

FCC Test Report

Applicant	:	Emdoor Information Co.,Ltd.
Address	:	3/F, Bldg 5th, Wonderful Life Wisdom Valley TechnoPark, No.83 Dabao Rd, Xin'an Sub- district, Bao'an District, Shenzhen, Guangdong Province, 518101, China
Product Name	:	Rugged Tablet
Report Date	:	Dec. 05, 2024

Contents

1. General Information	6
 1.1. Client Information 1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During Test 	6 8
1.4. Operation channel list 1.5. Description of Test Modes 1.6. Measurement Uncertainty	8
1.7. Test Summary 1.8. Description of Test Facility 1.9. Disclaimer	10
1.10. Test Equipment List	11
2. Conducted Emission at AC power line	
2.1. EUT Operation 2.2. Test Setup 2.3. Test Data	
3. Duty Cycle	
3.1. EUT Operation	
3.2. Test Setup	
3.3. Test Data	16
4. Emission bandwidth and occupied bandwidth	
4.1. EUT Operation	
4.2. Test Setup 4.3. Test Data	
5. Maximum conducted output power	
5.1. EUT Operation	19
5.2. Test Setup	
5.3. Test Data6. Power spectral density	
6.1. EUT Operation	
6.2. Test Setup	
6.3. Test Data	
7. Band edge emissions (Conducted)	
7.1. EUT Operation	24
7.2. Test Setup	
7.3. Test Data	
8. Band edge emissions (Radiated)	
8.1. EUT Operation	
8.2. Test Setup 8.3. Test Data	
9. Undesirable emission limits (below 1GHz)	
9.1. EUT Operation	
9.2. Test Setup	
9.3. Test Data	

10. Undesirable emission limits (above 1GHz)	39
10.1. EUT Operation	41
10.2. Test Setup	41
10.3. Test Data	
APPENDIX I TEST SETUP PHOTOGRAPH	44
APPENDIX II EXTERNAL PHOTOGRAPH	44
APPENDIX III INTERNAL PHOTOGRAPH	

Shenzhen Anbotek Compliance Laboratory Limited

Report No.:1812C40101512504 FCC ID: 2A37Q-T1

Test Standard(s)	:	47 CFR Part 15E ANSI C63.10-2020	
Rating(s)	:	Input: 5V 3A, 9V 3A, 12V 2.5A, 15V 2A Battery Capacity: DC 3.87V, 8000mAh	
Trade Mark	:	Emdoor	
Model No. :		T1, T1 Pro, T1 Max, T1 Ultra, T2, T2 Pro, T2 Max, T2 Ultra, T3, T3 Pro, T3 Max, T3 Ultra, T4, T4 Pro, T4 Max, T4 Ultra	
Product Name	:	Rugged Tablet	
Manufacturer :		Emdoor Information Co.,Ltd.	
Applicant :		Emdoor Information Co.,Ltd.	

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements.

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:

Sept. 30, 2024

Date of Test:

Prepared By:

Sept. 30, 2024 to Nov. 06, 2024

Nian Xiu Chen

(Nianxiu Chen)

(KingKong Jin)

Shenzhen Anbotek Compliance Laboratory Limited

Approved & Authorized Signer:

Revision History

Report Version	Description	Issued Date		
R00	Original Issue.	Dec. 05, 2024		

Shenzhen Anbotek Compliance Laboratory Limited

1. General Information

1.1. Client Information

Applicant	:	Emdoor Information Co.,Ltd.		
Address	:	3/F, Bldg 5th, Wonderful Life Wisdom Valley TechnoPark, No.83 Dabao Rd, Xin'an Sub-district, Bao'an District, Shenzhen, Guangdong Province, 518101, China		
Manufacturer	:	Emdoor Information Co.,Ltd.		
Address	:	3/F, Bldg 5th, Wonderful Life Wisdom Valley TechnoPark, No.83 Dabao Rd, Xin'an Sub-district, Bao'an District, Shenzhen, Guangdong Province, 518101, China		
Factory	:	Emdoor Information Co.,Ltd.		
Address	:	6th to 9th floors, Building 1, Emdoor Building, No. 8 Guangke 1st Road, Laokeng Community, Longtian Street, Pingshan District, Shenzhen City China		

1.2. Description of Device (EUT)

Product Name	: Rugged Tablet		
Model No.		T1, T1 Pro, T1 Max, T1 Ultra, T2, T2 Pro, T2 Max, T2 Ultra, T3, T3 Pro, T3 Max, T3 Ultra, T4, T4 Pro, T4 Max, T4 Ultra (Note: All samples are the same except the model number, so we prepare "T1" for test only.)	
Trade Mark	:	Emdoor	
Test Power Supply	:	AC 120V/60Hz for Adapter; DC 3.87V battery inside	
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)	
Adapter	Manufacturer: Guangdong Quanzhi Technology Co,Ltd. Model: QZ-03301AC00 Input: 100-240V~50/60Hz 1.2A Output(PD): 5.0V= 3.0A 15.0W or 9.0V= 3.0A 27.0W or 12.0V= 2.5A 30.0W or 15.0V= 2.0A 30.0W or 20.0V= 1.5A 30.0W Max (PPS) 5.0V-11.0V= 3.0A 33.0W Max.		
RF Specification	RF Specification		
Operation Frequency :		802.11a/n(HT20)/ac(VHT20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(VHT40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(VHT80): U-NII Band 1: 5210MHz; U-NII Band 3: 5775MHz	

Shenzhen Anbotek Compliance Laboratory Limited

Number of Channel : 80		802.11a/n(HT20)/ac(VHT20): U-NII Band 1: 4; U-NII Band 3: 5; 802.11n(HT40)/ac(VHT40): U-NII Band 1: 2; U-NII Band 3: 2; 802.11ac(VHT80): U-NII Band 1: 1; U-NII Band 1: 1; U-NII Band 3: 1		
Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)		
Device Type	:	Client Devices		
Antenna Type	:	FPC Antenna		
Antenna Gain(Peak)	:	WiFi 5.2G: 2.19dBi WiFi 5.8G: 4.99dBi		
Remark: (1) All of the RF specification are provided by customer.				

