| Product Name: Tablet | Report No: ITEZA202300349RF3 | |--|-------------------------------| | Product Model: R08, R08 Pro, R08S, R08T,
R08 Max, R08 Ultra | Security Classification: Open | | Version: V1.0 | Total Page: 80 | # **TIRT Testing Report** | Prepared By: | Checked By: | Approved By: | chnology Sea | |--------------|-------------|--------------|--------------| | Aaron Long | Stone Tang | Joky Wang | TRT E | | soven long | Stone Tang | Log Wany | Shenzhen S | # **FCC Radio Test Report** FCC ID: 2AX4YR08 This report concerns: Original Grant **Equipment** : Tablet **Brand Name** : DOOGEE Test Model : R08, R08 Pro, R08S, R08T, R08 Max, R08 Ultra Applicant : Shenzhen DOOGEE Hengtong Technology CO.,LTD Address : B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No. 22, Longhua New District, Shenzhen, China Manufacturer : Shenzhen DOOGEE Hengtong Technology CO.,LTD Address : B, 2/F, Building A4, Silicon Valley Power Digital Industrial Park, No. 22, Longhua New District, Shenzhen, China Date of Receipt : Nov. 07, 2023 **Date of Test** : Nov. 07, 2023~ Nov. 15, 2023 **Issued Date** : Nov. 20, 2023 Report Version : V1.0 Test Sample : Engineering Sample No.: 1000021948 Standard(s) : FCC CFR Title 47, Part 15, Subpart C FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013 - The test result referred exclusively to the presented test model /sample. - Without written approval of TIRT Inc. the test report shall not reproduced except in full. Lab: Beijing TIRT Technology Service Co.,Ltd Shenzhen Add: 104 Building C, Xinmingsheng Industrial Park No.132, Zhangge Old Village East Zone, Zhangge Community, Fucheng Street, Longhua District, Shenzhen, Guangdong, P. R. China TEL: +86-0755-27087573 | Table of Contents | Page | |--|------| | | | | REPORT ISSUED HISTORY | 5 | | 1 . SUMMARY OF TEST RESULTS | 6 | | 1.1 TEST FACILITY | 7 | | 1.2 MEASUREMENT UNCERTAINTY | 7 | | 1.3 TEST ENVIRONMENT CONDITIONS | 7 | | 2 . GENERAL INFORMATION | 8 | | 2.1 GENERAL DESCRIPTION OF EUT | 8 | | 2.2 DESCRIPTION OF TEST MODES | 9 | | 2.3 DUTY CYCLE | 11 | | 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 16 | | 2.5 SUPPORT UNITS | 16 | | 3 . AC POWER LINE CONDUCTED EMISSIONS | 17 | | 3.1 LIMIT | 17 | | 3.2 TEST PROCEDURE | 17 | | 3.3 DEVIATION FROM TEST STANDARD | 17 | | 3.4 TEST SETUP | 18 | | 3.5 EUT OPERATION CONDITIONS | 18 | | 3.6 TEST RESULTS | 18 | | 4 . RADIATED EMISSIONS | 19 | | 4.1 LIMIT | 19 | | 4.2 TEST PROCEDURE | 20 | | 4.3 DEVIATION FROM TEST STANDARD | 21 | | 4.4 TEST SETUP | 21 | | 4.5 EUT OPERATION CONDITIONS | 23 | | 4.6 TEST RESULTS - 9 KHZ TO 30 MHZ | 23 | | 4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ | 23 | | 4.8 TEST RESULTS - ABOVE 1000 MHZ | 23 | | 5 . BANDWIDTH | 24 | | 5.1 LIMIT | 24 | | 5.2 TEST PROCEDURE | 24 | | 5.3 DEVIATION FROM STANDARD | 24 | | 5.4 TEST SETUP | 24 | | 5.5 EUT OPERATION CONDITIONS | 24 | | 5.6 TEST RESULTS | 24 | | | | | Table of Contents | Page | |---|----------| | 6 . MAXIMUM OUTPUT POWER | 25 | | 6.1 LIMIT | 25 | | 6.2 TEST PROCEDURE | 25 | | 6.3 DEVIATION FROM STANDARD | 25 | | 6.4 TEST SETUP | 25 | | 6.5 EUT OPERATION CONDITIONS | 25 | | 6.6 TEST RESULTS | 25 | | 7. CONDUCTED SPURIOUS EMISSIONS | 26 | | 7.1 LIMIT | 26 | | 7.2 TEST PROCEDURE | 26 | | 7.3 DEVIATION FROM STANDARD | 26 | | 7.4 TEST SETUP | 26 | | 7.5 EUT OPERATION CONDITIONS | 26 | | 7.6 TEST RESULTS | 26 | | 8 . POWER SPECTRAL DENSITY | 27 | | 8.1 LIMIT | 27 | | 8.2 TEST PROCEDURE | 27 | | 8.3 DEVIATION FROM STANDARD | 27 | | 8.4 TEST SETUP | 27 | | 8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS | 27
