

EMC TEST REPORT

for

WACOM Co., Ltd.

2-510-1 Toyonodai, Otone-machi, Kitasaitama-gun, Saitama 349-1148, Japan

Equipment Under Test:

Digitizer

Model Name:

PTZ-1230 / PTZ-1231W

Category:

FCC Part 15 Sub.part B Class B Digital Device

FCC Part 15 Sub.part C

FCC ID:

HV4PTZL

Tokin Report No.:

T6E05X245

Date of Issue:

December 15, 2005

Corrected Test Report for Report No. T6E05X242.

Approved by

Mickey Fukuda

Manager, Tsukuba Testing Lab.
Tokin EMC Engineering Co., Ltd.

-- ATTENTION --

The test results in this report relate only to the following EUTs, and this report shall not be reproduced except in full, without the written approval of the laboratory. This test report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

NVLAP Lab. Code: 200221-0

Contents

		Page
1	DESCRIPTION OF DEVICE	3 ~ 4
2	TEST FACILITY	5
3	SUMMARY OF RESULTS	
	3.1 Electromagnetic Emission 3.2 Modification to The EUT.	5 5
4	TESTED SYSTEM DETAILS	
	 4.1 Peripherals and Others 4.2 Type of Used Cables Figure 4-1 System Configuration Diagram 	6 6 7
5	TECHNICAL COUNTERMEASURE	7
6	TEST RESULTS 6.1 RFI Voltage Measurement 6.1.1 Measurement Instrumentation Used 6.1.2 Measurement Procedure 6.1.3 Deviation from the specification 6.1.4 Measurement Uncertainty 6.1.5 Test Data	8 8 8 8 9 ~ 50
	6.2 RFI Field Strength Measurement 6.2.1 Measurement Instrumentation Used 6.2.2 Measurement Procedure 6.2.3 Deviation from the specification 6.2.4 Measurement Uncertainty 6.2.5 Test Data	51 52 52 52 52 53 ~ 94
	6.3 Minimum Margin 6.4 Sample Calculation	95 95
7	MEASUREMENT PHOTOS	
	Photo 7.1 Setup with the Maximized RFI Voltage Emission Level Setup with the RFI Voltage Emission Level Photo 7.2 Setup with the Maximized RFI Field Strength Emission Level	96 ~ 97 98 ~ 109 110 ~ 11
	Setup with the RFI Field Strength Emission Level	$112 \sim 123$

1 DESCRIPTION OF DEVICE

A) Kind of Equipment:

Digitizer

B) FCC ID:

HV4PTZL

C) Model Name:

(1) PTZ-1230

(2) PTZ-1231W

* The differences between 2 models are as follows.

N.C. 1.1NT	DEEZ 1000	DEC 100111
Model Name	PTZ-1230	PTZ-1231W
	Intuos3 12×12 / A4 Oversize tablet	Intuos3 12×19 / A3 Side tablet
Active area	W 304.8 mm × D 304.8 mm	W 508.0 mm × D 317.5 mm
	$(12.0 \times 12.0 \text{ in})$	$(20.0 \times 12.5 \text{ in})$
Physical size	W 439.5 mm × D 429.3 × H 37.0 mm	W 622.5 mm × D 429.3 mm × H 37.0 mm
	$(17.3 \times 16.9 \times 1.5 \text{ in})$	$(24.5 \times 16.9 \times 1.5 \text{ in})$
Weight	2.1 kg (4.62 lb), approximately	3.0 kg (6.60 lb), approximately

D) Serial No.:

None

E) Type of Sample Tested:

Pre-production

F) Dimension:

PTZ-1230:

Width 439.5 mm × Depth 429.3 mm × Height 37.0 mm

PTZ-1231W:

Width 622.5 mm × Depth 429.3 mm × Height 37.0 mm

G) High Frequency Used:

667kHz (Communication between a device and a tablet)

16MHz (CPU clock) 16MHz (Gatearray clock) 8MHz (Touch Pad ×2)

H) Rating Power Supply:

DC5V, 0.3A

I) Tested Power Supply:

DC5V (EUT)

1 phase AC120V, 60Hz (PC Power Supply)

J) Date of Manufacture:

October 2005

K) Manufacturer:

WACOM Co., Ltd.

