

| Product Name: Body Worn Camera | Report No: FCC022022-0616RF12(a) |
|--------------------------------|----------------------------------|
| Product Model: FirstVu PRO     | Security Classification: Open    |
| Version: V1.0                  | Total Page: 28                   |

# **TIRT Testing Report**

| Prepared By: | Checked By: | Approved By: | unology (c          |
|--------------|-------------|--------------|---------------------|
| Stone Tang   | Randy Lv    | Daniel Chen  | Ascin Series        |
| Stone Tang   | Randy LV    | Daniel Chen  | TIRI<br>Shenzhen ,o |



Report No.FCC022022-0616RF12(a)

# **RF TEST REPORT**

# FCC ID: WPZ-FVPRO

## According to

# 47 CFR FCC Part 02:2020

# 47 CFR FCC Part 22:2020

# 47 CFR FCC Part 24:2020

# 47 CFR FCC Part 27:2020

# ANSI C63.26:2015

| Equipment   | : | Body Worn Camera                                        |
|-------------|---|---------------------------------------------------------|
| Model No.   | : | FirstVu PRO                                             |
| Trademark   | : | Digital Ally                                            |
| Product No. | : | 20220218001974                                          |
| Applicant   | : | Digital Ally, Inc.                                      |
|             |   | 14001 Marshall Drive Lenexa, Kansas 66215 United States |

- The test result referred exclusively to the presented test model /sample.
- Without written approval of TIRT Inc. the test report shall not reproduced except in full.
- Test Date: 2022.02.07-2022.03.16

Lab: Beijing TIRT Technology Service Co.,Ltd Shenzhen Add: 101, 3 # Factory Building, Gongjin Electronics Shatin Community, Kengzi Street, Pingshan District, Shenzhen, China TEL: +86-0755-27087573



# Table of Contents

| Hi | story | y of this test report                                                          | 5  |
|----|-------|--------------------------------------------------------------------------------|----|
| 1. | Gei   | neral Information                                                              | 6  |
|    | 1.1   | Applicant                                                                      | 6  |
|    | 1.2   | Manufacturer                                                                   | 6  |
|    | 1.3   | Factory                                                                        | 6  |
|    | 1.4   | Basic Description of Equipment Under Test                                      | 6  |
|    | 1.5   | Technical Specification                                                        | 7  |
| 2. | Sur   | nmary of Test Results                                                          | 9  |
|    | 2.1   | Application of Standard                                                        | 9  |
|    | 2.2   | Cellular Band (824-849MHz paired with 869-894MHz)                              | 9  |
|    | 2.3   | PCS Band (1850-1910MHz paired with 1930-1990MHz)                               | 10 |
|    | 2.4   | AWS Band (1710-1755MHz paired with 2110-2155MHz)                               | 11 |
|    | 2.5   | Band12 (699-716MHz paired with 729-746 MHz)                                    | 12 |
| 3. | Gei   | neral Test Frequency and Configuration                                         | 13 |
|    | 3.1   | Test Modes                                                                     | 13 |
|    | 3.2   | Test Frequency                                                                 | 13 |
|    | 3.3   | Test Environment                                                               | 15 |
|    | 3.4   | Test Instruments                                                               | 16 |
|    | 3.5   | Measurement Uncertainty                                                        | 17 |
|    | 3.6   | Test Location                                                                  | 17 |
|    | 3.7   | Deviation from Standards                                                       | 17 |
|    | 3.8   | Abnormalities from Standard Conditions                                         | 17 |
| 4. | Tes   | t Setup and Conditions                                                         | 18 |
|    | 4.1   | Test Setup 1                                                                   | 18 |
|    | 4.2   | Test Setup 2                                                                   | 18 |
|    | 4.3   | Test Setup 3                                                                   | 19 |
|    |       |                                                                                |    |
|    |       | Step 1: Pre-test<br>Step 2: Substitution method to verify the maximum ERP/EIRP |    |



| 5. | Des | cription of Tests                                   | 22 |
|----|-----|-----------------------------------------------------|----|
|    | 5.1 | Radiated Power and Radiated Spurious Emissions      | 22 |
|    | 5.2 | Peak-Average Ratio                                  | 23 |
|    | 5.3 | Occupied Bandwidth                                  | 24 |
|    | 5.4 | Band Edge Compliance                                | 25 |
|    | 5.5 | Spurious and Harmonic Emissions at Antenna Terminal | 26 |
|    | 5.6 | Frequency Stability / Temperature Variation         | 27 |
| 6. | Арр | pendixes                                            | 28 |



# History of this test report

Original Report Issue Date: 2022.04.22

- No additional attachment
- $\, \odot \,$  Additional attachments were issued following record

| Attachment No. | Issue Date | Description |
|----------------|------------|-------------|
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |
|                |            |             |



# 1. General Information

## 1.1 Applicant

#### Digital Ally, Inc.

14001 Marshall Drive Lenexa, Kansas 66215 United States

### 1.2 Manufacturer

#### Digital Ally, Inc.

14001 Marshall Drive Lenexa, Kansas 66215 United States

## 1.3 Factory

#### Digital Ally, Inc.

14001 Marshall Drive Lenexa, Kansas 66215 United States

#### **1.4 Basic Description of Equipment Under Test**

| Items                 | Description                       |  |  |  |
|-----------------------|-----------------------------------|--|--|--|
| Equipment Name        | Body Worn Camera                  |  |  |  |
| Model Number          | FirstVu PRO                       |  |  |  |
| Trademark             | Digital Ally                      |  |  |  |
|                       | Adapter Model: AS1201A-0502000USU |  |  |  |
|                       | Input: 100-240V~50/60Hz 0.35A MAX |  |  |  |
| Power Supply          | Output: 5V 2000mA                 |  |  |  |
|                       | Battery Model: A213A              |  |  |  |
|                       | 3.8V 3450mAh 13.11Wh              |  |  |  |
| Operating Temperature | <b>-30~50</b> ℃                   |  |  |  |
| EUT Stage             | Product Unit     Final-Sample     |  |  |  |
| Radio System Type     | LTE                               |  |  |  |
| Operating Band        | Band 2, Band 4, Band 5, Band 12   |  |  |  |



