

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen,

Guangdong, China 518057

+86 (0) 755 2601 2053 Telephone: Report No.: SZEM180100082701 Fax:

+86 (0) 755 2671 0594 : 01

Fmail: ee.shenzhen@sgs.com Page : 1 of 183

FCC SAR TEST REPORT

SZEM1801000827RG **Application No:**

Huawei Technologies Co., Ltd. Applicant: Huawei Technologies Co., Ltd. Manufacturer: Huawei Technologies Co., Ltd. Factory:

Smart Phone Product Name: Model No.(EUT): ANE-LX3 **Trade Mark: HUAWEI**

FCC ID: **QISANE-LX3**

Standards: FCC 47CFR §2.1093

Date of Receipt: 2018-01-21

Date of Test: 2018-01-31 to 2018-02-14

Date of Issue: 2018-02-15

PASS * Test conclusion:

In the configuration tested, the EUT detailed in this report complied with the standards specified above.

Authorized Signature:

Derek Yang

Derde yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and. for electronic Inis document is issued by the Company subject to tis General Conditions of Service printed overleast, available on request or accessible at http://www.sqs.com/en/lems-and-Conditions.aspx and, or electronic Documents as the limitation is from the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01 Page : 2 of 183

REVISION HISTORY

Revision Record								
Version	Chapter	Date	Modifier	Remark				
01		2018-02-15		Original				

Report No.:SZEM180100082701

Rev : 01 Page : 3 of 183

TEST SUMMARY

Frequency Band	Maximum Reported SAR(W/kg)					
	Head	Body-worn	Hotspot			
GSM850	0.88	0.41	0.41			
GSM1900	0.63	0.40	0.69			
WCDMA Band II	0.52	0.82	0.80			
WCDMA Band IV	0.63	0.67	0.79			
WCDMA Band V	0.68	0.43	0.50			
LTE Band 2	0.71	0.62	0.63			
LTE Band 4	0.78	0.78	0.88			
LTE Band 5	0.54	0.39	0.35			
LTE Band 7	0.60	0.46	0.37			
LTE Band 12	0.63	0.20	0.32			
LTE Band 17	NA	NA	NA			
WI-FI (2.4GHz)	0.36	0.13	0.29			
Bluetooth	0.12	NA	<0.10			
SAR Limited(W/kg)		1.6				
N	Maximum Simultaneous Transmission SAR (W/kg)					
Scenario	Head	Body-worn	Hotspot			
Sum SAR	0.99	1.00	0.88			
SPLSR	NA	NA	NA			
SPLSR Limited		0.04				

Note: According to TCB workshop October,2014 RF Exposure Procedures Update(Overlapping LTE Bands),SAR for LTE Band 17 (Frequency range:704-716 MHz) is covered by LTE Band 12 (Frequency range:699-716 MHz) due to similar frequency range, same maximum tune up limit and same channel bandwidth.

Report No.:SZEM180100082701

Rev : 01 Page : 4 of 183

CONTENTS

1	GEN	ERAL INFORMATION	7
1	1.1	DETAILS OF CLIENT	7
1	1.2	TEST LOCATION	7
1	1.3	TEST FACILITY	8
1	1.4	GENERAL DESCRIPTION OF EUT	9
	1.4.1	DUT Antenna Locations	11
	1.4.2	P Dynamic antenna switching specification	12
	1.4.3	Power reduction specification	13
	1.4.4	Downlink LTE CA additional specification	15
1	1.5	TEST SPECIFICATION	20
1	1.6	RF EXPOSURE LIMITS	21
2	LAB	ORATORY ENVIRONMENT	22
3	SAR	MEASUREMENTS SYSTEM CONFIGURATION	23
3	3.1	THE SAR MEASUREMENT SYSTEM	23
3	3.2	ISOTROPIC E-FIELD PROBE EX3DV4	24
3	3.3	DATA ACQUISITION ELECTRONICS (DAE)	25
3	3.4	SAM TWIN PHANTOM	25
3	3.5	ELI PHANTOM	26
3	3.6	DEVICE HOLDER FOR TRANSMITTERS	27
3	3.7	MEASUREMENT PROCEDURE	28
	3.7.1	Scanning procedure	28
	3.7.2	P Data Storage	30
	3.7.3	B Data Evaluation by SEMCAD	30
4	SAR	MEASUREMENT VARIABILITY AND UNCERTAINTY	32
4	1.1	SAR MEASUREMENT VARIABILITY	32
4	1.2	SAR MEASUREMENT UNCERTAINTY	33
5	DES	CRIPTION OF TEST POSITION	34
Ę	5.1	HEAD EXPOSURE CONDITION	34
	5.1.1	SAM Phantom Shape	34
	5.1.2	P EUT constructions	35

