

TEST REPORT					
FCC ID:	2AUARTKX14	· -			
Test Report No::	TCT241009E042				
Date of issue:	Nov. 15, 2024				
Testing laboratory:	SHENZHEN TONGCE TESTING LAB				
Testing location/ address:	2101 & 2201, Zhenchang Factor Fuhai Subdistrict, Bao'an Distric 518103, People's Republic of Cl	t, Shenzhen, Guangdong,			
Applicant's name:	THINKCAR TECH CO., LTD.				
Address:	2606, building 4, phase II, Tiana Bantian, Longgang District, She	3 .			
Manufacturer's name:	THINKCAR TECH CO., LTD.				
Address::	2606, building 4, phase II, Tiana Bantian, Longgang District, She				
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Product Name::	Al Automotive Diagnostic Tool				
Trade Mark::	THINKCAR, XHINKCAR, MUCAR				
Model/Type reference:	TKX14				
Rating(s)::	Refer to EUT description of page	e 3			
Date of receipt of test item	Oct. 09, 2024				
Date (s) of performance of test:	Oct. 09, 2024 ~ Nov. 15, 2024				
Tested by (+signature):	Onnado YE				
Check by (+signature):	Beryl ZHAO Roy(26 TCT)				
Approved by (+signature):	Tomsin Jones M. S. B.				

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. General Product Information		
1.1. EUT description	(50.)	3
1.2. Model(s) list		3
1.3. Test Frequency		
2. Test Result Summary	<u></u>	5
3. General Information		_
3.1. Test environment and mode	(6)	6
3.2. Description of Support Units		7
4. Facilities and Accreditations		8
4.1. Facilities	(5)	8
4.2. Location		8
4.3. Measurement Uncertainty		
5. Test Results and Measurement Data	(20)	9
5.1. Antenna requirement		9
5.2. Conducted Emission		10
5.3. Maximum Conducted Output Power		14
5.4. 6dB Emission Bandwidth		
5.5. 26dB Bandwidth and 99% Occupied Bandwidth	(6)	19
5.6. Power Spectral Density		20
5.7. Band edge		
5.8. Unwanted Emissions		
5.9. Frequency Stability Measurement		53
Appendix A: Test Result of Conducted Test		
Appendix B: Photographs of Test Setup		
Appendix C: Photographs of EUT		
·		

1. General Product Information

1.1. EUT description

Product Name:	Al Automotive Diagnostic Tool	
Model/Type reference:	TKX14	
Sample Number:	TCT241009E017-0101	
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 3: 5745 MHz ~ 5825 MHz	
Channel Bandwidth::	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz, 80MHz 802.11ax: 20MHz, 40MHz, 80MHz	
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)	
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QPSK	
Antenna Type:	PIFA Antenna	
Antenna Gain:	Band 1: Antenna 1: 2.88dBi, Antenna 2: 2.56dBi Band 3: Antenna 1: 2.96dBi, Antenna 2: 2.92dBi	(C)
Rating(s)::	Input: DC 15V, 3A Adapter Information: MODEL: FJ-GN265C67N Input: AC 100-240V, 50-60Hz, 1.5A Max Output: DC 5.0V, 3.0A/ 9.0V, 3.0A/ DC 12.0V, 3.0A/ 15.0V, 3.0A/ 20.0V, 3.35A Total: 67.0W Rechargeable Li-ion Battery DC 7.6V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Page 3 of 270

1.3. Test Frequency

Band 1

20N	20MHz		40MHz		MHz
Channel	Frequency	Channel Frequency (Channel	Frequency
36	5180	38	5190	42	5210
40	5200	46	5230		
48	5240	3			

Band 3

20N	20MHz		40MHz		MHz
Channel	Frequency	Channel Frequency		Channel	Frequency
149	5745	151	5755	155	5775
157	5785	159	5795		
165	5825				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 4 of 270

Report No.: TCT241009E042

2. Test Result Summary

CFR 47 Section	Result
§15.203	PASS
§15.207	PASS
§15.407(a)	PASS
§15.407(b)	PASS
§15.407(b)	PASS
§15.407(g)	PASS
	§15.203 §15.207 §15.407(a) §15.407(a) §15.407(a) §15.407(b) §15.407(b)

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25GHz, EUT meet the requirements of 15.407(a)(ii).

Page 5 of 270

TESTING CENTRE TECHNOLOGY Report No.: TCT241009E042

3. General Information

3.1. Test environment and mode

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	23.1 °C	24.5 °C			
Humidity:	53 % RH	52 % RH			
Atmospheric Pressure:	1010 mbar 1010 mbar				
Test Software:					
Software Information:	SecureCRT				
Power Level:	Default				
Test Mode:					
Engineer mode: Keep the EUT in continuous transmitting by select channel and modulations with max duty cycle					

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

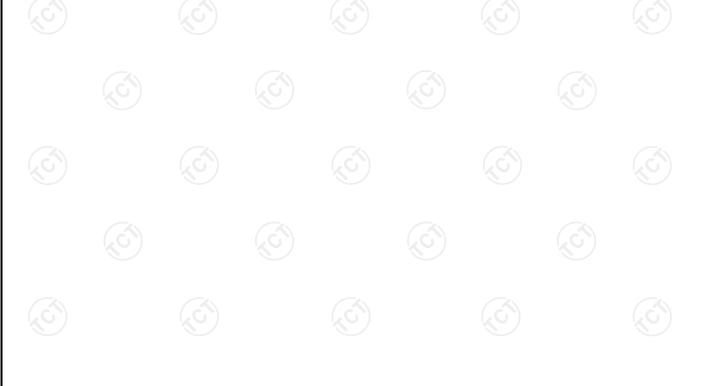
Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	0,
802.11a(SISO)	6 Mbps	
802.11n(HT20) (MIMO)	6.5 Mbps	
802.11n(HT40) (MIMO)	13.5 Mbps	
802.11ac(VHT20) (MIMO)	6.5 Mbps	
802.11ac(VHT40) (MIMO)	13.5 Mbps	
802.11ac(VHT80) (MIMO)	29.3 Mbps	
802.11ax(HE20) (MIMO)	6.5 Mbps	

802.11ax(HE40) (MIMO)
13.5 Mbps
802.11ax(HE80) (MIMO)
29.3 Mbps

Final Test Mode:

Operation mode: Keep the EUT in continuous transmitting with modulation


3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
/	1	/	1	1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 270

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic

Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

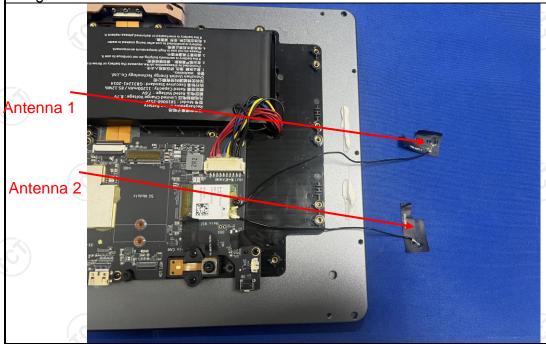
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT241009E042

5. Test Results and Measurement Data

5.1. Antenna requirement


Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT test with two Internal antennas for maximum gain which are detachable, and the gain is shown below.

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

Unequal antenna gains, with equal transmit powers, if transmit signals are correlated, then Directional gain of B1= $10log[(10^{2.88/20}+10^{2.56/20})^2/2] = 5.73dBi;$ Directional gain of B3 = $10log[(10^{2.96/20}+10^{2.92/20})^2/2] = 5.95dBi.$

Note: Above directional gain not applicable to power measurements.

Page 9 of 270

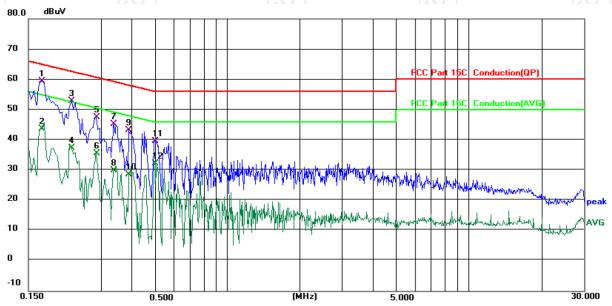
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2020			
Frequency Range:	150 kHz to 30 MHz	(C ⁽)	(c^{\prime})	
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto			
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50	
Test Setup:	Reference 40cm 40cm E.U.T AC power Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Notes Test table height=0.8m	80cm LISN Filter	r AC power	
Test Mode:	Charging + Transmittir	ng Mode		
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2020 on conducted measurement. 			
Test Result:	PASS			

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)					
Equipment Manufacturer Model Serial Number Calibration Du					
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025	
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025	
Attenuator	N/A	10dB	164080	Jun. 26, 2025	
Line-5	тст	CE-05	1 (3)	Jun. 26, 2025	
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1	



5.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 23.1 (°C)

Humidity: 53 %

Report No.: TCT241009E042

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1	*	0.1700	49.81	9.66	59.47	64.96	-5.49	QP	
2		0.1700	34.06	9.66	43.72	54.96	-11.24	AVG	
3		0.2260	43.30	9.65	52.95	62.60	-9.65	QP	
4		0.2260	27.80	9.65	37.45	52.60	-15.15	AVG	
5		0.2859	37.89	9.66	47.55	60.64	-13.09	QP	
6		0.2859	25.80	9.66	35.46	50.64	-15.18	AVG	
7		0.3379	35.63	9.66	45.29	59.25	-13.96	QP	
8		0.3379	20.21	9.66	29.87	49.25	-19.38	AVG	
9		0.3899	33.22	10.04	43.26	58.07	-14.81	QP	
10		0.3899	18.60	10.04	28.64	48.07	-19.43	AVG	
11		0.5020	29.52	10.17	39.69	56.00	-16.31	QP	
12		0.5020	21.93	10.17	32.10	46.00	-13.90	AVG	

Note:

Freq. = Emission frequency in MHz

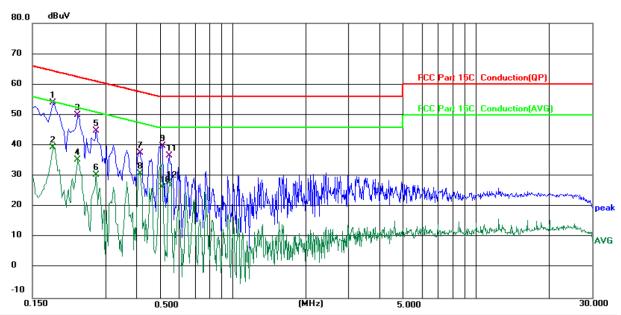
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: N

Temperature: 23.1 (℃)

Humidity: 53 %

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No. M	1k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1 *	0.1819	44.38	9.64	54.02	64.40	-10.38	QP	
2	0.1819	29.79	9.64	39.43	54.40	-14.97	AVG	
3	0.2300	40.26	9.63	49.89	62.45	-12.56	QP	
4	0.2300	25.80	9.63	35.43	52.45	-17.02	AVG	
5	0.2740	35.05	9.64	44.69	61.00	-16.31	QP	
6	0.2740	20.67	9.64	30.31	51.00	-20.69	AVG	
7	0.4138	27.58	10.04	37.62	57.57	-19.95	QP	
8	0.4138	20.83	10.04	30.87	47.57	-16.70	AVG	
9	0.5140	29.64	10.16	39.80	56.00	-16.20	QP	
10	0.5140	16.26	10.16	26.42	46.00	-19.58	AVG	
11	0.5460	26.46	10.20	36.66	56.00	-19.34	QP	
12	0.5460	17.77	10.20	27.97	46.00	-18.03	AVG	
	_							