27 | | | | | 9 . MEASUREMENT INSTRUMENTS LIST | 28 | | 10 . EUT TEST PHOTO | 29 | | APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS | 31 | | APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ | 33 | | APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ | 34 | | APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ | 36 | | APPENDIX E - BANDWIDTH | 45 | | APPENDIX F - MAXIMUM OUTPUT POWER | 54 | | APPENDIX G - CONDUCTED SPURIOUS EMISSIONS | 59 | | APPENDIX H - POWER SPECTRAL DENSITY | 76 | | | | # REPORT ISSUED HISTORY | Report No. | Version | Description | Issued Date | Note | |-------------------|---------|------------------|-------------|-------| | ITEZA202300349RF3 | V1.0 | Original Report. | 2023.11.20 | Valid | ## 1. SUMMARY OF TEST RESULTS Test procedures according to the technical standard(s): | FCC CFR Title 47, Part 15, Subpart C | | | | | | | |--------------------------------------|-----------------------------------|--|----------|---------|--|--| | Standard(s) Section | Test Item | Test Result | Judgment | Remark | | | | 15.207 | AC Power Line Conducted Emissions | APPENDIX A | PASS | | | | | 15.247(d)
15.205(a)
15.209(a) | Radiated Emissions | APPENDIX B
APPENDIX C
APPENDIX D | PASS | | | | | 15.247(a)(2) | Bandwidth | APPENDIX E | PASS | | | | | 15.247(b)(3) | Maximum Output Power | APPENDIX F | PASS | | | | | 15.247(d) | Conducted Spurious Emissions | APPENDIX G | PASS | | | | | 15.247(e) | Power Spectral Density | APPENDIX H | PASS | | | | | 15.203 | Antenna Requirement | | PASS | Note(2) | | | #### Note: - (1) "N/A" denotes test is not applicable in this test report.(2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203. ## 1.1 TEST FACILITY | Company: | Beijing TIRT Technology Service Co.,Ltd Shenzhen | |---|---| | Address: | 104 Building C, Xinmingsheng Industrial Park No.132, Zhangge Old Village East Zone, Zhangge Community, Fucheng Street, Longhua District, Shenzhen, Guangdong, P. R. China | | CNAS Registration Number: | CNAS L14158 | | A2LA Registration Number: | 6049.01 | | FCC Accredited Lab. Designation Number: | CN1366 | | FCC Test Firm Registration Number: | 820690 | | Telephone: | +86-0755-27087573 | ## 1.2 MEASUREMENT UNCERTAINTY ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The TIRT measurement uncertainty as below table: | Uncertainty | | |---|-------------| | Parameter | Uncertainty | | Occupied Channel Bandwidth | ±142.12 KHz | | RF power conducted | ±0.74 dB | | RF power radiated | ±3.25dB | | Spurious emissions, conducted | ±1.78dB | | | ±4.6dB | | Spurious emissions, radiated (1GHz~18GHz) | ±4.9dB | | Conduction Emissions(150kHz~30MHz) | ±3.1 dB | | Humidity | ±4.6% | | Temprature | ±0.7°C | Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification. ±1.2% ## 1.3 TEST ENVIRONMENT CONDITIONS Time | Test Item | Temperature | Humidity | Test Voltage | Tested By | |-------------------------------------|-------------|----------|--------------|------------| | AC Power Line Conducted Emissions | 25.1°C | 52% | AC 120V/60Hz | Stone Tang | | Radiated Emissions-9kHz to 30 MHz | 24.5°C | 50% | AC 120V/60Hz | Stone Tang | | Radiated Emissions-30MHz to 1000MHz | 24.2°C | 53% | AC 120V/60Hz | Stone Tang | | Radiated Emissions-Above 1000MHz | 26.0°C | 53% | AC 120V/60Hz | Stone Tang | | Bandwidth | 25.0°C | 56% | AC 120V/60Hz | Stone Tang | | Maximum Output Power | 24.9°C | 54% | AC 120V/60Hz | Stone Tang | | Conducted Spurious Emissions | 25.1°C | 62% | AC 120V/60Hz | Stone Tang | | Power Spectral Density | 26.0°C | 60% | AC 120V/60Hz | Stone Tang | ## 2. GENERAL INFORMATION ## 2.1 GENERAL DESCRIPTION OF EUT | Equipment | Tablet | |---------------------------|--| | Brand Name | DOOGEE | | Test Model | R08 | | Series Model | R08, R08 Pro, R08S, R08T, R08 Max, R08 Ultra | | Model Difference(s) | There is no difference except the name of the model | | Software Version | DOOGEE-R08-EEA-Android13.0-20231109 | | Hardware Version | WT_P101_8788_BJJ_MB_V0.1_20230920 | | Power Source | DC voltage supplied from AC/DC adapter. | | Power Rating | DC 3.8V from battery or DC 5V from adapter | | Operation Frequency | 2412 MHz ~ 2462 MHz | | Modulation Type | IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n:OFDM(64QAM, 16QAM, QPSK, BPSK) | | Bit Rate of Transmitter | IEEE 802.11b: 11/5.5/2/1 Mbps
IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps
IEEE 802.11n: up to 300 Mbps | | Maximum Output Peak Power | IEEE 802.11n20: 13.10 dBm (0.020417W) | #### Note: 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual. #### 2. Channel List: | | CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20)
CH03 - CH09 for IEEE 802.11n(HT40) | | | | | | | |-------------------------|--|----|------|----|------|----|--------------------| | | | | | | | | Frequency
(MHz) | | 01 | 2412 | 04 | 2427 | 07 | 2442 | 10 | 2457 | | 02 | 2417 | 05 | 2432 | 08 | 2447 | 11 | 2462 | | 03 2422 06 2437 09 2452 | | | | | | | | 3. Antenna Specification: | Ant. | Brand Model Name | | Antenna Type | Connector | Gain (dBi) | |------|------------------|-----|--------------|-----------|------------| | 1 | N/A | PT3 | PIFA | N/A | 1.1 | #### Note: - The antenna gain is provided by the manufacturer. The antenna is for testing purposes only. ## 2.2 DESCRIPTION OF TEST MODES The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode. | Pretest Mode | Description | |--------------|----------------------------------| | Mode 1 | TX B Mode Channel 01/06/11 | | Mode 2 | TX G Mode Channel 01/06/11 | | Mode 3 | TX N(HT20) Mode Channel 01/06/11 | | Mode 4 | TX N(HT40) Mode Channel 03/06/09 | | Mode 5 | TX G Mode Channel 01 | Following mode(s) was (were) found to be the worst case(s) and selected for the final test. | AC power line conducted emissions test | | | |--|--|--| | Final Test Mode Description | | | | Mode 5 TX G Mode Channel 01 | | | | Radiated emissions test - Below 1GHz | | |--------------------------------------|----------------------| | Final Test Mode | Description | | Mode 5 | TX G Mode Channel 01 | | Radiated emissions test- Above 1GHz | | |-------------------------------------|----------------------------------| | Final Test Mode | Description | | Mode 1 | TX B Mode Channel 01/06/11 | | Mode 2 | TX G Mode Channel 01/06/11 | | Mode 3 | TX N(HT20) Mode Channel 01/06/11 | | Mode 4 | TX N(HT40) Mode Channel 03/06/09 | | Conducted test | | | |-----------------|----------------------------------|--| | Final Test Mode | Description | | | Mode 1 | TX B Mode Channel 01/06/11 | | | Mode 2 | TX G Mode Channel 01/06/11 | | | Mode 3 | TX N(HT20) Mode Channel 01/06/11 | | | Mode 4 | TX N(HT40) Mode Channel 03/06/09 | | #### NOTE: - (1) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded. - (2) For radiated emission above 1 GHz test, the spurious points of 1GHz~18GHz and 18GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB. ## 2.3 DUTY CYCLE | TestMode | Antenna | Frequency[MHz] | Transmission Duration [ms] | Transmission
