

RADIO TEST REPORT FCC ID: 2AKDT-MNP1095

Product: Magic Note Pad Trade Mark: XPPen Model No.: MNP1095 Family Model: MNP1091, MNP1092, MNP1093 Report No.: S24110802911001 Issue Date: Dec. 23, 2024

Prepared for

XPPEN Technology CO.

15350 Fairfield Ranch Road, Chino Hills, CA, 91709, US

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China

Tel. 0755-2320 0050 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

ACCREDITED Certificate #4298.01

1	TE	ST RESULT CERTIFICATION	3
2	SU	MMARY OF TEST RESULTS	4
3	FA	CILITIES AND ACCREDITATIONS	5
	3.1	FACILITIES	
	3.2	LABORATORY ACCREDITATIONS AND LISTINGS	
	3.3	MEASUREMENT UNCERTAINTY	
4	GE	NERAL DESCRIPTION OF EUT	6
5	DE	SCRIPTION OF TEST MODES	8
6	SE	FUP OF EQUIPMENT UNDER TEST	9
	6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9
	6.2	SUPPORT EQUIPMENT	10
	6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	11
7	TE	ST REQUIREMENTS	13
	7.1	CONDUCTED EMISSIONS TEST	
	7.2	RADIATED SPURIOUS EMISSION	16
	7.3	NUMBER OF HOPPING CHANNEL	
	7.4	HOPPING CHANNEL SEPARATION MEASUREMENT	
	7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	
	7.6	20DB BANDWIDTH TEST	
	7.7	PEAK OUTPUT POWER	
	7.8	CONDUCTED BAND EDGE MEASUREMENT	
	7.9	SPURIOUS RF CONDUCTED EMISSION	
	7.10	ANTENNA APPLICATION	
	7.11	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	34
8	TE	ST RESULTS	35
	8.1	Dwell Time	
	8.2	MAXIMUM CONDUCTED OUTPUT POWER	45
	8.3	-20dB Bandwidth	51
	8.4	OCCUPIED CHANNEL BANDWIDTH	57
	8.5	CARRIER FREQUENCIES SEPARATION	
	8.6	NUMBER OF HOPPING CHANNEL	69
	8.7	Band Edge	72
	8.8	BAND EDGE(HOPPING)	79
	8.9	CONDUCTED RF SPURIOUS EMISSION	

1 TEST RESULT CERTIFICATION

Applicant's name	XPPEN Technology CO.
Address	15350 Fairfield Ranch Road, Chino Hills, CA, 91709, US
Manufacturer's Name	Hanvon Ugee Technology Co., Ltd.
Address	2/F, West of 3/F, 4/F, No.4 Building, Fulongte Industrial Park, Huaxing Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China
Product description	
Product name	Magic Note Pad
Trade Mark	XPPen
Model and/or type reference	MNP1095
Family Model	MNP1091, MNP1092, MNP1093
Test Sample number	S241108029012
Date (s) of performance of tests	Nov. 10, 2024 ~ Dec. 23, 2024

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document. The test results of this report relate only to the tested sample identified in this report.

Prepared By: Kieron Luo (Project Engineer) Reviewed By: Aavon Cheng (Supervisor) Aavon Cheng (Supervisor) (Supervisor) (Project Engineer) (Manager)

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan
	District, Shenzhen, Guangdong, People's Republic of China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB
10	Occupied bandwidth	±4.7%

4 GENERAL DESCRIPTION OF EUT

NTEK 北测

R

ac-M

ACCREDITED Certificate #4298.01

Product Feature and Specification		
Equipment	Magic Note Pad	
Trade Mark	XPPen	
FCC ID	2AKDT-MNP1095	
Model No.	MNP1095	
Family Model	MNP1091, MNP1092, MNP1093	
Model Difference	All models are the same circuit and RF module, except for model names.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	FPC Antenna	
Antenna Gain	-1 dBi	
Adapter	Model: MX20PD-J Input: 100-240V~50/60Hz 0.5A Output: 5V3A / 9V2.22A / 12V1.67A (20W Max)	
Battery	Typical Capacity: DC 3.85V, 8000mAh, 30.80Wh Rated Capacity: DC 3.85V, 7800mAh, 30.03Wh	
Power supply	DC 3.85V from battery or DC 5V from Adapter.	
HW Version	05	
FW Version	01	
SW Version	v1P11-F	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

	Revision History				
F	Report No.	Version	Description	Issued Date	
S241	110802911001	Rev.01	Initial issue of report	Dec. 23, 2024	

NTEK 北视

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Cartificate #4299 01

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y and Z-plane. The X-plane results were found as the worst case and were shown in this report.

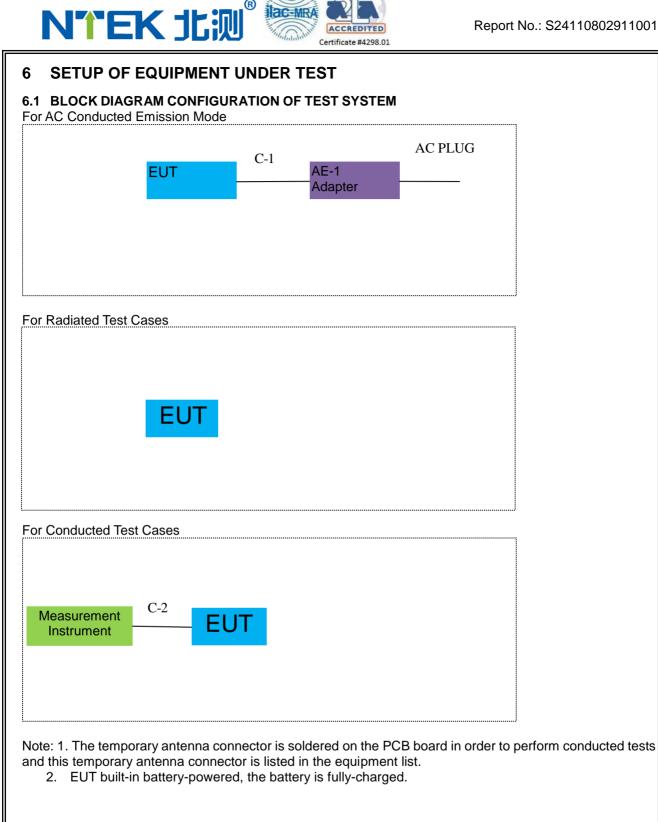
Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission				
Final Test Mode	Final Test Mode Description			
Mode 1 normal link mode				


Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

ac-M

ACCREDITED

NTEK 北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ACCREDITED

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	MX20PD-J	N/A	Peripherals

lac-M

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Type-C Cable	YES	NO	0.8m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测[®]

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment					-
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.04.26	2025.04.25	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024.04.25	2025.04.24	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.04.25	2025.04.24	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.04.26	2025.04.25	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.05.12	2025.03.11	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2024.04.26	2027.04.25	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2024.05.12	2027.05.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2024.05.12	2027.05.11	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2024.04.25	2025.04.24	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2024.05.17	2027.05.16	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2024.04.25	2025.04.24	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2024.04.26	2027.04.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

ilac-MR

ACCREDITED Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.04.26	2025.04.25	1 year
2	LISN	R&S	ENV216	101313	2024.04.25	2025.04.24	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.04.25	2025.04.24	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2024.04.26	2027.04.25	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

Measurement Software

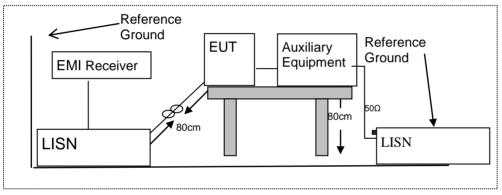
Item	Manufacturer	Software Name	Software Version	Description
1	MWRFtest	MTS 8310 2.4GHz/5GHz	2.0	RF Conducted Test
2	Farad	EZ-EMC_RE	AIT-03A	RadiatedTest
3	raditeq	RadiMation	2023.1.3	RadiatedTest
4	Farad	EZ-EMC_CE	AIT-03A	AC Conducted Test