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

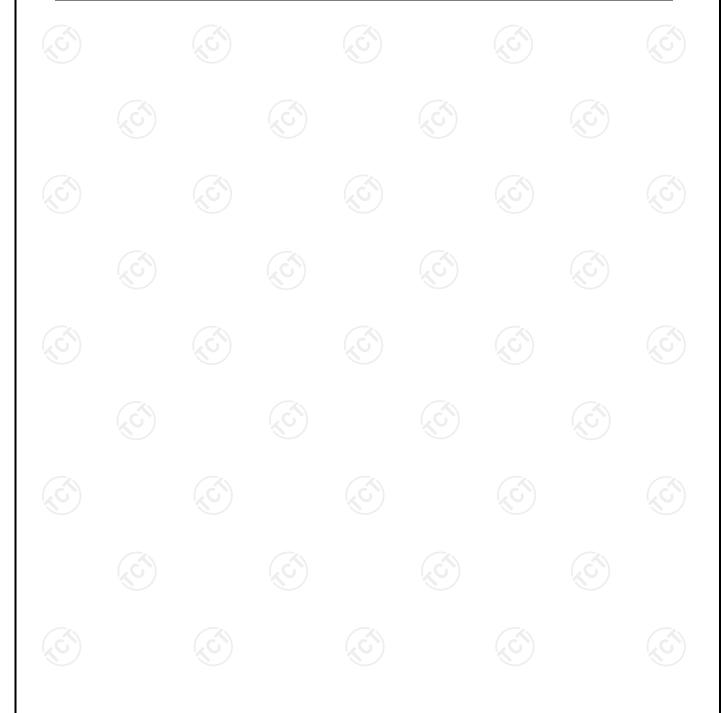
Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80), 802.11ax(HE20), 802.11ax(HE40), 802.11ax(HE80)) and the worst case Mode (Highest channel and 802.11a transmit with antenna 2) was submitted only.

Page 13 of 270

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

5.3. Maximum Conducted Output Power

5.3.1. Test Specification


Test Requirement:	FCC Part15 E Section 15.407(a)& Part 2 J Section 2.1046							
Test Method:		ultiple Transmitter Output v02r01 eneral UNII Test Procedures New n E						
	Frequency Band (MHz)	Limit						
	5180 - 5240	24dBm(250mW) for client device						
Limit:	5260 - 5320	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz						
	5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz						
	5745 - 5825	30dBm(1W)						
Test Setup:	Power meter	EUT						
Test Mode:	Transmitting mode v	vith modulation						
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 							
Test Result:	PASS							
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power							

Page 14 of 270

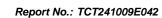
5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025	
Power Meter	Agilent	E4418B	MY45100357	Jun. 26, 2025	
Power Sensor	Agilent	8184A	MY41096530	Jun. 26, 2025	
Combiner Box	Ascentest	AT890-RFB			

Page 15 of 270

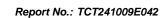
5.3.3. Test Data

Report No.: TCT241009E042


Mode	Test channel	Maximu Oı	Limit	Result		
Widae	root onamor	Ant1	Ant2	Total	(dBm)	
11a	CH36	10.71	13.1	/	24	PASS
11a	CH40	10.64	13.16	/	24	PASS
11a	CH48	10.73	13.32	/	24	PASS
11n(HT20)	CH36	10.42	12.88	14.83	24	PASS
11n(HT20)	CH40	10.46	12.95	14.89	24	PASS
11n(HT20)	CH48	10.56	13.22	15.10	24	PASS
11n(HT40)	CH38	10.56	13.06	15.00	24	PASS
11n(HT40)	CH46	10.53	13.58	15.33	24	PASS
11ac(VHT20)	CH36	10.44	12.81	14.80	24	PASS
11ac(VHT20)	CH40	10.49	12.88	14.86	24	PASS
11ac(VHT20)	CH48	10.58	13.10	15.03	24	PASS
11ac(VHT40)	CH38	10.53	13.07	14.99	24	PASS
11ac(VHT40)	CH46	10.7	13.55	15.37	24	PASS
11ac(VHT80)	CH42	10.49	13.22	15.08	24	PASS
11ax(HE20)	CH36	10.56	12.92	14.91	24	PASS
11ax(HE20)	CH40	10.6	12.98	14.96	24	PASS
11ax(HE20)	CH48	10.64	13.16	15.09	24	PASS
11ax(HE40)	CH38	10.39	12.83	14.79	24	PASS
11ax(HE40)	CH46	10.44	13.34	15.14	24	PASS
11ax(HE80)	CH42	10.13	12.81	14.68	24	PASS

Mode	Test channel	Maximu O	Limit	Result		
Wode	root orialino	Ant1	Ant2	Total	(dBm)	result
11a	CH149	7.98	10.12	7	30	PASS
11a	CH157	7.96	9.94	/	30	PASS
11a	CH165	7.78	9.74	/	30	PASS
11n(HT20)	CH149	8.04	9.95	12.11	30	PASS
11n(HT20)	CH157	7.78	9.74	11.88	30	PASS
11n(HT20)	CH165	7.61	9.58	11.72	30	PASS
11n(HT40)	CH151	8.07	9.97	12.13	30	PASS
11n(HT40)	CH159	8.16	10.14	12.27	30	PASS
11ac(VHT20)	CH149	8.09	9.99	12.15	30	PASS
11ac(VHT20)	CH157	7.83	9.78	11.92	30	PASS
11ac(VHT20)	CH165	7.63	9.6	11.74	30	PASS
11ac(VHT40)	CH151	8.14	9.98	12.17	30	PASS
11ac(VHT40)	CH159	8.07	10.29	12.33	30	PASS
11ac(VHT80)	CH155	7.95	9.91	12.05	30	PASS
11ax(HE20)	CH149	8.12	9.98	12.16	30	PASS
11ax(HE20)	CH157	7.92	9.87	12.01	30	PASS
11ax(HE20)	CH165	7.73	9.74	11.86	30	PASS
11ax(HE40)	CH151	7.92	9.91	12.04	30	PASS
11ax(HE40)	CH159	8.18	9.97	12.18	30	PASS
11ax(HE80)	CH155	7.77	9.66	11.83	30	PASS

5.4. 6dB Emission Bandwidth


5.4.1. Test Specification

FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049					
KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C					
>500kHz					
Spectrum Analyzer EUT					
Transmitting mode with modulation					
 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 					
PASS (3)					

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025	
Combiner Box	Ascentest	AT890-RFB	1 (0)	/ (3	

Page 18 of 270

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049				
KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D				
No restriction limits				
Spectrum Analyzer EUT				
Transmitting mode with modulation				
 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report. 				
PASS				

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025	
Combiner Box	Ascentest	AT890-RFB	1	1	

Page 19 of 270

5.6. Power Spectral Density

5.6.1. Test Specification

FCC Part15 E Section 15.407 (a)
KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F
≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470- 5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz
Spectrum Analyzer EUT
Transmitting mode with modulation
 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.
100000000000000000000000000000000000000

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025	
Combiner Box	Ascentest	AT890-RFB		7	

Page 20 of 270

5.6.3. Test data

	T	Power S	pectral Density(dE	Limit		
Mode	Test channel	Ant1	Ant2	Total	(dBm/MHz)	Result
11a	CH36	-0.95	1.62	/	11	PASS
11a	CH40	-0.84	1.71	/	11	PASS
11a	CH48	-0.72	1.86	/	11	PASS
11n(HT20)	CH36	-1.24	1.12	3.11	11	PASS
11n(HT20)	CH40	-1.22	1.25	3.20	11	PASS
11n(HT20)	CH48	-1.09	1.47	3.39	11	PASS
11n(HT40)	CH38	-4.17	-1.74	0.22	11	PASS
11n(HT40)	CH46	-4.15	-1.24	0.55	11	PASS
11ac(VHT20)	CH36	-1.33	1.02	3.01	11	PASS
11ac(VHT20)	CH40	-1.21	1.12	3.12	11	PASS
11ac(VHT20)	CH48	-1.12	1.39	3.32	11	PASS
11ac(VHT40)	CH38	-4.26	-1.76	0.18	11	PASS
11ac(VHT40)	CH46	-4.02	-1.24	0.60	11	PASS
11ac(VHT80)	CH42	-6.88	-4.47	-2.50	11	PASS
11ax(HE20)	CH36	-0.48	1.94	3.91	11	PASS
11ax(HE20)	CH40	-0.44	1.74	3.80	11	PASS
11ax(HE20)	CH48	-0.28	2.38	4.26	11	PASS
11ax(HE40)	CH38	-2.96	-0.92	1.19	(11)	PASS
11ax(HE40)	CH46	-3.48	-0.54	1.24	11	PASS
11ax(HE80)	CH42	-6.69	-4.13	-2.21	11	PASS

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01: For power spectral density (PSD) measurements when antenna gains are not equal, Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / N_{ANT}] dBi = 5.73 < 6$, So $\lim_{t \to 1} 1$

Page 21 of 270

NA . 1 .	T (.)	Power Spe	ectral Density(d	Limit	D		
Mode	Test channel	Ant1 Ant2		Total	(dBm/MHz)	Result	
11a	CH149	-6.30	-4.16	1	30	PASS	
11a	CH157	-6.37	-4.43	/	30	PASS	
11a	CH165	-6.58	-4.64	/	30	PASS	
11n(HT20)	CH149	-6.44	-4.54	-2.38	30	PASS	
11n(HT20)	CH157	-6.70	-4.75	-2.61	30	PASS	
11n(HT20)	CH165	-6.84	-4.86	-2.73	30	PASS	
11n(HT40)	CH151	-9.32	-7.32	-5.20	30	PASS	
11n(HT40)	CH159	-9.36	-7.36	-5.24	30	PASS	
11ac(VHT20)	CH149	-6.44	-4.58	-2.40	30	PASS	
11ac(VHT20)	CH157	-6.67	-4.73	-2.58	30	PASS	
11ac(VHT20)	CH165	-6.89	-4.86	-2.75	30	PASS	
11ac(VHT40)	CH151	-9.36	-7.51	-5.33	30	PASS	
11ac(VHT40)	CH159	-9.48	-7.33	-5.26	30	PASS	
11ac(VHT80)	CH155	-12.49	-10.57	-8.41	30	PASS	
11ax(HE20)	CH149	-5.83	-3.89	-1.74	30	PASS	
11ax(HE20)	CH157	-6.00	-4.12	-1.95	30	PASS	
11ax(HE20)	CH165	-6.33	-4.35	-2.22	30	PASS	
11ax(HE40)	CH151	-8.93	-6.96	-4.82	30	PASS	
11ax(HE40)	CH159	-8.99	-7.13	-4.95	30	PASS	
11ax(HE80)	CH155	-12.06	-10.08	-7.95	30	PASS	

