz               | Suhner                                                | 6810.17.B       | 2966         | 01/02/2007         |  |
| 20dB/2W Attenuator: dc -<br>12.4GHz | Weinschel                                             | 1               | 3032         | 21/12/2006         |  |



| Instrument                                                     | Manufacturer                          | Туре No       | TE<br>Number | Calibration<br>Due |  |
|----------------------------------------------------------------|---------------------------------------|---------------|--------------|--------------------|--|
| Section 2.2 EMC - Conducted                                    | Section 2.2 EMC - Conducted Emissions |               |              |                    |  |
| Receiver                                                       | Rohde & Schwarz                       | ESPC          | 1536         | O/P MON            |  |
| Pulse Limiter                                                  | Rohde & Schwarz                       | ESH3-Z2       | 1537         | O/P MON            |  |
| Two-line V Network                                             | Rohde & Schwarz                       | ESH3-Z5       | 1538         | 16/03/2006         |  |
| 15m N-N RF Cable                                               | Rosenberger                           | FA210A-150M   | 2027         | 11/04/2006         |  |
| Sections 2.1, 2.4, 2.8, 2.12 and 2.17 EMC - Radiated Emissions |                                       |               |              |                    |  |
| EMI Test Receiver                                              | Rohde & Schwarz                       | ESI26         | 1505         | O/P MON            |  |
| Bilog Antenna                                                  | Chase                                 | CBL6111B      | 1508         | 16/04/2006         |  |
| DRG Antenna                                                    | EMCO                                  | 3115          | 1509         | O/P MON            |  |
| DRG Antenna                                                    | EMCO                                  | 3115          | 1510         | O/P MON            |  |
| DRG Antenna                                                    | Q-Par Angus Ltd                       | QSH 180K      | 1511         | 24/06/2005         |  |
| Pre Amplifier                                                  | Phase One                             | PS04-0085     | 1532         | 13/07/2006         |  |
| Pre-Amplifier                                                  | Phase One                             | PS04-0086     | 1533         | 13/07/2006         |  |
| Pre Amplifier                                                  | Phase One                             | PSO4-0087     | 1534         | 12/07/2006         |  |
| 3m N-N RF Cable                                                | Rosenberger                           | 3899          | 1871         | 11/04/2006         |  |
| 15m N-N RF Cable                                               | Rosenberger                           | FA210A-150M   | 2026         | 11/04/2006         |  |
| 3GHz High Pass Filter                                          | Sematron                              | E100-3000-5-R | 2244         | O/P MON            |  |
| Signal Generator                                               | Rohde & Schwarz                       | SMY 02        | 2949         | 07/11/2006         |  |



# 3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

| Test Discipline                          | Frequency / Parameter   | MU     |
|------------------------------------------|-------------------------|--------|
| Radiated Emissions, Bilog Antenna, AOATS | 30MHz to 1GHz Amplitude | 5.1dB* |
| Radiated Emissions, Horn Antenna, AOATS  | 1GHz to 40GHz Amplitude | 6.3dB* |

Worst case error for both Time and Frequency measurement 12 parts in 10<sup>6</sup>.

- \* In accordance with CISPR 16-4
- † In accordance with UKAS Lab 34



# **SECTION 4**

# PHOTOGRAPHS OF EQUIPMENT

Report Number OR615015/01 Issue 3

Page 89 of 98





MC2004a Front View



MC2004a Front View





MC2004a - Rear View



MC2004a with AC Charger (US)





MC2004a - Rear - Cover removed



MC2004a – Battery Pack





AC Charger (UK)



AC Charger (US)





AC Charger (AUS)



AC Charger (CE)





Cigar Adapter



Data Cable





Mono Headset



# **SECTION 5**

# ACCREDITATION, DISCLAIMERS AND COPYRIGHT



# 5.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT



This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TUV Product Service Limited

© 2006 TUV Product Service Limited