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

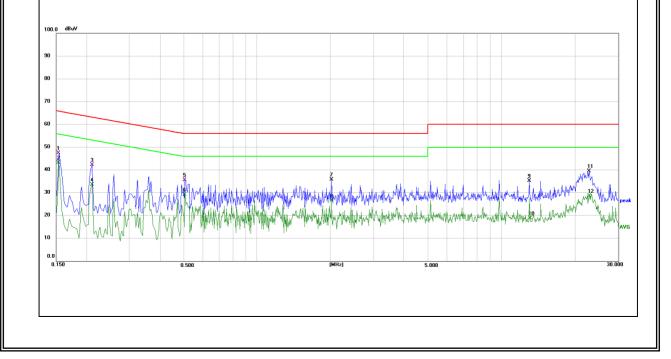
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

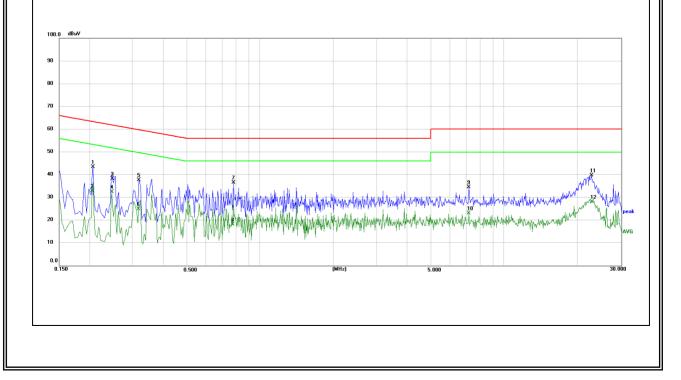

EUT:	Magic Note Pad	Model Name :	MNP1095
Temperature:	23.1 ℃	Relative Humidity:	58%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

_	L					
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remar
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	k
0.1539	26.52	20.97	47.49	65.79	-18.30	QP
0.1539	22.29	20.97	43.26	55.79	-12.53	AVG
0.2100	21.35	20.96	42.31	63.21	-20.90	QP
0.2100	12.65	20.96	33.61	53.21	-19.60	AVG
0.5060	14.69	20.93	35.62	56.00	-20.38	QP
0.5060	8.38	20.93	29.31	46.00	-16.69	AVG
2.0140	15.03	20.89	35.92	56.00	-20.08	peak
2.0140	5.77	20.89	26.66	46.00	-19.34	AVG
13.0420	14.41	20.84	35.25	60.00	-24.75	peak
13.1140	-1.97	20.84	18.87	50.00	-31.13	AVG
22.8500	18.76	20.86	39.62	60.00	-20.38	peak
22.9900	7.74	20.86	28.60	50.00	-21.40	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Magic Note Pad	Model Name :	MNP1095
Temperature:	23.1 ℃	Relative Humidity:	58%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.2060	22.59	20.81	43.40	63.37	-19.97	peak
0.2050	12.09	20.81	32.90	53.41	-20.51	AVG
0.2480	17.54	20.83	38.37	61.82	-23.45	peak
0.2460	11.70	20.83	32.53	51.89	-19.36	AVG
0.3180	16.78	20.89	37.67	59.76	-22.09	peak
0.3165	4.03	20.89	24.92	49.80	-24.88	AVG
0.7780	15.44	21.11	36.55	56.00	-19.45	peak
0.7740	-2.89	21.11	18.22	46.00	-27.78	AVG
7.1420	13.79	20.81	34.60	60.00	-25.40	peak
7.1420	2.34	20.81	23.15	50.00	-26.85	AVG
22.6620	18.86	20.90	39.76	60.00	-20.24	peak
22.8740	7.29	20.90	28.19	50.00	-21.81	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

NTEK 北测

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

Cartificate #4299 01

According to 1 CC 1 art 13.20	According to For Fart 13.203, Restricted bands							
MHz	MHz	MHz	GHz					
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5					
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
6.26775-6.26825	123-138	2200-2300	14.47-14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4					
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
12.57675-12.57725	322-335.4	3600-4400	(2)					
13.36-13.41								

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/m) (at 3M)					
Frequency(MHz)	PEAK	AVERAGE				
Above 1000	74	54				

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

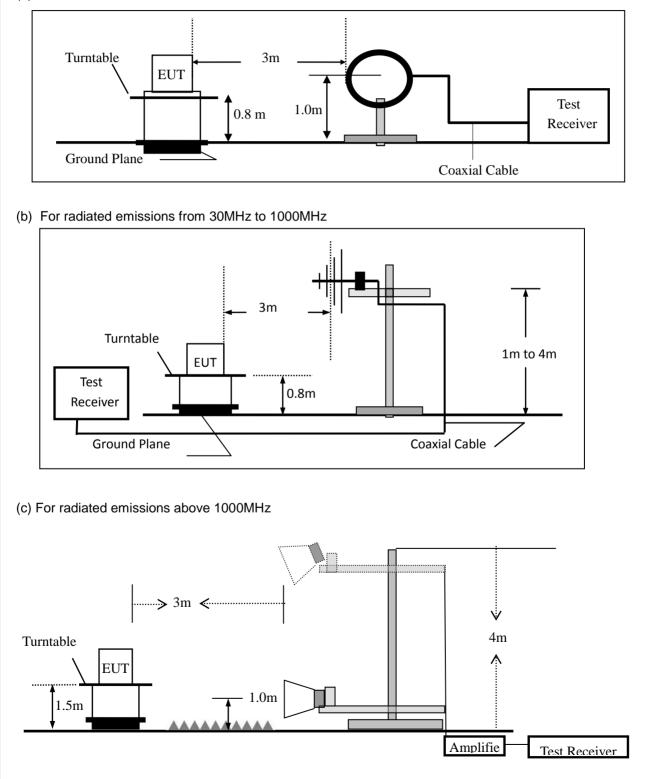
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

NTEK 北视


The Measuring equipment is listed in the section 6.3 of this test report.

ac-M

ACCREDITED

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

NTEK 北测

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Cartificate #4298 01

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

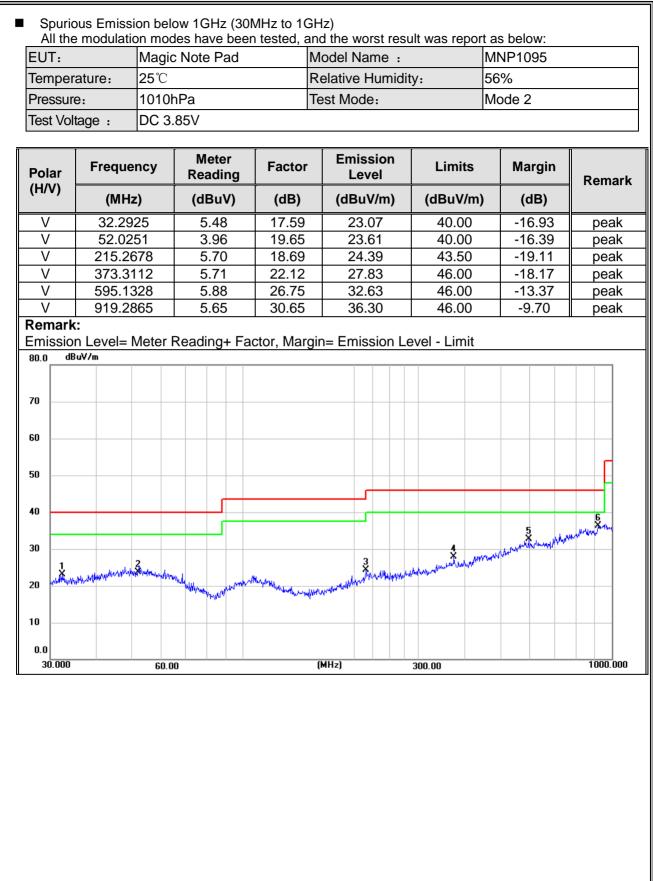
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:											
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth								
30 to 1000	QP	120 kHz	300 kHz								
Ab ave 4000	Peak	1 MHz	1 MHz								
Above 1000	Average	1 MHz	1 MHz								

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.