Period [ms] | Duty Cycle
[%] | |----------------|----------------|----------------|----------------------------|-----------------------------|-------------------| | | | 2412 | 10.39 | 10.73 | 96.83 | | 11B | Ant1 | 2437 | 19.00 | 19.00 | 100.00 | | | | 2462 | 10.39 | 10.80 | 96.20 | | | | 2412 | 5.10 | 5.42 | 94.10 | | 11G | 11G Ant1 | 2437 | 5.11 | 5.43 | 94.11 | | | | 2462 | 5.11 | 5.49 | 93.08 | | | | 2412 | 4.73 | 5.04 | 93.85 | | 11N20SISO | 11N20SISO Ant1 | 2437 | 1.62 | 1.99 | 81.41 | | | 2462 | 4.74 | 5.08 | 93.31 | | | 11N40SISO Ant1 | 2422 | 3.06 | 3.44 | 88.95 | | | | Ant1 | 2437 | 3.05 | 3.42 | 89.18 | | | 2452 | 4.57 | 4.89 | 93.46 | | #### TEST GRAPHS Report No.: ITEZA202300349RF3 ## 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED ## 2.5 SUPPORT UNITS | | Support Equipment | | | | |-----|-------------------|------------|------------|---------| | No. | Equipment | Brand Name | Model Name | Remarks | | 1 | / | / | / | / | #### 3. AC POWER LINE CONDUCTED EMISSIONS #### **3.1 LIMIT** | Fraguency of Emission (MHz) | Limit (dl | ΒμV) | |-----------------------------|------------|-----------| | Frequency of Emission (MHz) | Quasi-peak | Average | | 0.15 - 0.5 | 66 to 56* | 56 to 46* | | 0.5 - 5.0 | 56 | 46 | | 5.0 - 30.0 | 60 | 50 | #### NOTE: - (1) The tighter limit applies at the band edges. - (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range. #### 3.2 TEST PROCEDURE - a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument. - b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long. - c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m. - d. LISN at least 80 cm from nearest part of EUT chassis. - e. For the actual test configuration, please refer to the related Item -EUT Test Photos. The following table is the setting of the receiver: | Receiver Parameters | Setting | |---------------------|----------| | Start Frequency | 0.15 MHz | | Stop Frequency | 30 MHz | | IF Bandwidth | 9 kHz | #### 3.3 DEVIATION FROM TEST STANDARD No deviation. ## 3.4 TEST SETUP ## 3.5 EUT OPERATION CONDITIONS EUT was programmed to be in continuously transmitting mode. ## 3.6 TEST RESULTS Please refer to the APPENDIX A. ## 4. RADIATED EMISSIONS ## **4.1 LIMIT** In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed. ## LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz) | Frequency | Field Strength | Measurement Distance | |-------------|--------------------|----------------------| | (MHz) | (microvolts/meter) | (meters) | | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | ## LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz) | Frequency (MHz) | (dBuV/m at 3 m) | | |-------------------|-----------------|---------| | Frequency (Wiriz) | Peak | Average | | Above 1000 | 74 | 54 | ## NOTE: - (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C. - (2) The tighter limit applies at the band edges. - (3) Emission level (dBuV/m)=20log Emission level (uV/m). #### **4.2 TEST PROCEDURE** - a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz) - b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1 GHz) - c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function). - e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. - f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. - g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz) - h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz) - i. For the actual test configuration, please