# **1.5 Technical Specification**

| Characteristics           | Description       |                                        |
|---------------------------|-------------------|----------------------------------------|
| Radio System Type         | LTE               |                                        |
| Supported Frequency       | LTE BAND2         | Transmission (TX): 1850 to 1910 MHz    |
| Range                     |                   | Receiving (RX): 1930 to 1990 MHz       |
|                           | LTE BAND4         | Transmission (TX): 1710 to 1755 MHz    |
|                           |                   | Receiving (RX): 2110 to 2155 MHz       |
|                           | LTE BAND5         | Transmission (TX): 824 to 849 MHz      |
|                           |                   | Receiving (RX): 869 to 894 MHz         |
|                           | LTE BAND12        | Transmission (TX): 699 to 716 MHz      |
|                           |                   | Receiving (RX): 729 to 746 MHz         |
| TX and RX Antenna Port    | TX & RX port:     | 1                                      |
| Numbers                   | RX-only port:     | 1                                      |
| Target TX Output Power    | LTE BAND2: 25dBm  |                                        |
|                           | LTE BAND4: 25dBm  |                                        |
|                           | LTE BAND5: 25dBm  |                                        |
|                           | LTE BAND12: 25dBm |                                        |
| Antenna Gain:             | LTE BAND2: 2dBi   |                                        |
|                           | LTE BAND4: 2dBi   |                                        |
|                           | LTE BAND5: 2dBi   |                                        |
|                           | LTE BAND12: 2dBi  |                                        |
| Supported Channel         | LTE band 2        | 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, |
| Bandwidth                 |                   | 20 MHz                                 |
|                           | LTE band 4        | 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, |
|                           |                   | 20 MHz                                 |
|                           | LTE band 5        | 1.4 MHz, 3 MHz, 5 MHz, 10 MHz          |
|                           | LTE band 12       | 1.4 MHz, 3 MHz, 5 MHz, 10 MHz          |
| Designation of Emissions  | LTE BAND2:        | 1M10G7D (1.4 MHz QPSK modulation),     |
| (Note: the necessary      |                   | 1M10W7D (1.4 MHz 16QAM modulation)     |
| bandwidth of which is the |                   | 2M70G7D (3 MHz QPSK modulation),       |
| worst value from the      |                   | 2M70W7D (3 MHz 16QAM modulation)       |
| measured occupied         |                   | 4M50G7D (5 MHz QPSK modulation),       |
| bandwidths for each type  |                   | 4M50W7D (5 MHz 16QAM modulation)       |
| of channel bandwidth      |                   | 8M98G7D (10 MHz QPSK modulation),      |
| configuration.)           |                   | 8M97W7D (10 MHz 16QAM modulation)      |
|                           |                   | 13M45G7D (15 MHz QPSK modulation),     |
|                           |                   | 13M44W7D (15 MHz 16QAM modulation)     |
|                           |                   | 17M93G7D (20 MHz QPSK modulation),     |
|                           |                   | 17M94W7D (20 MHz 16QAM modulation)     |
|                           | LTE BAND4:        | 1M09G7D (1.4 MHz QPSK modulation),     |



Report No.FCC022022-0616RF12(a)

| Characteristics | Description |                                    |
|-----------------|-------------|------------------------------------|
|                 |             | 1M09W7D (1.4 MHz 16QAM modulation) |
|                 |             | 2M70G7D (3 MHz QPSK modulation),   |
|                 |             | 2M69W7D (3 MHz 16QAM modulation)   |
|                 |             | 4M50G7D (5 MHz QPSK modulation),   |
|                 |             | 4M50W7D (5 MHz 16QAM modulation)   |
|                 |             | 8M97G7D (10 MHz QPSK modulation),  |
|                 |             | 8M97W7D (10 MHz 16QAM modulation)  |
|                 |             | 13M44G7D (15 MHz QPSK modulation), |
|                 |             | 13M43W7D (15 MHz 16QAM modulation) |
|                 |             | 17M93G7D (20 MHz QPSK modulation), |
|                 |             | 17M94W7D (20 MHz 16QAM modulation) |
|                 | LTE BAND5:  | 1M09G7D (1.4 MHz QPSK modulation), |
|                 |             | 1M09W7D (1.4 MHz 16QAM modulation) |
|                 |             | 2M70G7D (3 MHz QPSK modulation),   |
|                 |             | 2M69W7D (3 MHz 16QAM modulation)   |
|                 |             | 4M49G7D (5 MHz QPSK modulation),   |
|                 |             | 4M50W7D (5 MHz 16QAM modulation)   |
|                 |             | 8M98G7D (10 MHz QPSK modulation),  |
|                 |             | 8M98W7D (10 MHz 16QAM modulation)  |
|                 | LTE BAND12: | 1M09G7D (1.4 MHz QPSK modulation), |
|                 |             | 1M09W7D (1.4 MHz 16QAM modulation) |
|                 |             | 2M70G7D (3 MHz QPSK modulation),   |
|                 |             | 2M69W7D (3 MHz 16QAM modulation)   |
|                 |             | 4M49G7D (5 MHz QPSK modulation),   |
|                 |             | 4M50W7D (5 MHz 16QAM modulation)   |
|                 |             | 8M98G7D (10 MHz QPSK modulation),  |
|                 |             | 8M97W7D (10 MHz 16QAM modulation)  |



