■ Issued Date: Mar. 29, 2023 # FCC AND ISED CERTIFICATION TEST REPORT ## **FOR** | Applicant | : | Globe Electric Company Inc. | | |----------------------|----------|---|--| | Address | • • | 150 Oneida, Montreal, Quebec, Canada, H9R 1A8 | | | Equipment under Test | • • | WIRELESS PUSH BUTTON | | | Model No. | • • | GB145TX | | | Trade Mark | : | Globe | | | FCC ID | •• | 2AQUQGB145TX | | | IC | | 8290A-GB145TX | | | Manufacturer | • | Globe Electric Company Inc. | | | Address | • | 150 Oneida, Montreal, Quebec, Canada, H9R 1A8 | | Issued By: Dongguan Dongdian Testing Service Co., Ltd. **Add.:** No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City, Guangdong Province, China, 523808 **Tel.:** +86-0769-38826678, **E-mail:** ddt@dgddt.com, http://www.dgddt.com # Table of Contents | | Test report declares | 4 | |------|---|-----| | 1. | Summary of Test Results | 6 | | 2. | General Test Information | 7 | | 2.1. | Description of EUT | 7 | | 2.2. | Accessories of EUT | 7 | | 2.3. | Assistant equipment used for test | 7 | | 2.4. | Block diagram of EUT configuration for test | 7 | | 2.5. | Test environment conditions | 7 | | 2.6. | Deviations of test standard | 8 | | 2.7. | Test laboratory | 8 | | 2.8. | Measurement uncertainty | 8 | | 3. | Equipment Used During Test | 9 | | 4. | On Time and Duty Cycle | 10 | | 4.1. | Block diagram of test setup | 10 | | 4.2. | Limits | 10 | | 4.3. | Test Procedure | 10 | | 4.4. | Test Result | 10 | | 4.5. | Original test data | 11 | | 5. | 20dB Bandwidth and 99% Bandwidth | 12 | | 5.1. | Block diagram of test setup | 12 | | 5.2. | Limits | 12 | | 5.3. | Test Procedure | 12 | | 5.4. | Test Result | 12 | | 5.5. | Original test data | 13 | | 6 | Stop transmitting time test | 14 | | 6.1. | Block diagram of test setup | | | 6.2. | Limits | | | 6.3. | Test Procedure | | | 6.4. | Test Result | 14 | | 6.5. | Original test data | 14 | | 7. | Radiated Emission | | | 7.1. | Block diagram of test setup | 15 | | 7.2. | Limit | 16 | | 7.3. | Test Procedure | 18 | | 7.4. | Test result | n19 | | 8. | Power Line Conducted Emission | | | 8.1. | Block diagram of test setup | 26 | | 8.2. | Power line conducted emission limits | 26 | |------|--------------------------------------|----| | 8.3. | Test procedure | 26 | | 8.4. | Test result | 27 | | 9. | Antenna Requirements | 28 | | 9.1. | Limit | 28 | | 9.2. | Result | 28 | | 10. | Test Setup Photograph | 29 | | 11. | Photos of the EUT | 32 | # **Test Report Declare** | Applicant | | Globe Electric Company Inc. | | |----------------------|----|---|--| | Address | : | 150 Oneida, Montreal, Quebec, Canada, H9R 1A8 | | | Equipment under Test | : | WIRELESS PUSH BUTTON | | | Model No. | : | GB145TX | | | Trade Mark | : | Globe | | | Manufacturer | | Globe Electric Company Inc. | | | Address | 1: | 150 Oneida, Montreal, Quebec, Canada, H9R 1A8 | | #### **Test Standard Used:** FCC Rules and Regulations Part 15 Subpart C, RSS-210 Issue 10 February 2019. #### **Test Procedure Used:** ANSI C63.10:2013, RSS-Gen Issue 5, Apr. 2018, Amendment 2 (February 2021) #### We Declare: The equipment described above is tested by Dongguan Dongdian Testing Service Co., Ltd. and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Dongguan Dongdian Testing Service Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests. After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC&ISED standards. | Report No.: | DDT-R23031611-2E01 | 1 | .31 | |------------------|--------------------|---------------|-------------------------------| | Date of Receipt: | Mar. 16, 2023 | Date of Test: | Mar. 16, 2023 ~ Mar. 29, 2023 | Prepared By: Tiger Mo/Engineer Damon Hu/EMC Manager Report No.: DDT-R23031611-2E01 Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Dongguan Dongdian Testing Service Co., Ltd. | Rev. | Revisions | Issue Date | Revised By | |------|---------------|---------------|------------| | | Initial issue | Mar. 29, 2023 | ® | | | | 200 | 7- | # 1. Summary of Test Results | Description of Test Item | Standard | Verdict | |----------------------------------|--|---------| | 20dB Bandwidth and 99% Bandwidth | FCC Part 15: 15.231
ANSI C63.10:2013
RSS-210 Issue 10
RSS-Gen Issue 5 | PASS | | Stop Transmitting Time Test | FCC Part 15C: 15.231(a)
RSS-210 Issue 10 | PASS | | Radiated Emission | FCC Part 15: 15.209