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the ilimits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01 Page : 5 of 183

	5.1.3	Definition of the "cheek" position	35
	5.1.4	Definition of the "tilted" position	36
5	5.2	BODY EXPOSURE CONDITION	37
	5.2.1	Body-worn accessory exposure conditions	37
	5.2.2	Wireless Router exposure conditions	38
5	5.3	PROXIMITY SENSOR TRIGGERING TEST	39
	5.3.1	Main antenna Proximity Sensor	39
	5.3.2	Wifi antenna Determining Proximity Sensor	46
6	SAR	SYSTEM VERIFICATION PROCEDURE	49
6	6.1 ·	TISSUE SIMULATE LIQUID	49
	6.1.1	Recipes for Tissue Simulate Liquid	49
	6.1.2	Measurement for Tissue Simulate Liquid	50
6	6.2	SAR SYSTEM CHECK	51
	6.2.1	Justification for Extended SAR Dipole Calibrations	52
	6.2.2	Summary System Check Result(s)	53
	6.2.3	Detailed System Check Results	53
7	TEST	CONFIGURATION	54
7	7.1	3G SAR TEST REDUCTION PROCEDURE	54
7	7.2	OPERATION CONFIGURATIONS	54
	7.2.1	GSM Test Configuration	54
	7.2.2	WCDMA Test Configuration	55
	7.2.3	WiFi Test Configuration	61
	7.2.4	LTE Test Configuration	65
8	TEST	RESULT	67
8	3.1	MEASUREMENT OF RF CONDUCTED POWER	67
	8.1.1	Conducted Power of Main Antenna	67
	8.1.2	Conducted Power of Second Antenna	90
	8.1.1	Conducted Power of Downlink LTE CA	126
	8.1.2	Conducted Power of WIFI and BT	131
8	3.2	STAND-ALONE SAR TEST EVALUATION	133
8	3.3	MEASUREMENT OF SAR DATA	134
	8.3.1	SAR Result Of GSM850	134

Report No.:SZEM180100082701

Rev : 01 Page : 6 of 183

	8.3.2	SAR Result Of GSM1900	137			
	8.3.3	SAR Result Of WCDMA Band II	140			
	8.3.4	SAR Result Of WCDMA Band IV	143			
	8.3.5	SAR Result Of WCDMA Band V	146			
	8.3.6	SAR Result Of LTE Band 2	149			
	8.3.1	SAR Result Of LTE Band 4	152			
	8.3.2	SAR Result Of LTE Band 5	155			
	8.3.3	SAR Result Of LTE Band 7	159			
	8.3.4	SAR Result Of LTE Band 12	163			
	8.3.5	SAR Result Of LTE Band 17	167			
	8.3.6	SAR Result Of 2.4GHz WIFI	168			
	8.3.1	SAR Result Of Bluetooth				
8.	4 M (ULTIPLE TRANSMITTER EVALUATION				
	8.4.1	Simultaneous SAR SAR test evaluation				
	8.4.2	Estimated SAR	172			
9	EQUIP	MENT LIST	181			
10	CALIBE	RATION CERTIFICATE	182			
11	РНОТО	GRAPHS	182			
APP	ENDIX A	A: DETAILED SYSTEM VALIDATION RESULTS	183			
APPENDIX B: DETAILED TEST RESULTS183						
APPENDIX C: CALIBRATION CERTIFICATE183						
APP	ENDIX D	D: PHOTOGRAPHS	183			