(1) All of the RF specification are provided by customer.(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.	
/	/	1	/	

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230	/	/
44	5220	/	/	/	/
48	5240	/	1	/	/

Operation Band: U-NII Band 3

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795	/	/
157	5785	1	/	/	/
161	5805	1	1	/	/
165	5825	1	/	/	/

1.5. Description of Test Modes

Pretest Modes	Descriptions
TM1	Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМЗ	Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Shenzhen Anbotek Compliance Laboratory Limited

1.6. Measurement Uncertainty

Parameter	Uncertainty	
Conducted emissions (AMN 150kHz~30MHz)	3.4dB	
Dwell Time	2%	
Occupied Bandwidth	925Hz	
Conducted Output Power	0.76dB	
Power Spectral Density	0.76dB	
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB	
Radiated emissions (Below 30MHz)	3.53dB	
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 4.46dB; Vertical: 5.04dB	
The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032.		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Conducted Emission at AC power line	Mode1,2,3	Р
Duty Cycle	Mode1,2,3	Р
Emission bandwidth and occupied bandwidth	Mode1,2,3	Р
Maximum conducted output power	Mode1,2,3	Р
Power spectral density	Mode1,2,3	Р
Band edge emissions (Conducted)	Mode1,2,3	Р
Band edge emissions (Radiated)	Mode1,2,3	Р
Undesirable emission limits (below 1GHz)	Mode1,2,3	Р
Undesirable emission limits (above 1GHz)	Mode1,2,3	Р
Note: P: Pass N: N/A, not applicable	·	

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

1.10. Test Equipment List

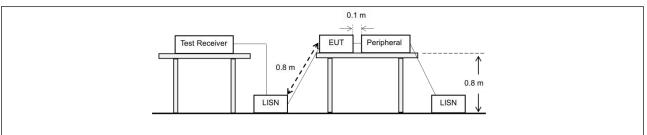
Cond	Conducted Emission at AC power line					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	/	/
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2024-09-09	2025-09-08

Duty Cycle Emission bandwidth and occupied bandwidth Maximum conducted output power Power spectral density Band edge emissions (Conducted)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2024-10-14	2025-10-13
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2024-09-09	2025-09-08
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-09-09	2025-09-08
5	Oscilloscope	Tektronix	MDO3012	C020298	2024-10-10	2025-10-09
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

	Band edge emissions (Radiated) Undesirable emission limits (above 1GHz)					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2024-01-22	2027-01-21
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

Unde	Undesirable emission limits (below 1GHz)					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/

2. Conducted Emission at AC power line

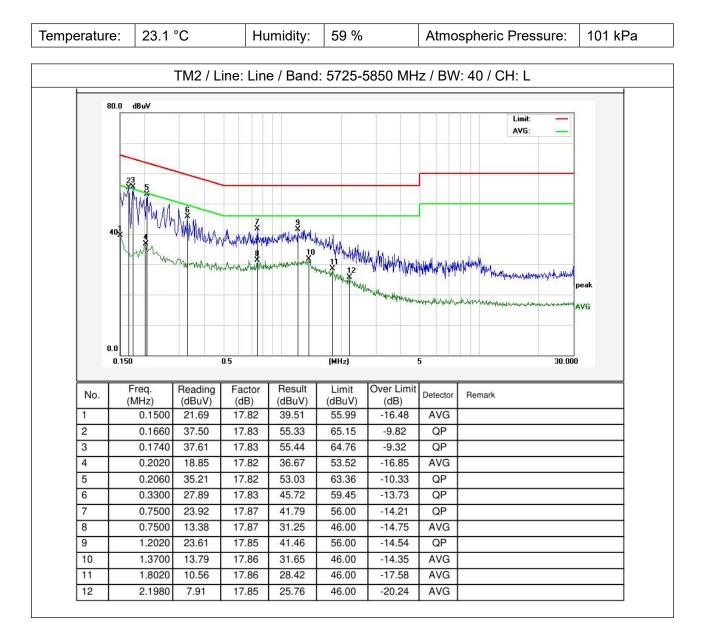

Test Requirement:	47 CFR Part 15.207(a)		
	Frequency of emission (MHz)	Conducted limit (dBµV)	
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5	56	46
	5-30	60	50
	*Decreases with the logarithm of t	he frequency.	
Test Method:	ANSI C63.10-2020 section 6.2		

2.1. EUT Operation

Operating Environment:

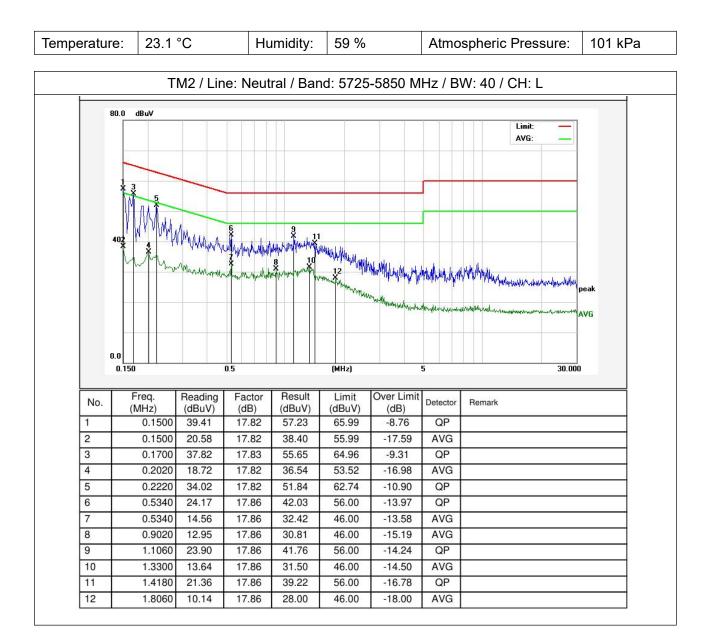
Test mode:	 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

2.2. Test Setup



Report No.:1812C40101512504 FCC ID: 2A37Q-T1

2.3. Test Data


Shenzhen Anbotek Compliance Laboratory Limited

Report No.:1812C40101512504 FCC ID: 2A37Q-T1

Note:Only record the worst data in the report.