FCC Part 15: 15.231(b)
ANSI C63.10:2013
RSS-210 Issue 10
RSS-Gen Issue 5 | PASS | | Power Line Conducted Emissions | FCC Part 15: 15.207
ANSI C63.10:2013
RSS-210 Issue 10
RSS-Gen Issue 5 | N/A | | Antenna requirement | FCC Part 15: 15.203
RSS-210 Issue 10
RSS-Gen Issue 5 | PASS | # 2. General Test Information # 2.1. Description of EUT | EUT Name | : | WIRELESS PUSH BUTTON | | |--------------------------|---|--|--| | Model Number | : | GB145TX | | | Difference of product | : | Product only one model, but the model has a variety of colors, everything else including the material is the same. | | | EUT Function Description | | Please reference user manual of this device | | | Power Supply | : | DC 3V From CR2032 | | | Operation Frequency | 1 | 315 MHz | | | Modulation | : | ООК | | | Antenna Gain | : | Spring antenna, maximum PK gain: 0 dBi | | | Sample Number | : | S23031611-01 for conductive
S23031611-02 for radiation | | Report No.: DDT-R23031611-2E01 Note: EUT is the ab. of equipment under test. ## 2.2. Accessories of EUT | Description of Accessories | Manufacturer | Model number | Description | Remark | |----------------------------|--------------|--------------|-------------|--------| | N/A | N/A | N/A | N/A | N/A | # 2.3. Assistant equipment used for test | Assistant equipment | Manufacturer | Model number | EMC Compliance | SN | |---------------------|--------------|--------------|----------------|-----| | N/A | N/A | N/A | N/A | N/A | # 2.4. Block diagram of EUT configuration for test EUT The pathloss of external cable: 0.5dB (According to the manufacturer's claims) | Tested mode, channel, information | า | | |-----------------------------------|---------|-----------------| | Mode | Channel | Frequency (MHz) | | TX mode | / | 315 | # 2.5. Test environment conditions | Temperature range: | +15°C to +35 °C | | |--------------------|------------------|--| | Humidity range: | 20% to 75% | | | Pressure range: | 86 kPa to106 kPa | | #### 2.6. Deviations of test standard No deviation. ## 2.7. Test laboratory Dongguan Dongdian Testing Service Co., Ltd. Add.: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City, Report No.: DDT-R23031611-2E01 Guangdong Province, China, 523808. Tel.: +86-0769-38826678, http://www.dgddt.com, Email: ddt@dgddt.com. CNAS Accreditation No. L6451; A2LA Accreditation Number: 3870.01 FCC Designation Number: CN1182, Test Firm Registration Number: 540522 Innovation, Science and Economic Development Canada Site Registration Number: 10288A Conformity Assessment Body identifier: CN0048 VCCI facility registration number: C-20087, T-20088, R-20123, R-20155, G-20118 ## 2.8. Measurement uncertainty | Test Item | Uncertainty | | | | |---|--|--|--|--| | Bandwidth | 1.1% | | | | | Peak Output Power (Canduated) (Spectrum analyzer) | 0.86 dB (10 MHz ≤ f < 3.6 GHz); | | | | | Peak Output Power (Conducted) (Spectrum analyzer) | 1.38 dB (3.6 GHz ≤ f < 8 GHz) | | | | | Peak Output Power (Conducted) (Power Sensor) | 0.74 dB | | | | | Power Spectral Density | 0.74 dB (10 MHz ≤ f < 3.6 GHz); | | | | | Power Spectral Density | 1.38 dB (3.6 GHz ≤ f < 8 GHz) | | | | | Frequencies Stability | 6.7 x 10 ⁻⁸ (Antenna couple method) | | | | | r requericles Stability | 5.5 x 10 ⁻⁸ (Conducted method) | | | | | (8) | 0.86 dB (10 MHz ≤ f < 3.6 GHz); | | | | | Conducted spurious emissions | 1.40 dB (3.6 GHz ≤ f < 8 GHz) | | | | | | 1.66 dB (8 GHz ≤ f < 26.5 GHz) | | | | | Uncertainty for radio frequency (RBW < 20 kHz) | 3×10 ⁻⁸ | | | | | Temperature | 0.4 ℃ | | | | | Humidity | 2 % | | | | | Uncertainty for Radiation Emission test
(9 kHz – 30 MHz) | 3.44 dB | | | | | Uncertainty for Radiation Emission test | 4.70 dB (Antenna Polarize: V) | | | | | (30 MHz - 1 GHz) | 4.84 dB (Antenna Polarize: H) | | | | | | 4.10 dB (1 - 6 GHz) | | | | | Uncertainty for Radiation Emission test | 4.40 dB (6 GHz - 18 GHz) | | | | | (1 GHz - 40 GHz) | 3.54 dB (18 GHz - 26 GHz) | | | | | | 4.30 dB (26 GHz - 40 GHz) | | | | | Uncertainty for Power line conduction emission test | 3.34dB (150KHz-30MHz) | | | | | | 3.72dB (9KHz-150KHz) | | | | | Note: This uncertainty represents an expanded uncertainty | inty expressed at approximately the | | | | Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. # 3. Equipment Used During Test | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Cal.