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01: For power spectral density (PSD) measurements when antenna gains are not equal, Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / N_{ANT}] dBi=5.95<6$, So limit=30

Page 22 of 270

5.7. Band edge

5.7.1. Test Specification

Test Requirement:	FCC CFR47 Pa	rt 15E Sectio	n 15.407	ÇĆ						
Test Method:	ANSI C63.10 20	020								
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)						
	< 5650	-27	5850~5855 27~15.6							
Limit:	5650~5700	-27~10	5855~5875	15.6~10						
	5700~5720	10~15.6	5875~5925	10~-27						
	$5720 \sim 5725$ E[dB μ V/m] = EIR		> 5925 ? @3m	-27						
	In restricted band:		Limit@	0.25						
	Detec Peal		74dBµ							
	AVG									
Test Setup:	Transmitting mode with modulation									
Test Mode:	Transmitting mo	de with modu	ulation							
Test Procedure:	1. The EUT was meters above the was rotated 360 highest radiation 2. The EUT was interference-red the top of a vari 3. The antennameters above the value of the field polarizations of measurement. 4. For each sus to its worst case heights from 1 returned from 0 demaximum readi 5. The test-rece Function and Sp	ne ground at a degrees to de and then the antenna a degrees to 360 and then the agrees to 360 and.	a 3 meter cambed as away from the particular and tower. The form one maked are set to maked and the roll of the particular and the particu	per. The table position of the consistion of the mounted on the eter to four maximum and vertical ethe constant and to table was at table was at table was at table was at the constant at table was at						

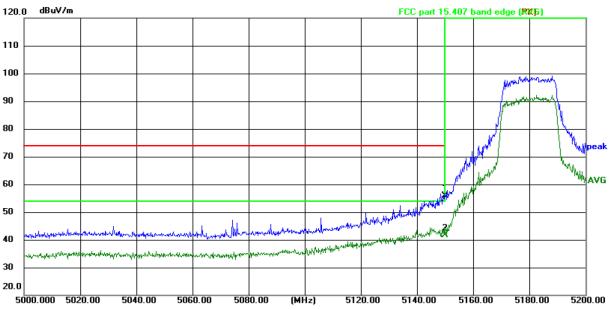
Report No.: TCT241009E042

Mode.

Report No.: TCT241009E042

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be

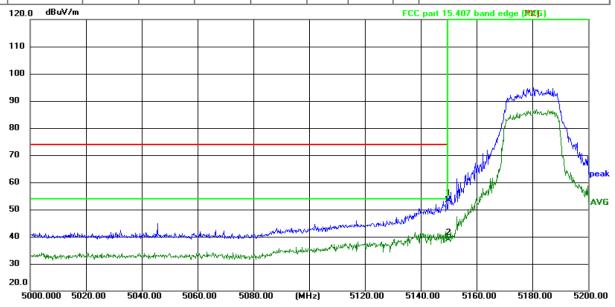
(stopped reported 10dB m quasipe	d and the pod. d. Otherwis argin would	eak values se the emis d be re-tes age metho	of the EU- sions that ted one by d as specif	Γ would be did not hav one using	e peak,
Test	Result:	PASS					



5.7.2. Test Instruments

	Radiated Er	nission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D	(0)	Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	/	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM	/ /	1
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/

5.7.3. Test Data AX20-5180



Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 24.4(℃) Humidity: 48 %

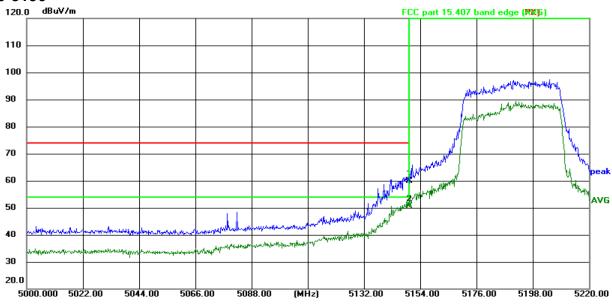
Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5150.000	64.48	-8.59	55.89	74.00	-18.11	peak	Р	
ſ	2 *	5150.000	50.21	-8.59	41.62	54.00	-12.38	AVG	Р	

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.4(°C) Humidity: 48 %

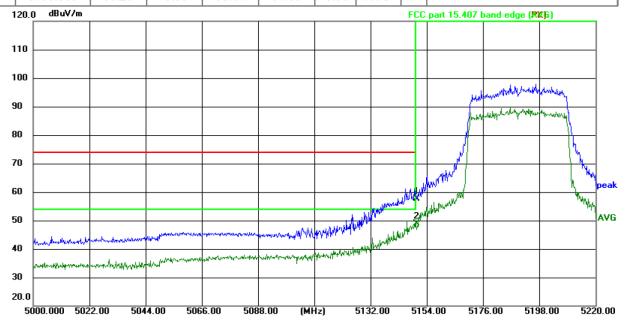
Limit: FCC part 15.407 band edge (PK)


Power:DC 7.6 V

No	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	61.94	-8.59	53.35	74.00	-20.65	peak	Р	
2	5150.000	47.39	-8.59	38.80	54.00	-15.20	AVG	Р	

Report No.: TCT241009E042

AX40-5190



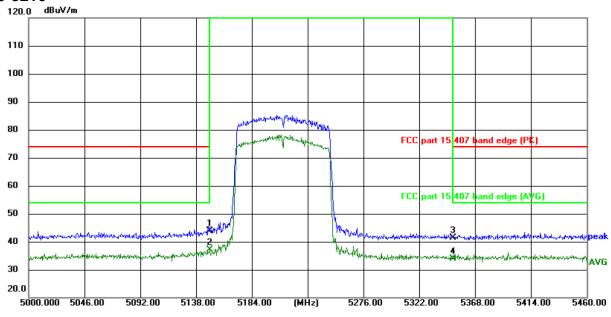
Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.4(°C) Humidity: 48 %

Limit: FCC part 15.407 band edge (PK)

Power:DC	7.6 V
----------	-------

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5150.000	68.57	-8.59	59.98	74.00	-14.02	peak	Р	
2 *	5150.000	59.23	-8.59	50.64	54.00	-3.36	AVG	Р	

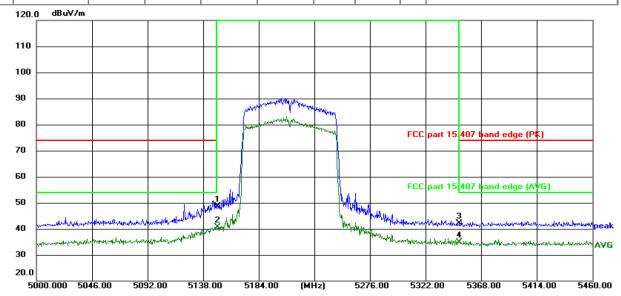
Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.4(°C) Humidity: 48 %


Limit: FCC part 15.407 band edge (PK)

	Power:	DC	7.6	V
--	--------	----	-----	---

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	66.22	-8.59	57.63	74.00	-16.37	peak	Р	
2 *	5150.000	57.41	-8.59	48.82	54.00	-5.18	AVG	Р	

AX80-5210



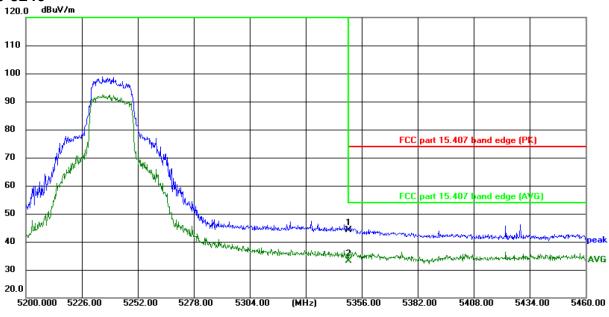
Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 23.9(°C) Humidity: 42 %

Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5150.000	53.62	-9.78	43.84	74.00	-30.16	peak	Р	
2 *	5150.000	46.88	-9.78	37.10	54.00	-16.90	AVG	Р	
3	5350.000	50.68	-9.27	41.41	74.00	-32.59	peak	Р	
4	5350,000	43.23	-9.27	33.96	54.00	-20.04	AVG	Р	

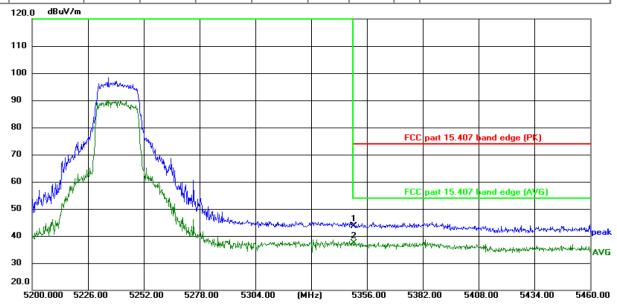
Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.9(°C) Humidity: 42 %


Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	58.34	-9.78	48.56	74.00	-25.44	peak	Р	
2 *	5150.000	50.53	-9.78	40.75	54.00	-13.25	AVG	Р	
3	5350.000	51.37	-9.27	42.10	74.00	-31.90	peak	Р	
4	5350.000	44.23	-9.27	34.96	54.00	-19.04	AVG	Р	

AX20-5240


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.4(°C) Humidity: 48 %

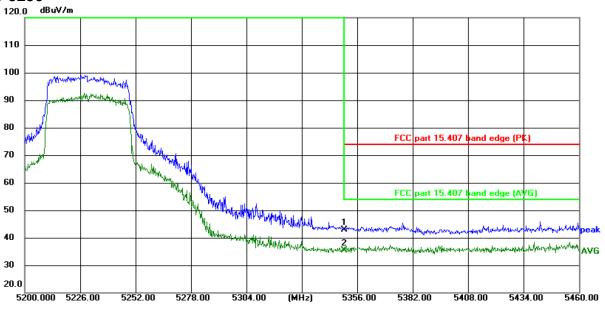
Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V

V			
		·	7

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	52.19	-7.95	44.24	74.00	-29.76	peak	Р	
2 *	5350.000	41.18	-7.95	33.23	54.00	-20.77	AVG	Р	

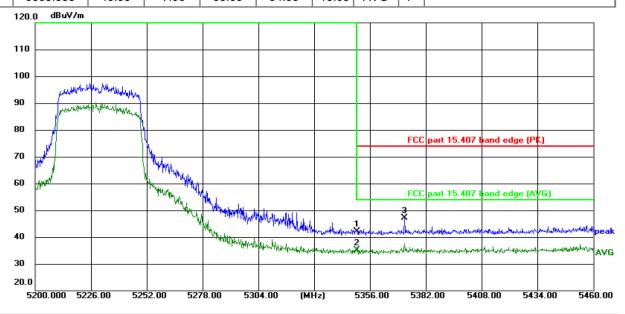
Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.4(°C) Humidity: 48 %


Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 \		Ρo	we	er:	DC	7	6	١
----------------	--	----	----	-----	----	---	---	---

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	51.55	-7.95	43.60	74.00	-30.40	peak	Р	
2 *	5350.000	45.36	-7.95	37.41	54.00	-16.59	AVG	Р	