3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

Operating Envi	Operating Environment:			
Test mode:	 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 			

3.2. Test Setup

EUT	Spectrum Analyzer

3.3. Test Data

Temperature: 26.3 °C Humidity	: 45 %	Atmospheric Pressure:	101 kPa
-------------------------------	--------	-----------------------	---------

Please Refer to Appendix for Details.

4. Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5 KDB 789033 D02, Clause C.2
	 Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
Procedure:	 Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered

amplitude data points,
beginning at the lowest frequency, are placed in a running sum until 0.5% of
the total is reached;
that frequency is recorded as the lower frequency. The process is repeated
until 99.5% of the
total is reached; that frequency is recorded as the upper frequency. The 99%
power bandwidth is
the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the
measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled.
Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth:
a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and
lower frequencies) that are attenuated by 6 dB relative to the maximum level
measured in the fundamental emission.

4.1. EUT Operation

Test mode:	 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

EUT	Spectrum Analyzer

4.3. Test Data

Temperature:	26.3 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

5. Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to- point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4

5.1. EUT Operation

Operating Environment:		
Test mode:	 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 	

5.2. Test Setup

EUT	Spectrum Analyzer

5.3. Test Data

Temperature: 26.3 °C Humi	/: 45 %	Atmospheric Pressure:	101 kPa
---------------------------	---------	-----------------------	---------

Please Refer to Appendix for Details.

6. Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

6.1. EUT Operation

Operating Envi	Operating Environment:			
Test mode:	 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 			

6.2. Test Setup

EUT Spectrum Analyzer

6.3. Test Data

Temperature: 26.3 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa
----------------------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

7. Band edge emissions (Conducted)

	47 CFR Part 15.407(b)(1)				
Test Requirement:	47 CFR Part 15.407(b					
· · · · · · · · · · · · · · · · · · ·	47 CFR Part 15.407(b	,,,,				
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside					
	of the 5.15-5.35 GHz t					
	For transmitters opera					
	All emissions shall be					
	above or below the ba					
	above or below the ba edge increasing linear					
	below the band edge,					
	increasing linearly to a					
				.90.		
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	10.495-0.505	16.69475-	608-614	5.35-5.46		
		16.69525				
	2.1735-2.1905	16.80425-	960-1240	7.25-7.75		
		16.80475				
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5-	9.3-9.5		
	0.045.0.040	74.0.75.0	1646.5	40.0.40.7		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
Test Limit:	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4		
	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475-	2483.5-2500	17.7-21.4		
		156.52525				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
	12.57675-12.57725	322-335.4	3600-4400	(2)		
	13.36-13.41					
	¹ Until February 1, 199	9, this restricted ban	d shall be 0.490	-0.510 MHz.		
	2 Ab area 00.0					
	² Above 38.6					
	The field strength of e	missions annearing v	within these frequ	lency hands sha		
	not exceed the limits s					
	1000 MHz, compliance					
	using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §					
	detector. Above 1000	MHz, compliance wit	h the emission li	mits in §		
	detector. Above 1000 15.209shall be demon emissions. The provisi	strated based on the	e average value o	of the measured		

	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:		
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	However, operation within sections of this part, e.g., § In the emission table abov The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and	Iz, 76-88 MHz, 174-216 MHz or these frequency bands is permit §§ 15.231 and 15.241. e, the tighter limit applies at the b in the above table are based on peak detector except for the freq above 1000 MHz. Radiated emis ed on measurements employing	ted under other pand edges. measurements juency bands 9– ssion limits in
Test Method:	ANSI C63.10-2020, sectio	n 12.7.4, 12.7.6, 12.7.7	
Procedure:	meters above the ground a rotated 360 degrees to det b. The EUT was set 3 meters which was mounted on the c. The antenna height is var ground to determine the mand vertical polarizations of d. For each suspected emit and then the antenna was test frequency of below 30 and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of the limit specified, then testing would be reported. Otherwar would be re-tested one by and then reported in a data g. Test the EUT in the lower channel. h. The radiation measurem Transmitting mode, and for case.	he EUT in peak mode was 10dB l could be stopped and the peak rise the emissions that did not ha one using peak or average meth	ber. The table was be radiation. eceiving antenna, a tower. ers above the th. Both horizontal e measurement. its worst case 4 meters (for the neights 1 meter) egrees to find the on and Specified lower than the values of the EUT ve 10dB margin od as specified the Highest is positioning for it is the worst

Remark:
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB
below the limit need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

7.1. EUT Operation

Operating Environment:				
Test mode:	 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 			

7.2. Test Setup

EUT Spectrum Analyzer	
-----------------------	--

7.3. Test Data

Temperature:	26.3 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa

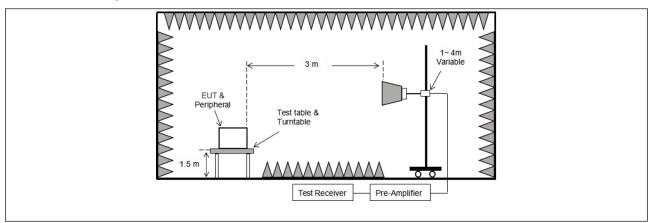
Please Refer to Appendix for Details.