2-510-1 Toyonodai, Otone-machi, Kitasaitama-gun,

Saitama 349-1148, Japan

Report processed by

Tested by

Karunasi Mahahima Engineer

Hiroko Nakamura 15/Dec./2005

L) Options:

Using Devices: ZP-130 (Ink Pen)

ZP-300E (Classic Pen) ZP-400E (Airbrush) ZP-501E (Grip Pen) ZP-600 (Marker Pen) ZC-100 (2D Mouse) ZC-210 (Lens Cursor)

- Digitizer has an USB I/F cable and is connected by PC and USB.
- As a device which can be used on digitizer, there are Ink pen, Classic pen, Airbrush, Grip pen, Marker pen, 2D mouse, and Lens cursor.
- The device of these cannot be simultaneously used on two or more and the same digitizer.

M)Description of Operating:

Device detection state

- * Test system (EUT + option):
 - 1. PTZ-1230 + ZP-130
 - 2. PTZ-1230 + ZP-300E
 - 3. PTZ-1230 + ZP-400E
 - 4. PTZ-1230 + ZP-501E
 - 5. PTZ-1230 + ZP-600
 - 6. PTZ-1230 + ZC-100
 - 7. PTZ-1230 + ZC-210
 - 8. PTZ-1231W + ZP-130
 - 9. PTZ-1231W + ZP-300E
 - 10. PTZ-1231W + ZP-400E
 - 11. PTZ-1231W + ZP-501E
 - 12. PTZ-1231W + ZP-600
 - 13. PTZ-1231W + ZC-100
 - 14. PTZ-1231W + ZC-210

RFI Voltage Measurement: PTZ-1230 + ZC-210

PTZ-1231W + ZC-210

RFI Field Strength Measurement: PTZ-1230 + ZC-100

PTZ-1231W + ZC-100

N) Date of Sample Received:

October 18, 2005

O) Tested Engineer:

Kazunori Maeshima

Report processed by

Tested by

Kazunori Maeshima Engineer

Hiroko Nakamura 15/Dec./2005

^{*} It was tested each test system (EUT + option) separately, and, all results of 1 to 14 are issued in this test report.

The worst results of each model were as follows.

2 TEST FACILITY

The open field test site and conducted measurement facility are used for these testing, where are located following address. This site's FCC Test firm registration number: 91021. This laboratory is accredited by NVLAP for NVLAP Lab. Code: 200221-0.

Tokin EMC Engineering Co., Ltd.
Tsukuba Testing Laboratory, Open Field Test Site No.6 and Shielded Room No.2

Address; 28-1, Kitahara, Hanashimashinden, Tsukuba-city, Ibaraki 305-0875, Japan

3 SUMMARY OF RESULTS

3.1 Electromagnetic Emission

RFI Voltage Measurement	PASS
RFI Field Strength Measure	ementPASS

Although the measured emissions indicate that the EUT complies with the required limits, some measurements are close to these limits. When the uncertainty of measurement is considered, there is some possibility that the EUT may not be compliant.

Test results are traceable to PTB, NMI and NPL.

3.2 Modifications to The EUT

This EUT was taken countermeasures.

Report processed by

Hiroko Nakamura 15/Dec./2005 Tested by

4 TESTED SYSTEM DETAILS

4.1 Peripherals and Others:

Description	Model Name	Serial No.	Manufacturer	FCC ID
Personal Computer	Compaq Presario SR1000	CNN5250F4B	Compaq	DoC
PS/2 Keyboard	RTH00	N250801506	Compaq	DoC
PS/2 Mouse	M-S69		Logitech	DoC
Modem	1414	9068681	ACEEX	IFAXDM1414
AC Adapter for Modem	AA-121A		OEM	
LCD Monitor	570STFT	CN15H1ER81 3690A	SAMSUNG	DoC
AC Adapter for LCD Monitor	PSCV360104A	C010801969	SAMSUNG	
Printer	S520	FATH02024	Canon	DoC

4.2 Type of Used Cables:

Description	Length	Type of shield	Model name	Manufacturer
PC AC Power Cable	2.0m	Non-shielded		
Monitor DC Power Cable	1.8m	Non-shielded		
Monitor AC Power Cable	3.0m	Non-shielded		
Monitor I/F Cable (Monitor ~ PC)	2.0m	Shielded	KCV-2	Sanwa Supply
Printer AC Power Cable	1.8m	Non-shielded		
Printer I/F Cable (Printer ~ PC)	2.0m	Shielded		inmac
Modem DC Power Cable	1.8m	Non-shielded		
Modem I/F Cable (Modem ~ PC)	1.8m	Shielded	C232N-J331	ELECOM
Keyboard Cable (Keyboard ~ PC)	1.8m	Shielded		
Mouse Cable (Mouse ~ PC)	1.8m	Shielded		
USB Cable (EUT ~ PC)	2.5m	Shielded		

Report processed by

O. Natago

Hiroko Nakamura 15/Dec./2005 Tested by

Figure 4-1 System Configuration Diagram

5 TECHINICAL COUNTERMEASURE

- 5-1 Metal shielded sheet was put under PCBA. PCBA and metal shielded sheet were connected with the copper spring.
- 5-2 Added two ferrite cores to the I/F cable (USB).
 - · "F6RH6.4 × 10 × 3.2" made by FERRICO ELECTRONICS (PAN YU) CO., LTD. in China
 - · "E04SR130525A" made by SEIWA ELECTRIC MFG. CO., LTD. in Japan
- 5-3 Control PCBA was covered with the aluminum film.