Report No.:SZEM180100082701

Rev : 01 Page : 7 of 183

1 General Information

1.1 Details of Client

Applicant:	Huawei Technologies Co., Ltd.				
Address:	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C				
Manufacturer:	Huawei Technologies Co., Ltd.				
Address:	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C				
Factory:	Huawei Technologies Co., Ltd.				
Address:	Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.C				

1.2 Test Location

Company: SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Address: No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen,

Guangdong, China

Post code: 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 E-mail: <u>ee.shenzhen@sgs.com</u>

Report No.:SZEM180100082701

Rev : 01 Page : 8 of 183

1.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC -Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

Report No.:SZEM180100082701

Rev : 01 Page : 9 of 183

1.4 General Description of EUT

Device Type :	portable device						
Exposure Category:	uncontrolled environment / general population						
Product Name:	Smart Phone						
Model No.(EUT):	ANE-LX3						
FCC ID:	QISANE-LX3						
Trade Mark:	HUAWEI						
Product Phase:	production unit						
SN:	KPS7N1811100005	4/ KPS7N18111000024/ KPS 4/ KPS7N18111000059	S7N18111000037				
Hardware Version:	HL3ANNEM						
Software Version:	ANE-LX3 8.0.0.40(Cs	900).					
Antenna Type:	Inner Antenna						
Device Operating Configurat							
Modulation Mode:		WCDMA: QPSK;LTE:QPSK, BT: GFSK, π/4DQPSK,8DP\$					
Device Class:	В						
GPRS Multi-slots Class:	12	EGPRS Multi-slots Class:	12				
HSDPA UE Category:	14	HSUPA UE Category	6				
DC-HSDPA UE Category:	24						
LTE Release	10						
	4,tested with power level 5(GSM850)						
Power Class	1,tested with power level 0(GSM1900)						
Fower Class	3, tested with power control "all 1"(UMTS Band II/IV/V)						
	3, tested with power control Max Power(LTE Band 2/4/5/7/12/17)						
	Band	Tx (MHz)	Rx (MHz)				
	GSM850	824 - 849	869 - 894				
	GSM1900	1850-1910	1930-1990				
	WCDMA Band V	824 - 849	869 - 894				
	WCDMA Band IV	1710–1755	2110–2155				
	WCDMA Band II	1850-1910	1930-1990				
Frequency Bands:	LTE Band 2	1850-1910	1930-1990				
Trequency bands.	LTE Band 4	1710–1755	2110–2155				
	LTE Band 5	824 - 849	869 - 894				
	LTE Band 7	2500-2570	2620-2690				
	LTE Band 12	699-716	729-746				
	LTE Band 17	704-716	734-746				
	Bluetooth	2402-2480	2402-2480				
	Wi-Fi 2.4G	2412-2462	2412-2462				

Report No.:SZEM180100082701

Rev : 01

Page : 10 of 183

	Model: HB366481ECW				
Battery Information1#:	Rated capacity :2900mAh				
Battery information #.	Battery Type: Rechargeable Li-ion Battery				
	Manufacturer: Desay Battery Co., Ltd.				
	Model: HB366481ECW				
Dattary Information 0#1	Rated capacity :2900mAh				
Battery Information2#:	Battery Type: Rechargeable Li-ion Battery				
	Manufacturer: SCUD(Fujian)Electronics Co.,Ltd				
	Model: HB366481ECW				
Pattery Information?#:	Rated capacity :2900mAh				
Battery Information3#:	Battery Type: Rechargeable Li-ion Battery				
	Manufacturer: Sunwoda Electronic Co., LTD				
Headset Information1#:	Model: MEMD1532B528A00				
HeadSet Illionnation1#.	Manufacturer: Jiangxi Lianchuang Hongsheng Electronic Co., LTD.				
Headset Information2#:	Model: HA1-3W				
neauset miornationz#.	Manufacturer: GoerTek Inc.				
Headset Information3#:	Model: 1293-3283-3.5mm-300				
neauset inionnations#.	Manufacturer: Boluo County Quancheng Electronic Co., Ltd.				
Headset Information4#:	Model: EPAB542-2WH03-DH				
Heauset IIIIOIIIIatioii4#.	Manufacturer: FOXCONN INTERCONNECT TECHNOLOGY LIMITED.				