8. Band edge emissions (Radiated)

Test Requirement:	47 CFR Part 15.407(b 47 CFR Part 15.407(b 47 CFR Part 15.407(b 47 CFR Part 15.407(b)(4)		
	For transmitters opera of the 5.15-5.35 GHz b	ting in the 5.15-5.25		
	For transmitters opera All emissions shall be above or below the ba above or below the ba edge increasing linear below the band edge, increasing linearly to a	limited to a level of – nd edge increasing li nd edge, and from 29 ly to a level of 15.6 d and from 5 MHz abo	27 dBm/MHz at nearly to 10 dBr 5 MHz above or Bm/MHz at 5 MI ve or below the	75 MHz or more n/MHz at 25 MHz below the band Hz above or band edge
	MHz	MHz	MHz	GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
	12.57675-12.57725	322-335.4	3600-4400	(2)
	13.36-13.41			
	¹ Until February 1, 199 ² Above 38.6 The field strength of en not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 15.209shall be demon emissions. The provisi	missions appearing v hown in § 15.209. At e with the limits in § 1 strumentation emplo MHz, compliance with strated based on the	vithin these frequ frequencies equ 5.209shall be d ying a CISPR qu h the emission li average value o	uency bands shall ual to or less than emonstrated uasi-peak mits in § of the measured
	Except as provided els	sewhere in this subpa	art, the emission	s from an

Shenzhen Anbotek Compliance Laboratory Limited

	intentional radiator shall	not exceed the field strength lev	els specified in the
	following table: Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500 paragraph (g), fundamental em	3
	frequency bands 54-72 I However, operation with sections of this part, e.g. In the emission table abo The emission limits show employing a CISPR qua- 90 kHz, 110–490 kHz an	rating under this section shall no MHz, 76-88 MHz, 174-216 MHz n these frequency bands is perr , §§ 15.231 and 15.241. ove, the tighter limit applies at th vn in the above table are based si-peak detector except for the f d above 1000 MHz. Radiated en ased on measurements employing	or 470-806 MHz. mitted under other le band edges. on measurements requency bands 9– mission limits in
Test Method:	ANSI C63.10-2020, sect	ion 12.7.4, 12.7.6, 12.7.7	
Procedure:	meters above the ground rotated 360 degrees to d b. The EUT was set 3 m which was mounted on t c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna wa test frequency of below 3 and the rotatable table w maximum reading. e. The test-receiver syste Bandwidth with Maximum f. If the emission level of limit specified, then testin would be reported. Othe would be re-tested one b and then reported in a da g. Test the EUT in the low channel. h. The radiation measure Transmitting mode, and case.	the EUT in peak mode was 10c ng could be stopped and the pea rwise the emissions that did not by one using peak or average m	amber. The table was nest radiation. e-receiving antenna, na tower. heters above the ngth. Both horizontal the measurement. to its worst case to 4 meters (for the to heights 1 meter) 0 degrees to find the ction and Specified IB lower than the ak values of the EUT have 10dB margin ethod as specified el, the Highest axis positioning for ch it is the worst



1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low.
The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength
limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

8.1. EUT Operation

Operating Envi	ronment:
Test mode:	 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

8.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

8.3. Test Data

Temperature:26.3 °CHumidity:45 %Atmospheric Pressure:101 kPa					
	Temperature:	26.3 °C	Humidity:	45 %	101 kPa

	TM1 / Band: 5150-5250 MHz / BW: 20 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	36.90	15.99	52.89	68.20	-15.31	Н	Peak				
5150.00	38.96	15.99	54.95	68.20	-13.25	V	Peak				
5150.00	26.86	15.99	42.85	54.00	-11.15	Н	AVG				
5150.00	28.89	15.99	44.88	54.00	-9.12	V	AVG				
		TM1 / B	and: 5150-52	250 MHz / BV	V: 20 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5250.00	37.37	16.43	53.80	68.20	-14.40	Н	Peak				
5250.00	40.27	16.43	56.70	68.20	-11.50	V	Peak				
5250.00	28.66	16.43	45.09	54.00	-8.91	Н	AVG				
5250.00	29.59	16.43	46.02	54.00	-7.98	V	AVG				

Remark: 1. Result=Reading + Factor

TM2 / Band: 5150-5250 MHz / BW: 20 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5150.00	35.88	15.99	51.87	68.20	-16.33	Н	Peak			
5150.00	37.25	15.99	53.24	68.20	-14.96	V	Peak			
5150.00	26.60	15.99	42.59	54.00	-11.41	Н	AVG			
5150.00	27.59	15.99	43.58	54.00	-10.42	V	AVG			
		TM2 / B	and: 5150-52	250 MHz / BV	V: 20 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5250.00	37.68	16.43	54.11	68.20	-14.09	Н	Peak			
5250.00	38.74	16.43	55.17	68.20	-13.03	V	Peak			
5250.00	27.71	16.43	44.14	54.00	-9.86	Н	AVG			
5250.00	29.14	16.43	45.57	54.00	-8.43	V	AVG			

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

	TM2 / Band: 5150-5250 MHz / BW: 40 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	36.38	15.99	52.37	68.20	-15.83	Н	Peak				
5150.00	38.24	15.99	54.23	68.20	-13.97	V	Peak				
5150.00	26.95	15.99	42.94	54.00	-11.06	Н	AVG				
5150.00	28.71	15.99	44.70	54.00	-9.30	V	AVG				
		TM2 / B	and: 5150-52	250 MHz / BV	V: 40 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5250.00	38.02	16.43	54.45	68.20	-13.75	Н	Peak				
5250.00	36.91	16.43	53.34	68.20	-14.86	V	Peak				
5250.00	28.20	16.43	44.63	54.00	-9.37	Н	AVG				
5250.00	29.39	16.43	45.82	54.00	-8.18	V	AVG				