# 2. Summary of Test Results

# 2.1 Application of Standard

47 CFR FCC Part 02:2020

47 CFR FCC Part 22:2020

47 CFR FCC Part 24:2020

47 CFR FCC Part 27:2020

KDB 971168 D01 Power Meas License Digital Systems v03r01

ANSI C63.26:2015

## 2.2 Cellular Band (824-849MHz paired with 869-894MHz)

| Test Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FCC Rule | Requirements                         | Test          | Verdict |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------|---------------|---------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No.      |                                      | Result        | (Note1) |  |
| Effective (Isotropic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Part     |                                      | Appendix      |         |  |
| Radiated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1046,  | FCC: ERP ≤ 7 W.                      | Аррениіх<br>1 | Pass    |  |
| Power Output Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.913   |                                      | I             |         |  |
| Peak-Average Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                      | Appendix      | Pass    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                      | 2             |         |  |
| Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Part     | Digital modulation                   | Appendix      | Pass    |  |
| Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1047   |                                      | 3             |         |  |
| Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Part     | OBW: No limit.                       | Appendix      | Pass    |  |
| Banawiati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.1049   | EBW: No limit.                       | 4             | 1 400   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Part     | ≤ -13 dBm/1%*EBW,                    | Appondix      | Pass    |  |
| Band Edges Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.1051,  | in 1 MHz bands immediately outside   | Appendix<br>5 |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.917   | and adjacent to the frequency block. | 5             |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | FCC: ≤ -13 dBm/100 kHz,              |               |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Part     | from 9 kHz to 10th harmonics but     | <b>A</b> 11   |         |  |
| Spurious Emission at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.1051,  | outside                              | Appendix      | Pass    |  |
| Antenna Terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.917   | authorized operating frequency       | 6             |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | ranges.                              |               |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Part     |                                      |               |         |  |
| Field Strength of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.1053,  | FCC: ≤ -13 dBm/100 kHz.              | Appendix      | Pass    |  |
| Spurious Radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.917   |                                      | 7             |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Part     |                                      |               |         |  |
| Frequency Stability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.1055,  | ≤ ±2.5ppm.                           | Appendix Pass | Pass    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.355   | 8                                    |               |         |  |
| Note1: For the verdict, the "N/A" denotes "not applicable", the "N/T" denotes "not tested".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                      |               |         |  |
| $\mathbf{A} = \mathbf{A} = $ |          |                                      |               |         |  |



# 2.3 PCS Band (1850-1910MHz paired with 1930-1990MHz)

| Test Item             | FCC Rule<br>No.                                                                             | Requirements                                    | Test<br>Result                       | Verdict<br>(Note1) |  |
|-----------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|--------------------|--|
| Effective (Isotropic) | Part                                                                                        |                                                 | Appendix                             | (                  |  |
| Radiated Power Output | 2.1046,                                                                                     | EIRP ≤ 2 W                                      |                                      | Pass               |  |
| Data                  | 24.232                                                                                      |                                                 |                                      |                    |  |
|                       | Part                                                                                        |                                                 | Appendix                             |                    |  |
| Peak-Average Ratio    | 2.1046,                                                                                     | Limit≤13 dB                                     | 2                                    | Pass               |  |
|                       | 24.232                                                                                      |                                                 | 2                                    |                    |  |
| Modulation            | Part                                                                                        | Digital modulation                              | Appendix                             | Pass               |  |
| Characteristics       | 2.1047                                                                                      | Digital modulation                              | 3                                    | rass               |  |
| Dandwidth             | Part                                                                                        | OBW: No limit.                                  | Appendix                             | Pass               |  |
| Bandwidth             | 2.1049                                                                                      | EBW: No limit.                                  | 4                                    | Pass               |  |
|                       | Part                                                                                        | ≤ -13 dBm/1%*EBW, in 1 MHz bands                | Appendix                             | Pass               |  |
| Band Edges Compliance | 2.1051,                                                                                     | immediately outside and adjacent to             |                                      |                    |  |
|                       | 24.238                                                                                      | the frequency block.                            | 5                                    |                    |  |
| Spurious Emission at  | Part                                                                                        | ≤ -13 dBm/1 MHz, from 9 kHz to 10 <sup>th</sup> | A                                    |                    |  |
| Spurious Emission at  | 2.1051,                                                                                     | harmonics but outside authorized                | Appendix                             | Pass               |  |
| Antenna Terminals     | 24.238                                                                                      | operating frequency ranges.                     | 6                                    |                    |  |
| Field Other ath of    | Part                                                                                        |                                                 | A research a line                    |                    |  |
| Field Strength of     | 2.1053,                                                                                     | ≤ -13 dBm/1 MHz.                                | Appendix<br>7                        | Pass               |  |
| Spurious Radiation    | 24.238                                                                                      |                                                 | 7                                    |                    |  |
|                       | Part                                                                                        |                                                 | م بالا من ماني .<br>ماني ماني ماني م |                    |  |
| Frequency Stability   | 2.1055,                                                                                     | ≤ ±2.5 ppm.                                     | Appendix                             | Pass               |  |
|                       | 24.235                                                                                      | 8                                               |                                      |                    |  |
| Note1: For the verdie | Note1: For the verdict, the "N/A" denotes "not applicable", the "N/T" denotes "not tested". |                                                 |                                      |                    |  |