AX40-5230



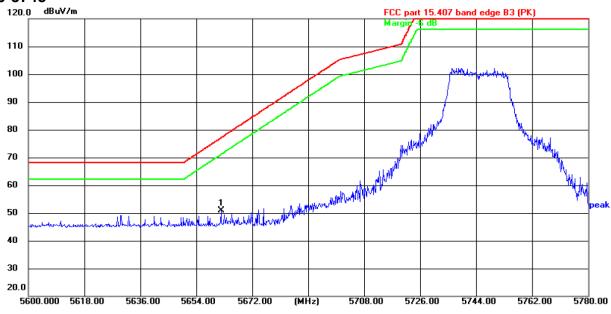
Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.4(°C) Humidity: 48 %

Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V

-										
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5350.000	50.89	-7.95	42.94	74.00	-31.06	peak	Р	
-[2 *	5350 000	43 30	-7 95	35 35	54 00	-18 65	AVG	Р	

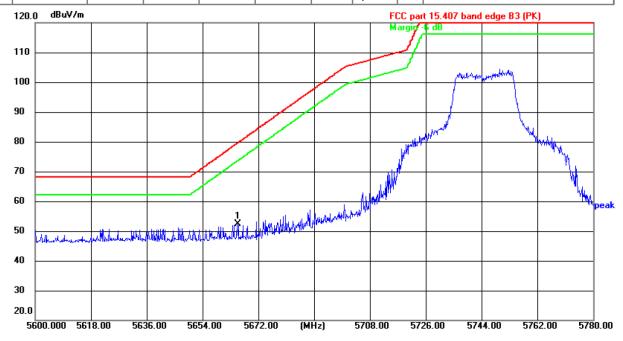
Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.4(°C) Humidity: 48 %


Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

N	lo.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
•	1	5350.000	50.11	-7.95	42.16	74.00	-31.84	peak	Р	
2	2 *	5350.000	43.10	-7.95	35.15	54.00	-18.85	AVG	Р	
3	3	5372.328	54.93	-7.86	47.07	74.00	-26.93	peak	Р	

AX20-5745

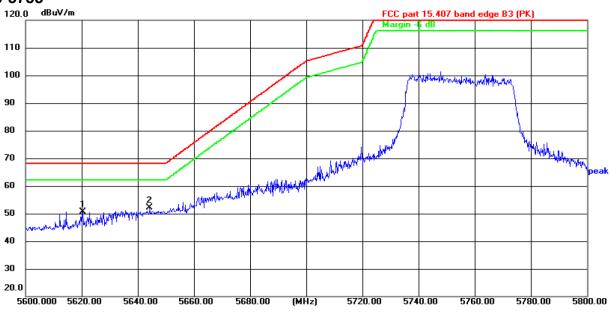


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.4(°C) Humidity: 48 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:DC 7.6 V

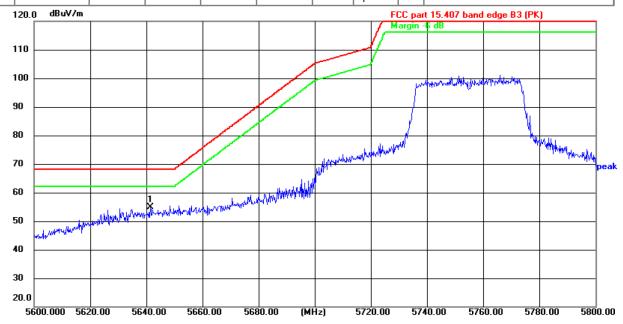
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
ſ	1 *	5662.028	57.48	-6.70	50.78	77.10	-26.32	peak	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.4(°C) Humidity: 48 %

Limit: FCC part 15.407 band edge B3 (PK) Power:DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5665.214	59.16	-6.68	52.48	79.46	-26.98	peak	Р	

AX40-5755

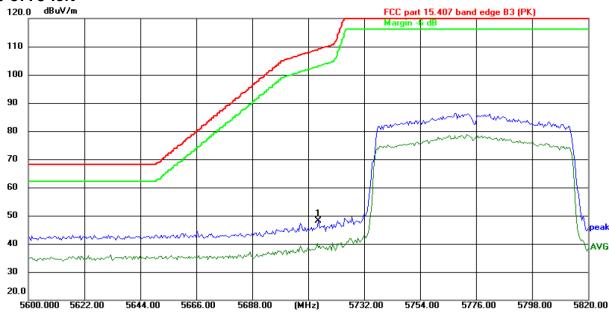


Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 24.4(°C) Humidity: 48 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:DC 7.6 V

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
ľ	1	5620.420	57.47	-6.83	50.64	68.20	-17.56	peak	Р	
ľ	2 *	5644.340	58.80	-6.76	52.04	68.20	-16.16	peak	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.4(°C) Humidity: 48 %

Limit: FCC part 15.407 band edge B3 (PK) Power:DC 7.6 V

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
ı	1 *	5641.540	61.67	-6.78	54.89	68.20	-13.31	peak	Р	

AX80-5775-left

Site: 3m Anechoic Chamber Temperature: 23.9(°C) Humidity: 42 % Polarization: Horizontal

Limit: FCC part 15.407 band edge B3 (PK)

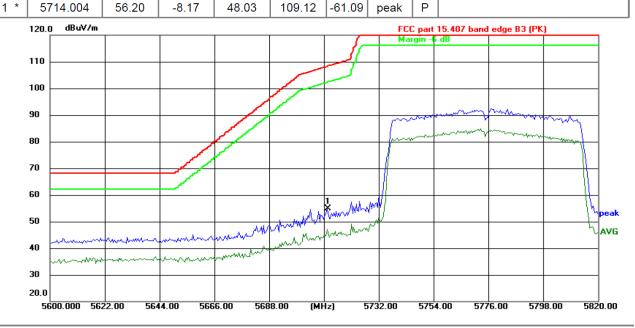
Frequency

(MHz)

No.

Reading

(dBuV)


Factor

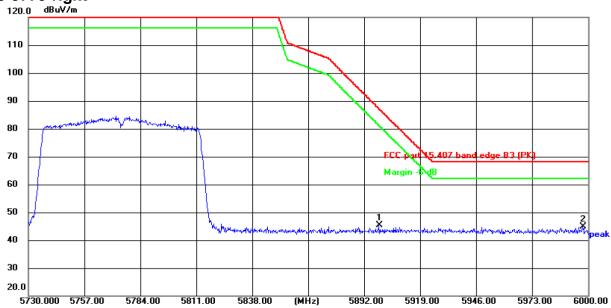
(dB/m)

Level

Power:DC 7.6V

Margin Limit Detector P/F Remark (dBuV/m) (dBuV/m) (dB)

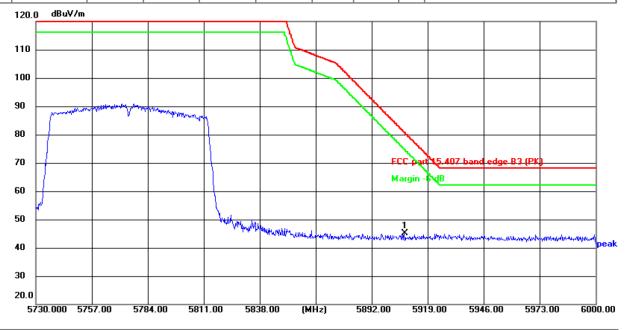
Site: 3m Anechoic Chamber Temperature: 23.9(°C) Humidity: 42 % Polarization: Vertical


Limit: FCC part 15.407 band edge B3 (PK)

Power:DC 7.6V

	No.	Frequency (MHz)	Reading (dBuV)			Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
ſ	1 *	5711.178	63.12	-8.18	54.94	108.33	-53.39	peak	Р	

AX80-5775-right



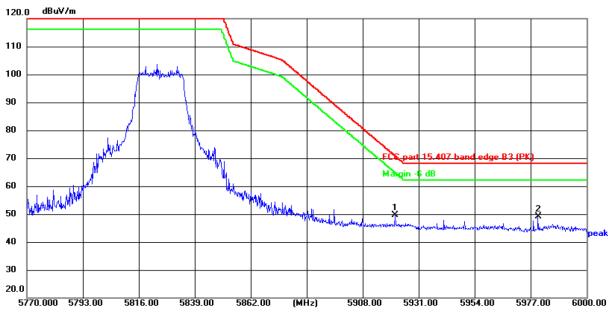
Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.9(°C) Humidity: 42 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:DC 7.6V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5899.101	52.77	-7.50	45.27	87.37	-42.10	peak	Р	
2 *	5997.368	52.51	-7.59	44.92	68.20	-23.28	peak	Р	

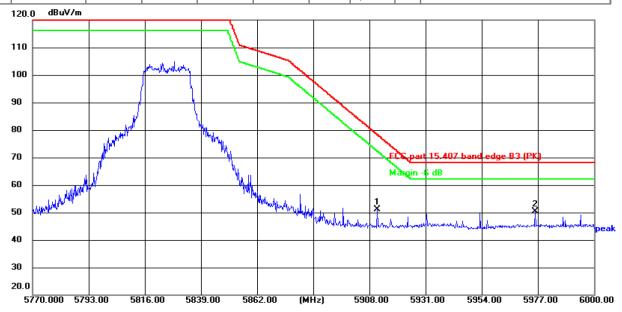
Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.9(°C) Humidity: 42 %


Limit: FCC part 15.407 band edge B3 (PK) Power:DC 7.6V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5907.809	52.69	-7.51	45.18	80.92	-35.74	peak	Р	

Report No.: TCT241009E042

AX20-5825


Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 24.4(°C) Humidity: 48 %

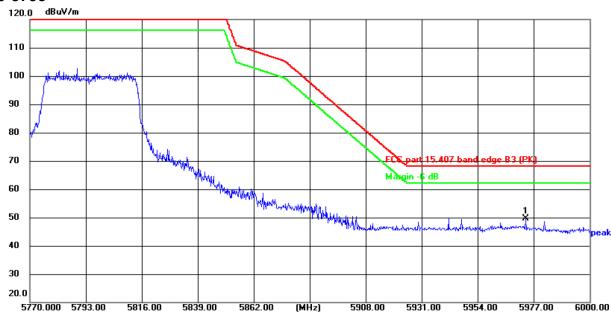
Limit: FCC part 15.407 band edge B3 (PK)

Power:DC 7.6 V

•

No	Frequency (MHz)	Reading (dBuV)	I	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5921.386	55.40	-5.68	49.72	70.87	-21.15	peak	Р	
2	* 5980.013	54.48	-5.40	49.08	68.20	-19.12	peak	Р	

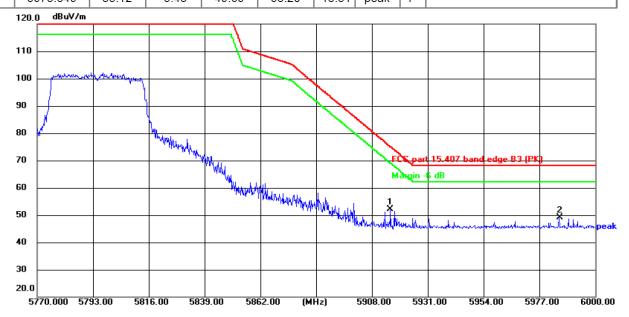
Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.4(°C) Humidity: 48 %