Report processed by

Tested by

Hiroko Nakamura 15/Dec./2005

6 TEST RESULTS

6.1 RFI Voltage Measurement

6.1.1 Measurement Instrumentation Used

(model/serial no./manufacturer/Tokin control no./last calibration/next calibration)

Field strength meter (FCKL1528/1528124/Schwarzbeck/RE039/01 Jul.'05/Jun.'06)

L.I.S.N. (KNW-407/8-578-14/Kyoritsu/LI012/25 Oct.'05/Oct.'06)

2nd L.I.S.N. (PN-T22/9406/Tokin/LI046/25 Oct. '05/Oct.'06)

Spectrum analyzer (E4401B/MY41440237/Agilent technologies/SP051/30 Jun. '05/Jun. '06)

Coaxial cable...... (RG-55U/---/-DK194/27 May'05/May'06)

Software (Software Data Calculation Software TEPTO 2.00/---/AES/---/---)

Shielded room (Tsukuba No.2-S/---/Tokin/SA017/---/--)

The measurement instrumentation used, are calibrated according to Quality Manual.

6.1.2 Measurement Procedure

The power line conducted interference measurements were performed according to ANSI C63.4-2003 in a shielded enclosure No.2 with peripherals placed on a table, 0.8m high over a metal floor. It was located distance 0.4m away from the shielded enclosure wall. There were no deviations from the standard. The standard limit was adopted CISPR Pub.22:1997 Class B.

The EUT was plugged into the LISN and the frequency range of interest scanned.

Reported are maximized emission levels.

These tests were performed at 9kHz of 6dB bandwidth.

Test results were obtained from following equation.

Result $(dB\mu V)$ = Level $(dB\mu V)$ + Total Factor (dB)

<Decision to Pass or Fail>

To judge pass or fail of the test result, it was added "Uncertainty" to the obtained data and then subtracted it from the limit value. If test result will be judged that Uncertainty is considered, there will be possibility of Fail.

6.1.3 Deviation from the specification: None

6.1.4 Measurement Uncertainty

Measurement uncertainty is ± 2.18 dB(k=2) and it had estimated for decision to PASS or FAIL.

Report processed by

Tested by

Kazunori Maeshima, Engineer

Hiroko Nakamura 15/Dec./2005

6.1.5 Test Data

Table 6.1-1a RFI Voltage Measurement Results (Q-Peak Measurement)

Model Name:

PTZ-1230 + ZP-130

Operating mode: Device detection state

Date of measurement: November 2, 2005

Test procedure:

ANSI C63.4-2003

Temperature:

23 degree C

Test condition:

Power input 1phase AC120V

Humidity:

57 %

n	~	5	T 2
U	U	J	V

	Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
N-E	0.150	51.0	0.0	51.0	66.0	15.0
IN-IE	2.205	32.5	0.0	32.6	56.0	23.4
	6.000	41.0	0.3	41.3	60.0	18.7
	8.668	40.5	0.4	40.9	60.0	19.1
	15.337	51.5	0.4	51.9	60.0	8.1
	16.669	52.0	0.5	52.5	60.0	7.5
L1-E	0.150	51.0	0.0	51.0	66.0	15.0
	2.205	34.0	0.3	34.3	56.0	21.7
	6.000	41.0	0.5	41.5	6 <mark>0.0</mark>	18.5
	8.668	41.0	0.6	41.6	60.0	18.4
	15.337	51.0	0.7	51.7	60.0	8.3
	16.669	52.0	0.7	52.7	60.0	7.3

Report processed by

Hiroko Nakamura 15/Dec./2005

Table 6.1-1b RFI Voltage Measurement Results (Average Measurement)

Model Name:

PTZ-1230 + ZP-130

Test procedure:

Test condition:

Operating mode: Device detection state

Power input 1phase AC120V

Date of measurement: November 2, 2005

Temperature: ANSI C63.4-2003

23 degree C

Humidity:

57 %

DC5V

	Frequency (MHz)	Level (dBμV)	Total Factor(dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
N E	0.150	51.0	0.0	51 0	<i>5</i> (0)	5.0
N-E	0.150	51.0	0.0	51.0	56.0	5.0
	2.205	30.0	0.1	30.1	46.0	15.9
	6.000	35.0	0.3	35.3	50.0	14.7
	8.668	35.0	0.4	35.4	50.0	14.6
	15.337	45.0	0.4	45.4	50.0	4.6
	16.669	46.0	0.5	46.5	50.0	3.5
L1-E	0.150	50.0	0.0	50.0	56.0	6.0
	2.205	31.0	0.3	31.3	46.0	14.7
	6.000	35.0	0.5	35.5	50.0	14.5
	8.668	35.0	0.6	35.6	50.0	14.4
	15.337	46.0	0.7	46.7	50.0	3.3
	16.669	47.0	0.7	47.7	50.0	2.3

Report processed by

Hiroko Nakamura 15/Dec./2005

<Q-Peak Measurement>

<Average Measurement>

Figure 6.1-1 RFI Voltage Measurement Results

Report processed by

Tested by

Kazunori M

azunori Maeshima Engineer

Hiroko Nakamura 15/Dec./2005

Table 6.1-2a RFI Voltage Measurement Results (Q-Peak Measurement)

Model Name:

Test procedure:

Test condition:

PTZ-1230 + ZP-300E

Operating mode: Device detection state

Date of measurement: November 2, 2005

Temperature: ANSI C63.4-2003

23 degree C

Power input 1phase AC120V Humidity:

57 %

DC5V

	Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBμV)	Limit (dBµV)	Margin (dB)
NE	0.150	51.0	0.0	5 1.0	(()	15.0
N-E	0.150 2.205	51.0	0.0	51.0	66,0	15.0
		34.0	0.1	34.1	56.0	21.9
	6.000	41.0	0.3	41.3	60.0	18.7
	8.668	40.5	0.4	40.9	60.0	19.1
	15.337	52.0	0.4	52.4	60.0	7.6
	16.669	53.0	0.5	53.5	60.0	6.5
L1-E	0.150	51.0	0.0	51.0	66.0	15.0
	2.205	34.0	0.3	34.3	56.0	21.7
	6.000	41.0	0.5	41.5	60.0	18.5
	8,668	41.0	0.6	41.6	60.0	18.4
	15.337	51.5	0.7	52,2	60.0	7.8
	16.669	52.0	0.7	52.7	60.0	7.3

Report processed by

Hiroko Nakamura 15/Dec./2005

Table 6.1-2b RFI Voltage Measurement Results (Average Measurement)

Model Name:

PTZ-1230 + ZP-300E

Operating mode: Device detection state

Test procedure: Test condition:

ANSI C63.4-2003

Power input 1phase AC120V

Date of measurement: November 2, 2005

Temperature:

23 degree C

Humidity:

57%

DCSV					
Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
0.150	51. 0	0.0	-1.0		
					5.0
2.205	31.0	0.1	3 1.1	46.0	14.9
6. <mark>00</mark> 0	35.0	0.3	35.3	50.0	14.7
8.668	35.0	0.4	35.4	50.0	14.6
15.337	45.0	0.4	45.4	50.0	4.6
16.669	47.0	0.5	47.5	50.0	2.5
0 150	50.0	0.0	50.0	56.0	6.0
					14.7
					14.5
					14.4
					3.3
16.669	47.5	0.7	48.2	50.0	1.8
	0.150 2.205 6.000 8.668 15.337 16.669 0.150 2.205 6.000 8.668 15.337	(MHz) (dBμV) 0.150 51.0 2.205 31.0 6.000 35.0 8.668 35.0 15.337 45.0 16.669 47.0 0.150 50.0 2.205 31.0 6.000 35.0 8.668 35.0 15.337 46.0	Frequency (MHz) Level (dBμV) Total Factor(dB) 0.150 51.0 0.0 2.205 31.0 0.1 6.000 35.0 0.3 8.668 35.0 0.4 15.337 45.0 0.4 16.669 47.0 0.5 0.150 50.0 0.0 2.205 31.0 0.3 6.000 35.0 0.5 8.668 35.0 0.6 15.337 46.0 0.7	Frequency (MHz) Level (dBμV) Total Factor(dB) Result (dBμV) 0.150 51.0 0.0 51.0 2.205 31.0 0.1 31.1 6.000 35.0 0.3 35.3 8.668 35.0 0.4 35.4 15.337 45.0 0.4 45.4 16.669 47.0 0.5 47.5 0.150 50.0 0.0 50.0 2.205 31.0 0.3 31.3 6.000 35.0 0.5 35.5 8.668 35.0 0.6 35.6 15.337 46.0 0.7 46.7	Frequency (MHz) Level (dBμV) Total Factor(dB) Result (dBμV) Limit (dBμV) 0.150 51.0 0.0 51.0 56.0 2.205 31.0 0.1 31.1 46.0 6.000 35.0 0.3 35.3 50.0 8.668 35.0 0.4 35.4 50.0 15.337 45.0 0.4 45.4 50.0 16.669 47.0 0.5 47.5 50.0 0.150 50.0 0.0 50.0 56.0 2.205 31.0 0.3 31.3 46.0 6.000 35.0 0.5 35.5 50.0 8.668 35.0 0.6 35.6 50.0 15.337 46.0 0.7 46.7 50.0