Interval | |-------------------------------|--------------------|--|-----------------------|-------------------|------------------| | ⊠RF Connected Test | (Tonscend RF | Measuremen | t System 2#) | | | | Spectrum analyzer | R&S | FSU26 | 200071 | Apr. 26, 2022 | Apr. 25,
2023 | | Test Software | JS Tonscend | JS1120-3 | Ver.3.2.22 | N/A | N/A | | ⊠Radiation 3#chambe | er | | | | | | EMI Test Receiver | R&S | ESU26 | 100472 | May 19, 2022 | 1 Year | | Spectrum analyzer | Agilent | E4447A | MY50180031 | May 17, 2022 | 1 Year | | Active Loop antenna | Schwarzbeck | FMZB-1519 | 1519-038 | Sep. 29, 2022 | 1 Year | | Trilog Broadband
Antenna | Schwarzbeck | VULB 9163 | 01429 | Jul. 22, 2022 | 1 Year | | Double Ridged Horn
Antenna | Schwarzbeck | BBHA9120 D | 02468 | Sep. 29, 2022 | 1 Year | | Broad Band Horn
Antenna | Schwarzbeck | BBHA 9170 | 790 | May 06, 2022 | 1 Year | | Pre-amplifier | COM-
POWER | PAM-118A | 18040084 | Aug. 17, 2022 | 1 Year | | Pre-amplifier | COM-
POWER | PAM-840A | 461369 | Apr. 11, 2022 | 1 Year | | RE Cable | N/A | W23.02 CP1-
X2 + W23.09
AP1-X8+
JCT26S-NJ-
NJ-1.5M+
JCT26S-NJ-
NJ-1.5M | 4.5M+8M+1.5M+1.
5M | 8
Aug.17, 2022 | 1 Year | | RF Cable | Yuhu
Technology | JCTB810-
NJ-NJ-9M | 21123964 | May 19, 2022 | 1 Year | | RF Cable | Yuhu
Technology | ZT26S-
SMAJ-SMAJ-
1M | 21073466 | Aug. 17, 2022 | 1 Year | | Test software | Tonscend | JS32-RE | V 5.0.0.1 | N/A | N/A | | □Power Line Conduc | ted Emissions | Test 1# | | | | | Test Receiver | R&S | ESCI | 100551 | Aug. 26, 2022 | 1 Year | | LISN 1 | R&S | ENV216 | 101109 | Aug. 26, 2022 | 1 Year | | LISN 2 | R&S | ESH2-Z5 | 100309 | Aug. 26, 2022 | 1 Year | | Pulse Limiter | R&S | ESH3-Z2 | 101242 | Aug. 26, 2022 | 1 Year | | CE Cable 1 | HUBSER | N/A | W10.01 | Aug. 26, 2022 | 1 Year | | Test software | Audix | E3 | V 6.11111b | N/A | N/A | | Test Receiver | R&S | ESCI | 100551 | Aug. 26, 2022 | 1 Year | Report No.: DDT-R23031611-2E01 # 4. On Time and Duty Cycle ## 4.1. Block diagram of test setup ## 4.2. Limits None: for reporting purposes only. #### 4.3. Test Procedure Set the Centre frequency of the spectrum analyzer to the transmitting frequency; Set the span=0 MHz, RBW=1 MHz, VBW=1 MHz, Sweep time=100 ms; Trace mode = Single hold. #### 4.4. Test Result | Test Channel[MHz] | Duty Cycle[%] | 20log(Δ) Factor[dB] | |-------------------|---------------|---------------------| | 315 | 30.73 | -10.25 | Note 1: The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by below Equation: Δ =(0.897x7)+(0.359x26)=15.613ms $\delta(dB) = 20\log(\Delta) = 20\log(15.613/50.80) = -10.25dB$ δ is the duty cycle correction factor (dB) Δ is the duty cycle (dimensionless) Note 2: In cases where the pulse train exceeds 0.1 s, the measured field strength shall be determined during a 0.1 s interval Report No.: DDT-R23031611-2E01 ## Report No.: DDT-R23031611-2E01 # 4.5. Original test data # 5. 20dB Bandwidth and 99% Bandwidth ## 5.1. Block diagram of test setup ## 5.2. Limits The bandwidth of the emission shall be no wider than 0.25% of the center frequency of devices operation above 70MHz and below 900MHz. Report No.: DDT-R23031611-2E01 #### 5.3. Test Procedure - (1) Connect EUT's antenna output to spectrum analyzer by RF cable. - (2) The bandwidth of the fundamental frequency was measured by spectrum analyzer with 3kHz RBW and 10kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB. #### 5.4. Test Result | Frequency (MHz) | 20 dB Bandwidth (kHz) 99% Bandwidth (kHz) | | Limit (kHz) | Verdict | |-----------------|---|-------|-------------|---------| | 315 | 16.03 | 62.50 | 787.5 | PASS | # 5.5. Original test data # 6 Stop transmitting time test ## 6.1. Block diagram of test setup #### 6.2. Limits 15.231(a), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. #### 6.3. Test Procedure (1) The EUT's RF signal was coupled to spectrum analyzer by antenna connected to spectrum analyzer. Report No.: DDT-R23031611-2E01 - (2) Set the spectrum to zero span mode, and centered of EUT frequency. - (3) Measure the stop transmitting time after release EUT button. #### 6.4. Test Result | Frequency (MHz) | uency (MHz) Burst Duration[s] Limit [s] | | Verdict | |-----------------|---|----|---------| | 315 | 0.962 | ≤5 | PASS | ## 6.5. Original test data # 7. Radiated Emission ## 7.1. Block diagram of test setup In 3 m Anechoic Chamber, test setup diagram for 9 kHz - 30 MHz: In 3 m Anechoic Chamber, test setup diagram for 30 MHz - 1 GHz: In 3 m Anechoic Chamber, test setup diagram for frequency above 1 GHz: Note: For harmonic emissions test an appropriate high pass filter was inserted in the input port of AMP. #### **7.2.** Limit (1) FCC 15.205 Restricted frequency band | MHz | MHz | MHz | GHz | |-------------------|---------------------|---------------|-------------| | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | 10.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.1772&4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.2072&4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | ® 123-138 | © 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (2) | | 13.36-13.41 | | | | ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6 RSS-Gen section 8.10 Restricted frequency bands* | MHz | MHz | MHz | GHz | |-----------------|---------------------|---------------|-------------| | 0.090-0.110 | 12.51975-12.52025 | 240-285 | 3.5-4.4 | | 0.495-0.505 | 12.57675-12.57725 | 322-335.4 | 4.5-5.15 | | 2.1735-2.1905 | 13.36-13.41 | 399.9-410 | 5.35-5.46 | | 3.020-3.026 | 16.42-16.423 | 608-614 | 7.25-7.75 | | 4.125-4.128 | 16.69475-16.69525 | 960-1427 | 8.025-8.5 | | 4.1772&4.17775 | 16.80425-16.80475 | 1435-1626.5 | 9.0-9.2 | | 4.2072&4.20775 | 25.5-25.67 | 1645.5-1646.5 | 9.3-9.5 | | 5.677-5.683 | 37.5-38.25 | 1660-1710 | 10.6-12.7 | | 6.215-6.218 | 73-74.6 | 1718.8-1722.2 | 13.25-13.4 | | 6.26775-6.26825 | 74.8-75.2 | 2200-2300 | 14.47-14.5 | | 6.31175-6.31225 | 108-138 | 2310-2390 | 15.35-16.2 | | 8.291-8.294 | 149.9-150.05 | 2483.5-2500 | 17.7-21.4 | | 8.362-8.366 | 156.52475-156.52525 | 2655-2900 | 22.01-23.12 | | 8.37625-8.38675 | 156.7-156.9 | 3260-3267 | 23.6-24.0 | | 8.41425-8.41475 | 162.0125-167.17 | 3332-3339 | 31.2-31.8 | | 12.29-12.293 | 167.72-173.2 | 3345.8-3358 | 36.43-36.5 | | | | | Above 38.6 | ^{*} Certain frequency bands listed in table and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs. (2) FCC 15.209 Limit & RSS-Gen section 8.9 Limit | FREQUENCY | DISTANCE | FIELD STRENGTHS LIMIT | | | |---------------|-----------|--------------------------------|---------------|--| | MHz | Meters | μV/m | dB(μV)/m | | | 0.009 ~ 0.490 | 300 | 2400/F(kHz) | 67.6-20log(F) | | | 0.490 ~ 1.705 | 30 @ | 24000/F(kHz) | 87.6-20log(F) | | | 1.705 ~ 30.0 | 30 | 30 | 29.54 | | | 30 ~ 88 | 3 | 100 | 40.0 | | | 88 ~ 216 | 3 | 150 | 43.5 | | | 216 ~ 960 | 216 ~ 960 | | 46.0 | | | 960 ~ 1000 | 3 | 500 54.0 | | | | Above 1000 | 3 | 74.0 dB(μV)/r