Limit: FCC part 15.407 band edge B3 (PK)

Power:DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5911.243	56.76	-5.73	51.03	78.38	-27.35	peak	Р	
2 *	5975.942	55.69	-5.43	50.26	68.20	-17.94	peak	Р	

AX40-5795



Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.4(°C) Humidity: 48 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:DC 7.6 V

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
ſ	1 *	5973 849	55 12	-5 43	49 69	68 20	-18 51	neak	Р	

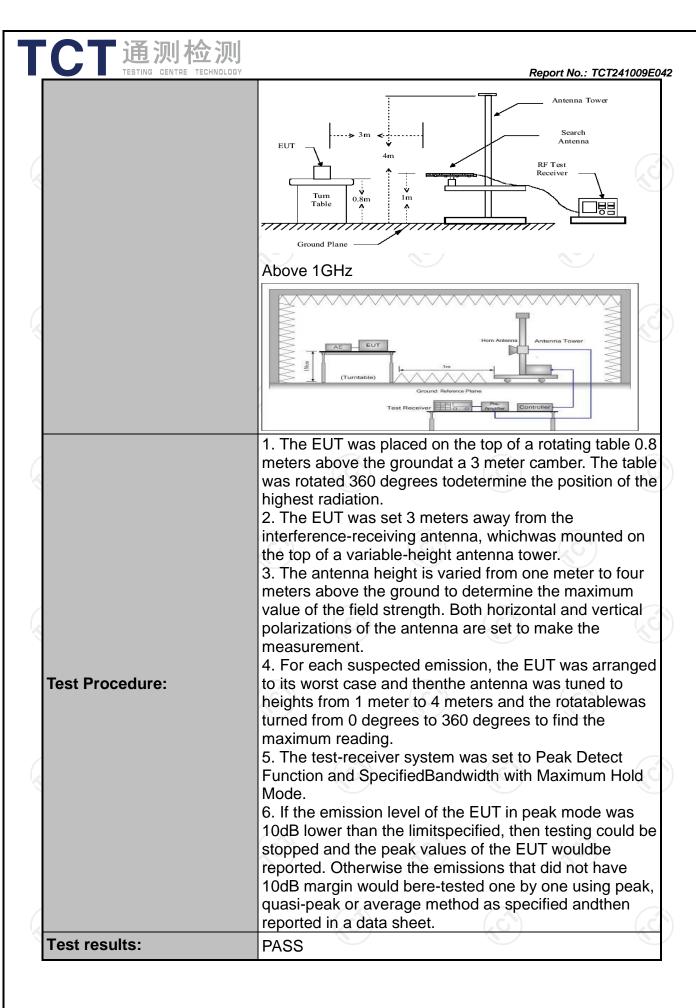
Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.4(°C) Humidity: 48 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5915.613	57.75	-5.71	52.04	75.15	-23.11	peak	Р	
2 *	5985.096	54.48	-5.38	49.10	68.20	-19.10	peak	Р	

Note: All modulation (802.11a, 802.11n, 802.11ac, 802.11ax) have been tested, only the worst case in 802.11ax be reported.


5.8. Unwanted Emissions

5.8.1. Test Specification

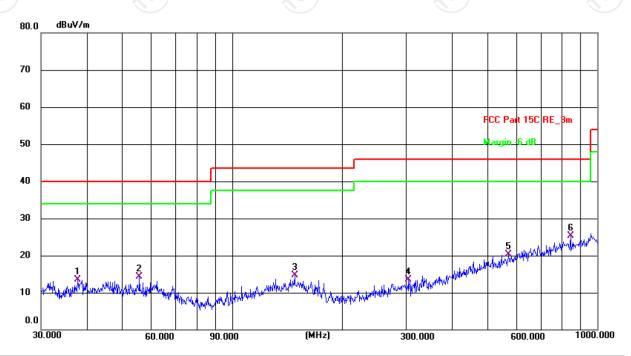
Test Requirement:	FCC CFR47 Part 1	5 Section 1	5.407 & 1	5.209 & 15.205
Test Method:	KDB 789033 D02 v	/02r01		
Frequency Range:	9kHz to 40GHz			
Measurement Distance:	3 m	(6)		(3)
Antenna Polarization:	Horizontal & Vertic	al		
Operation mode:	Transmitting mode	with modul	ation	
Receiver Setup:	Frequency Determinant 9kHz- 150kHz Quasi- 150kHz- Quasi- 30MHz Quasi- 30MHz-1GHz Quasi- Above 1GHz Pea Pea Pea	peak 200Hz peak 9kHz peak 120KH ak 1MHz	z 1kHz 30kHz z 300KHz 3MHz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value
Limit:	Unwanted spurious per FCC Part15.20 general field strent below table, In restricted bands Frequency Above 1G Frequency 0.009-0.490 0.49 -1.705 1.705-30 30-88 88-216 216-960 Above 960 In un-restricted bar	Shall comingth limits Deprivation of the property of the prop	tector eak VG ngth s/meter) Hz)	ne 🦪
Test setup:	For radiated emiss Distance = 3m Turn table 30MHz to 1GHz	ions below	Pre-	Computer Amplifier Receiver

Report No.: TCT241009E042

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.8.2. Test Instruments

	Radiated Er	nission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D	(0)	Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	/	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM) 1	(2)
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/



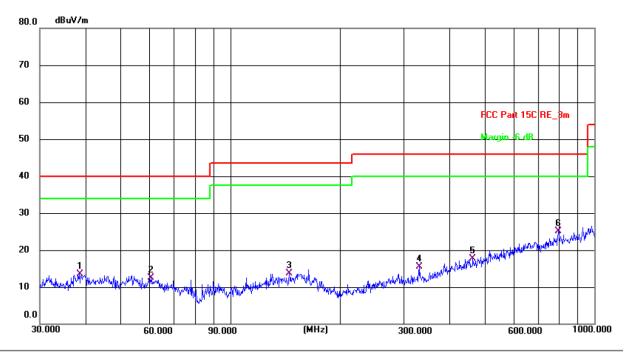
5.8.3. Test Data

Please refer to following diagram for individual

Below 1GHz

Horizontal:

Site 3m Anechoic Chamber2 Polarization: Horizontal Temperature: 24.5(C) Humidity: 52 %


Limit: FCC Part 15C RE_3m Power: DC 7.6 V

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1	37.8121	32.31	-18.71	13.60	40.00	-26.40	QP	Р	
	2	55.8047	33.11	-18.82	14.29	40.00	-25.71	QP	Р	
	3	148.4410	32.10	-17.47	14.63	43.50	-28.87	QP	Р	
	4	304.6099	31.27	-17.82	13.45	46.00	-32.55	QP	Р	
	5	572.6144	31.14	-10.82	20.32	46.00	-25.68	QP	Р	
Г	6 *	845.0878	32.01	-6.70	25.31	46.00	-20.69	QP	Р	

Vertical:

Site 3m Anechoic Chamber2 Polarization: Vertical Temperature: 24.5(C) Humidity: 52 %

Limit: FCC Part 15C RE_3m Power: DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	38.4809	32.07	-18.59	13.48	40.00	-26.52	QP	Р	
2	60.4918	31.49	-18.97	12.52	40.00	-27.48	QP	Р	
3	145.3505	31.35	-17.72	13.63	43.50	-29.87	QP	Р	
4	331.3546	32.88	-17.37	15.51	46.00	-30.49	QP	Р	
5	463.9696	30.92	-13.29	17.63	46.00	-28.37	QP	Р	
6 *	796.1829	31.90	-6.76	25.14	46.00	-20.86	QP	Р	

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80), 802.11ax(HE20), 802.11ax(HE40), 802.11ax(HE80) and the worst case Mode (Highest channel and 802.11a transmit with antenna 2) was submitted only.
- 3.Measurement (dBμV) = Reading level + Correction Factor, correction Factor= Antenna Factor + Cable loss Pre-amplifier.

			1	Modulation T	ype: Band '	1			
				11a CH36:	• •				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emiss	ion Level	Peak limi		Margin (dB)
(1711 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m	AV) (dBμV/m	` ' '	(αΒμν/ιιι)	(ub)
10360	Н	38.66		1.78	40.44		68.2		-27.76
15540	4	39.58	77.	5.21	44.79		74	54	-9.21
	(CH)		(2 C)			<u> </u>		(C)	
10360	V	38.12		1.78	39.9		68.2		-28.3
15540	V	40.66		5.21	45.87		74	54	-8.13
	V			4-6		(T		0.10
				11a CH40: \$	5200MHz				
		Peak	AV	Correction					
Frequency	Ant. Pol.	reading	reading	Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	Н	39.01		1.83	40.84		68.2		-27.36
15600	Н	40.85		5.23	46.08		74	54	-7.92
	Н			(X					
(O)		(20)		KO			(0)	<u> </u>	(0)
10400	V	40.66		1.83	42.49		68.2		-25.71
15600	V	41.11		5.23	46.34		74	54	-7.66
	V					Z			
				11a CH48: 9	5240MHz				
_	1, , ,	Peak	AV	Correction		n I aval	D 1 11 11	A) (II	
Frequency	Ant. Pol. H/V	reading	reading	Factor	Emissio	n Levei	Peak limit	AV limit	Margin
(MHz)		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	38.19		1.85	40.04		68.2		-28.16
15720	Н	39.42		5.25	44.67		74	54	-9.33
	Н								
						-11			
10480	V	38.36		1.85			68.2	'X/	-27.99
		00.00		1.05	40.21		00.2		27.00
15720	V	40.88		5.25	40.21 46.13		74	54	-7.87
15720 	V						1		
		40.88		5.25	46.13 		74	54	-7.87
	V	40.88 	 11ı AV	5.25 n(HT20) CH3 Correction	46.13 36: 5180MF		74	54	-7.87
		40.88 Peak reading	 11r AV reading	5.25 n(HT20) CH3 Correction Factor	46.13 36: 5180MH Emissio	 Iz on Level	74	54	-7.87
Frequency	V Ant. Pol.	40.88 	 11ı AV	5.25 n(HT20) CH3 Correction	46.13 36: 5180MF	 Iz	74 Peak limit	54 	-7.87 Margin
Frequency	V Ant. Pol.	40.88 Peak reading	 11r AV reading	5.25 n(HT20) CH3 Correction Factor	46.13 36: 5180MF Emission	 Iz on Level	74 Peak limit	54 	-7.87 Margin
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	5.25 n(HT20) CH3 Correction Factor (dB/m)	46.13 36: 5180MF Emission Peak (dBµV/m)	 dz on Level AV (dBµV/m)	74 Peak limit (dBµV/m)	AV limit (dBµV/m)	-7.87 Margin (dB)
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	5.25 n(HT20) CH3 Correction Factor (dB/m)	46.13 36: 5180MF Emission Peak (dBµV/m) 43.53	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	-7.87 Margin (dB)
Frequency (MHz) 10360 15540	Ant. Pol. H/V	Peak reading (dBμV) 41.75 40.76	AV reading (dBµV)	5.25 n(HT20) CH3 Correction Factor (dB/m) 1.78 5.21	46.13 36: 5180MF Emission Peak (dBµV/m) 43.53 45.97 	AV (dBµV/m)	74 Peak limit (dBµV/m) 68.2 74 	54 AV limit (dBμV/m) 54 	-7.87 Margin (dB) -24.67 -8.03
Frequency (MHz) 10360 15540	Ant. Pol. H/V	Peak reading (dBµV) 41.75 40.76	AV reading (dBµV)	5.25 n(HT20) CH3 Correction Factor (dB/m) 1.78 5.21	46.13 36: 5180MH Emission Peak (dBµV/m) 43.53 45.97	and Level AV (dBµV/m)	74 Peak limit (dBµV/m) 68.2 74	54 AV limit (dBμV/m)	-7.87 Margin (dB) -24.67 -8.03