Report No.:SZEM180100082701

Rev : 01

Page : 11 of 183

1.4.1 DUT Antenna Locations

The antenna location, please see the Appendix D

The test device is a mobile phone. The display diagonal dimension is 146mm and the overall diagonal dimension of this device is 157mm.

According to the distance between LTE/WCDMA/GSM&WIFI antennas and the sides of the EUT we can draw the conclusion that:

EUT Sides for SAR Testing						
Mode	Front	Back	Left	Right	Тор	Bottom
Ant 3(Main Antenna)	Yes	Yes	Yes	Yes	No	Yes
Ant 2(Second Antenna)	Yes	Yes	Yes	Yes	Yes	No
2.4G WIFI&BT	Yes	Yes	No	Yes	Yes	No

Table 1: EUT Sides for SAR Testing

Note:

1) When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

Report No.:SZEM180100082701

Rev : 01

Page : 12 of 183

1.4.2 Dynamic antenna switching specification

The device has two 2G/3G/4G Tx antennas (Main Antenna and Second Antenna). It can transmit from either Main Antenna or Second Antenna, but they cannot transmit simultaneously.

SAR test procedure for dynamic antenna switching is as below:

The Main Antenna and Second Antenna are set to the MAX transmit power level respectively and test the SAR respectively in all applicable RF exposure conditions. Some commands or test scripts are supplied to fix the operation state and choose the antenna so that only one TX antenna is chosen and tested at a time. All independent antennas will be completely covered by the appropriate SAR measurements and all simultaneous transmission possibilities will be fully considered to ensure SAR compliance.

Report No.:SZEM180100082701

Rev : 01

Page : 13 of 183

1.4.3 Power reduction specification

This device uses a single fixed level of power reduction through static table look-up for SAR compliance and it is triggered by a single event or operation:

- 1) A fixed level power reduction is applied for some frequency bands when hotspot mode becomes active. When the hotspot is disabled, the power value will be recovered.
- 2) A fixed level power reduction is applied for some frequency bands when capacitive proximity sensor mode becomes active to ensure body SAR compliance.
- 3) A fixed level power reduction is applied for some frequency bands when handset operate "held to the ear" condition, the power reduction triggered by audio receiver detection. The audio receiver detection is used to determine head or body scenario.

The following tables summarize the key power reduction information. The detailed full power which is the Max. power the state can use and reduced tune-up specifications and conducted power measurement results are provided in Section 8 of this report.

	Power Reduction Level Amount (dB)						
Band	Main Antenna				Second Antenna		
Balla	Full Power	Hotspot actived	Capacitive proximity sensor on	Hotspot + Sensor	Full Power	"held to the ear" REC ON	Hotspot actived
GSM 850	0	0	0	0	0	0.5	0.5
GSM 1900	0	2.5	0	2.5	0	1	1
UMTS Band II	0	5.5	0	5.5	0	5.5	5.5
UMTS Band IV	0	4.5	0	4.5	0	4	4
UMTS Band V	0	0	0	0	0	2.5	2.5
LTE Band 2	0	6	0	6	0	5	5
LTE Band 4	0	5	0	5	0	3	3
LTE Band 5	0	0	0	0	0	2	2
LTE Band 7	0	3.5	2	5	0	6	6
LTE Band 12	0	0	0	0	0	1.5	1.5
LTE Band 17	0	0	0	0	0	1.5	1.5

Report No.:SZEM180100082701

Rev : 01

Page : 14 of 183

This device uses an infrared proximity sensor to facilitate triggering WIFI power reduction when the phone is held close to a user's ear exposure condition.