54.0 dB(μV)/m | | | (3)FCC 15.231 section (b) limit | Fundamental Frequency | Field Strength of | Field strength of spurious | |-----------------------|--------------------|----------------------------| | (MHz) | Fundamental | emission | | ® 315 | AV:75.62dBuV/m @3m | AV:55.62dBuV/m @3m | | | PK:95.62dBuV/m @3m | PK:75.62dBuV/m @3m | Note: (1) The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9 - 90 kHz, 110 - 490 kHz and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector. (2) At frequencies below 30 MHz, measurement may be performed at a distance closer than Report No.: DDT-R23031611-2E01 that specified, and the limit at closer measurement distance can be extrapolated by below formula: $Limit_{3m}(dBuV/m) = Limit_{30m}(dBuV/m) + 40Log(30m/3m)$ #### (4) Limit for this EUT The emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, and the emissions appearing within RSS-Gen section 8.10 Restricted frequency bands shall not exceed the limits shown in RSS-Gen section 8.9, all the other emissions shall be at least 20 dB below the fundamental emissions or comply with 15.209 limits and RSS-Gen section 8.9 limits. #### 7.3. Test Procedure - (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber for below 1 G and 150 cm above the ground plane inside a semi-anechoic chamber for above 1 G. - (2) Test antenna was located 3 m from the EUT on an adjustable mast, and the antenna used as below table. | Test frequency range | Test antenna used | Test antenna distance | |----------------------|---|-----------------------| | 9 kHz - 30 MHz | Active Loop antenna | 3 m | | 30 MHz - 1 GHz | Trilog Broadband Antenna | 3 m | | 1 GHz - 18 GHz | Double Ridged Horn
Antenna
(1 GHz - 18 GHz) | 3 m | | 18 GHz - 40 GHz | Horn Antenna
(18 GHz - 40 GHz) | 1 m | According ANSI C63.10:2013 clause 6.4.6 and 6.5.3, for measurements below 30 MHz, Antenna was located 3 m from EUT, the loop antenna was positioned in three antenna orientations (parallel, perpendicular, and round-parallel), for each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable, and the lowest height of the magnetic antenna shall be 1 m above the ground. For measurement above 30 MHz, the Trilog Broadband Antenna or Horn Antenna was located 3 m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength. - (3) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9 kHz to 25 GHz: - (a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1 m to 4 m (Except loop antenna, it's fixed 1 m above ground.) - (b) Change work frequency or channel of device if practicable. - (c) Change modulation type of device if practicable. - (d) Change power supply range from 85% to 115% of the rated supply voltage - (e) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions. - Spectrum frequency from 9 kHz to 25 GHz (tenth harmonic of fundamental frequency) was investigated, and no any obvious emission were detected from 9 kHz to 30 MHz and 18 GHz to 25 GHz, so below final test was performed with frequency range from 30 MHz to 18 GHz. - (4) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1 m and 4 m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10:2013 on Radiated Emission test. - (5) The emissions from 9 kHz to 1 GHz were measured based on CISPR QP detector except for the frequency bands 9 - 90 kHz, 110 - 490 kHz, for emissions from 9 kHz - 90 kHz, 110 kHz -490 kHz and above 1 GHz were measured based on average detector, for emissions above 1 GHz, peak emissions also be measured and need comply with Peak limit. - (6) The emissions from 9 kHz to 1 