Frequency (MHz) Ant. Pol. H/V Peak reading (dBμV) Peak reading (dBμV) Factor (dBμV) Peak AV Peak Imit (dBμV/m) (dBμV/m) Peak AV (dBμV/m)	
(MHZ) H/V $(dB\mu V)$ $(dB\mu V)$ $(dB\mu V)$ H/V $(dB\mu V)$	
(dBμV/m) (dBμV/m)	/m) (dB)
10400 H 40.78 1.83 42.61 68.2	-25.59
15600 H 41.23 5.23 46.46 74 54	-7.54
H	
10400 V 40.66 1.83 42.49 68.2	-25.71
15600 V 39.54 5.23 44.77 74 54	-9.23
V	
11n(HT20) CH48: 5240MHz	
Frequency Ant. Pol. Peak AV Correction Factor Emission Level Peak limit AV lin	
$(MHz) \qquad H/V \qquad (dB\mu V) \qquad (dB\mu V) \qquad (dB/m) \qquad Peak \qquad AV \qquad (dB\mu V/m) \qquad (dB\mu V/m)$	/m) (dB)
10480 H 41.32 1.85 43.17 68.2	-25.03
15720 H 41.98 5.25 47.23 74 54	-6.77
H	
10480 V 40.22 1.85 42.07 68.2	-26.13
15720 V 40.01 5.25 45.26 74 54	-8.74
V	
11n(HT40) CH38: 5190MHz	
Frequency Ant. Pol. Peak AV Correction Emission Level Peak limit AV lir reading reading Factor	
(MHz) H/V (dB μ V) (dB μ V) (dB μ V) (dB μ V/m)	/m) (dB)
10380 H 42.01 1.80 43.81 68.2	-24.39
15570 H 41.89 5.22 47.11 74 54	-6.89
H	
	<u></u>
10380 V 40.87 1.80 42.67 68.2	-25.53
15570 V 39.55 5.22 44.77 74 54	
V	
11n(HT40) CH46: 5230MHz	
Frequency Ant. Pol. Peak AV Correction Emission Level Peak limit AV lir reading reading Factor	nit Margin
(MHz) H/V reading (dB μ V) (dB μ V) (dB μ V) (dB μ V/m)	/m) (dB)
10460 H 41.22 1.85 43.07 68.2	-25.13
15690 H 39.69 5.08 44.77 74 54	-9.23
H	-3.23
10460 V 41.02 1.85 42.87 68.2	-25.33
10460 V 41.02 1.85 42.87 68.2 15690 V 40.99 5.08 46.07 74 54	-25.33 -7.93

			11a	c(VHT20) CH	136: 5180M	lHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	40.11		1.78	41.89		68.2		-26.31
15540	Н	39.68		5.21	44.89		74	54	-9.11
	Н							<u></u>	
	(, G)		(, G)		(, ((.G)	
10360	V	38.32		1.78	40.1	/ 	68.2		-28.1
15540	V	39.82		5.21	45.03		74	54	-8.97
	V								
			11a	c(VHT20) CH	140: 5200M	lHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	K H	39.87	1/0	1.83	41.7) <u></u>	68.2	(0)	-26.5
15600	Н	40.56		5.23	45.79		74	54	-8.21
	Н								
	•		•						
10400	V	39.52		1.83	41.35	(68.2		-26.85
15600	V	39.99		5.23	45.22		74	54	-8.78
	V								
	<u> </u>	<u> </u>	1	1ac(VHT20)	CH48:5240				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	37.22		1.85	39.07	/	68.2		-29.13
15720	Н	38.77		5.25	44.02		74	54	-9.98
	Н								
								ļ.	
10480	V	38.14		1.85	39.99	.A\	68.2		-28.21
15720	V	39.09	-40	5.25	44.34	٠)	74	54	-9.66
	V								
			1	1ac(VHT40)	CH38:5190)			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	Ж	40.68		1.80	42.48	-/	68.2		-25.72
15570	(,CH)	39.44	-4-, ()	5.22	44.66	5)	74	54	-9.34
	Н					<i></i>			
	-				-			<u> </u>	
10380	V	38.11		1.80	39.91		68.2		-28.29
15570	V	39.58		5.22	44.8	(74	54	-9.2
_/	V				/				77

Report No.: TCT241009E042 11ac(VHT40) CH46:5230 Peak Correction Ant. Pol. AV reading **Emission Level** Frequency Peak limit **AV limit** Margin **Factor** reading (MHz) H/V (dBµV) $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dB/m) (dBµV/m) (dBuV/m) 10460 Η 38.68 1.85 68.2 40.53 -27.67 15690 Η 39.11 5.08 44.19 74 54 -9.81 Н ---------------10460 ٧ 39.25 4-5 1.85 41.1 68.2 ----27.1 15690 V 40.78 5.08 -8.14 45.86 74 54 ٧ 11ax(HE20) CH36: 5180MHz ΑV Peak Correction Ant. Pol. **Emission Level** Peak limit **AV** limit Frequency Margin reading reading Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) AV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10360 39.58 1.78 Н 68.2 41.36 --/--------26.84 15540 H 5.21 40.32 45.53 74 54 -8.47 Η 1.78 10360 ٧ 38.05 68.2 -28.37 39.83 5.21 15540 40.77 ---45.98 ---74 54 -8.02 ٧ 11ax(HE20) CH40: 5200MHz Peak ΑV Correction **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading Factor reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10400 Η 39.44 1.83 41.27 68.2 -26.93 15600 Н 40.24 5.23 45.47 ---74 54 -8.53 Η ---٧ 10400 39.63 ---1.83 41.46 68.2 ----26.74 ---٧ 15600 39.79 5.23 -4-45.02 74 54 -8.98 V ----------11ax(HE20) CH48:5240 Peak A۷ Correction **Emission Level** Ant. Pol. **AV** limit Frequency Peak limit Margin reading reading **Factor** (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) ΑV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10480 Η 38.87 1.85 40.72 ---68.2 -27.48 15720 Н 39.5 5.25 44.75 74 54 -9.25 Н ------٧ 10480 38.36 1.85 68.2 40.21 -27.99V 15720 39.98 ---5.25 45.23 ---74 54 -8.77 V

Report No.: TCT241009E042 11ax(HE40) CH38:5190 Peak ΑV Correction Frequency Ant. Pol. **Emission Level** Peak limit AV limit Margin reading Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dB_µV/m) 10380 Η 40.15 1.80 68.2 41.95 -26.2515570 Н 39.02 5.22 44.24 74 54 -9.76 ---Н ------10380 V 68.2 38.77 ---1.80 40.57 ----27.63 15570 V 5.22 38.03 43.25 74 -10.75 54 V 11ax(HE40) CH46:5230 ΑV Correction Peak Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading reading Factor (dBµV/m) (MHz) H/V (dBµV/m) (dB) Peak AV (dBµV) (dBµV) (dB/m) $(dB\mu V/m)$ $(dB\mu V/m)$ 10460 Н 38.55 1.85 40.4 68.2 ----27.8 --/ 15690 H 39.14 5.08 44.22 74 54 -9.78 Η ---٧ 10460 39.33 1.85 68.2 -27.0241.18 5.08 15690 40.79 45.87 ------74 54 -8.13 V 11ax(HE80) CH42:5210 Peak ΑV Correction Ant. Pol. **Emission Level** Frequency Peak limit **AV limit** Margin Factor reading reading (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10420 Н 41.56 1.84 43.4 68.2 -24.8 15630 Н 39.72 5.17 44.89 74 54 -9.11 _4_ Н ___ ------*___ ---*---10420 ٧ 41.88 ---1.84 43.72 ---68.2 ----24.48

Note:

15630

V

V

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

45.48

74

54

5.17

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

-4-

40.31

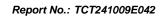
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 46 of 270

-8.52

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	TESTING C	SENTRE TECHNOL	.001				кер	ort No.: TCT2	41009E042
			N	/lodulation T	ype: Band 3	3			
				11a CH149:	5745MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	44.66		2.48	47.14		74	54	-6.86
17235	H	37.12		6.50	43.62	- _/	68.2	<u></u>	-24.58
	(H)		+:0		(, (<u> </u>		(. c.)	
11490	V	45.95		2.48	48.43		74	54	-5.57
17235	V	38.89		6.50	45.39		68.2		-22.81
	V	((.c.		/	<u> </u>		(
				11a CH157:	5785MHz				
	Ant Dal	Peak	AV	Correction	Emissis	n Level	Do ale lineit	Λ\/ lima i4	Morain
Frequency (MHz)	Ant. Pol. H/V	reading	reading	Factor			Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(1711-12)	I 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(ασμν/ιιι)	(ubµ v/III)	(ub)
					(dBµV/m)	(dBµV/m)			
11570	Н	43.99		2.42	46.41		74	54	-7.59
17355	Н	38.51		7.03	45.54		68.2		-22.66
<u> </u>	Н						X		<i>(</i> / ₁)
(()		(20)		120			(0)		(20)
11570	V	43.55		2.42	45.97		74	54	-8.03
17355	V	39.31		7.03	46.34		68.2		-21.86
	V					Z			
				11a CH165:	5825MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	43.87		2.41	46.28		74	54	-7.72
17475	Н	36.51		7.41	43.92		68.2		-24.28
	Н								
			(6)						
11650	V	43.79		2.41	46.2)	74	54	-7.8
17475	٧	38.22		7.41	45.63		68.2		-22.57
	V								
			11r	(HT20) CH1	49: 5745M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
44400	((1)	44.00		0.40	(dBµV/m)	(dBµV/m)		/ 6.3/	- • ·
11490	(H)	44.28	+20	2.48	46.76	J)	74	54	-7.24
17235	H	38.66		6.50	45.16		68.2		-23.04
	Н								
11/100	\/	44.00	_	2.40	47.40		74	F 4	0.54
11490	V	44.98		2.48	47.46		74	54	-6.54
17235	V	37.44		6.50	43.94		68.2		-24.26
	V								