7.2.6 Test Results

EUT:	Magic Note Pad	Model No.:	MNP1095
Temperature:	25 ℃	Relative Humidity:	56%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Kieron Luo

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	(dB) AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

NTEK JLW®

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	51.4810	5.75	19.55	25.30	40.00	-14.70	peak
Н	111.3470	5.05	17.61	22.66	43.50	-20.84	peak
Н	206.3980	5.76	17.79	23.55	43.50	-19.95	peak
Н	269.4280	5.21	18.97	24.18	46.00	-21.82	peak
Н	383.9320	5.71	22.08	27.79	46.00	-18.21	peak
Н	642.8610	5.44	26.70	32.14	46.00	-13.86	peak
70							
80.0 dl	3uV/m						
70							
60							
50							
							<u> </u>
40							
						<u>6</u> tw	upper a price
30					5 X borr	Allow March 100 - Wellow -	
	how when the strate of the state of the stat	u	2	3 *	render regularet min all the second		
20 44/14/14	044/100 Y T	When when the weller	and the Allen of States I was	Allower Maler	nederinghand miles and		
10							
0.0							
0.0							

Spurious	Emission	gic Note					MNP1	095		
		0	i du		Relative Humidity: 56%					
Temperature			0/14			/.				
Test Mode:			e3/Mode4	Test	,		Kieror			
All the modulation modes have been tested, and the worst result was report as below:										
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Lir	mits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	uV/m)	(dB)		
			Low Cha	nnel (2402	MHz)(GFSK)	Abov)	e 1G			
4804.414	54.16	5.21	35.59	44.30	50.66	74	4.00	-23.34	Pk	Vertical
4804.414	39.11	5.21	35.59	44.30	35.61	54	1.00	-18.39	AV	Vertical
7206.265	55.24	6.48	36.27	44.60	53.39	74	4.00	-20.61	Pk	Vertical
7206.265	42.36	6.48	36.27	44.60	40.51	54	4.00	-13.49	AV	Vertical
4804.309	54.20	5.21	35.55	44.30	50.66	74	4.00	-23.34	Pk	Horizonta
4804.309	39.11	5.21	35.55	44.30	35.57	35.57 54.00		-18.43	AV	Horizonta
7206.224	55.32	6.48	36.27	44.52	53.55	74.00		-20.45	Pk	Horizonta
7206.224	41.71	6.48	36.27	44.52	39.94	54.00		-14.06	AV	Horizonta
			Mid Chan	nel (2441 l	MHz)(GFSK)-	-Abov	/e 1G			
4882.654	53.87	5.21	35.66	44.20	50.54	74	4.00	-23.46	Pk	Vertical
4882.654	40.65	5.21	35.66	44.20	37.32	54	4.00	-16.68	AV	Vertical
7323.241	55.23	7.10	36.50	44.43	54.40	74	4.00	-19.60	Pk	Vertical
7323.241	40.43	7.10	36.50	44.43	39.60	54	4.00	-14.40	AV	Vertical
4882.225	54.33	5.21	35.66	44.20	51.00	74	4.00	-23.00	Pk	Horizonta
4882.225	40.08	5.21	35.66	44.20	36.75	54	4.00	-17.25	AV	Horizonta
7323.132	52.55	7.10	36.50	44.43	51.72	74	1.00	-22.28	Pk	Horizonta
7323.132	40.87	7.10	36.50	44.43	40.04	54	4.00	-13.96	AV	Horizonta
	-	_	High Char	nel (2480	MHz)(GFSK)-	- Abo	ve 1G			
4960.325	54.81	5.21	35.52	44.21	51.33	74	4.00	-22.67	Pk	Vertical
4960.325	40.66	5.21	35.52	44.21	37.18	54	4.00	-16.82	AV	Vertical
7440.201	54.96	7.10	36.53	44.60	53.99	74	4.00	-20.01	Pk	Vertical
7440.201	40.55	7.10	36.53	44.60	39.58	54	4.00	-14.42	AV	Vertical
4960.424	54.32	5.21	35.52	44.21	50.84	74	1.00	-23.16	Pk	Horizonta
4960.424	40.23	5.21	35.52	44.21	36.75	54	1.00	-17.25	AV	Horizonta
7440.298	53.38	7.10	36.53	44.60	52.41	74	4.00	-21.59	Pk	Horizonta
7440.298	39.51	7.10	36.53	44.60	38.54	54	1.00	-15.46	AV	Horizonta

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

	Spurious	Emission	in Restr	icted Band	d 2310	-2390MHz an	d 2483	.5-25	500MHz		
ΕL	JT:	Magic No	lodel No.:		ΜN	P1095					
Те :	mperature	re 25 ℃ Relative Humidity: 5						56%	56%		
Те	st Mode:	Mode2/ N	/lode4		Т	est By:		Kie	ron Luo		
Α	II the modu	lation mod	les have	e been tes	ted, an	d the worst re	esult wa	as re	port as b	elow:	
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Pream Facto		Limit	s	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	/m)	(dB)	Туре	
				Lov	v Chanr	nel (2402 MHz)	(GFSK)				
	2310.00	55.58	2.97	27.80	43.8	0 42.55	74		-31.45	Pk	Horizontal
	2310.00	42.80	2.97	27.80	43.8	0 29.77	54		-24.23	AV	Horizontal
	2310.00	55.91	2.97	27.80	43.8	0 42.88	74		-31.12	Pk	Vertical
	2310.00	41.73	2.97	27.80	43.8	0 28.70	54		-25.30	AV	Vertical
	2390.00	55.44	3.14	27.21	43.8	0 41.99	74		-32.01	Pk	Vertical
	2390.00	43.66	3.14	27.21	43.8	0 30.21	54		-23.79	AV	Vertical
	2390.00	56.08	3.14	27.21	43.8	43.80 42.63			-31.37	Pk	Horizontal
	2390.00	42.15	3.14	27.21	43.8	3.80 28.70		54 -25.30		AV	Horizontal
				Hig	h Chan	nel (2480 MHz)	(GFSK))			
	2483.50	55.46	3.58	27.70	44.0	0 42.74	74		-31.26	Pk	Vertical
	2483.50	43.74	3.58	27.70	44.0	0 31.02	54		-22.98	AV	Vertical
	2483.50	55.80	3.58	27.70	44.0	0 43.08	74		-30.92	Pk	Horizontal
	2483.50	44.56	3.58	27.70	44.0	0 31.84	54		-22.16	AV	Horizontal
					1Mbp	s(GFSK)-hopp	ing				
	2310.00	51.46	2.97	27.80	43.8	0 38.43	74.0	0	-35.57	Pk	Vertical
	2310.00	40.68	2.97	27.80	43.8	0 27.65	54.0	0	-26.35	AV	Vertical
	2310.00	54.50	2.97	27.80	43.8	0 41.47	74.0	0	-32.53	Pk	Horizontal
	2310.00	42.26	2.97	27.80	43.8	0 29.23	54.0	0	-24.77	AV	Horizontal
	2390.00	52.08	3.14	27.21	43.8	0 38.63	74.0	0	-35.37	Pk	Vertical
	2390.00	41.29	3.14	27.21	43.8	0 27.84	54.0	0	-26.16	AV	Vertical
	2390.00	53.96	3.14	27.21	43.8	0 40.51	74.0	0	-33.49	Pk	Horizontal
	2390.00	42.59	3.14	27.21	43.8	0 29.14	54.0	0	-24.86	AV	Horizontal
	2483.50	53.38	3.58	27.70	44.0	0 40.66	74.0	0	-33.34	Pk	Vertical
	2483.50	42.83	3.58	27.70	44.0	0 30.11	54.0	0	-23.89	AV	Vertical
	2483.50	54.07	3.58	27.70	44.0	0 41.35	74.0	0	-32.65	Pk	Horizontal
	2483.50	42.27	3.58	27.70	44.0	0 29.55	54.0	0	-24.45	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