GHz, QP or average values were measured with EMI receiver with below RBW | Frequency band | RBW | |------------------|---------| | 9 kHz - 150 kHz | 200 Hz | | 150 kHz - 30 MHz | 9 kHz | | 30 MHz - 1 GHz | 120 kHz | For emissions above 1 GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1 MHz, VBW is set at 3 MHz for Peak measure; According ANSI C63.10:2013 clause 4.1.4.2.2 procedure for average measure. #### 7.4. Test result Pass. (See below detailed test result) All the emissions except fundamental emission from 9 kHz to 25 GHz were comply with 15.209 limits and RSS-Gen section 8.9 limits. Note1: According exploratory test, the emission levels are 20 dB below the limit detected from 9 kHz to 30 MHz and 18 GHz to 25 GHz, so the final test was performed with frequency range from 30 MHz to 18 GHz and recorded in below. Note2: 30 MHz ~ 25 GHz: (Scan with 315M, the worst case is reported) Note3: For emissions below 1 GHz, according exploratory explorer test, when change Tx mode and channel, have no distinct influence on emissions level, so for emissions below 1 GHz, the final test was only performed with EUT working in OOK 315 MHz mode. Note4: For emissions above 1 GHz. If peak results comply with AV limit, AV Result is deemed to comply with AV limit. ## Report No.: DDT-R23031611-2E01 # Radiated Emission test (below 1 GHz) # TR-4-E-009 Radiated Emission Test Result Test Date: 2023-03-24 Tested By: Bairong **EUT**: WIRELESS PUSH BUTTON Model Number: GB145TX Test Mode: TX Mode Power Supply: Battery Condition: Temp:24.0°C;Humi:61.2% Test Site: DDT 3# Chamber File Path: d:\ts\2023 report date\Q23031611-2E GB145TX\FCC BELOW 1G\20230324-110758_H Memo: 315MHz | Final | Data List | | | | | | | / | | | |-------|----------------|-------------------|---------------------------|-----------------------|-------------|-------------------|-----------------------|----------------|----------|------------| | NO | Freq.
[MHz] | Reading
[dBµV] | Antenna
Factor
[dB] | Cable
loss
[dB] | AMP
[dB] | Level[dB
μV/m] | Limit
[dBµV/
m] | Margin
[dB] | Detector | Polarity | | 1 | 46.24 | 4.64 | 13.12 | 0.77 | 0.00 | 18.53 | 40.00 | 21.47 | QP | Horizontal | | 2 | 107.18 | 5.42 | 10.78 | 1.44 | 0.00 | 17.64 | 43.50 | 25.86 | QP | Horizontal | | 3 | 199.77 | 5.68 | 10.70 | 2.00 | 0.00 | 18.38 | 43.50 | 25.12 | QP | Horizontal | | 4 | 778.55 | 6.62 | 21.00 | 4.07 | 0.00 | 31.69 | 46.00 | 14.31 | QP | Horizontal | | 5 | 629.56 | 7.01 | 19.00 | 3.64 | 0.00 | 29.65 | 75.62 | 45.97 | PK | Horizontal | | 6 | 629.56 | 7.01 | 19.00 | 3.64 | 0.00 | 19.40 | 55.62 | 36.22 | AV | Horizontal | | 7 | 900.17 | 7.4 | 22.40 | 4.43 | 0.00 | 34.23 | 46.00 | 11.77 | QP | Horizontal | - 1. Result Level = Reading + Cable loss + Antenna Factor + AMP - 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. - 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto. - 4. Main frequecy over the limit is fundamental. Report No.: DDT-R23031611-2E01 Test Date: 2023-03-24 Tested By: Bairong **EUT**: WIRELESS PUSH BUTTON Model Number: GB145TX Test Mode: TX Mode Power Supply: Battery Condition: Temp:24.0°C;Humi:61.2% Test Site: DDT 3# Chamber File Path: d:\ts\2023 report date\Q23031611-2E GB145TX\FCC BELOW 1G\20230324-110853_V Memo: 315MHz | Final | Final Data List | | | | | | | | | | |-------|-----------------|-------------------|---------------------------|-----------------------|-------------|-------------------|-------------------|----------------|----------|----------| | NO. | Freq.