# 2.4 AWS Band (1710-1755MHz paired with 2110-2155MHz)

| Test Item                                                                                   | FCC Rule | Requirements                                         | Test          | Verdict |  |
|---------------------------------------------------------------------------------------------|----------|------------------------------------------------------|---------------|---------|--|
| iest item                                                                                   | No.      | Requirements                                         | Result        | (Note1) |  |
| Effective (Isotropic)                                                                       | Part     |                                                      | Appendix      |         |  |
| Radiated Power Output                                                                       | 2.1046,  | EIRP ≤ 1 W                                           |               | Pass    |  |
| Data                                                                                        | 27.50(d) |                                                      | I             |         |  |
|                                                                                             | Part     |                                                      | Appendix      |         |  |
| Peak-Average Ratio                                                                          | 2.1046,  | Limit≤13 dB                                          | 2             | Pass    |  |
|                                                                                             | 27.50(d) |                                                      | 2             |         |  |
| Modulation                                                                                  | Part     | Digital modulation                                   | Appendix      | Pass    |  |
| Characteristics                                                                             | 2.1047   |                                                      | 3             | 1 833   |  |
| Bandwidth                                                                                   | Part     | OBW: No limit.                                       | Appendix      | Pass    |  |
| Dandwidth                                                                                   | 2.1049   | EBW: No limit.                                       | 4             | 1 833   |  |
| Band Edges                                                                                  | Part     | ≤ -13 dBm/1%*EBW, in 1 MHz bands                     | Appendix<br>5 | Pass    |  |
| Compliance                                                                                  | 2.1051,  | immediately outside and adjacent to                  |               |         |  |
|                                                                                             | 27.53(h) | the frequency block.                                 | 0             |         |  |
| Spurious Emission at                                                                        | Part     | $\leq$ -13 dBm/1 MHz, from 9 kHz to 10 <sup>th</sup> | Appendix      |         |  |
| Antenna Terminals                                                                           | 2.1051,  | harmonics but outside authorized                     | 6             | Pass    |  |
|                                                                                             | 27.53(h) | operating frequency ranges.                          | 0             |         |  |
| Field Strength of                                                                           | Part     |                                                      | Appendix      |         |  |
| Spurious Radiation                                                                          | 2.1053,  | ≤ -13 dBm/1 MHz.                                     | 7             | Pass    |  |
|                                                                                             | 27.53(h) |                                                      |               |         |  |
|                                                                                             | Part     | Δηρο                                                 | Appendix      |         |  |
| Frequency Stability                                                                         | 2.1055,  | ≤ ± 2.5 ppm. 8                                       |               | Pass    |  |
|                                                                                             | 27.54    |                                                      | 0             |         |  |
| Note1: For the verdict, the "N/A" denotes "not applicable", the "N/T" denotes "not tested". |          |                                                      |               |         |  |



# 2.5 Band12 (699-716MHz paired with 729-746 MHz)

| Test Item                                              | FCC Rule<br>No                                                                              | Requirements                                                                                                                    | Test<br>Result | Verdict<br>(Note1) |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|--|
| Effective (Isotropic)<br>Radiated<br>Power Output Data | Part<br>27.50(c)                                                                            | FCC: ERP ≤ 3 W.                                                                                                                 | Appendix<br>1  | Pass               |  |
| Peak-Average<br>Ratio                                  |                                                                                             |                                                                                                                                 | Appendix<br>2  | Pass               |  |
| Modulation<br>Characteristics                          | Part<br>2.1047                                                                              | Digital modulation                                                                                                              | Appendix<br>3  | Pass               |  |
| Bandwidth                                              | Part<br>2.1047                                                                              | OBW: No limit.<br>EBW: No limit.                                                                                                | Appendix<br>4  | Pass               |  |
| Band Edges<br>Compliance                               | Part<br>2.1049,                                                                             | <ul> <li>≤ -13 dBm/1%*EBW, in 1 MHz</li> <li>bands immediately outside and</li> <li>adjacent to the frequency block.</li> </ul> | Appendix<br>5  | Pass               |  |
| Spurious Emission at<br>Antenna Terminals              | Part<br>2.1051,<br>27.53(g)                                                                 | FCC: ≤ -13 dBm/100 kHz, from 9<br>kHz to 10th harmonics but outside<br>authorized operating frequency<br>ranges.                | Appendix<br>6  | Pass               |  |
| Field Strength of Spurious Radiation                   | Part<br>2.1051,<br>27.53(g)                                                                 | FCC: ≤ -13 dBm/100 kHz.                                                                                                         | Appendix<br>7  | Pass               |  |
| Frequency<br>Stability                                 | Part<br>2.1053,<br>27.53(g)                                                                 | ≤ ±2.5ppm.                                                                                                                      | Appendix<br>8  | Pass               |  |
| Note1: For the verdict                                 | Note1: For the verdict, the "N/A" denotes "not applicable", the "N/T" denotes "not tested". |                                                                                                                                 |                |                    |  |



# 3. General Test Frequency and Configuration

# 3.1 Test Modes

| Test Mode | Test Modes Description       |  |
|-----------|------------------------------|--|
| LTE/TM1   | LTE system, QPSK modulation  |  |
| LTE/TM2   | LTE system, 16QAM modulation |  |

# **3.2 Test Frequency**

| Test Mode  | TX / RX     |               | RF Channel        |               |
|------------|-------------|---------------|-------------------|---------------|
| Test Mode  |             | Low (B)       | Middle (M)        | High (T)      |
|            |             | Channel 18607 | Channel 18900     | Channel 19193 |
|            | TX(1.4M)    | 1850.7 MHz    | 1880 MHz          | 1909.3 MHz    |
|            |             | Channel 18615 | Channel 18900     | Channel 19185 |
|            | TX(3M)      | 1851.5 MHz    | 1880 MHz          | 1908.5 MHz    |
|            | TX(5M)      | Channel 18625 | Channel 18900     | Channel 19175 |
|            |             | 1852.5 MHz    | 1880 MHz          | 1907.5 MHz    |
|            | TX(10M)     | Channel 18650 | Channel 18900     | Channel 19150 |
|            |             | 1855 MHz      | 1880 MHz          | 1905 MHz      |
|            |             | Channel 18675 | Channel 18900     | Channel 19125 |
|            | TX(15M)     | 1857.5 MHz    | 1880 MHz          | 1902.5 MHz    |
|            |             | Channel 18700 | Channel 18900     | Channel 19100 |
| LTE Band 2 | TX(20M)     | 1860 MHz      | 1880 MHz          | 1900 MHz      |
| LIE Danu Z |             | Channel 607   | Channel 900       | Channel 1193  |
|            | RX(1.4M)    | 1930.7 MHz    | 1960 MHz 1989.3 N | 1989.3 MHz    |
|            | RX(3M)      | Channel 615   | Channel 900       | Channel 1185  |
|            |             | 1931.5 MHz    | 1960 MHz          | 1988.5 MHz    |
|            |             | Channel 625   | Channel 900       | Channel 1175  |
|            | RX(5M)      | 1932.5 MHz    | 1960 MHz          | 1987.5 MHz    |
|            |             | Channel 650   | Channel 900       | Channel 1150  |
|            | RX(10M)     | 1935 MHz      | 1960 MHz          | 1985 MHz      |
|            |             | Channel 675   | Channel 900       | Channel 1125  |
|            | RX(15M)     | 1937.5 MHz    | 1960 MHz          | 1982.5 MHz    |
|            |             | Channel 700   | Channel 900       | Channel 1100  |
|            | RX(20M)     | 1940 MHz      | 1960 MHz          | 1980 MHz      |
| Test Mode  | TX / RX     |               | RF Channel        |               |
|            |             | Low (B)       | Middle (M)        | High (T)      |
|            | TX(1.4M)    | Channel 19957 | Channel 20175     | Channel 20393 |
| LTE Band 4 | 1 ~(1.4101) | 1710.7 MHz    | 1732.5 MHz        | 1754.3 MHz    |
|            | TX(3M)      | Channel 19965 | Channel 20175     | Channel 20385 |