UT:	JT: Magic Note Pad			Pad Model No.:				MNP1095				
emperature	: 2	25 ℃				Relati	ve Humidity	y:	56%			
est Mode:	ſ	Mode2/	/ Mod	e4		Test I	By:		Kieror	n Luo		
All the modu	lation I	modes	have	been teste	ed, a	and the	e worst resu	ult wa	s repo	rt as belo	W:	
Frequency	Readi Leve		able oss	Antenna Factor	-	eamp actor	Emission Level	Lir	nits	Margin	Detector	Comment
(MHz)	(dBµ\	V) (d	dB)	dB/m	(0	dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
Low Channel (2402 MHz)(GFSK)												
3260	52.4	1 4.	.04	29.57	44	4.70	41.32	1	74	-32.68	Pk	Vertical
3260	41.0	1 4.	.04	29.57	44	4.70	29.92	Ę	54	-24.08	AV	Vertical
3260	52.7	8 4.	.04	29.57	44	4.70	41.69	7	74	-32.31	Pk	Horizonta
3260	40.7	4 4.	.04	29.57	44	4.70	29.65	Ę	54	-24.35	AV	Horizonta
17796	40.9	9 10	0.99	43.95	43	3.50	52.43	7	74	-21.57	Pk	Vertical
17796	31.5	6 10	0.99	43.95	43	3.50	43.00	Ę	54	-11.00	AV	Vertical
				High	n Cha	annel (2480 MHz)(C	GFSK)				
3332	52.9	8 4.	.26	29.87	44	4.40	42.71	7	74	-31.29	Pk	Vertical
3332	41.3	4 4	.26	29.87	44	4.40	31.07	Ę	54	-22.93	AV	Vertical
3332	53.2	9 4	.26	29.87	44	4.40	43.02	7	74	-30.98	Pk	Horizonta
3332	42.5	6 4	.26	29.87	44	4.40	32.29	Ę	54	-21.71	AV	Horizonta
17789	42.6	6 11	1.81	43.69	44	4.60	53.56	7	74	-20.44	Pk	Horizonta
17789	33.1	4 11	1.81	43.69	44	4.60	44.04	Ę	54	-9.96	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit.

Report No.: S24110802911001

7.3 NUMBER OF HOPPING CHANNEL

NTEK 北测

7.3.1 **Applicable Standard**

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 **Measuring Instruments**

The Measuring equipment is listed in the section 6.3 of this test report.

Test Setup 7.3.4

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously.

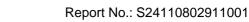
The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW


Sweep = auto

Detector function = peak

Trace = max hold

7.3.6 Test Results

EUT:	Magic Note Pad	Model No.:	MNP1095
Temperature:	25 ℃	Relative Humidity:	56%
Test Mode:	Mode 5(1Mbps)	Test By:	MNP1095 56% Kieron Luo

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Magic Note Pad	Model No.:	MNP1095
Temperature:	25 ℃	Relative Humidity:	56%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Kieron Luo

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 **Test Results**

EUT:	Magic Note Pad	Model No.:	MNP1095
Temperature:	25 ℃	Relative Humidity:	56%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Kieron Luo

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

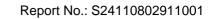
7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup


Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Magic Note Pad	Model No.:	MNP1095	
Temperature:	25 ℃	Relative Humidity:	56%	
Test Mode:	Mode2/Mode3/Mode4	Test By:	Kieron Luo	

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Magic Note Pad	Model No.:	MNP1095	
Temperature:	25 ℃	Relative Humidity:	56%	
Test Mode:	Mode2/Mode3/Mode4	Test By:	Kieron Luo	

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Magic Note Pad	Model No.:	MNP1095
Temperature:	25 ℃	Relative Humidity:	
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Kieron Luo

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

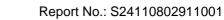
Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.


g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached FPC Antenna (Gain: -1 dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

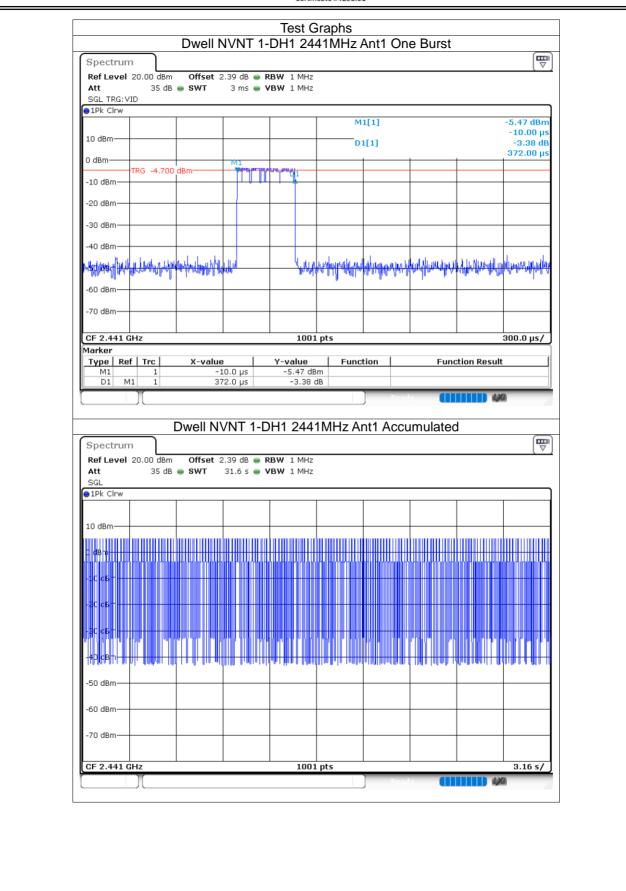
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

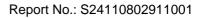
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.


8 TEST RESULTS

8.1 Dwell Time

Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	Ant1	0.372	75.516	203	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.63	197.23	121	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.88	273.6	95	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.384	76.800	200	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.635	209.28	128	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.88	264.96	92	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.381	78.105	205	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.635	189.66	116	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.888	236.816	82	31600	400	Pass