	TM3 / Band: 5150-5250 MHz / BW: 20 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	36.84	15.99	52.83	68.20	-15.37	Н	Peak				
5150.00	38.58	15.99	54.57	68.20	-13.63	V	Peak				
5150.00	26.51	15.99	42.50	54.00	-11.50	Н	AVG				
5150.00	28.67	15.99	44.66	54.00	-9.34	V	AVG				
		TM3 / B	and: 5150-52	250 MHz / BV	V: 20 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5250.00	37.83	16.43	54.26	68.20	-13.94	Н	Peak				
5250.00	38.08	16.43	54.51	68.20	-13.69	V	Peak				
5250.00	27.72	16.43	44.15	54.00	-9.85	Н	AVG				
5250.00	28.26	16.43	44.69	54.00	-9.31	V	AVG				

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

TM3 / Band: 5150-5250 MHz / BW: 40 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5150.00	35.79	15.99	51.78	68.20	-16.42	Н	Peak			
5150.00	36.27	15.99	52.26	68.20	-15.94	V	Peak			
5150.00	25.94	15.99	41.93	54.00	-12.07	Н	AVG			
5150.00	26.71	15.99	42.70	54.00	-11.30	V	AVG			
TM3 / Band: 5150-5250 MHz / BW: 40 / H										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5250.00	37.96	16.43	54.39	68.20	-13.81	Н	Peak			
5250.00	37.13	16.43	53.56	68.20	-14.64	V	Peak			
5250.00	27.44	16.43	43.87	54.00	-10.13	Н	AVG			
5250.00	27.35	16.43	43.78	54.00	-10.22	V	AVG			
Remark 1 F	Result=Readi	ng + Eactor								

TM3 / Band: 5150-5250 MHz / BW: 80 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5150.00	35.97	15.99	51.96	68.20	-16.24	Н	Peak		
5150.00	36.32	15.99	52.31	68.20	-15.89	V	Peak		
5150.00	26.45	15.99	42.44	54.00	-11.56	Н	AVG		
5150.00	26.75	15.99	42.74	54.00	-11.26	V	AVG		
		TM3 / B	and: 5150-52	250 MHz / BV	V: 80 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5250.00	38.18	16.43	54.61	68.20	-13.59	Н	Peak		
5250.00	37.34	16.43	53.77	68.20	-14.43	V	Peak		
5250.00	28.65	16.43	45.08	54.00	-8.92	Н	AVG		
5250.00	28.02	16.43	44.45	54.00	-9.55	V	AVG		

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

		TM1 / B	and: 5725-58	850 MHz / BV	V· 20 / I		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	38.10	16.37	54.47	68.20	-13.73	Н	Peak
5725.00	39.45	16.37	55.82	68.20	-12.38	V	Peak
5725.00	28.98	16.70	45.68	54.00	-8.32	Н	AVG
5725.00	30.09	16.70	46.79	54.00	-7.21	V	AVG
		TM1 / B	and: 5725-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	39.03	17.21	56.24	68.20	-11.96	Н	Peak
5850.00	39.38	17.21	56.59	68.20	-11.61	V	Peak
	29.03	17.21	46.24	54.00	-7.76	Н	AVG
5850.00							
5850.00	29.06	17.21	46.27	54.00	-7.73	V	AVG

TM2 / Band: 5725-5850 MHz / BW: 20 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5725.00	38.06	17.05	55.11	68.20	-13.09	Н	Peak		
5725.00	38.62	17.05	55.67	68.20	-12.53	V	Peak		
5725.00	27.56	17.05	44.61	54.00	-9.39	Н	AVG		
5725.00	28.07	17.05	45.12	54.00	-8.88	V	AVG		
		TM2 / B	and: 5725-58	350 MHz / BV	V: 20 / H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
5850.00	37.27	17.21	54.48	68.20	-13.72	Н	Peak		
5850.00	37.90	17.21	55.11	68.20	-13.09	V	Peak		
5850.00	27.52	17.21	44.73	54.00	-9.27	Н	AVG		
5850.00	28.37	17.21	45.58	54.00	-8.42	V	AVG		

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

	TM2 / Band: 5725-5850 MHz / BW: 40 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5725.00	37.64	17.05	54.69	68.20	-13.51	Н	Peak				
5725.00	38.50	17.05	55.55	68.20	-12.65	V	Peak				
5725.00	26.99	17.05	44.04	54.00	-9.96	Н	AVG				
5725.00	28.36	17.05	45.41	54.00	-8.59	V	AVG				
		TM2 / B	and: 5725-58	350 MHz / BV	V: 40 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5850.00	38.00	17.21	55.21	68.20	-12.99	Н	Peak				
5850.00	38.41	17.21	55.62	68.20	-12.58	V	Peak				
5850.00	28.17	17.21	45.38	54.00	-8.62	Н	AVG				
5850.00	29.28	17.21	46.49	54.00	-7.51	V	AVG				

	TM3 / Band: 5725-5850 MHz / BW: 20 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5725.00	37.30	17.05	54.35	68.20	-13.85	Н	Peak				
5725.00	37.49	17.05	54.54	68.20	-13.66	V	Peak				
5725.00	28.24	17.05	45.29	54.00	-8.71	Н	AVG				
5725.00	29.01	17.05	46.06	54.00	-7.94	V	AVG				
		TM3 / B	and: 5725-58	350 MHz / BV	V: 20 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5850.00	38.04	17.21	55.25	68.20	-12.95	Н	Peak				
5850.00	38.94	17.21	56.15	68.20	-12.05	V	Peak				
5850.00	27.93	17.21	45.14	54.00	-8.86	Н	AVG				
5850.00	28.97	17.21	46.18	54.00	-7.82	V	AVG				