Report No.FCC022022-0616RF12(a)

|             |           |               | Report no     | 10022022 = 0010 Kr 12(a) |
|-------------|-----------|---------------|---------------|--------------------------|
|             |           | 1711.5 MHz    | 1732.5 MHz    | 1753.5 MHz               |
|             |           | Channel 19975 | Channel 20175 | Channel 20375            |
|             | TX(5M)    | 1712.5 MHz    | 1732.5 MHz    | 1752.5 MHz               |
|             |           | Channel 20000 | Channel 20175 | Channel 20350            |
|             | TX(10M)   | 1715 MHz      | 1732.5 MHz    | 1750 MHz                 |
|             |           | Channel 20025 | Channel 20175 | Channel 20325            |
| TX(15M)     |           | 1717.5 MHz    | 1732.5 MHz    | 1747.5 MHz               |
|             | T)((0014) | Channel 20050 | Channel 20175 | Channel 20300            |
|             | TX(20M)   | 1720 MHz      | 1732.5 MHz    | 1745 MHz                 |
|             |           | Channel 1975  | Channel 2175  | Channel 2375             |
|             | RX(1.4M)  | 2112.5 MHz    | 2132.5MHz     | 2152.5 MHz               |
|             |           | Channel 2000  | Channel 2175  | Channel 2350             |
|             | RX(3M)    | 2115 MHz      | 2132.5MHz     | 2150 MHz                 |
|             |           | Channel 1975  | Channel 2175  | Channel 2375             |
|             | RX(5M)    | 2112.5 MHz    | 2132.5MHz     | 2152.5 MHz               |
|             |           | Channel 2000  | Channel 2175  | Channel 2350             |
|             | RX(10M)   | 2115 MHz      | 2132.5MHz     | 2150 MHz                 |
|             |           | Channel 2025  | Channel 2175  | Channel 2325             |
|             | RX(15M)   | 2117.5 MHz    | 2132.5MHz     | 2147.5 MHz               |
|             |           | Channel 2050  | Channel 2175  | Channel 2300             |
| RX(20M)     |           | 2120 MHz      | 2132.5MHz     | 2145 MHz                 |
|             |           |               | RF Channel    |                          |
| Test Mode   | TX / RX   | Low (B)       | Middle (M)    | High (T)                 |
|             |           | Channel 20407 | Channel 20525 | Channel 20643            |
|             | TX(1.4M)  | 824.7 MHz     | 836.5 MHz     | 848.3 MHz                |
|             |           | Channel 20415 | Channel 20525 | Channel 20635            |
|             | TX(3M)    | 825.5 MHz     | 836.5 MHz     | 847.5 MHz                |
|             |           | Channel 20425 | Channel 20525 | Channel 20625            |
|             | TX(5M)    | 826.5 MHz     | 836.5 MHz     | 846.5 MHz                |
|             |           | Channel 20450 | Channel 20525 | Channel 20600            |
| ITE Dand 5  | TX(10M)   | 829 MHz       | 836.5 MHz     | 844 MHz                  |
| LTE Band 5  |           | Channel 2407  | Channel 2525  | Channel 2643             |
|             | RX(1.4M)  | 869.7 MHz     | 881.5 MHz     | 893.3 MHz                |
|             |           | Channel 2415  | Channel 2525  | Channel 2635             |
|             | RX (3M)   | 870.5 MHz     | 881.5 MHz     | 892.5 MHz                |
|             |           | Channel 2425  | Channel 2525  | Channel 2625             |
|             | RX(5M)    | 871.5 MHz     | 881.5 MHz     | 891.5 MHz                |
|             |           | Channel 2450  | Channel 2525  | Channel 2600             |
|             | RX (10M)  | 874 MHz       | 881.5 MHz     | 889 MHz                  |
|             |           |               | RF Channel    |                          |
| Test Mode   | TX / RX   | Low (B)       | Middle (M)    | High (T)                 |
| LTE Band 12 | TX(1.4M)  | Channel 23017 | Channel 23095 | Channel 23173            |
|             |           |               |               |                          |



Report No.FCC022022-0616RF12(a)

|  | 699.7 MHz |               | 707.5 MHz     | 715.3 MHz     |
|--|-----------|---------------|---------------|---------------|
|  |           | Channel 23025 | Channel 23095 | Channel 23165 |
|  | TX(3M)    | 700.5 MHz     | 707.5 MHz     | 714.5 MHz     |
|  |           | Channel 23035 | Channel 23095 | Channel 23155 |
|  | TX(5M)    | 701.5 MHz     | 707.5 MHz     | 713.5 MHz     |
|  |           | Channel 23060 | Channel 23095 | Channel 23130 |
|  | TX(10M)   | 704 MHz       | 707.5 MHz     | 711 MHz       |
|  | RX(1.4M)  | Channel 5017  | Channel 5095  | Channel 5173  |
|  |           | 729.7 MHz     | 737.5 MHz     | 745.3 MHz     |
|  |           | Channel 5025  | Channel 5095  | Channel 5165  |
|  | RX (3M)   | 730.5 MHz     | 737.5 MHz     | 744.5 MHz     |
|  |           | Channel 5035  | Channel 5095  | Channel 5155  |
|  | RX(5M)    | 731.5 MHz     | 737.5 MHz     | 743.5 MHz     |
|  |           | Channel 5060  | Channel 5095  | Channel 5130  |
|  | RX (10M)  | 734 MHz       | 737.5 MHz     | 741 MHz       |
|  |           |               |               |               |