[MHz] | Reading
[dBµV] | Antenna
Factor
[dB] | Cable
loss
[dB] | AMP
[dB] | Level[dB
µV/m] | Limit[d
BµV/m] | Margin
[dB] | Detector | Polarity | | 1 | 47.49 | 5.99 | 13.20 | 0.78 | 0.00 | 19.97 | 40.00 | 20.03 | QP | Vertical | | 2 | 57.75 | 6.62 | 12.25 | 0.90 | 0.00 | 19.77 | 40.00 | 20.23 | QP | Vertical | | 3 | 101.33 | 6.02 | 11.00 | 1.41 | 0.00 | 18.43 | 43.50 | 25.07 | QP | Vertical | | 4 | 204.73 | 6.11 | 10.79 | 2.02 | 0.00 | 18.92 | 43.50 | 24.58 | QP | Vertical | | 5 | 629.98 | 11.42 | 19.00 | 3.64 | 0.00 | 34.06 | 75.62 | 41.56 | PK | Vertical | | 6 | 629.98 | 11.42 | 19.00 | 3.64 | 0.00 | 23.81 | 55.62 | 31.81 | AV | Vertical | | 7 | 968.26 | 7.55 | 22.80 | 4.60 | 0.00 | 34.95 | 54.00 | 19.05 | QP | Vertical | - 1. Result Level = Reading + Cable loss + Antenna Factor + AMP - 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. - 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto. - 4. Main frequecy over the limit is fundamental. Report No.: DDT-R23031611-2E01 Test Date: 2023-03-24 Tested By: Bairong **EUT**: WIRELESS PUSH BUTTON Model Number: GB145TX Test Mode: TX Mode Power Supply: Battery Condition: Temp:24.0°C;Humi:61.2% Test Site: DDT 3# Chamber File Path: d:\ts\2023 report date\Q23031611-2E GB145TX\FCC BELOW 1G\20230324-111028_H Memo: 315MHz | Final | Final Data List | | | | | | | | | | |-------|-----------------|-------------------|---------------------------|-----------------|-------------|-------------------|-------------------|----------------|----------|------------| | NO. | Freq.
[MHz] | Reading
[dBµV] | Antenna
Factor
[dB] | Cable loss [dB] | AMP
[dB] | Level[dB
µV/m] | Limit[d
BµV/m] | Margin
[dB] | Detector | Polarity | | 1 | 314.99 | 59.11 | 13.70 | 2.50 | 0.00 | 75.31 | 95.62 | 20.31 | PK | Horizontal | | 2 | 314.99 | 59.11 | 13.70 | 2.50 | 0.00 | 65.06 | 75.62 | 10.56 | AV | Horizontal | - 1. Result Level = Reading + Cable loss + Antenna Factor + AMP - 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. - 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto. Report No.: DDT-R23031611-2E01 Test Date: 2023-03-24 Tested By: Bairong **EUT**: WIRELESS PUSH BUTTON Model Number: GB145TX Test Mode: TX Mode Power Supply: Battery Condition: Temp:24.0°C;Humi:61.2% Test Site: DDT 3# Chamber File Path: d:\ts\2023 report date\Q23031611-2E GB145TX\FCC BELOW 1G\20230324-111128_V Memo: 315MHz | Final | Final Data List | | | | | | | | | | |-------|-----------------|-------------------|---------------------------|-----------------------|-------------|-------------------|-------------------|----------------|----------|----------| | NO | Freq.[
MHz] | Reading
[dBµV] | Antenna
Factor
[dB] | Cable
loss[
dB] | AMP
[dB] | Level[dB
µV/m] | Limit[d
BµV/m] | Margin[
dB] | Detector | Polarity | | 1 | 315.00 | 47.50 | 13.70 | 2.50 | 0.00 | 63.70 | 95.62 | 31.92 | PK | Vertical | | 2 | 315.00 | 47.50 | 13.70 | 2.50 | 0.00 | 53.45 | 75.62 | 22.17 | AV | Vertical | - 1. Result Level = Reading + Cable loss + Antenna Factor + AMP - 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. - 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto. # Radiated Emission test (above 1 GHz) # TR-4-E-009 Radiated Emission Test Result Report No.: DDT-R23031611-2E01 Test Date: 2023-03-24 Tested By: Bairong EUT: WIRELESS PUSH BUTTON Model Number: GB145TX Test Mode: TX Mode Power Supply: Battery Condition: Temp:24.9°C;Humi:66.2% Test Site: DDT 3# Chamber File Path: d:\ts\2023 report date\Q23031611-2E GB145TX\FCC ABOVE 1G\3 Memo: 315MHz #### **Test Graph** | Final Data List | | | | | | (8) | | (B) | | | | |-----------------|----------------|-------------------|-----------------------|---------------------------|-------------|-------------------|-------------------|----------------|----------|------------|--| | NO. | Freq.