			11r	(HT20) CH1	57: 5785M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	Η	44.41		2.42	46.83		74	54	-7.17
17355	Н	39.56		7.03	46.59		68.2		-21.61
	Н					-/-		<u>-</u>	
<u> </u>	(.Ġ`)		(.G)					(G)	
11570	V	44.97		2.42	47.39	<i></i>	74	54	-6.61
17355	V	39.68		7.03	46.71		68.2		-21.49
	V								
			11r	(HT20) CH1	65: 5825M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	H	45.11	-1/0	2.41	47.52) <u></u>	74	54	-6.48
17475	Н	37.89)	7.41	45.3	-	68.2		-22.9
	Н								
11650	V	45.74		2.41	48.15		74	54	-5.85
17475	V	40.69		7.41	48.1		68.2		-20.1
	V								
			11r	(HT40) CH1	51: 5755M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Н	44.69		2.47	47.16	/	74	54	-6.84
17265	Н	37.55		6.62	44.17		68.2		-24.03
	Н								
					•			•	
11510	V	44.57	76	2.47	47.04		74	54	-6.96
17265	V	38.71		6.62	45.33)	68.2	(2)	-22.87
	V								
			11r	(HT40) CH1	59: 5795M				
Frequency	Ant. Pol.	Peak reading	AV	(HT40) CH1 Correction			Peak limit	AV limit	Margin
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)		(HT40) CH1		Hz		AV limit (dBµV/m)	Margin (dB)
		reading	AV reading	(HT40) CH1 Correction Factor	Emission Peak (dBµV/m)	Hz on Level AV	Peak limit (dBµV/m)	(dBµV/m)	(dB)
(MHz)	H/V	reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m) 47.18	Hz on Level AV (dBµV/m)	Peak limit (dBµV/m)		(dB) -6.82
(MHz) 11590	H/V H	reading (dBµV)	AV reading (dBµV)	(HT40) CH1 Correction Factor (dB/m)	Emission Peak (dBµV/m)	Hz on Level AV (dBµV/m)	Peak limit (dBµV/m)	(dBµV/m) 54	(dB)
(MHz) 11590 17385 	H/V H	reading (dBµV) 44.78 38.52	AV reading (dBµV)	Correction Factor (dB/m) 2.40 7.15	Peak (dBµV/m) 47.18 45.67	Hz on Level AV (dBµV/m)	Peak limit (dBµV/m) 74 68.2	(dBµV/m) 54	-6.82 -22.53
(MHz) 11590 17385	H/V H H	reading (dBµV) 44.78 38.52	AV reading (dBµV)	Correction Factor (dB/m) 2.40 7.15	Peak (dBµV/m) 47.18 45.67	AV (dBµV/m)	Peak limit (dBµV/m) 74 68.2	(dBµV/m) 54	-6.82 -22.53

Frequency (MHz)				11ac	:(VHT20) CH	1149: 5745N	МН			
(HPZ)				AV	Correction					•
17235	(MHz)	H/V	0	0				(dBµV/m)	(dBµV/m)	(dB)
H	11490	Н	44.03		2.48	46.51		74	54	-7.49
11490 V	17235	Н	37.99		6.50	44.49		68.2		-23.71
17235 V 38.16 6.50 44.66 68.2 -23.54		Н							- ,	
17235 V 38.16 6.50 44.66 68.2 -23.54		(G)		(.c)			5))		(G)	
Trequency (MHz)	11490	V	44.11		2.48	46.59	/	74	54	-7.41
Tack	17235	V	38.16		6.50	44.66		68.2		-23.54
Frequency (MHz)		V								
Frequency (MHz)				11ac	(VHT20) CH	1157: 5785N	ИНz			
(MHz)						Emissio	on Level			_
17355	(MHz)	H/V	•	0				(dBµV/m)	(dBµV/m)	(dB)
H	11570	H	43.12	-1/0	2.42	45.54	9)	74	54	-8.46
11570	17355	Н	36.35	-	7.03	43.38		68.2		-24.82
17355 V 38.14 7.03 45.17 68.2 -23.03 V		Н								
17355 V 38.14 7.03 45.17 68.2 -23.03 V										
Trequency (MHz)	11570	V	43.79		2.42	46.21		74	54	-7.79
Table Correction Factor (dB/w) Correction Correction	17355	V	38.14		7.03	45.17		68.2		-23.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V								
Frequency (MHz)				11ac	(VHT20) CH	1165: 5825 N	ИHz			
Margin (MHz)						Emissio	on Level			•
17475 H 38.11 7.41 45.52 68.222.68 H	(MHz)	H/V						(dBµV/m)	(dBµV/m)	(dB)
11650	11650	Н	44.69		2.41	47.1	/	74	54	-6.9
11650 V 44.97 2.41 47.38 74 54 -6.62 17475 V 40.07 7.41 47.48 68.220.72 V	17475	Н	38.11		7.41	45.52	'	68.2		-22.68
17475		Н								
17475					•		•	•		
V	11650	V	44.97	+6	2.41	47.38		74	54	-6.62
Frequency (MHz)	17475	V	40.07		7.41	47.48	9)	68.2		-20.72
Frequency (MHz) Ant. Pol. H/V Peak reading (dBμV) AV reading (dBμV) Correction Factor (dB/m) Emission Level Peak (dBμV/m) Peak limit (dBμV/m) AV limit (dBμV/m) Margin (dBμV/m) 11510 H 44.03 2.47 46.5 74 54 -7.5 17265 H 37.98 6.62 44.6 68.2 -23.6 H		V								
Frequency (MHz)				11ac	(VHT40) CH	1151: 5755 N	ИНz			
(NH2) H/V (dBμV) (dBμV) (dB/m) Peak (dBμV/m) AV (dBμV/m) (dBμV/m) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Emissio</td> <td>n Level</td> <td></td> <td></td> <td>_</td>						Emissio	n Level			_
11510 H 44.03 2.47 46.5 74 54 -7.5 17265 H 37.98 6.62 44.6 68.223.6 H	(MHz)	H/V						(dBµV/m)	(dBµV/m)	(dB)
17265 H 37.98 6.62 44.6 68.223.6 H 11510 V 43.11 2.47 45.58 74 54 -8.42 17265 V 36.92 6.62 43.54 68.224.66	11510	Н	44.03	,	2.47		, , ,	74	54	-7.5
H		/		-4.6			5)	i e		
11510 V 43.11 2.47 45.58 74 54 -8.42 17265 V 36.92 6.62 43.54 68.224.66					/					
17265 V 36.92 6.62 43.54 68.224.66										
17265 V 36.92 6.62 43.54 68.224.66	11510	V	43.11		2.47	45.58		74	54	-8.42
	/ //						(
		V	7			/				

			11ac	(VHT40) CH	1159: 5795 l	ИНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	Н	43.41		2.40	45.81		74	54	-8.19
17385	Н	37.36		7.15	44.51		68.2		-23.69
	H								
	(.G)		(.c)			5))		(G)	
11590	V	42.96		2.40	45.36	<i></i>	74	54	-8.64
17385	V	38.08		7.15	45.23		68.2		-22.97
	٧								
			11ac	(VHT80) CH	1155: 5775 l	ИНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11550	N H	44.22	-1/0	2.44	46.66	٠	74	54	-7.34
17325	Œ	38.88	-	6.89	45.77		68.2)	-22.43
	Η								
11550	V	44.35		2.44	46.79		74	54	-7.21
17325	V	38.98		6.89	45.87		68.2		-22.33
	V								
			11a	x(HE20) CH	149: 5745N	1Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	45.67		2.48	48.15		74	54	-5.85
17235	Н	37.98		6.50	44.48		68.2		-23.72
	Н								
						l	l		
11490	V	45.58	-4	2.48	48.06		74	54	-5.94
17235	V	38.44	-10	6.50	44.94)	68.2	(0)	-23.26
	V								
			11a	x(HE20) CH	157: 5785N	1Hz			
_		Peak	AV	Correction					
Frequency (MHz)	Ant. Pol. H/V	reading	reading	Factor	Peak	on Level AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
		(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)			
11570	Н	43.12	<u>-</u>	2.42	45.54	Z	74	54	-8.46
17355	(H)	36.25	-420	7.03	43.28	ひ`)	68.2	(¿G-`)	-24.92
						<i></i>			
-				1	1			•	
11570	V	44.42		2.42	46.84		74	54	-7.16
17355	V	38.01		7.03	45.04		68.2		-23.16
	V				/				1.1

Report No.: TCT241009E042 11ax(HE20) CH165: 5825MHz Peak ΑV Correction **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading reading Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11650 Н 43.36 2.41 -8.23 45.77 74 54 17475 Η 39.58 7.41 46.99 68.2 -21.21 ---Н ---11650 ٧ 43.1 -+-2.41 45.51 74 54 -8.4917475 39.54 7.41 68.2 -21.25 46.95 ٧ 11ax(HE40) CH151: 5755MHz ΑV Peak Correction Ant. Pol. **Emission Level** Peak limit **AV** limit Frequency Margin reading **Factor** reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) Peak ΑV (dB/m) (dBµV/m) (dBµV/m) 11510 Н 43.1 2.47 45.57 74 54 -8.4317265 Н 37.26 6.62 68.2 -24.32 43.88 Η ------٧ 11510 43.68 2.47 46.15 74 54 -7.8517265 36.5 6.62 ---43.12 ---68.2 ----25.08٧ 11ax(HE40) CH159: 5795MHz Peak ΑV Correction **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading Factor reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11590 Η 44.21 2.40 46.61 74 -7.39 54 17385 Η 37.33 7.15 44.48 68.2 ----23.72 Η 11590 ٧ 43.96 ---2.40 46.36 74 ---54 -7.64٧ 17385 38.14 7.15 45.29 68.2 -22.91 V ----------11ax(HE80) CH155: 5775MHz Peak ΑV Correction **Emission Level** Ant. Pol. Frequency Peak limit **AV limit** Margin reading reading Factor (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) ΑV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) $(dB\mu V/m)$ 11550 Η 44.58 2.44 47.02 ---74 54 -6.98 17325 H 38.09 44.98 -23.22 6.89 68.2 Н ---<u>---</u> ٧ 11550 44.84 2.44 47.28 74 54 -6.72---17325 ٧ 38.67 6.89 45.56 ---68.2 -22.64

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 52 of 270

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.9. Frequency Stability Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
Test Method:	ANSI C63.10: 2020
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. by Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. If The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	Pre-scan was performed at all models(11a,11n,11ac, 11ax), Antenna 1 and Antenna 2, the worst case (11ax, Antenna 1) was found and test data was shown in this report.