	Power Reduction Level Amount (dB)					
	infrared proxi or	mity sensor	infrared proximity sensor off			
	WiFi	infrared	WiFi			
	Antenna and	proximity	Antenna and			
Band	2G&3G&4G	sensor On	2G&3G&4G	Full Power		
	antenna	VoWIFI	antenna	(other		
	(Voice	(Voice	(Voice	conditions)		
	mode) simultaneous	mode)	mode) simultaneous	,		
	transmission		transmission			
WiFi 2.4G 802.11b	4	4	0	0		
WiFi 2.4G	2	2	0	0		
802.11g			0	Ü		
WiFi 2.4G	1	1	0	0		
802.11n(20M)	•		ŭ			
WiFi 2.4G 802.11n(40M)	1	1	0	0		

Report No.:SZEM180100082701

Rev : 01

Page : 15 of 183

1.4.4 Downlink LTE CA additional specification

The device supports downlink LTE Carrier Aggregation (CA) only. Other Release 10 or higher features are not supported, including Uplink Carrier Aggregation, Enhanced SC-FDMA and Uplink MIMO or other antenna diversity configurations etc. All uplink communications are identical to the Release 8 Specifications.

The possible downlink LTE CA combinations supported by this device are as below tables per 3GPP TS 36.101 V15.1.0 (2017-12). The conducted power measurement results of downlink LTE CA are provided in Section 7 of this report per 3GPP TS 36.521-1 V13.2.0 (2016-06). According to KDB 941225 D05A, the downlink LTE CA SAR test is not required and PAG requirements can be excluded.

Report No.:SZEM180100082701

Rev : 01

Page : 16 of 183

Intra-band contiguous CA	Band
CA_7C	B7
CA_12B	B12
Inter-band CA (two bands)	Band
CA_4A-7A	B4/B7
CA_5A-7A	B5/B7
CA_4A-12A	B4(PCC ONLY)
CA_4A-17A	B4(PCC ONLY)
CA_4A-5A	B4/B5
CA_7A-12A	B7/B12
CA_2A-12A	B2/B12
CA_2A-5A	B2/B5

contiguous intra-band CA

	E-UTRA CA configuration / Bandwidth combination set						
	Uplink CA configurations		riers in order of i rier frequency	Maximum	Dondusidth		
E-UTRA CA configuration	(NŌTE 3)	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	aggregated bandwidth [MHz]	Bandwidth combination set	
			15		40	0	
		20	20		40	0	
CA_7C	CA_7C NA		20				
		15	15, 20		40	1	
		20	10, 15, 20				
CA_12B	NA	5	5, 10		15	0	

NOTE 1: The CA configuration refers to an operating band and a CA bandwidth class specified in Table 5.6A-1 (the

indexing letter). Absence of a CA bandwidth class for an operating band implies support of all classes. For the supported CC bandwidth combinations, the CC downlink and uplink bandwidths are equal.

NOTE 3: Uplink CA configurations are the configurations supported by the present release of specifications.

Report No.:SZEM180100082701

Rev : 01

Page : 17 of 183

inter-band CA (two bands)