refer to the related Item -EUT Test Photos. The following table is the setting of the receiver: | Spectrum Parameters | Setting | |------------------------|---------------------------------| | Start ~ Stop Frequency | 9 kHz~150 kHz for RBW 200 Hz | | Start ~ Stop Frequency | 0.15 MHz~30 MHz for RBW 9 kHz | | Start ~ Stop Frequency | 30 MHz~1000 MHz for RBW 100 kHz | | Spectrum Parameters | Setting | | |-------------------------------|------------------------------|--| | Start Frequency | 1000 MHz | | | Stop Frequency | 10th carrier harmonic | | | RBW / VBW | 1 MHz / 3 MHz for PK value | | | (Emission in restricted band) | 1 MHz / 1/T Hz for AVG value | | | Receiver Parameters | Setting | | |------------------------|-------------------------------------|--| | Start ~ Stop Frequency | 9 kHz~90 kHz for PK/AVG detector | | | Start ~ Stop Frequency | 90 kHz~110 kHz for QP detector | | | Start ~ Stop Frequency | 110 kHz~490 kHz for PK/AVG detector | | | Start ~ Stop Frequency | 490 kHz~30 MHz for QP detector | | | Start ~ Stop Frequency | 30 MHz~1000 MHz for QP detector | | | Start ~ Stop Frequency | 1 GHz~26.5 GHz for PK/AVG detector | | ## **4.3 DEVIATION FROM TEST STANDARD** No deviation. ## 4.4 TEST SETUP ## 9 kHz to 30 MHz 30 MHz to 1 GHz Receiver ## 4.5 EUT OPERATION CONDITIONS The EUT was programmed to be in continuously transmitting mode. ## 4.6 TEST RESULTS - 9 KHZ TO 30 MHZ Please refer to the APPENDIX B. #### Remark: - (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB). - (2) Limit line = specific limits (dBuV) + distance extrapolation factor. ## 4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ Please refer to the APPENDIX C. #### 4.8 TEST RESULTS - ABOVE 1000 MHZ Please refer to the APPENDIX D. #### Remark: (1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test. ## 5. BANDWIDTH ## **5.1 LIMIT** | Section | Test Item | Limit | |------------------|------------------------|-----------------| | FCC 15.247(a)(2) | 6 dB Bandwidth | Minimum 500 kHz | | | 99% Emission Bandwidth | - | #### **5.2 TEST PROCEDURE** - a. The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below. - b. The following table is the setting of the spectrum analyzer: #### For 6 dB Bandwidth: | or o ab banawati. | | |---------------------|-------------------------| | Spectrum Parameters | Setting | | Span Frequency | > Measurement Bandwidth | | RBW | 100 kHz | | VBW | 300 kHz | | Detector | Peak | | Trace | Max Hold | | Sweep Time | Auto | #### For 99% Emission Bandwidth: | FOI 99 % Emission bandwidth. | | | | |------------------------------|---|--|--| | Spectrum Parameters | Setting | | | | Span Frequency | Between 1.5 times and 5.0 times the OBW | | | | RBW | 300 kHz For 20MHz | | | | KBW | 1 MHz For 40MHz | | | | VBW | 1 MHz For 20MHz | | | | | 3 MHz For 40MHz | | | | Detector | Peak | | | | Trace | Max Hold | | | | Sweep Time | Auto | | | ## 5.3 DEVIATION FROM STANDARD No deviation. ## **5.4 TEST SETUP** ## 5.5 EUT OPERATION CONDITIONS The EUT was programmed to be in continuously transmitting mode. ## **5.6 TEST RESULTS** Please refer to the APPENDIX E. ## 6. MAXIMUM OUTPUT POWER ## **6.1 LIMIT** | Section | Test Item | Limit | |------------------|----------------------|--------------------------| | FCC 15.247(b)(3) | Maximum Output Power | 1.0000 Watt or 30.00 dBm | #### **6.2 TEST PROCEDURE** - a. The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below. - b. The maximum conducted output power was performed in accordance with method 