Test plots as follows:

Test mode:	802.11ax	(HE20)	Freque	ency(MHz):	5180
Tomporature (°C)	Temperature (°C) Voltage(V _{DC})		rement	Delta	Result
Temperature (C)	voitage(vbc)	Frequen	cy(MHz)	Frequency(H	lz)
45		517	9.96	-40000	PASS
35		517	9.96	-40000	PASS
25	7.6\/	517	9.96	-40000	PASS
15	7.6V	517	9.96	-40000	PASS
5		517	9.96	-40000	PASS
0		517	9.96	-40000	PASS
	6.46V	517	9.96	-40000	PASS
25	7.6V	517	9.96	-40000	PASS
	8.74V	517	9.96	-40000	PASS

Test mode:	802.11ax(HE20) Freque	ency(MHz):	5200
Temperature (°C)	Voltage(V _{DC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5199.96	-40000	PASS
35		5199.96	-40000	PASS
25	7.6V	5199.96	-40000	PASS
15	7.0V	5199.96	-40000	PASS
5		5199.96	-40000	PASS
0	(c)	5199.96	-40000	PASS
	6.46V	5199.96	-40000	PASS
25	7.6V	5199.96	-40000	PASS
	8.74V	5199.96	-40000	PASS

Test mode:	802.11ax	(HE20)	Freque	ency(MHz):	5240		
Temperature (°C)	Voltage(V _{DC})	Measure	Measurement		Result		
Temperature (C)	voltage(vbc)	Frequency	y(MHz)	Frequency(H	z) Result		
45		5239.	5239.96		5239.96 -40000		PASS
35		5239.	.96	-40000	PASS		
25	7.6V	5239.	5239.96		PASS		
15	7.00	5239.	96	-40000	PASS		
5		5239.	96	-40000	PASS		
0		5239.	.96	-40000	PASS		
	6.46V	5239.	5239.96 -40000		PASS		
25	7.6V	5239.	5239.96		PASS		
	8.74V	5239.	96	-40000	PASS		

Test mode:	802.11ax(HE20)	Freque	ency(MHz):		5745	
Temperature (°C)	Voltage(V _{DC})	Measu	rement	Delta		Result	
Temperature (C)	voltage(vbc)		cy(MHz)	Frequency(F	Hz)	Nesuit	
45		5744.96		-40000		PASS	-11
35		574	4.96	-40000	/	PASS	
25	7.6V	5744.96		-40000		PASS	
15	7.0V	574	4.96	-40000		PASS	
5		574	4.96	-40000		PASS	
0		574	4.96	-40000		PASS	
	6.46V	574	5744.96			PASS	
25	7.6V	574	4.96	-40000		PASS	~
$(C_{\mathcal{O}})$	8.74V	574	4.98	-20000)	PASS	C(C)

Test mode:	802.11ax(HE20) Frequ	ency(MHz):	5785
Temperature (°C)	Voltage(V _{DC})	Measurement	Delta	Result
' '	3 (-,	Frequency(MHz)	Frequency(Hz)	
45		5784.96	-40000	PASS
35		5784.96	-40000	PASS
25	7.6V	5784.96	-40000	PASS
15	7.00	5784.96	-40000	PASS
5		5784.96	-40000	PASS
0		5784.96	-40000	PASS
(,C)	6.46V	5784.96	-40000	PASS
25	7.6V	5784.98	-20000	PASS
	8.74V	5784.96	-40000	PASS

Test mode:	802.11ax(HE20) Frequ	ency(MHz):	5825
Temperature (°C)	Voltage(V _{DC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5824.96	-40000	PASS
35		5824.96	-40000	PASS
25	7.6V	5824.96	-40000	PASS
15	7.0V	5824.96	-40000	PASS
5		5824.96	-40000	PASS
0		5824.96	-40000	PASS
	6.46V	5824.96	-40000	PASS
25	7.6V	5824.96	-40000	PASS
	8.74V	5824.96	-40000	PASS

Test mode:	802.11ax(HE40)	Freque	ency(MHz):		5190	
Temperature (°C)	Voltage(V _{DC})	Measu	rement	Delta		Result	
Temperature (C)	voltage(vbc)		cy(MHz)	Frequency(F	Hz)	Nesuit	
45		5189.96		-40000		PASS	
35		518	9.96	-40000		PASS	
25	7.6V	5189	9.96	-40000		PASS	
15	7.0V	51	90	0		PASS	
5		518	9.96	-40000		PASS	
0		5189	9.96	-40000		PASS	
	6.46V	5189	9.96	-40000		PASS	
25	7.6V	518	9.96	-40000		PASS	
$(C_{\mathcal{O}})$	8.74V	5189	9.96	-40000		PASS	(C.)

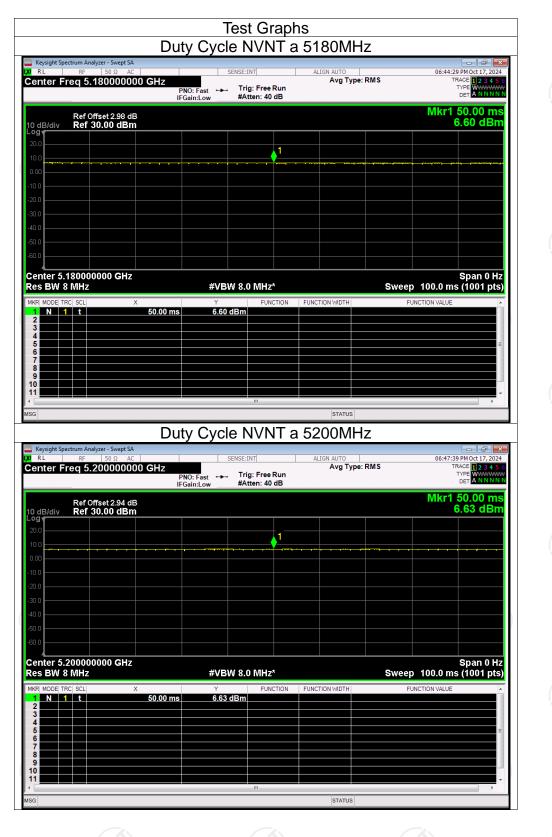
Test mode:	802.11ax	(HE40)	(HE40) Frequency(MHz):		5230
Temperature (°C)	Voltage(V _{DC})	Measu	rement	Delta	Result
Temperature (C)	voltage(vbc)	Frequen	cy(MHz)	Frequency(F	lz)
45		522	9.96	-40000	PASS
35		522	9.96	-40000	PASS
25	7.6V	522	9.96	-40000	PASS
15	7.60	522	9.96	-40000	PASS
5		522	9.96	-40000	PASS
0		522	9.96	-40000	PASS
(,c)	6.46V	522	9.96	-40000	PASS
25	7.6V	522	9.96	-40000	PASS
	8.74V	522	9.96	-40000	PASS

Test mode:	802.11ax(HE40) Frequ	ency(MHz):	5755
Temperature (°C)	Voltage(V _{DC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5754.96	-40000	PASS
35		5754.96	-40000	PASS
25	7.6V	5754.96	-40000	PASS
15	7.0V	5754.96	-40000	PASS
5		5754.96	-40000	PASS
0		5754.96	-40000	PASS
	6.46V	5754.96	-40000	PASS
25	7.6V	5754.96	-40000	PASS
	8.74V	5754.96	-40000	PASS

Test mode:	802.11ax(HE40)	Freque	ency(MHz):		5795	
Temperature (°C)	Voltage(V _{DC})	Measu	rement	Delta		Result	
Temperature (C)	voltage(vbc)		cy(MHz)	Frequency(F	Hz)	Nesuit	
45		5794.96		-40000		PASS	
35		579	4.96	-40000		PASS	
25	7.6V	5794.96		-40000		PASS	
15	7.6V	579	4.96	-40000		PASS	
5		579	4.96	-40000		PASS	
0		579	4.96	-40000		PASS	
	6.46V	579	4.96	-40000		PASS	
25	7.6V	579	4.96	-40000		PASS	7
$(C_{\mathcal{O}})$	8.74V	579	4.96	-40000)	PASS	(, C

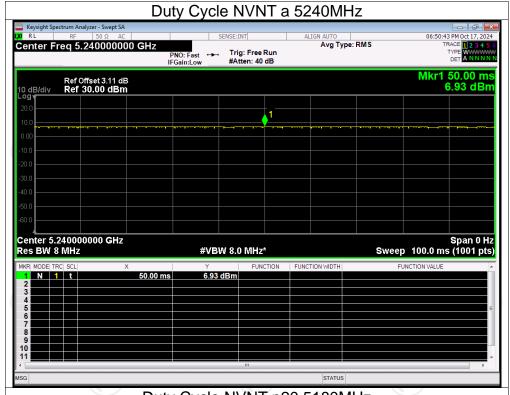
Test mode:	802.11ax	(HE80) Frequency(MHz):			5210		
Temperature (°C)	Voltage(V _{DC})	Measu	rement	Delta		Result	
Temperature (C)	voitage(vbc)	Frequen	cy(MHz)	Frequency(F	Hz)	Nesuit	
45		52	10	0		PASS	
35		52	10	0		PASS	
25	7.6V	52	10	0		PASS	
15	7.0V	52	10			PASS	
5		5209	9.92	-80000		PASS	
0 (0)	(g)	52	10	0		PASS	
	6.46V	52	10	0		PASS	
20	7.6V	52	5210 0			PASS	
	8.74V	5209	9.92	-80000		PASS	

Test mode:		802.11ax(l	HE80) Freque		ency(MHz):		5775	
Temperature (°C)		oltage(V _{DC})	Measu	rement	Delta		Result	
Temperature (C)	VC	ntage(VDC)	Frequen	cy(MHz)	Freque	ency(Hz)	Nesuit	
45			5774	4.92	-80	0000	PASS	
35			57	75		0	PASS	
25		7.6V	5774	4.92	-80000		PASS	
15		7.60	5774.92		-80000		PASS	
5			5774	4.92	-80	0000	PASS	
0			5774	4.92	-80	0000	PASS	
	6		5774	4.92	-80	0000	PASS	
20		7.6V	57	75	(C,)	0	PASS	
		8.74V	57	75		0	PASS	



Appendix A: Test Result of Conducted Test

Antenna 1


	Duty Cycle				
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)
NVNT	а	5180	Ant1	100	0
NVNT	а	5200	Ant1	100	0
NVNT	а	5240	Ant1	100	0
NVNT	n20	5180	Ant1	100	0
NVNT	n20	5200	Ant1	100	0
NVNT	n20	5240	Ant1	100	0
NVNT	n40	5190	Ant1	100	0
NVNT	n40	5230	Ant1	100	0
NVNT	ac20	5180	Ant1	_100	0
NVNT	ac20	5200	Ant1	100	0
NVNT	ac20	5240	Ant1	100	0
NVNT	ac40	5190	Ant1	100	0
NVNT	ac40	5230	Ant1	100	0
NVNT	ac80	5210	Ant1	98.51	0
NVNT	ax20	5180	Ant1	100	0
NVNT	ax20	5200	Ant1	100	0
NVNT	ax20	5240	Ant1	100	0
NVNT	ax40	5190	Ant1	100	0
NVNT	ax40	5230	Ant1	100	0
NVNT	ax80	5210	Ant1	98.31	0
NVNT	а	5745	Ant1	100	0
NVNT	а	5785	Ant1	100	0
NVNT	а	5825	Ant1	100	0
NVNT	n20	5745	Ant1	100	0
NVNT	n20	5785	Ant1	100	0
NVNT	n20	5825	Ant1	100	0
NVNT	n40	5755	Ant1	100	0
NVNT	n40	5795	Ant1	100	0
NVNT	ac20	5745	Ant1	100	0
NVNT	ac20	5785	Ant1	100	0
NVNT	ac20	5825	Ant1	100	0
NVNT	ac40	5755	Ant1	100	0
NVNT	ac40	5795	Ant1	100	0
NVNT	ac80	5775	Ant1	98.53	0
NVNT	ax20	5745	Ant1	100	0
NVNT	ax20	5785	Ant1	100	0
NVNT	ax20	5825	Ant1	100	0
NVNT	ax40	5755	Ant1	100	0
NVNT	ax40	5795	Ant1	100	0
NVNT	ax80	5775	Ant1	98.29	0