E-UTRA CA Configuration E-UTRA Bands 1.4 Bands 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz Maximum aggregate bandwidth [MHz] bandwidth [MHz] Bandwid combination set CA_5A-7A 5 Yes Yes Yes Yes Yes 30 0 CA_4A-7A 7 Yes Yes <td< th=""><th colspan="6">E-UTRA CA configuration / Bandwidth combination set</th></td<>	E-UTRA CA configuration / Bandwidth combination set									
CA_SA-7A CA_SA-			1.4 MHz	3 MHz					aggregated bandwidth	Bandwidth combination set
CA_4A-7A	CA 5A-7A	5	Yes	Yes	Yes	1			30	0
CA_4A-7A 7 Yes Yes<	UA_5A-7A	7				Yes	Yes	Yes	30	U
CA_4A-12A Yes Y	CA 4A-7A								30	0
CA_4A-12A 12 Yes	UA_4A-7A	7			Yes	Yes	Yes	Yes	30	U
CA_4A-12A		4	Yes	Yes	Yes	Yes			20	0
CA_4A-12A 12 Yes Y		12			Yes	Yes			20	U
CA_4A-12A		4	Yes	Yes	Yes	Yes	Yes	Yes	20	4
CA_4A-12A 12 Yes		12			Yes	Yes			30	ı
12	CA 4A 10A	4			Yes	Yes	Yes	Yes	20	2
12	UA_4A-12A	12		Yes	Yes	Yes			30	
12		4			Yes	Yes			00	3
CA_4A-17A 4 Yes Yes 20 0 CA_4A-17A 17 Yes Yes 20 0 CA_4A-5A 4 Yes Yes Yes Yes Yes 5 Yes Yes Yes Yes Yes Yes 6 7 Yes Yes Yes Yes Yes 12 Yes Yes Yes Yes Yes		12			Yes	Yes			20	
CA_4A-17A		4			Yes	Yes	Yes	Yes	00	4
CA_4A-17A		12			Yes	Yes			30	
CA_4A-5A	CA 4A 17A	4			Yes	Yes			00	0
CA_4A-5A 5 Yes	CA_4A-17A	17			Yes	Yes			20	U
CA_4A-5A 5 Yes Yes <t< td=""><td></td><td>4</td><td></td><td></td><td>Yes</td><td>Yes</td><td></td><td></td><td>00</td><td>0</td></t<>		4			Yes	Yes			00	0
CA_2A-12A	CA 4A FA	5			Yes	Yes			20	U
CA_2A-12A	GA_4A-5A	4			Yes	Yes	Yes	Yes	00	4
CA_7A-12A		5			Yes	Yes			30	ı
CA_2A-12A	CA 7A 10A	7			Yes	Yes	Yes	Yes	20	0
CA_2A-12A	CA_/A-12A	12			Yes	Yes			30	U
CA_2A-12A	CA_2A-12A	2				Yes	Yes	Yes	20	0
2 Yes Yes Yes Yes 30 1 CA 3A 5A 2 Yes Yes Yes Yes Yes 30 0		12			Yes	Yes			30	U
12 Yes Yes Yes Yes CA 2A.5A 2 Yes Yes Yes Yes Yes Yes O		2			Yes	Yes	Yes	Yes	20	4
(0.00000000000000000000000000000000000		12		Yes	Yes	Yes			30	'
0A_2A-3A	CA 2A 5A				Yes	Yes	Yes	Yes	20	0
	GA_ZA-SA	5			Yes	Yes			30	U

NOTE 1: The CA Configuration refers to a combination of an operating band and a CA bandwidth class specified in Table 5.4.2A-1 (the indexing letter). Absence of a CA bandwidth class for an operating band implies support of all classes.

NOTE 2: For each band combination, all combinations of indicated bandwidths belong to the set

NOTE 3: For the supported CC bandwidth combinations, the CC downlink and uplink bandwidths are equal

Report No.:SZEM180100082701

Rev : 01

: 18 of 183 Page

Test Configuration Table (intra-band contiguous DL CA)

NC, TL/VL, TL/VH, TH/VL, TH/VH
C: Mid range
Lowest N _{RB_agg} Highest N _{RB_agg} (Note 2)