11.9.1.3 (for peak power) of ANSI C63.10-2013 and FCC KDB 662911 D01 v02r01 Multiple Transmitter Output. #### 6.3 DEVIATION FROM STANDARD No deviation. ## **6.4 TEST SETUP** ## **6.5 EUT OPERATION CONDITIONS** The EUT was programmed to be in continuously transmitting mode. #### **6.6 TEST RESULTS** Please refer to the APPENDIX F. #### 7. CONDUCTED SPURIOUS EMISSIONS #### **7.1 LIMIT** In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. #### 7.2 TEST PROCEDURE - a. The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below. - b. The following table is the setting of the spectrum analyzer: | Spectrum Parameters | Setting | |---------------------|----------| | Start Frequency | 30 MHz | | Stop Frequency | 26.5 GHz | | RBW | 100 kHz | | VBW | 300 kHz | | Detector | Peak | | Trace | Max Hold | | Sweep Time | Auto | #### 7.3 DEVIATION FROM STANDARD No deviation. #### 7.4 TEST SETUP #### 7.5 EUT OPERATION CONDITIONS The EUT was programmed to be in continuously transmitting mode. #### 7.6 TEST RESULTS Please refer to the APPENDIX G. ## 8. POWER SPECTRAL DENSITY ## 8.1 LIMIT | Section | Test Item | Limit | |---------------|------------------------|-------------------------| | FCC 15.247(e) | Power Spectral Density | 8 dBm
(in any 3 kHz) | #### **8.2 TEST PROCEDURE** - a. The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below. - b. The following table is the setting of the spectrum analyzer: | Spectrum Parameters | Setting | |---------------------|-----------------------------| | Span Frequency | 1.5 times the DTS bandwidth | | RBW | 3 kHz | | VBW | 10 kHz | | Detector | Peak | | Trace | Max Hold | | Sweep Time | Auto | ## 8.3 DEVIATION FROM STANDARD No deviation. ## 8.4 TEST SETUP #### **8.5 EUT OPERATION CONDITIONS** The EUT was programmed to be in continuously transmitting mode. ## 8.6 TEST RESULTS Please refer to the APPENDIX H. # 9. MEASUREMENT INSTRUMENTS LIST | No. | Name | Version number. | Туре | Manufacturer | Cal. Date | Due
Date | |------|---------------------------------------|-----------------|-------------------|--------------|------------|----------------| | 1 | Tonscend Test
System | V2.6.77 | RF Test
System | Tonscend | N/A | N/A | | RF 1 | Test System | | | | | | | No. | Equipment
Name | Serial No. | Туре | Manufacturer | Cal. Date | Due
Date | | 1 | Integrated
Tester | 120434 | CMW500 | R&S | 2023/01/05 | 2024/01/04 | | 2 | Spectrum
Analyzer | 101722 | FSV40 | R&S | 2022/07/21 | 2023/07/20 | | 3 | Mobile
Communications
DC Source | MY40003243 | E3642A | Agilent | 2021.06.22 | 2022.06.
21 | | 4 | VSG Vector
Signal Generator | MY56200458 | N5182B | Agilent | 2023/01/05 | 2024/01/04 | | 5 | PSG Analog
Signal Generator | 3610A02458 | 83752A | Agilent | 2022/07/21 | 2023/07/20 | | 6 | RF control unit | 20G8060288 | JS0806-2 | Tonscend | 2023/01/05 | 2024/01/04 | | 7 | EMI Receiver | / | ESIB 40 | R&S | 2023/01/05 | 2024/01/04 | | 8 | Integral Antenna | 01314 | VULB 9168 | Schwarzbeck | 2022/12/11 | 2023/12/10 | | 9 | Integral Antenna | RSM2991424 | HF907 | Schwarzbeck | 2022/12/11 | 2023/12/10 | | 10 | Preamplifier | 02017 | RP01A | Emtrace | 2023/01/05 | 2024/01/04 | | 11 | Preamplifier | 00143 | BBV9744 | Schwarzbeck | 2022/12/11 | 2023/12/10 | Remark: "N/A" denotes no model name, serial no. or calibration specified. ## 10. EUT TEST PHOTO ## **AC Power Line Conducted Emissions Test Photos** **Radiated Emissions Test Photos** 30 MHz to 1 GHz # **Radiated Emissions Test Photos** ## Above 1 GHz **Conducted Test Photos**