Report processed by

Hiroko Nakamura 15/Dec./2005

<Q-Peak Measurement>

<Average Measurement>

Figure 6.1-2 RFI Voltage Measurement Results

Report processed by

Hiroko Nakamura 15/Dec./2005 Tested by

Table 6.1-3a RFI Voltage Measurement Results (Q-Peak Measurement)

Model Name:

PTZ-1230 + ZP-400E

Operating mode: Device detection state

Power input 1phase AC120V

Test procedure: Test condition:

ANSI C63.4-2003

Date of measurement: November 2, 2005

Temperature:

23 degree C

Humidity:

57 %

DC5V

	Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBµV)	$\begin{array}{c} Limit\\ (dB\mu V) \end{array}$	Margin (dB)
N-E	0.150	51.0	0.0	51.0	66.0	15.0
11 12	2.205	32.5	0.1	32.6	56.0	23.4
	6.000	41.0	0.3	41.3	60.0	18.7
	8.668	40.5	0.4	40.9	60.0	19.1
	15.337	52.0	0.4	52.4	60.0	7.6
	16.669	53.0	0.5	53.5	60.0	6.5
					·	
L1-E	0.150	51.0	0.0	51.0	66.0	15.0
	2.205	34.0	0.3	34.3	56.0	21.7
	6.000	41.0	0.5	41.5	60.0	18.5
	8.668	41.0	0.6	41.6	60.0	18.4
	15.337	51.5	0.7	52.2	60.0	7.8
	16.669	52.0	0.7	52.7	60.0	7.3

Report processed by

Hiroko Nakamura 15/Dec./2005

Table 6.1-3b RFI Voltage Measurement Results (Average Measurement)

Model Name:

PTZ-1230 + ZP-400E

Operating mode: Device detection state

Test procedure: Test condition:

ANSI C63.4-2003

Power input 1phase AC120V

Date of measurement: November 2, 2005

Temperature:

23 degree C

Humidity:

57 %

DC5	V

	Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
N-E	0.150	51.0	0.0	51 .0	56.0	5.0
	2.205	30.0	0.1	30.1	46.0	15.9
	6,000	36.0	0.3	36.3	50.0	13.7
	8.668	35.0	0.4	35 <u>.</u> 4	50.0	14.6
	15.337	45.0	0.4	45.4	50.0	4.6
	16.669	47.0	0.5	47.5	50.0	2.5
L1-E	0.150	50.0	0.0	50.0	56 .0	6.0
	2.205	31.0	0.3	31.3	46.0	14.7
	6.000	36.0	0.5	36.5	50.0	13.5
	8.668	35.0	0.6	35.6	50.0	14.4
	15.337	46.0	0.7	46.7	50.0	3.3
	16.669	47.5	0.7	48.2	50.0	1.8

Report processed by

Hiroko Nakamura 15/Dec./2005

<Q-Peak Measurement>

<Average Measurement>

Figure 6.1-3 RFI Voltage Measurement Results

Report processed by

15/Dec./2005

Hiroko Nakamura

Kazunori Maeshima, Engineer

Table 6.1-4a RFI Voltage Measurement Results (Q-Peak Measurement)

Model Name:

PTZ-1230 + ZP-501E

Operating mode: Device detection state

Test procedure: Test condition:

ANSI C63.4-2003

Power input 1phase AC120V

Date of measurement: November 2, 2005

Temperature:

23 degree C

Humidity:

57%

7		~	_	*	7
- 1	١,	•	•		1
		L .	- 7	٠,	•

	Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
N-E	<mark>0.15</mark> 0	51.0	0.0	51.0	66.0	15.0
	0.440	31.0	0.0	31.0	57.1	26.1
	2.205	32.5	0.1	32.6	56.0	23.4
	6.000	41.5	0.3	41.8	60.0	18.2
	1 <mark>5.</mark> 337	51.5	0.4	51.9	60.0	8.1
	16.669	53.0	0.5	53.5	60.0	6.5
L1-E	0.150	51.0	0.0	51.0	66.0	15.0
	0.440	35.0	0.1	35.1	57 .1	22.0
	2,205	34.0	0.3	34.3	56.0	21.7
	6,000	41.5	0.5	42.0	60.0	18.0
	15.337	52.0	0.7	52.7	60.0	7.3
	16.669	52.0	0.7	52:7	60.0	7.3