⊖1Pk Clrw	ID								
10 dBm						1[1]			-5.57 dBm -10.00 µs
					D	1[1]		. 1	-2.97 dB 63000 ms
0 dBm	M TRG -4.800		Allow Meronana	ฃฃ๛๛	ԽՅլ				
-10 dBm		-U			1				
-20 dBm									
-30 dBm									
-40 dBm	ւտուելի տե					a. Marina da	ntl i a nametri	and in	a na dala a
njebraenning	brindarfhili is				- Martillanda	omone ander a	hullallatellindr	Խոմիոսիվի	area filler and that is a
-60 dBm									
-70 dBm									
CF 2.441 (GHz			1001	pts				500.0 µs/
Marker Type Re	f Trc	X-value		Y-value	Func	tion	Fund	tion Result	
M1 D1 M	1 11 1		10.0 µs 63 ms	-5.57 dBr -2.97 d					
	20								2
][]					Read			• ///
				H3 2441	1MH7 Δι	nt1 Acci	mulater	4	
Spectrun		Dwell N	VNT 1-D	H3 2441	1MHz Ai	nt1 Accu	imulated	ł	
	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz	1MHz Ai	nt1 Accu	imulated	d	
Ref Level Att SGL	n 20.00 dBm			BW 1 MHz	1MHz Ai	nt1 Accu	imulated	1	
Ref Level Att	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz	1MHz Ai	nt1 Accu	imulated	3	
Ref Level Att SGL	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz	1MHz Ai	nt1 Accu	imulated		
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz	1MHz Ai	nt1 Accu			
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz	1MHz Ai	nt1 Accu			
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz	1MHz Ai				
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz					
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz					
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2 SWT	2.39 dB • R	BW 1 MHz BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -11 dBm -21 dBm -31 dBm -31 dBm -31 dBm -41 c c b =	n 20.00 dBm	Offset 2 SWT	2.39 dB 😑 R	BW 1 MHz BW 1 MHz					
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2 SWT	2.39 dB • R	BW 1 MHz BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -11 dBm -21 dBm -31 dBm -31 dBm -31 dBm -41 c c b =	n 20.00 dBm	Offset 2 SWT	2.39 dB • R	BW 1 MHz BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -11 dBm -11 dBm -21 dBm -21 dBm -31 dBm -50 dBm	n 20.00 dBm	Offset 2 SWT	2.39 dB • R	BW 1 MHz BW 1 MHz					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -1Pk Clrw 0 dBm -12 dBm -22 dBm -32 dBm -40 dBm -50 dBm -70 dBm	n 20.00 dBm 35 dB	Offset 2 SWT	2.39 dB • R	BW 1 MHz BW 1 MHz					
Ref Level Att SGL 10 dBm 10 dBm -11 dBm -1	n 20.00 dBm 35 dB	Offset 2 SWT	2.39 dB • R	BW 1 MHz BW 1 MHz					3.16 s/

	D								
10 dBm						1[1]			-4.45 dBm
0 dBm	M1				D	1[1]		2	0.11 dB .88000 ms
-10 dBm	עראיריזייזיזי <mark>ן א</mark>	๛๛งษณ๚๛๚	⊓™™™™™™™™	D1 בעריינשויייטיי					
-20 dBm	TRG -13.800	I dBm							
-30 dBm									
	lau				entry waldy the	handrad	the palar where the	nunhahannn	16 Marthal Martine
					- 11 1 11 10 10 11111	n, dua cluto -	- amilia	. (- () - () - ()	∾⊕ · · røk∝ ⊨ ·B
-60 dBm									
-70 dBm									
CF 2.441 G	Hz			1001	l pts				800.0 µs/
Marker Type Ref		X-value		Y-value	Func	tion	Fund	tion Result	
M1 D1 M	1 1 1	2.	0.0 s .88 ms	-4.45 dB 0.11 (
][]					Read	v M		• //
	Г) Well N\	/NT 1-D	H5 244	1MHz Ai	nt1 Acci	imulated		
Spectrum								·	
Ref Level	20.00 dBm		.39 dB 👄 R						(*)
Att SGL	35 dB	∎ SWT	31.6 s 👄 V	BW 1 MHz					
●1Pk Clrw									
10 dBm									
		hih mhhh	י מימומימיי						
0 d3m									
0 d3m									
0 dām +12 26 m· -22 26 m·									
-1:1 ::E m									
-21 26 m -21 26 m -31 26 m			Jacob Jean				(- <u>-</u>		
-:1:::En -:2:::En -:4:::En ::4::::En			Jacob Jean						
-21 26 m -21 26 m -31 26 m			Jacob Jean						i v na serie de la companya de la co
-12 28 m -22 28 m -32 28 m -32 28 m			, e. e. j. e.						
-12 26 0 -21 26 0 -31 26 0 -37 7.9 0 0 -50 dBm			, e. e. j. e.						
-12 26 0 -62 26 0 -97 26 0 -50 dBm -60 dBm			, e. e. j. e.						
-12 26 0 -62 26 0 -97 26 0 -50 dBm -60 dBm			Jacob Jean						3.16 s/

SGL TRG: VID 1Pk Clrw	35 dB 🕳 SN		5 O VBW 1)
10 10					M1[1]				2.22 dBm -1.00 μs
10 dBm		M1	~~	Q1	D1[1]				-1.17 dB 384.00 μs
	G -5.500 dBm-			*					
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm	an bh				11	H [de la l	1	e de la della de
MARKER HUNDER	WHITH CHURCH	nhhhhnhold		Angraphia	which whi	hadia	lingelishingelisherte	a <mark>n di di dia dia m</mark> a	HAMMANAMAN
-60 dBm									
-70 dBm									
CF 2.441 GHz	<u> </u>			1001 pts					300.0 µs/
Marker Type Ref	Trc X	-value	Y-va	lue (Function	1	Euno	tion Result	
M1 D1 M1	1 1	-1000.0 n: 384.0 µ:	5 2.	22 dBm 1.17 dB	Tuncton		Tune	cion result	
			-			Ready			1
						•			
Countration		ell NVNT	2-DH1	2441MF	1Z Ant1	Accur	nulated		Ē
Spectrum Ref Level 20	.00 dBm Of	ffset 2.39 di	3 e RBW 1	MHz					
Att SGL	35 dB 😑 SN	WT 31.6	5 O VBW 1	MHz					
⊖1Pk Clrw									
10 dBm									
						mululi			
0 d6 m				11) by 1975 yr 171		1	ridustra fi		ריינו מיניין איז
-12 ¢8m 									
-11 c57						P. W. 1	a sea s	1401	second in the
-22 C57	1 ' 4 P P P P P P P P P P P P P P P P P P	11700 'NUM	I I M ' M I I I I I	1011 111071	NY NU KUUUU' N				
-12 c 5 m									
-22 c5r -22 c5r -30 c5r -40 c5r									
HP RAM									
-50 dBm									
<mark>-#</mark> ₽ ¢,}m , ,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
-50 dBm									3.16 s/
-50 dBm									3.16 s/

●1Pk Clrw					м	1[1]			3.85 dBm
10 dBm	M	1				1[1]		0.0	00000000 s -2.62 dB
0 dBm		Junnayeur	mprovenue	managen	~P1 +			:	1.63500 ms
-10 dBm	-TRG -5.600	dBm							
-20 dBm—									
-30 dBm									
-40 dBm							AM I I I I I I	It an at	u
1498 ag mult	uuunan ah.				- Humany de	Marinen	Whypethe-detherandeds/	MANNA	MAN MANAMANA
-60 dBm									
-70 dBm—									
CF 2.441 (Marker	GHz			1001	pts				500.0 μs/
Type Re M1	f Trc	X-value	9 0.0 s	Y-value 3.85 dB	Func	tion	Fund	tion Result	t]
	11 1	1.6	535 ms	-2.62 c					
						Rear			
		Dwell N	VNT 2-D	DH3 2441	MHz A	nt1 Accu	umulated	ł	
Spectrun Ref Level	n 20.00 dBm	Offset 3	20 dB 👄 B	RBW 1 MHz					
Att SGL				BW 1 MHz					
●1Pk Clrw									
● 1Pk Clrw 10 dBm									
10 dBm									
10 dBm									
10 dBm									
10 dBm									
10 dBm									. 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
10 dBm									
10 dBm									
10 dBm 0 dBm 									
10 dBm 0 dBm 12 dBm 21 dBm 22 dBm 32 dBm -50 dBm -60 dBm									
10 dBm 0 dBm 									
10 dBm 0 dBm 12 dBm 21 dBm 21 dBm 31 dB 11 150 dBm -60 dBm -60 dBm							Marine II (1974 mil 19		3.16 s/