## 3.3 Test Environment

| Applicable to                             | Environmental conditions | Input Power  | Tested by  |
|-------------------------------------------|--------------------------|--------------|------------|
| Transmitter Conducted<br>Power Output     | 24.3°C, 56 % RH          | 120Vac, 60Hz | Stone Tang |
| Peak-Average Ratio                        | 24.2°C, 55 % RH          | 120Vac, 60Hz | Stone Tang |
| Modulation Characteristics                | 24.4°C, 56 % RH          | 120Vac, 60Hz | Stone Tang |
| Bandwidth                                 | 24.5°C, 56 % RH          | 120Vac, 60Hz | Stone Tang |
| Emission Mask                             | 24.8°C, 56 % RH          | 120Vac, 60Hz | Stone Tang |
| Spurious Emission at<br>Antenna Terminals | 24.7°C, 56 % RH          | 120Vac, 60Hz | Stone Tang |
| Field Strength of<br>Spurious Radiation   | 24.0°C, 56 % RH          | 120Vac, 60Hz | Stone Tang |
| Frequency Stability                       | 24.2°C, 55 % RH          | 120Vac, 60Hz | Stone Tang |

The applicant declare the operating environment of EUT as below:

Normal conditions: 3.8V DC ,15°C ~35°C

Extreme conditions:3.6V DC~4.35V DC, -30°C ~50°C

VL= lower extreme test voltage, VN= nominal voltage, VH= upper extreme test voltage

TL= lower extreme test temperature, TN= normal temperature, TH= upper extreme test temperature





|           | Main Test Equipment                               |               |               |                  |
|-----------|---------------------------------------------------|---------------|---------------|------------------|
| Equip No. | Equipment Name                                    | Manufacturer  | Model         | Calibrated until |
| JL 290    | DC Power Supply                                   | Keysight      | E3642A        | 2022-09-12       |
| JL 292    | Wideband Radio<br>Communication Tester            | R & S         | CMW 500       | 2022-09-12       |
| JL 265    | MXA Signal Analyzer                               | Keysight      | N9020B        | 2022-09-16       |
| JL 222    | Programmable<br>Temperature &<br>Humidity Chamber | ETMOA         | NTH1100-30A   | 2022-09-01       |
| JL 253    | Temperature&Humidity<br>Recorder                  | Anymetre      | JR900         | 2022-11-03       |
| JL 199    | Integral Antenna                                  | SCHWARZBECK   | VULB9163      | 2022-12-30       |
| JL 200    | Loop Antenna                                      | SCHWARZBECK   | FMZB1519B     | 2022-11-04       |
| JL 198    | Horn Antenna                                      | SCHWARZBECK   | BBHA 9170     | 2022-11-06       |
| JL 102    | Double Ridged<br>Broadband Horn<br>Antenna        | SCHWARZBECK   | BBHA 9120D    | 2022-11-20       |
| JL 207    | Spectrum Analyzer                                 | R&S           | FSV30         | 2022-11-09       |
| JL 092    | EMI Receiver                                      | R & S         | ESR           | 2022-11-09       |
| JL 108    | Broadband amplifier                               | SCHWARZBECK   | BBV9718       | 2022-11-09       |
| JL 196    | Broadband amplifier                               | SCHWARZBECK   | BBV9721       | 2022-11-09       |
| JL 246    | Anechoic Chamber                                  | ZHONGSHUO     | FSAC318       | 2024-07-16       |
| JL 212    | RF Cable                                          | Top Precision | BLU18A-Sm-2m  | 2022-09-01       |
| JL 213    | RF Cable                                          | Top Precision | BLU18A-Sm-2m  | 2022-09-01       |
| JL 245    | RF Cable                                          | ZDECL         | ZT40-2.92J-6M | 2022-09-01       |
| JL 294    | Band Reject Filter<br>Group                       | Tonscend      | JS0806-F      | NA               |

| Software Information |                       |                               |            |
|----------------------|-----------------------|-------------------------------|------------|
| Test Item            | Software Name         | Manufacturer                  | Version    |
| RSE                  | EZ-EMC                | EZ-EMC                        | TW-03A2    |
| Conducted RF         | JS1120 RF Test System | Shenzhen JS tonscend co., Ltd | 2.6.9.0826 |



## 3.5 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

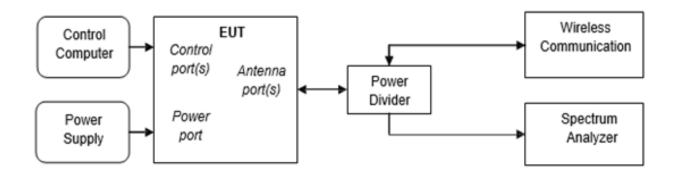
| Uncertainty                                      |             |
|--------------------------------------------------|-------------|
| Parameter                                        | Uncertainty |
| Occupied Channel Bandwidth                       | ±142.12 KHz |
| RF power conducted                               | ±0.74dB     |
| Band Edge Compliance                             | ±1.24dB     |
| Frequency stability                              | ±0.12 ppm   |
| Spurious emissions, radiated (30MHz $\sim$ 1GHz) | ±4.6dB      |
| Spurious emissions, radiated (1GHz ~ 18GHz)      | ±4.9dB      |
| Humidity                                         | ±4.6%       |
| Temperature                                      | ±0.7°C      |
| Time                                             | ±1.25%      |