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

TM3 / Band: 5725-5850 MHz / BW: 40 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5725.00	36.26	17.05	53.31	68.20	-14.89	Н	Peak			
5725.00	37.80	17.05	54.85	68.20	-13.35	V	Peak			
5725.00	27.52	17.05	44.57	54.00	-9.43	Н	AVG			
5725.00	28.22	17.05	45.27	54.00	-8.73	V	AVG			
		TM3 / B	and: 5725-58	350 MHz / BV	V: 40 / H					
FrequencyReadingFactorResultLimitOver limitAntenna(MHz)(dBuV)(dB/m)(dBuV/m)(dBuV/m)(dB)Pol.						Detector				
5850.00	37.61	17.21	54.82	68.20	-13.38	Н	Peak			
5850.00	38.41	17.21	55.62	68.20	-12.58	V	Peak			
5850.00	27.61	17.21	44.82	54.00	-9.18	Н	AVG			
5850.00	27.20	17.21	44.41	54.00	-9.59	V	AVG			
Remark 1 F	Recult-Readi	na i Eastar								

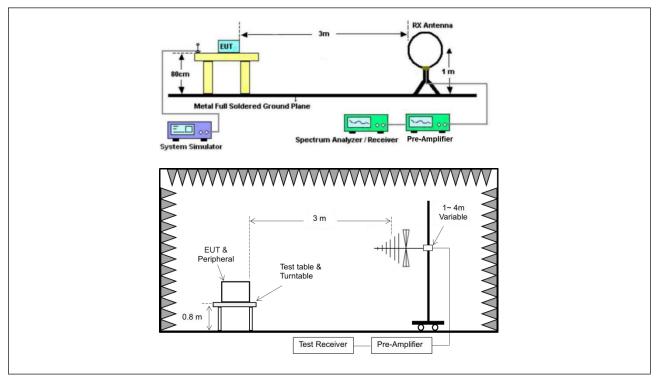
TM3 / Band: 5725-5850 MHz / BW: 80 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5725.00	35.54	17.05	52.59	68.20	-15.61	Н	Peak	
5725.00	37.05	17.05	54.10	68.20	-14.10	V	Peak	
5725.00	26.52	17.05	43.57	54.00	-10.43	Н	AVG	
5725.00	27.13	17.05	44.18	54.00	-9.82	V	AVG	
		TM3 / B	and: 5725-58	350 MHz / BV	V: 80 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5850.00	37.51	17.21	54.72	68.20	-13.48	Н	Peak	
5850.00	37.83	17.21	55.04	68.20	-13.16	V	Peak	
5850.00	27.87	17.21	45.08	54.00	-8.92	Н	AVG	
5850.00	28.22	17.21	45.43	54.00	-8.57	V	AVG	

Remark: 1. Result=Reading + Factor

9. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)						
	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Except as provided elsewhere in this subpart, the emissions from an							
	intentional radiator shall not exceed the field strength levels specified in the following table:							
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
Test Limit:	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.							
Test Method:	ANSI C63.10-2020, sec	tion 12.7.4, 12.7.5						
Procedure:	meters above the groun was rotated 360 degrees b. The EUT was set 3 or antenna, which was more c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna was test frequency of below and the rotatable table v maximum reading. e. The test-receiver syst Bandwidth with Maximum f. If the emission level of limit specified, then test would be reported. Other	the EUT in peak mode was ng could be stopped and the rwise the emissions that did r by one using quasi-peak meth	chamber. The table the highest radiation. erference-receiving -height antenna tower. r meters above the strength. Both horizontal ake the measurement. led to its worst case eter to 4 meters (for the ed to heights 1 meter) 360 degrees to find the unction and Specified 10dB lower than the peak values of the EUT not have 10dB margin					

g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst
case. i. Repeat above procedures until all frequencies measured was complete. Remark:
 Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizonta and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.f. If the emission level of the EUT in peak mode was 10dB lower than the
limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified
and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
i. Repeat above procedures until all frequencies measured was complete. Remark:
 Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of
spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified



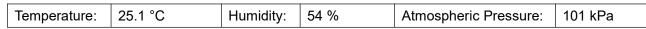
above by more than 20 dB under any condition of modulation. For the
emissions whose peak level is lower than the average limit, only the peak
measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had
been displayed.

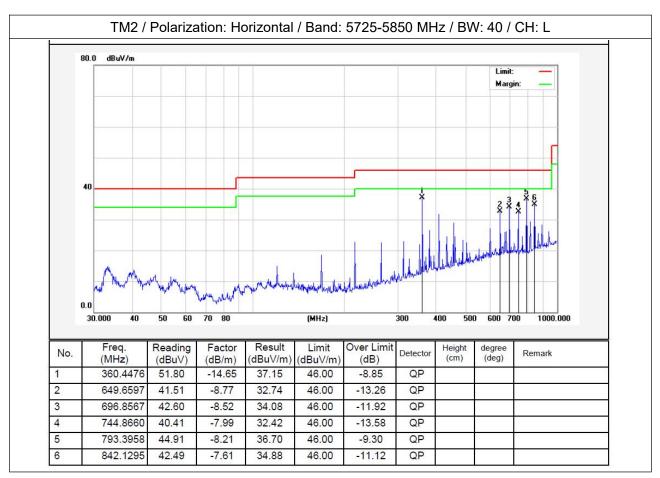
9.1. EUT Operation

Operating Envir	Operating Environment:						
Test mode:	 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 						

9.2. Test Setup

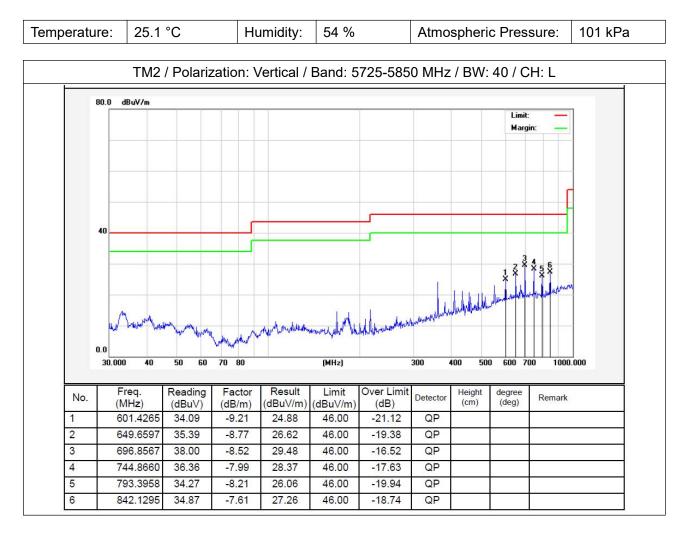
Shenzhen Anbotek Compliance Laboratory Limited





9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.