-					м	1[1]			-4.49 dBm
10 dBm					D	1[1]			00000000 s -0.38 dB
0 dBm——	M1 ▼ • • • •	dBm ^{ic} w4444	de Mattin dete Ma	much Marina				2	2.88000 ms
-10 dBm—	-TRG -5.700) dBm V Y //	<u></u>	this of a flat					
-20 dBm—									
-30 dBm—									
-40 dBm—						de la secta	L. Litterta	lik sara	
y PRARAT	AND N			k k	MUNNMAN	annya manaka ka	handelikerten	WANNYANA	water
-60 dBm—									
-70 dBm—									
CF 2.441	GHz			1001	pts				800.0 µs/
Marker Type Re		X-value		Y-value	Func	tion	Func	tion Result	
M1 D1 N	1 41 1	2	0.0 s .88 ms	-4.49 dB -0.38 (
] Read	ly al		
		Dwell N	/NT 2-D	H5 244	1MH7 A	nt1 Acci	imulated		
		BWOILIT			110111270	11(17,000	indiatoc	•	
Spectrur									
Reflevel	20.00 dBm	Offset 2	2.39 dB 👄 R						
			31.6 s 👄 🖌						
Att	35 UD	• • • • • •							
	33 UD	• • • • •							
Att SGL	33 46								
Att SGL	33 46								
Att SGL 9 1Pk Clrw	33 08								
Att SGL 9 1Pk Clrw	33 UB								
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm									
Att SGL 1Pk Clrw 10 dBm 10 dBm 10 dBm 20 dBm 20 dBm 20 dBm 20 dBm 20 dBm 20 dBm 20 dBm									
Att SGL 1Pk Clrw 10 dBm 10 dBm 10 dBm 20 dBm 20 dBm 20 dBm 20 dBm 20 dBm 20 dBm 20 dBm									
Att SGL 1Pk Clrw 10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 20 dBm -20 dBm -50 dBm -60 dBm									
Att SGL 1Pk Clrw 10 dBm 10 dBm 10 dBm 20 dBm 20 dBm -20 dBm -50 dBm									
Att SGL 1Pk Clrw 10 dBm 10 dBm 10 dBm -20 dBm -20 dBm -50 dBm -60 dBm									
Att SGL 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -50 dBm -70 dBm									3.16 s/

					M	1[1]			-5.30 dBm
10 dBm						1[1]			-10.00 µs -4.83 dB
0 dBm			MI						381.00 µs
-10 dBm—	-TRG -5.600	dBm							
-20 dBm—									
-30 dBm—									
-40 dBm—									
nt Halph Half to free the	AND	Իսկրդերեստ	hyd		hall all a selfat and	Hillypridwyryddyd		Walter and the state of the sta	All the second
-60 dBm	1.				• •	1.		U · · · · ·	1 * *
-70 dBm—									
CF 2.441	GHz			1	001 pts				300.0 μs/
Marker Type Re	ef Trc	X-value	e	Y-valu	ie Func	tion	Fund	ction Result	
M1	1 11 1		10.0 μs 31.0 μs		D dBm 83 dB				
						Read	v O		a //
	n 20.00 dBm	Offset 2	2.39 dB 📢	RBW 1N		nt1 Accu	umulated	b	
	n 20.00 dBm		2.39 dB 📢		1Hz	nt1 Accu	umulated	b	
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 📢	RBW 1N	1Hz	nt1 Accu			
Ref Level Att SGL	n 20.00 dBm	Offset 2	2.39 dB 📢	RBW 1N	1Hz	nt1 Accu			
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 📢	RBW 1N	1Hz				
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 📢	RBW 1N	1Hz				
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm 10 dBm -10 c2m -20 c2m	n 20.00 dBm 35 dB	Offset 2	2.39 dB (31.6 s (• RBW 1 M	1Hz				
Ref Level Att SGL PIPK Cirw 10 dBm D 35 m	n 20.00 dBm 35 dB	Offset 2	2.39 dB (31.6 s (RBW 1N	1Hz				
Ref Level Att SGL 1Pk Clrw 10 dBm 10 dBm 10 dBm -10 c2m -20 c2m	n 20.00 dBm 35 dB	Offset 2	2.39 dB 31.6 s	RBW 1 N	1Hz				
Ref Level Att SGL 1Pk Clrw 10 dBm 2 d5 m -20 c2m -20 c2m -30 c5m	n 20.00 dBm 35 dB	Offset 2 • SWT	2.39 dB 31.6 s	RBW 1 N					
Ref Level Att SGL ● 1Pk Clrw 10 dBm - 10 dBm - 10 c2m - 20 c2m - 20 c2m - 30 c2m - 30 c2m - 30 c2m	n 20.00 dBm 35 dB	Offset 2 • SWT	2.39 dB 31.6 s	RBW 1 N					
Ref Level Att SGL ● 1Pk Clrw 10 dBm - 10 c2m - 20 c2m - 20 c2m - 30 c5m - 50 dBm - 60 dBm	n 20.00 dBm 35 dB	Offset 2 • SWT	2.39 dB 31.6 s	RBW 1 N					
Ref Level Att SGL ● 1Pk Clrw 10 dBm -10 c2m -20 c2m -20 c2m -30 c5m -30 c5m -50 dBm	n 20.00 dBm 35 dB	Offset 2 • SWT	2.39 dB 31.6 s	RBW 1 N					
Ref Level Att SGL ● 1Pk Clrw 10 dBm - 10 c2m - 20 c2m - 20 c2m - 30 c5m - 50 dBm - 60 dBm	n 20.00 dBm 35 dB	Offset 2 • SWT	2.39 dB 31.6 s	RBW 1 N					3.16 s/

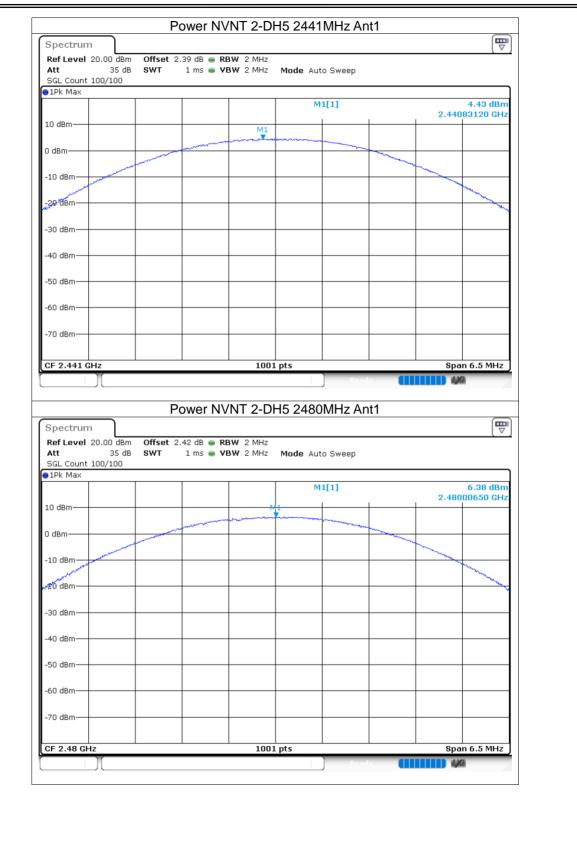
SGL TRG:V 91Pk Clrw	ID								
10 d0m					М	1[1]		0.0	3.27 dBm 00000000 9
10 dBm	M	L	menor water an	(Muselmeditery=trapp)	D: տանվ1	1[1]		:	-1.53 dE 1.63500 ms
0 dBm	TRG -5.700	- · · ·			1				
-10 dBm					_				
-20 dBm					_				
-30 dBm									
-40 dBm									
_50 dBm	1. Internatio				like i i i		a disa katak di a	तती हत	te of the blacks
50 dBm -60 dBm -60 dBm	phywywynyn wyn filo				"HUNNANN	h la pang lan da	rthanarda	riphtranlespoor	Manahara
-70 dBm									
-70 dBm—									
CF 2.441 C	Hz			1001	pts				500.0 μs/
Marker Type Re		X-value		Y-value	Func	tion	Fund	tion Result	t
M1 D1 M	1 1	1.0	0.0 s 635 ms	3.27 dBr -1.53 d					
						Read	y a		0
)H3 2441		nt1 Accu	mulater	1	
Spectrun		Dweirit			10111271	11171000	innalated	<u> </u>	
-	20.00 dBm			RBW 1 MHz					(v
	20 de	s 👄 SWT	D16 a -						
Att SGL		3 - 3 W I	51.0 S 👅	VBW 3 MHz					
🖷 Att	30 00		31.0 5	VBW 3 MHZ					
● Att SGL ●1Pk Clrw	30 00		31.0 5						
SGL			31.0 5		1 1 111111			11 111 101011	
● Att SGL ●1Pk Clrw			51.0 5						
● Att SGL ●1Pk Clrw			31.0 5						
● Att SGL ●1Pk Clrw			31.0 5						
● Att SGL ● 1Pk Clrw 10 dBm - 10 dBm - 10 dBm - 20 dBm									
● Att SGL ● 1Pk Clrw 10 dBm - 10 dBm - 10 dBm - 20 dBm									
● Att SGL ●1Pk Clrw									
Att SGL 1Pk Clrw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -20 dBm									
● Att SGL ● 1Pk Clrw 10 dBm - 10 dBm - 20 dBm - 30 dBm									
Att SGL 1Pk Clrw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -20 dBm									
● Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm									
● Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -60 dBm									
● Att SGL ● 1Pk Clrw 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -60 dBm									3.16 s/
Att SGL IPk Clrw 10 dBm 0 dBm 20 dBm -20 dBm -30 dBm -60 dBm -70 dBm									3.16 s/