Test Parameters for CA Configurations

CA Configuration / N _{RB_agg}		DL Allocation	CC	UL Allocation				
PCC N _{RB}	SCCs N _{RB}	PCC & SCC RB allocation	MOD	N _{RB_alloc}	PCC & SCC RE (L _{CRB} @ RB _{start)}		ns	
75	75		QPSK	16	P_16@0	S_0@0	-	-
100	25	N/A	QPSK	8	P_8@0	S_0@0	-	-
100	50	for this test	QPSK	12	P_12@0	S_0@0	-	-
100	100		QPSK	18	P_18@0	S_0@0	-	-

Note 1: CA Configuration Test CC Combination settings are checked separately for each CA Configuration, which applicable aggregated channel bandwidths are specified in Table 5.4.2A.1-1

Note 2: If in the CA Configuration UE supports multiple CC Combinations with the same N_{RB_agg}, only the first of those is tested, according to the order on the Test Configuration Table list.

Report No.:SZEM180100082701

Rev : 01

: 19 of 183 Page

Test Configuration Table (inter-band DL CA)

Initial Conditions	
Test Environment as specified in TS 36.508[7] subclause 4.1	NC, TL/VL, TL/VH, TH/VL, TH/VH
Test Frequencies as specified in TS 36.508 [7] subclause 4.3.1 for different CA bandwidth classes.	A: Mid range PCC-SCC: CC1-CC2
Test CC Combination setting (N_{RB_agg}) as specified in subclause 5.4.2A.1-2 for the CA Configuration across bandwidth combination sets supported by the UE.	Lowest N _{RB_agg} Highest N _{RB_agg} (Note 2)
Test Parameters for CA Configurations	

CA Configuration / N _{RB_agg}		DL Allocation	CC	UL Alloc	ation			
PCC N _{RB}	SCCs N _{RB}	PCC & SCC RB allocation	MOD	N _{RB_alloc}	PCC & SCC (L _{CRB} @ RB	RB allocation	าร	
6	25		QPSK	13	P_5@0	S_8@0	-	-
6	50		QPSK	17	P_5@0	S_12@0	-	-
25	15		QPSK	12	P_8@0	S_5@0	-	-
25	25		QPSK	16	P_8@0	S_8@0	-	-
25	50	N/A for this test	QPSK	20	P_8@0	S_12@0	-	-
50	25		QPSK	20	P_12@0	S_8@0	-	-
50	50		QPSK	24	P_12@0	S_12@0	-	-
50	100		QPSK	30	P_12@0	S_18@0	-	-
75	75		QPSK	32	P_16@0	S_16@0	-	-
100	50		QPSK	30	P_18@0	S_12@0	-	-
100	75		QPSK	34	P_18@0	S_16@0	-	-
100	100		QPSK	36	P_18@0	S_18@0	-	-

Note 1: CA Configuration Test CC Combination settings are checked separately for each CA Configuration, which applicable aggregated channel bandwidths are specified in Table 5.4.2A.1-2.

Note 2: If in the CA Configuration UE supports multiple CC Combinations with the same N_{RB_agg}, only the first of those is

tested, according to the order on the Test Configuration Table list.

Report No.:SZEM180100082701

Rev : 01

Page : 20 of 183

1.5 Test Specification

Identity	Document Title
FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
ANSI/IEEE Std C95.1 – 1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
KDB 941225 D01 3G SAR Procedures v03r01	3G SAR Measurement Procedures
KDB 941225 D05 SAR for LTE Devices v02r05	SAR EVALUATION CONSIDERATIONS FOR LTE DEVICES
KDB 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02	Rel. 10 LTE SAR Test Guidance and KDB Inquiries
KDB 248227 D01 802.11 Wi-Fi SAR v02r02	SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS
KDB 941225 D06 Hotspot Mode SAR v02r01	SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities
KDB 648474 D04 Handset SAR v01r03	SAR Evaluation Considerations for Wireless Handsets
KDB447498 D01 General RF Exposure Guidance v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
KDB447498 D03 Supplement C Cross-Reference v01	OET Bulletin 65, Supplement C Cross-Reference
KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04	SAR Measurement Requirements for 100 MHz to 6 GHz
KDB 865664 D02 RF Exposure Reporting v01r02	RF Exposure Compliance Reporting and Documentation Considerations

Report No.:SZEM180100082701

Rev : 01

Page : 21 of 183

1.6 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain*Trunk)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Notes:

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

^{*} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

^{**} The Spatial Average value of the SAR averaged over the whole body.