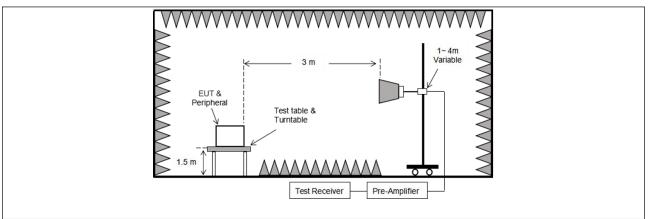
Report No.:1812C40101512504 FCC ID: 2A37Q-T1

Note:Only record the worst data in the report.

10. Undesirable emission limits (above 1GHz)

47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)						
For transmitters opera of the 5.15-5.35 GHz k For transmitters opera All emissions shall be above or below the ba above or below the ba edge increasing linear below the band edge, increasing linearly to a	ting in the 5.15-5.25 band shall not exceent ting solely in the 5.72 limited to a level of - nd edge increasing I nd edge, and from 2 ly to a level of 15.6 c and from 5 MHz abo a level of 27 dBm/MH	d an e.i.r.p. of –2 25-5.850 GHz ba 27 dBm/MHz at inearly to 10 dBr 5 MHz above or IBm/MHz at 5 MH ive or below the band ed	7 dBm/MHz. and: 75 MHz or more n/MHz at 25 MHz below the band Hz above or band edge			
¹ 0.495-0.505	16.69475-	608-614	4.5-5.15 5.35-5.46			
2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4			
6.31175-6.31225	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
			(²)			
 ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 						
	47 CFR Part 15.407(b47 CFR Part 15.407(bFor transmitters operal of the 5.15-5.35 GHz bFor transmitters operal All emissions shall be above or below the bal edge increasing linearly to aMHz0.090-0.11010.495-0.5052.1735-2.19054.125-4.128 4.17725-4.177754.20725-4.207756.215-6.218 6.26775-6.268256.31175-6.31225 8.291-8.2948.362-8.3668.37625-8.38675 8.41425-8.41475 12.29-12.293 12.51975-12.57025 13.36-13.411 Until February 1, 199 2 Above 38.62 Above 38.6The field strength of el not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 15.209shall be demonded.	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10) For transmitters operating in the 5.15-5.25 of the 5.15-5.35 GHz band shall not exceed For transmitters operating solely in the 5.77 All emissions shall be limited to a level of - above or below the band edge, and from 2 edge increasing linearly to a level of 15.6 c. below the band edge, and from 5 MHz abore increasing linearly to a level of 27 dBm/MHz 0.090-0.110 16.42-16.423 1 0.495-0.505 16.69475- 1 0.495-0.505 16.69475- 1 0.495-0.505 16.80425- 1 6.80475 4.125-4.128 2 2.1735-2.1905 16.80425- 1 6.215-6.218 74.8-75.2 6.26775-6.26825 108-121.94 6.31175-6.31225 123-138 8.291-8.294 149.9-150.05 8.362-8.366 156.52475- 156.5225 8.37625-8.38675 156.7-156.9 8.41425-8.41475 162.0125-167.17 12.29-12.293 167.72-173.2 12.51975-12.57725 322-335.4 13.36-13.41 1 1 Until February 1, 1999, this restricted band on texceed the limits shown in § 15.209. At 1000 MH	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10) For transmitters operating in the 5.15-5.25 GHz band: All enorematic of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -2 For transmitters operating solely in the 5.725-5.850 GHz band shall not exceed an e.i.r.p. of -2 For transmitters operating solely in the 5.725-5.850 GHz band. All emissions shall be limited to a level of -27 dBm/MHz at above or below the band edge, and from 25 MHz above or edge increasing linearly to a level of 15.6 dBm/MHz at 5 MH below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the bin creasing linearly to a level of 27 dBm/MHz at the band edge MHz MHz 0.090-0.110 16.42-16.423 10.495-0.505 16.69475- 608-614 16.69525 2.1735-2.1905 16.80425- 960-1240 16.80475 4.125-4.128 25.5-25.67 1300-1427 4.17725-4.17775 4.125-4.128 25.5-25.67 1300-1427 1.646.5 6.215-6.218 74.8-75.2 1660-1710 6.26775-6.26825 108-121.94 1718.8- 1722.2 6.31175-6.31225 123-138 2200-2300 8.362-8.366 156.52475- 2483.5-2500 156.52525 </td			