1			M1[1]			3.79 dBm
10 dBm M1					0.	00000000 s
		manuna man	D1[1]			-2.71 dB 2.88800 ms
-10 dBm	00 dBm					
-20 dBm						
-30 dBm						
-40 dBm						
		Ya. A	a and the second	a harma har <mark>hanna</mark> Manna Ma	(mornalited and a second	Merchallalla dutra
, in the second s			1000-110 V 1401 0 0 14	<u>ofk ato a di uradio n</u> d		1.40 1.41 1.41
-60 dBm						
-70 dBm						
CF 2.441 GHz		1001	ots			800.0 µs/
Marker Type Ref Trc	X-value	Y-value	Function		unction Resu	t
M1 1 D1 M1 1	0.0 s 2.888 ms	3.79 dBm –2.71 dB				
				Ready	(111111) 4	0
	Dwell NVNT 3	R-DH5 2441	MHz Ant1	Accumula	ted	
Spectrum		2110 2111		/ 10004111410		
Ref Level 20.00 dB		RBW 1 MHz				()
SGL	ab - 3 441 - 31,0 5 (10 11 11112				
●1Pk Clrw						
10 dBm						
10 dBm						
0 dBm						
0 dBm						
0 dBm -11 dBr -21 dBr -22 dBr						
0 dBm -11 dBr -21 dBr -22 dBr -26 dBr -26 dBr -26 dBr						
0 dBm						
0 dBm -11 dBr -21 dBr -22 dBr -26 dBr -26 dBr -26 dBr						
0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -50 dBm						
D dBm -1C dBr -2C dBr -2C dBr -2C dBr -5C dBr -50 dBm -60 dBm						
D dBm -1.C dBr -2.C dBr -2.C dBr -2.C dBr -5.C dBr -5.0 dBm -6.0 dBm						3.16 s/

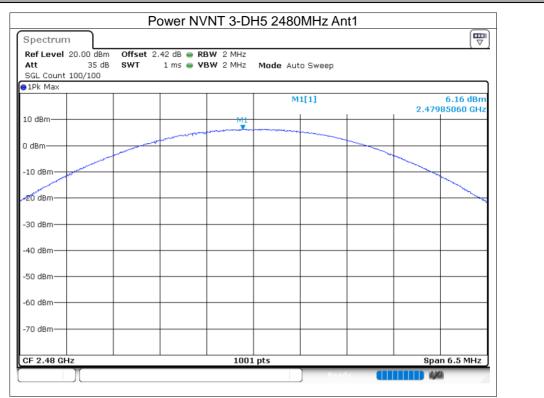
8.2 MAXIMUM CONDUCTED OUTPUT POWER

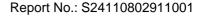
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	6.52	21	Pass
NVNT	1-DH5	2441	Ant1	5.38	21	Pass
NVNT	1-DH5	2480	Ant1	7.3	21	Pass
NVNT	2-DH5	2402	Ant1	5.75	21	Pass
NVNT	2-DH5	2441	Ant1	4.43	21	Pass
NVNT	2-DH5	2480	Ant1	6.38	21	Pass
NVNT	3-DH5	2402	Ant1	5.63	21	Pass
NVNT	3-DH5	2441	Ant1	4.43	21	Pass
NVNT	3-DH5	2480	Ant1	6.16	21	Pass

Spectrum Ref Level 20.00				10 2402		11		
	35 dB SWT		BW 2 MHz	Mode Aut	o Sweep			
				м	1[1]			6.52 dBm
10 dBm				M1		+	2.40	207990 GHz
0.10								
0 dBm								
<10 dBm								
-20 dBm		_						
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.402 GHz			1001	pts				an 5.0 MHz
	F	Power NV	/NT 1-DI	-15 2441) Rea MHz Ar	nt1		
Spectrum Ref Level 20.00 Att	dBm Offset	2.39 dB 😑 RE	3W 2 MHz			dy 🚺		
Ref Level 20.00 Att SGL Count 100/1) dBm Offset : 35 dB SWT	2.39 dB 😑 RE				dy 🚺		
Ref Level 20.00 Att) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	3W 2 MHz	Mode Aut		dv 🚺		.38 dBm
Ref Level 20.00 Att SGL Count 100/1) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	3W 2 MHz	Mode Aut	o Sweep	1v 11		
Ref Level 20.00 Att SGL Count 100/1 IPk Max 10 dBm) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep	hrt1		.38 dBm
Ref Level 20.00 Att SGL Count 100/1 91Pk Max) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep	nt1		.38 dBm
Ref Level 20.00 Att SGL Count 100/1 IPk Max 10 dBm) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep	ty 11		.38 dBm
Ref Level 20.00 Att SGL Count 100/1 PPK Max 10 dBm 0 dBm) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep	nt1		.38 dBm
Ref Level 20.00 Att SGL Count 100/1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep	17 11		.38 dBm
Ref Level 20.00 Att SGL Count 100/1 IPk Max 10 dBm 0 dBm -10 dBm) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep	ht1		.38 dBm
Ref Level 20.00 Att SGL Count 100/1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep	nt1		.38 dBm
Ref Level 20.00 Att SGL Count 100/1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep	htt		.38 dBm
Ref Level 20.00 Att SGL Count 100/1 IPk Max 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -50 dBm) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep	nt1		.38 dBm
Ref Level 20.00 Att SGL Count 100/1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep	nt1		.38 dBm
Ref Level 20.00 Att SGL Count 100/1 IPk Max 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -50 dBm) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep			.38 dBm
Ref Level 20.00 Att 3 SGL Count 100/1 • 1Pk Max 10 10 dBm - 0 dBm - -20 dBm - -30 dBm - -50 dBm - -50 dBm - -70 dBm -) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	3W 2 MHz 3W 2 MHz MHz	Mode Aut	o Sweep	nt1	2.44	5.38 dBm 097500 GHz
Ref Level 20.00 Att SGL Count 100/1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm) dBm Offset : 35 dB SWT	2.39 dB 😑 RE	BW 2 MHz BW 2 MHz	Mode Aut	o Sweep		2.44	5.38 dBm 097500 GHz