Report processed by

Hiroko Nakamura 15/Dec./2005

Tested by

RFI Voltage Measurement Results (Average Measurement) **Table 6.1-4b**

Model Name:

PTZ-1230 + ZP-501E

Test procedure:

Test condition:

Operating mode: Device detection state

ANSI C63,4-2003

Power input 1phase AC120V

Date of measurement: November 2, 2005

Temperature:

23 degree C

Humidity:

57 %

DC5V

	DC3V						
	Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	
N-E	0.150	51.0	0.0	51.0	56.0	5.0	
14-12	0.130	30.0	0.0	30.0	47.1	5.0 17.1	
	2.205	30.0	0.1	30.0	46.0	15.9	
	6.000	36.0	0.3	36.3	50.0	13.7	
	15.337	45.0	0.4	45.4	50.0	4.6	
	16.669	47.0	0.5	47.5	50.0	2.5	
L1-E	0.150	51.0	0.0	51.0	56.0	5.0	
DI-E	0.440	35.0	0.1	35.1	47.1	12.0	
	2.205	31.0	0.3	31.3	46.0	14.7	
	6.000	36.0	0.5	36.5	50.0	13.5	
	15.337	<mark>46.0</mark>	0.7	46.7	50.0	3.3	
	16.669	47.0	0.7	4 <mark>7.7</mark>	50.0	2.3	

Report processed by

Hiroko Nakamura 15/Dec./2005

Tested by

< Q-Peak Measurement>

Figure 6.1-4 RFI Voltage Measurement Results

<Average Measurement>

Hiroko Nakamura 15/Dec./2005

Report processed by

Tested by

23 degree C

57 %

Date of measurement: November 2, 2005

Table 6.1-5a RFI Voltage Measurement Results (Q-Peak Measurement)

Model Name:

PTZ-1230 + ZP-600

Operating mode: Device detection state

Test procedure: Test condition:

ANSI C63.4-2003

Temperature:

Power input 1phase AC120V Humidity:

	Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
N-E	0.150	51.0	0.0	51.0	66.0	15.0
M-15	2.205	32.5	0.0	51.0 32.6	66.0 56.0	15.0 23.4
	6.000	41.0	0.3	41.3	60.0	18.7
	8.668	40.0	0.4	40.4	60.0	19.6
	15.337	51,5	0.4	51.9	60.0	8.1
	16.669	52.0	0.5	52.5	60.0	7.5
 L1-E	0.150	51.0	0.0	51.0	66.0	15.0
	2.205	34.0	0.3	34.3	56.0	21.7
	6.000	41.0	0.5	41.5	60.0	18.5
	8.668	40.0	0.6	40.6	60.0	19.4
	15.337	51.0	0.7	51.7	60.0	8.3
	16.669	52.0	0.7	52.7	60.0	7.3

Report processed by

Hiroko Nakamura 15/Dec./2005

Tested by

Table 6.1-5b RFI Voltage Measurement Results (Average Measurement)

Model Name:

PTZ-1230 + ZP-600

Test procedure:

Test condition:

Operating mode: Device detection state

ANSI C63.4-2003

Power input 1phase AC120V

Date of measurement: November 2, 2005

Temperature:

23 degree C

Humidity:

57%

DC5V

	DC3V					
	Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
N-E	0.150	51.0	0.0	51.0	56.0	5.0
N-L	2.205	30.0	0.0	30.1	46.0	15.9
	6.000	35.0	0.3	35.3	50.0	14.7
	8.668	34.0	0.4	34.4	50.0	15.6
	15.337	45.0	0.4	45.4	50.0	4.6
	16.669	46.0	0.5	46.5	50.0	3.5
L1-E	0.150	50.0	0.0	50.0	56.0	6.0
	2.205	31.0	0.3	31.3	46.0	14.7
	6.000	35.0	0.5	35.5	50.0	14.5
	8.668	34.5	0.6	35.1	50.0	14.9
	15.337	46.0	0.7	46.7	50.0	3.3
	16.669	47.0	0.7	47.7	50.0	2.3