[MHz] | Reading
[dBµV] | Cable
Loss
[dB] | Antenna
Factor
[dB] | AMP
[dB] | Level
[dBµV/m] | Limit
[dBµV/m] | Margin
[dB] | Detector | Polarity | | | 1 | 1077.93 | 48.37 | 2.59 | 25.50 | -38.32 | 38.14 | 74.00 | 35.86 | PK | Horizontal | | | 2 | 1574.89 | 50.60 | 3.01 | 25.40 | -39.06 | 39.95 | 74.00 | 34.05 | PK | Horizontal | | | 3 | 2204.75 | 51.45 | 3.59 | 27.21 | -39.93 | 42.32 | 74.00 | 31.68 | PK | Horizontal | | | 4 | 2834.66 | 49.06 | 4.24 | 28.64 | -40.62 | 41.32 | 74.00 | 32.68 | PK | Horizontal | | | 5 | 3780.18 | 49.74 | 5.29 | 30.22 | -41.27 | 43.98 | 74.00 | 30.02 | PK | Horizontal | | | 6 | 4302.13 | 48.44 | 5.65 | 31.30 | -41.31 | 44.08 | 74.00 | 29.92 | PK | Horizontal | | | 6 | 4302.13 | 48.44 | 5.65 | 31.30 | -41.31 | 44.08 | 74.00 | 29.92 | PK | L | | - 1. Level = Reading + Cable Loss + Antenna Factor + AMP - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto. Report No.: DDT-R23031611-2E01 Test Date: 2023-03-24 Tested By: Bairong EUT: WIRELESS PUSH BUTTON Model Number: GB145TX Test Mode: TX Mode Power Supply: Battery Condition: Temp:24.9°C;Humi:66.2% Test Site: DDT 3# Chamber File Path: d:\ts\2023 report date\Q23031611-2E GB145TX\FCC ABOVE 1G\4 Memo: 315MHz #### **Test Graph** | Final Data List | | | | | | | | | | | |-----------------|----------------|-------------------|-----------------------|---------------------------|-------------|-------------------|-------------------|----------------|----------|----------| | NO. | Freq.
[MHz] | Reading
[dBµV] | Cable
Loss
[dB] | Antenna
Factor
[dB] | AMP
[dB] | Level
[dBµV/m] | Limit
[dBµV/m] | Margin
[dB] | Detector | Polarity | | 1 | 1147.53 | 48.62 | 2.65 | 25.60 | -38.42 | 38.45 | 74.00 | 35.55 | PK | Vertical | | 2 | 1368.09 | 47.59 | 2.84 | 25.60 | -38.75 | 37.28 | 74.00 | 36.72 | PK | Vertical | | 3 | 1515.64 | 47.67 | 2.96 | 25.47 | -38.97 | 37.13 | 74.00 | 36.87 | PK | Vertical | | 4 | 2248.96 | 47.10 | 3.64 | 27.30 | -39.97 | 38.07 | 74.00 | 35.93 | PK | Vertical | | 5 | 2835.08 | 48.25 | 4.24 | 28.64 | -40.62 | 40.51 | 74.00 | 33.49 | PK | Vertical | | 6 | 3993.49 | 47.30 | 5.53 | 30.69 | -41.40 | 42.12 | 74.00 | 31.88 | PK | Vertical | - 1. Level = Reading + Cable Loss + Antenna Factor + AMP - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto. # 8. Power Line Conducted Emission ## 8.1. Block diagram of test setup Report No.: DDT-R23031611-2E01 #### 8.2. Power line conducted emission limits | Frequency | Quasi-Peak Level
dB(μV) | Average Level
dB(μV) | | | |-------------------|----------------------------|-------------------------|--|--| | 150 kHz ~ 500 kHz | 66 ~ 56* | 56 ~ 46* | | | | 500 kHz ~ 5 MHz | 56 | 46 | | | | 5 MHz ~ 30 MHz | 60 | 50 | | | Note 1: * Decreasing linearly with logarithm of frequency. Note 2: The lower limit shall apply at the transition frequencies. #### 8.3. Test procedure The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80 cm above the ground plane. All support equipment power received from a second LISN. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT. The Receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes. During the above scans, the emissions were maximized by cable manipulation. The test mode(s) described in clause 2.4 were scanned during the preliminary test. After the preliminary scan, we found the test mode producing the highest emission level. The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test. EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test. A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. The test data of the worst-case condition(s) was recorded. The bandwidth of test receiver is set at 9 kHz. ## 8.4. Test result #### N/A This product is powered by DC. # 9. Antenna Requirements #### 9.1. Limit For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Report No.: DDT-R23031611-2E01 For intentional device, according to RSS-Gen issue 5 section 6.8. The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list. #### 9.2. Result The antenna used for this product is Spring antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is 0 dBi. # 11. Photos of the EUT Please refer to appendix I. **END OF REPORT**