Ref Level 20.00 dBm Att 35 dB 35 dB SGL Count 100/100 100/100	Offset 2.42 dB ● F SWT 1 ms ● V		Mode Auto Sweep			
)1Pk Max			M1[1]			7.30 dBm
10 dBm		M	1	-	2.479	99500 GHz
0 dBm						
-10 dBm		_				
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
-70 dBm						
		1001			0	- 5.0 Mile
25.0.40.00		1001	L DLS		5pa	n 5.0 MHz
Spectrum Ref Level 20.00 dBm Att 35 dB	Offset 2.38 dB 🕳 F	VNT 2-DI	H5 2402MHz A Mode Auto Sweep	nt1		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2.38 dB 🕳 F	VNT 2-DI	H5 2402MHz A	dv 🚺		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 91Pk Max	Offset 2.38 dB 🕳 F	VNT 2-DI RBW 2 MHz VBW 2 MHz	H5 2402MHz A Mode Auto Sweep	nt1		
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 91Pk Max 10 dBm	Offset 2.38 dB 🕳 F	VNT 2-DI	H5 2402MHz A Mode Auto Sweep	nt1		5.75 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 91Pk Max 10 dBm 0 dBm	Offset 2.38 dB 🕳 F	VNT 2-DI RBW 2 MHz VBW 2 MHz	H5 2402MHz A Mode Auto Sweep	nt1		5.75 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 91Pk Max 10 dBm 0 dBm	Offset 2.38 dB 🕳 F	VNT 2-DI RBW 2 MHz VBW 2 MHz	H5 2402MHz A Mode Auto Sweep	nt1		5.75 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 91Pk Max 10 dBm -10 dBm	Offset 2.38 dB 🕳 F	VNT 2-DI RBW 2 MHz VBW 2 MHz	H5 2402MHz A Mode Auto Sweep	nt1		5.75 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 11Pk Max 10 dBm 10 dBm 20 dBm	Offset 2.38 dB 🕳 F	VNT 2-DI RBW 2 MHz VBW 2 MHz	H5 2402MHz A Mode Auto Sweep	nt1		5.75 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm -10 dBm -10 dBm -30 dBm	Offset 2.38 dB 🕳 F	VNT 2-DI RBW 2 MHz VBW 2 MHz	H5 2402MHz A Mode Auto Sweep	nt1		5.75 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1 Pk Max 10 dBm -10 dBm -10 dBm -30 dBm -40 dBm	Offset 2.38 dB 🕳 F	VNT 2-DI RBW 2 MHz VBW 2 MHz	H5 2402MHz A Mode Auto Sweep	dv 1		5.75 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 IPk Max I0 dBm	Offset 2.38 dB 🕳 F	VNT 2-DI RBW 2 MHz VBW 2 MHz	H5 2402MHz A Mode Auto Sweep	ht 1		5.75 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 PPK Max 10 dBm 10 dBm 10 dBm 30 dBm 40 dBm 50 dBm 60 dBm	Offset 2.38 dB 🕳 F	VNT 2-DI RBW 2 MHz VBW 2 MHz	H5 2402MHz A Mode Auto Sweep	nt1		5.75 dBm
Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1PK Max 10 dBm 10 dBm 10 dBm 30 dBm 40 dBm 50 dBm 50 dBm 50 dBm 70 dBm	Offset 2.38 dB 🕳 F	VNT 2-DI	H5 2402MHz A		2.401	5.75 dBm 95450 GHz
CF 2.48 GHz Spectrum Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 PIPk Max 10 dBm 10 dBm -10 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Offset 2.38 dB 🕳 F	VNT 2-DI RBW 2 MHz VBW 2 MHz	H5 2402MHz A	nt1	2.401	5.75 dBm 95450 GHz





8.3 -20DB BANDWIDTH

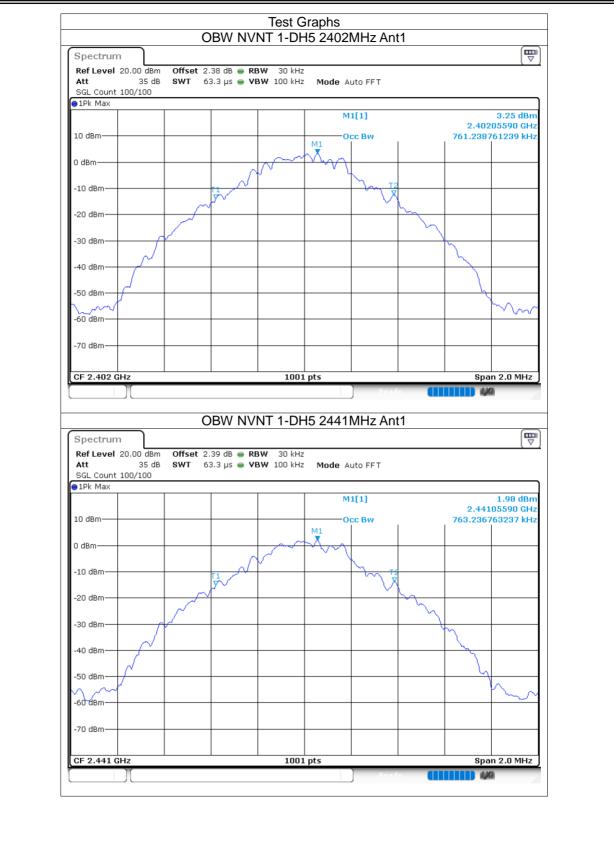
Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.852	Pass
NVNT	1-DH5	2441	Ant1	0.842	Pass
NVNT	1-DH5	2480	Ant1	0.858	Pass
NVNT	2-DH5	2402	Ant1	1.308	Pass
NVNT	2-DH5	2441	Ant1	1.288	Pass
NVNT	2-DH5	2480	Ant1	1.248	Pass
NVNT	3-DH5	2402	Ant1	1.27	Pass
NVNT	3-DH5	2441	Ant1	1.276	Pass
NVNT	3-DH5	2480	Ant1	1.275	Pass

ACCREDITED Certificate #4298.01








Spectrum					
Ref Level 20.00 dBm Offset 2.42 dB	RBW 30 kHz				
Att 35 dB SWT 63.2 μs (VBW 100 kHz	Mode Auto FFT			
SGL Count 100/100					
1Pk Max					
		M1[1]		1.41 dBm	
0 dBm				02100 GHz	
	M1 M2[1]			-17.62 dBm	
) dBm			2.479	36400 GHz	
	show >	man			
10 dBm		- m			
M2			VM3		
20 dBm					
30 dBm					
40 dBm			I'M M		
50GBM			m m	$\sim \sim \sim$	
60 dBm					
70 dBm					
 CF 2.48 GHz	1001 pt		Sna	n 3.0 MHz	
arker	1001 pc	3		11 0.0 Miliz	
Type Ref Trc X-value	Y-value	Function	Function Result	1	
M1 1 2.480021 GHz	1.41 dBm				
M2 1 2.479364 GHz	-17.62 dBm				
M3 1 2.480639 GHz	-18.42 dBm				

8.4 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)				
NVNT	1-DH5	2402	Ant1	0.761				
NVNT	1-DH5	2441	Ant1	0.763				
NVNT	1-DH5	2480	Ant1	0.753				
NVNT	2-DH5	2402	Ant1	1.173				
NVNT	2-DH5	2441	Ant1	1.157				
NVNT	2-DH5	2480	Ant1	1.163				
NVNT	3-DH5	2402	Ant1	1.173				
NVNT	3-DH5	2441	Ant1	1.177				
NVNT	3-DH5	2480	Ant1	1.195				