## 3.6 Test Location

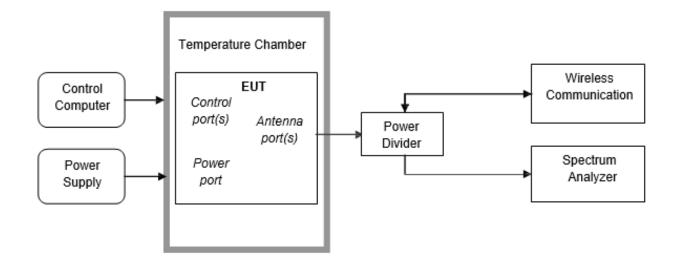
| Company:                  | Beijing TIRT Technology Service Co.,Ltd Shenzhen                                                                      |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Address:                  | 101, 3 # Factory Building, Gongjin Electronics Shatin Community,<br>Kengzi Street, Pingshan District, Shenzhen, China |  |
| CNAS Registration Number: | CNAS L14158                                                                                                           |  |
| A2LA Registration Number  | 6049.01                                                                                                               |  |
| Telephone:                | +86-0755-27087573                                                                                                     |  |

## 3.7 Deviation from Standards

None


## 3.8 Abnormalities from Standard Conditions

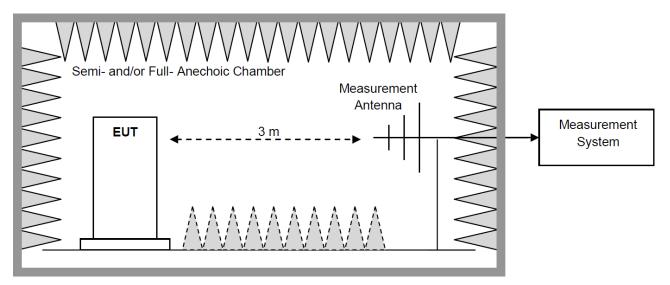
None



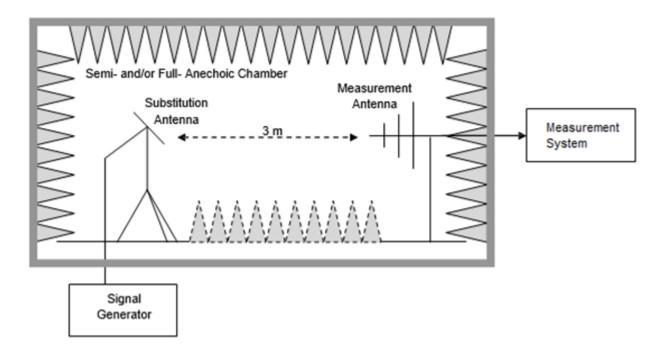

# 4. Test Setup and Conditions

## 4.1 Test Setup 1




## 4.2 Test Setup 2






NOTE: Effective radiated power (ERP) and Equivalent Isotropic Radiated Power (EIRP) refers to the radiation power output of the EUT, assuming all emissions are radiated from half-wave dipole antennas.

### Step 1: Pre-test



Step 2: Substitution method to verify the maximum ERP/EIRP





| Test         | Case            |             | Test Conditions                                      |
|--------------|-----------------|-------------|------------------------------------------------------|
| Transmit     | Average         | Test Env.   | Ambient Climate & Rated Voltage                      |
| - Output     | Power, Total    | Test Setup  | Test Setup 1                                         |
| Power Data   |                 | RF Channels | L, M, H                                              |
|              |                 | (TX)        | (L= low channel, M= middle channel, H= high channel) |
| -            |                 | Test Mode   | LTE/TM1, LTE/TM2                                     |
|              | Average         | Test Env.   | Ambient Climate & Rated Voltage                      |
|              | Power,          | Test Setup  | Test Setup 1                                         |
|              | Spectral        | RF Channels | L, M, H                                              |
|              | Density (if     | (TX)        | (L= low channel, M= middle channel, H= high channel) |
|              | required)       | Test Mode   | LTE/TM1,LTE/TM2                                      |
| Peak-to-A    | verage Ratio    | Test Env.   | Ambient Climate & Rated Voltage                      |
| (if re       | quired)         | Test Setup  | Test Setup 1                                         |
|              |                 | RF Channels | L, M, H                                              |
|              |                 | (TX)        | (L= low channel, M= middle channel, H= high channel) |
|              |                 | Test Mode   | LTE/TM1,LTE/TM2                                      |
| Modulation ( | Characteristics | Test Env.   | Ambient Climate & Rated Voltage                      |
|              |                 | Test Setup  | Test Setup 1                                         |
|              |                 | RF Channels | Μ                                                    |
|              |                 | (TX)        | (L= low channel, M= middle channel, H= high channel) |
|              |                 | Test Mode   | LTE/TM1,LTE/TM2                                      |
| Bandwidth    | Occupied        | Test Env.   | Ambient Climate & Rated Voltage                      |
|              | Bandwidth       | Test Setup  | Test Setup 1                                         |
|              |                 | RF Channels | L, M, H                                              |
|              |                 | (TX)        | (L= low channel, M= middle channel, H= high channel) |
|              |                 | Test Mode   | LTE/TM1,LTE/TM2                                      |
|              | Emission        | Test Env.   | Ambient Climate & Rated Voltage                      |
|              | Bandwidth (if   | Test Setup  | Test Setup 1                                         |
|              | required)       | RF Channels | L, M, H                                              |
|              |                 | (TX)        | (L= low channel, M= middle channel, H= high channel) |
|              |                 | Test Mode   | LTE/TM1,LTE/TM2                                      |
| Band Edge    | s Compliance    | Test Env.   | Ambient Climate & Rated Voltage                      |
|              |                 | Test Setup  | Test Setup 1                                         |
|              |                 | RF Channels | L, H                                                 |
|              |                 | (TX)        | (L= low channel, M= middle channel, H= high channel) |
|              |                 | Test Mode   | LTE/TM1,LTE/TM2                                      |
| Spurious     | Emission at     | Test Env.   | Ambient Climate & Rated Voltage                      |
| Antenna      | Terminals       | Test Setup  | Test Setup 1                                         |
|              |                 | RF Channels | L, M, H                                              |
|              |                 | (TX)        | (L= low channel, M= middle channel, H= high channel) |
|              |                 | Test Mode   | LTE/TM1,LTE/TM2                                      |