Report processed by

Hiroko Nakamura 15/Dec./2005

Tested by

< Q-Peak Measurement>

<Average Measurement>

Figure 6.1-5 RFI Voltage Measurement Results

Report processed by

Tested by

Hiroko Nakamura 15/Dec./2005

Table 6.1-6a RFI Voltage Measurement Results (Q-Peak Measurement)

Model Name:

PTZ-1230 + ZC-100

Operating mode: Device detection state

Test procedure: Test condition:

ANSI C63.4-2003

Power input 1phase AC120V

Date of measurement: November 2, 2005

Temperature:

23 degree C

Humidity:

57%

	~	_	T	7
- 1)		7	١	/

	Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
N. F.	0.150	71.0	0.0	#1.0		1.7.0
N-E	0.150	51.0	0.0	51.0	66.0	15.0
	0.658	27.0	0.0	27.0	56.0	29.0
	2.205	32.5	0.1	3 <mark>2.</mark> 6	56 .0	23.4
	6.000	40.0	0.3	40.3	60.0	19.7
	15.337	45.0	0.4	45.4	60.0	14.6
	16.669	52.0	0.5	52.5	60.0	7.5
L1-E	0.150	51.0	0.0	51.0	66.0	15.0
	0.658	31.0	0.1	31.1	56.0	24.9
	2.205	34.0	0.3	34.3	56.0	21.7
	6.000	40.0	0.5	40.5	60.0	19.5
	15.337	45.0	0.7	45.7	60.0	14.3
	16.669	52.0	0.7	52.7	60.0	7.3

Report processed by

Hiroko Nakamura 15/Dec./2005

Tested by

Table 6.1-6b RFI Voltage Measurement Results (Average Measurement)

Model Name:

PTZ-1230 + ZC-100

Operating mode: Device detection state

Test procedure: Test condition:

ANSI C63.4-2003

Power input 1phase AC120V

Date of measurement: November 2, 2005

Temperature:

23 degree C

Humidity:

57 %

	Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
NI E	0.150	7 0.0	0.0	70.0		
N-E	0.150	50.0	0.0	50.0	56.0	6.0
	0.6 <mark>58</mark>	26.0	0.0	26.0	46.0	20.0
	2.205	30.0	0.1	30.1	46.0	15.9
	6.000	34.5	0.3	34.8	50.0	15.2
	15.337	39.0	0.4	39.4	50.0	10.6
	16.669	47.0	0.5	47.5	50.0	2.5
L1-E	0.150	50.0	0.0	50.0	56.0	6.0
	0.658	30.5	0.1	30.6	46.0	15.4
	2.205	31.0	0.3	31.3	46.0	14.7
	6.000	34.0	0.5	34.5	50.0	15.5
	15.337	39.0	0.7	39.7	50.0	10.3
	16.669	47.0	0.7	47.7	50.0	2.3

Report processed by

Hiroko Nakamura 15/Dec./2005

Tested by

< Q-Peak Measurement>

Figure 6.1-6 RFI Voltage Measurement Results

Report processed by

Tested by

Hiroko Nakamura 15/Dec./2005

Table 6.1-7a RFI Voltage Measurement Results (Q-Peak Measurement)

Model Name:

PTZ-1230 + ZC-210

Test condition:

Operating mode: Device detection state

Test procedure:

Date of measurement: November 2, 2005

ANSI C63.4-2003

Temperature:

23 degree C

Power input 1phase AC120V

Humidity: 57 %

	Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
N-E	0.150	51.0	0.0	51.0	6 <mark>6.0</mark>	15.0
	0.800	27.0	0.0	27.0	56.0	29.0
	2.205	32.5	0.1	32.6	56.0	23.4
5 <u> </u>	6.000	40.5	0.3	40.8	60.0	19.2
	14.000	40.0	0.4	40.4	60.0	19.6
	16.669	52.0	0.5	52.5	60.0	7.5
r 4 15	0.150	51.0	0.0	51.0		1.5.0
L1-E	0.150	51.0	0.0	51.0	66.0	15.0
	0.800	28.5	0.1	28.6	56.0	27.4
	2.205	34.0	0.3	34.3	56.0	21.7
	6.000	41.0	0.5	41.5	60.0	18.5
	14.000	40.0	0.7	40.7	60.0	19.3
	16.669	53.0	0.7	53.7	60.0	6.3

Report processed by

Hiroko Nakamura 15/Dec./2005

Tested by

Table 6.1-7b RFI Voltage Measurement Results (Average Measurement)

Model Name:

PTZ-1230 + ZC-210

Test procedure:

Test condition:

Operating mode: Device detection state

ANSI C63.4-2003

Power input 1phase AC120V

Date of measurement: November 2, 2005

Temperature:

23 degree C

Humidity:

57 %

	~	_	*	7
11	•	\neg	٦.	1

DC3V						
Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	
0.150	71. 0	0.0	51.0	7. C. O.		
0.800	26.0	0.0	26.0	46.0	20.0	
2.205	30.0	0.1	30.1	46.0	15.9	
6.000	35.5	0.3	35.8	50.0	14.2	
14.000	34.0	0.4	34.4	50.0	15.6	
16.669	47.0	0.5	47.5	50.0	2.5	
0.150	50.0	0.0	50.0	56.0	6.0	
0.800	28.0	0.1	28.1	46.0		
2.205	31.0	0.3	31.3	46.0	14.7	
6.000	35.5	0.5	36.0	50.0	14.0	
14.000	34.0	0.7	34.7	50.0	15.3	
16,669	48.0	0.7	48.7	50.0	1.3	
	0.150 0.800 2.205 6.000 14.000 16.669 0.150 0.800 2.205 6.000 14.000	Frequency (MHz) Level (dBμV) 0.150 51.0 0.800 26.0 2.205 30.0 6.000 35.5 14.000 34.0 16.669 47.0 0.150 50.0 0.800 28.0 2.205 31.0 6.000 35.5 14.000 34.0	Frequency (MHz) Level (dBμV) Total Factor(dB) 0.150 51.0 0.0 0.800 26.0 0.0 2.205 30.0 0.1 6.000 35.5 0.3 14.000 34.0 0.4 16.669 47.0 0.5 0.150 50.0 0.0 0.800 28.0 0.1 2.205 31.0 0.3 6.000 35.5 0.5 14.000 34.0 0.7	Frequency (MHz) Level (dBμV) Total Factor(dB) Result (dBμV) 0.150 51.0 0.0 51.0 0.800 26.0 0.0 26.0 2.205 30.0 0.1 30.1 6.000 35.5 0.3 35.8 14.000 34.0 0.4 34.4 16.669 47.0 0.5 47.5 0.150 50.0 0.0 50.0 0.800 28.0 0.1 28.1 2.205 31.0 0.3 31.3 6.000 35.5 0.5 36.0 14.000 34.0 0.7 34.7	Frequency (MHz) Level (dBμV) Total Factor(dB) Result (dBμV) Limit (dBμV) 0.150 51.0 0.0 51.0 56.0 0.800 26.0 0.0 26.0 46.0 2.205 30.0 0.1 30.1 46.0 6.000 35.5 0.3 35.8 50.0 14.000 34.0 0.4 34.4 50.0 16.669 47.0 0.5 47.5 50.0 0.800 28.0 0.1 28.1 46.0 2.205 31.0 0.3 31.3 46.0 6.000 35.5 0.5 36.0 50.0 14.000 34.0 0.7 34.7 50.0	Total Result Limit (dBμV) (dμV) (d

Report processed by

Hiroko Nakamura 15/Dec./2005

Tested by

LEVEL [dB μV]

90

80

70

60

40

30

8

8

8

8

8

8

8

8

8

10

10

<Q-Peak Measurement>

<Average Measurement>

FREQUENCY [MHz]

Figure 6.1-7 RFI Voltage Measurement Results

1

Report processed by

0

0.15

diska Nakamura

Hiroko Nakamura 15/Dec./2005 Tested by

Kazunori Maeshima Engineer

10

30

Table 6.1-8a RFI Voltage Measurement Results (Q-Peak Measurement)

Model Name:

PTZ-1231W + ZP-130

Operating mode: Device detection state

Test procedure: Test condition:

ANSI C63.4-2003

Power input 1phase AC120V

Date of measurement: November 2, 2005

Temperature:

23 degree C

Humidity:

57 %

	DC5V	7				
	Frequency (MHz)	Level (dBµV)	Total Factor(dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
N-E	0.150	51.0	0.0	51.0	66.0	15.0
N-E	4.668	43.0	0.0	43.3	56.0	12.7
	7.334	45.0	0.3	45.3	60.0	14.7
	8.667	48.0	0.4	48.4	60.0	11.6
	14.000	48.0	0.4	48.4	60.0	11.6
	15.335	46.0	0.4	46.4	60.0	13.6
		E		_		·
L1-E	0.150	51.0	0.0	51.0	66.0	15.0
	4.668	43.0	0.5	43.5	56.0	12.5
	7.334	45.0	0.5	45.5	60.0	14.5
	8,667	48.0	0.6	48.6	60.0	11.4
	14.000	49.0	0.7	4 9.7	60.0	10.3
	15.335	46.0	0.7	46.7	60.0	13.3

Report processed by

Hiroko Nakamura 15/Dec./2005

Tested by