	Except as provided elsewh	nere in this subpart, the emission	s from an
		ot exceed the field strength levels	
	following table:		
	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators opera frequency bands 54-72 MH However, operation within sections of this part, e.g., § In the emission table abov The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and	aragraph (g), fundamental emiss ting under this section shall not k Hz, 76-88 MHz, 174-216 MHz or these frequency bands is permit §§ 15.231 and 15.241. e, the tighter limit applies at the l in the above table are based on peak detector except for the free above 1000 MHz. Radiated emis ed on measurements employing	be located in the 470-806 MHz. ted under other band edges. measurements guency bands 9– ssion limits in
Test Method:	ANSI C63.10-2020, sectio	n 12.7.4, 12.7.6, 12.7.7	
Procedure:	meters above the ground a rotated 360 degrees to def b. The EUT was set 3 met which was mounted on the c. The antenna height is va ground to determine the m and vertical polarizations of d. For each suspected em and then the antenna was test frequency of below 30 and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of th limit specified, then testing would be reported. Otherw would be re-tested one by and then reported in a data g. Test the EUT in the lowe channel. h. The radiation measurem Transmitting mode, and for case.	he EUT in peak mode was 10dB I could be stopped and the peak vise the emissions that did not ha one using peak or average meth	ber. The table was st radiation. ecciving antenna, a tower. ers above the th. Both horizontal e measurement. its worst case 4 meters (for the heights 1 meter) legrees to find the on and Specified lower than the values of the EUT we 10dB margin hod as specified the Highest is positioning for it is the worst



Remark:
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low.
The points marked on above plots are the highest emissions could be found
when testing, so only above points had been displayed. The amplitude of
spurious emissions from the radiator which are attenuated more than 20dB
below the limit need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength
limits are based on average limits. However, the peak field strength of any
emission shall not exceed the maximum permitted average limits specified
above by more than 20 dB under any condition of modulation. For the
emissions whose peak level is lower than the average limit, only the peak
measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had
been displayed.

10.1. EUT Operation

Operating Envi	Operating Environment:						
Test mode:	 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 						

10.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

10.3. Test Data

Temperature:	25.1 °C	Hum	nidity:	54 %	b A	Atmospheric Pressure: 101 kPa			
			d. 5450						
		TIMT / Ban	10: 5150	1-5250		/: 20 / CH: L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Res⊧ (dBuV		Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	a Detector	
10360.00	31.44	23.81	55.2	25	68.20	-12.95	V	Peak	
15540.00	32.75	28.68	61.4	13	68.20	-6.77	V	Peak	
10360.00	31.80	23.81	55.6	61	68.20	-12.59	Н	Peak	
15540.00	32.85	28.68	61.5	53	68.20	-6.67	Н	Peak	
10360.00	20.802	23.81	44.6	61	54.00	-9.39	V	AVG	
15540.00	21.859	28.68	50.5	54	54.00	-3.46	V	AVG	
10360.00	20.986	23.81	44.8	30	54.00	-9.20	Н	AVG	
15540.00	21.544	28.68	50.2	22	54.00	-3.78	Н	AVG	
		TM1 / Ban	d: 5150	-5250) MHz / BW	: 20 / CH: M			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Res⊧ (dBuV		Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	a Detector	
10400.00	30.80	23.81	54.6	61	68.20	-13.59	V	Peak	
15600.00	32.28	29.13	61.4	11	68.20	-6.79	V	Peak	
10400.00	31.29	23.81	55.1	10	68.20	-13.10	Н	Peak	
15600.00	32.37	29.13	61.5	50	68.20	-6.70	Н	Peak	
10400.00	21.072	23.81	44.8	38	54.00	-9.12	V	AVG	
15600.00	21.979	29.13	51.1	11	54.00	-2.89	V	AVG	
10400.00	20.976	23.81	44.7	79	54.00	-9.21	Н	AVG	
15600.00	21.624	29.13	50.7	75	54.00	-3.25	Н	AVG	
		TM1 / Ban	d: 5150	-5250) MHz / BW	': 20 / CH: H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Res⊧ (dBuV		Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	a Detector	
10480.00	30.37	23.80	54.1	17	68.20	-14.03	V	Peak	
15720.00	31.76	30.03	61.7	79	68.20	-6.41	V	Peak	
10480.00	30.93	23.80	54.7	73	68.20	-13.47	Н	Peak	
15720.00	31.28	30.03	61.3	31	68.20	-6.89	Н	Peak	
10480.00	19.74	23.80	43.5	54	54.00	-10.46	V	AVG	
15720.00	20.74	30.03	50.7	77	54.00	-3.23	V	AVG	
10480.00	20.19	23.80	43.9	99	54.00	-10.01	Н	AVG	
15720.00	20.41	30.03	50.4	14	54.00	-3.56	Н	AVG	

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11a) is recorded in the report.

2. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

Shenzhen Anbotek Compliance Laboratory Limited

TM2 / Band: 5725-5850 MHz / BW: 40 / CH: L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
11510.000	28.57	23.36	51.93	68.20	-16.27	V	Peak	
17265.000	29.11	32.02	61.13	68.20	-7.07	V	Peak	
11510.000	29.39	23.36	52.75	68.20	-15.45	Н	Peak	
17265.000	29.37	32.02	61.39	68.20	-6.81	Н	Peak	
11510.000	18.28	23.36	41.64	54.00	-12.36	V	AVG	
17265.000	18.66	32.02	50.68	54.00	-3.32	V	AVG	
11510.000	18.61	23.36	41.97	54.00	-12.03	Н	AVG	
17265.000	19.09	32.02	51.11	54.00	-2.89	Н	AVG	
		TM2 / Ban	d: 5725-5850	MHz / BW:	40 / CH: H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
11590.00	27.89	23.43	51.32	68.20	-16.88	V	Peak	
17385.00	29.07	32.23	61.30	68.20	-6.90	V	Peak	
11590.00	28.44	23.43	51.87	68.20	-16.33	Н	Peak	
17385.00	28.65	32.23	60.88	68.20	-7.32	Н	Peak	
11590.00	17.50	23.43	40.93	54.00	-13.07	V	AVG	
17385.00	17.68	32.23	49.91	54.00	-4.09	V	AVG	
11590.00	18.46	23.43	41.89	54.00	-12.11	Н	AVG	
17385.00	18.61	32.23	50.84	54.00	-3.16	Н	AVG	

Remark:

1. Result =Reading + Factor

2. Only the worst case (802.11n(HT40)) is recorded in the report.

3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

Shenzhen Anbotek Compliance Laboratory Limited