-

Report No.FCC022022-0616RF12(a)

| Field Strength of Spurious | Test Env.   | Ambient Climate & Rated Voltage                        |
|----------------------------|-------------|--------------------------------------------------------|
| Radiation                  | Test Setup  | Test Setup 3                                           |
|                            | RF Channels | L, M, H (L= low channel, M= middle channel, H= high    |
| -                          | (TX)        | channel)                                               |
| -                          | Test Mode   | LTE/TM1, LTE/TM2                                       |
|                            |             | NOTE: If applicable, the EUT conf. that has maximum    |
|                            |             | power density (based on the equivalent power level) is |
|                            |             | selected.                                              |
| Frequency Stability        | Test Env.   | (1) -30 °C to +50 °C with step 10 °C at Rated Voltage; |
|                            |             | (2) VL, VN and VH of Rated Voltage at Ambient Climate. |
|                            | Test Setup  | Test Setup 2                                           |
|                            | RF Channels | L, M, H (L= low channel, M= middle channel, H= high    |
| -                          | (TX)        | channel)                                               |
| -                          | Test Mode   | LTE/TM1, LTE/TM2                                       |



# 5. Description of Tests

## 5.1 Radiated Power and Radiated Spurious Emissions

Radiated spurious emissions are investigated indoors in a semi-anechoic chamber to determine the frequencies producing the worst case emissions. Final measurements for radiated power and radiated spurious emissions are performed on the 3 meter OATS per the guidelines of ANSI/TIA-603-C-2004. The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Emissions are also investigated with the receive antenna horizontally and vertically polarized.

A portable or small unlicensed wireless device shall be placed on a non-metallic test fixture or other non-metallic support during testing. The supporting fixture shall permit orientation of the EUT in each of three orthogonal (x, y, z) axis positions such that emissions from the EUT are maximized. Measure the EUT maximum RF power and record the result.

A half-wave dipole is then substituted in place of the EUT. For emissions above 3GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT.

The power of the emission is calculated using the following formula:

 $P_{d [dBm]} = P_{g [dBm]} - cable loss_{[dB]} + antenna gain_{[dBd/dBi]}$ 

Where, Pd is the dipole equivalent power, Pg is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to Pg [dBm] – cable loss [dB]. The calculated Pd levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of  $43 + 10\log_{10}(Power_{Wattsl})$ .

#### Test Procedures Used

KDB 971168 D01 Power Meas License Digital Systems v03r01 5.8 KDB 971168 D01 Power Meas License Digital Systems v03r01 6

ANSI/TIA-603-C-2004-Section 2.2.17 / ANSI/TIA-603-C-2004-Section 2.2.12

Note: Reference test setup 3



#### 5.2 Peak-Average Ratio

A peak to average ratio measurement is performed at the conducted port of the EUT. For WCDMA signals, the spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level. For GSM signals, an average and a peak trace are used on a spectrum analyzer to determine the largest deviation between the average and the peak power of the EUT in a bandwidth greater than the emission bandwidth. The traces are generated with the spectrum analyzer set to zero span mode.

Test Procedures Used

KDB 971168 D01 Power Meas License Digital Systems v03r01 5.7

#### **Test Settings**

- 1. The signal analyzer's CCDF measurement profile enabled
- 2. Frequency= carrier center frequency
- 3. Measurement BW > EBW of signal
- 4. for continuous transmissions, set to 1ms
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

Note: Reference test setup 1



### 5.3 Occupied Bandwidth

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1 percent of the selected span as is possible without being below 1 percent. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 percent of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded.

Test Procedures Used KDB 971168 D01 Power Meas License Digital Systems v03r01 4

Test Settings

- 1. SET RBW=1-5% of OBW
- 2. SET VBW ≥ 3\*RBW
- 3. Detector: Peak
- 4. Trace mode= max hold.
- 5. Sweep= auto couple
- 6. Steps 1-5 were repeated after it is stable

Note: Reference test setup 1.



# 5.4 Band Edge Compliance

the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission power must be attenuated below the transmitting power (P) by a factor of at least 43+10log10P dB.

Test Procedures Used KDB 971168 D01 Power Meas License Digital Systems v03r01 6

Test Settings

- 1. SET RBW  $\geq$  1% of Emission BW.
- 2. SET VBW about three times of RBW
- 3. Detector: RMS
- 4. Trace mode= max hold.
- 5. Span= 2MHz

Note: Reference test setup 1.



#### 5.5 Spurious and Harmonic Emissions at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

Test Procedures Used KDB 971168 D01 Power Meas License Digital Systems v03r01 6

Test Settings

- 9kHz~150kHz, RBW = 1KHz, VBW ≥ 3×RBW, 150kHz~30MHz, RBW = 10KHz, VBW ≥ 3×RBW, 30MHz~1GHz, RBW = 100 kHz, VBW = 300 kHz. Above 1GHz, RBW = 1 MHz, VBW = 3 MHz.
- 2. Detector: Peak
- 3. Trace mode= max hold.

Note: Reference test setup 1.



#### 5.6 Frequency Stability / Temperature Variation

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-C-2004. The frequency stability of the transmitter is measured by:

- a. **Temperature:** The temperature is varied from -30°C to + 65°C in 10°C increments using an environmental chamber.
- b. **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency.

#### Time Period and Procedure:

The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

#### **Test Procedures Used**

ANSI/TIA-603-C-2004 KDB 971168 D01 Power Meas License Digital Systems v03r01 9

Note: Reference test setup 2.



# 6. Appendixes

| Appendix No.                  | Description          |
|-------------------------------|----------------------|
| FCC022022-0616RF12-Appendix A | Appendix for LTE B2  |
| FCC022022-0616RF12-Appendix B | Appendix for LTE B4  |
| FCC022022-0616RF12-Appendix C | Appendix for LTE B5  |
| FCC022022-0616RF12-Appendix D | Appendix for LTE B12 |

(END OF REPORT)