^{***} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Report No.:SZEM180100082701

Rev : 01

Page : 22 of 183

2 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance	< 0.5 Ω			
Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.				

Table 2: The Ambient Conditions

Report No.:SZEM180100082701

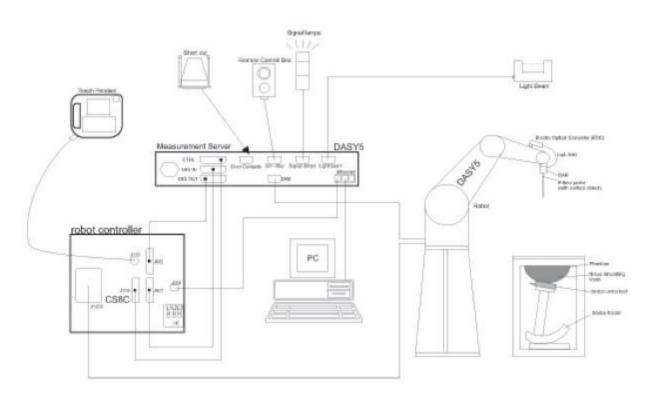
Rev : 01

Page : 23 of 183

3 SAR Measurements System Configuration

3.1 The SAR Measurement System

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate.


The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software. An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

F-1. SAR Measurement System Configuration

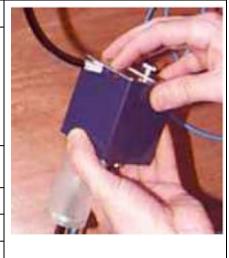
Report No.:SZEM180100082701

Rev : 01 Page : 24 of 183

- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

3.2 Isotropic E-field Probe EX3DV4

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI


Report No.:SZEM180100082701

Rev : 01

Page : 25 of 183

3.3 Data Acquisition Electronics (DAE)

Model	DAE4
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)
Input Offset Voltage	< 5μV (with auto zero)
Input Bias Current	< 50 f A
Dimensions	60 x 60 x 68 mm

3.4 SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet
Filling Volume	approx. 25 liters
Wooden Support	SPEAG standard phantom table

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Report No.:SZEM180100082701

Rev : 01

Page : 26 of 183

3.5 ELI Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)		
Liquid	Compatible with all SPEAG tissue		
Compatibility	simulating liquids (incl. DGBE type)		
Shell Thickness	2.0 ± 0.2 mm (bottom plate)		
Dimensions	Major axis: 600 mm		
	Minor axis: 400 mm		
Filling Volume	approx. 30 liters		
Wooden Support	SPEAG standard phantom table		

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

Report No.:SZEM180100082701

Rev : 01

Page : 27 of 183

3.6 Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Report No.:SZEM180100082701

Rev : 01

Page : 28 of 183

3.7 Measurement procedure

3.7.1 Scanning procedure

Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 32mm*32mm*30mm (f≤2GHz), 30mm*30mm*30mm (f for 2-3GHz) and 24mm*24mm*22mm (f for 5-6GHz) was assessed by measuring 5x5x7 points (f≤2GHz), 7x7x7 points (f for 2-3GHz) and 7x7x12 points (f for 5-6GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

Report No.:SZEM180100082701

Rev : 01

Page : 29 of 183

			≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30° ± 1°	20° ± 1°
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: Δz _{Z∞m} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
	graded grid	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. \pm 5 %

Report No.:SZEM180100082701

Rev : 01 Page : 30 of 183

3.7.2 Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.7.3 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi - Diode compression point Dcpi

Device parameters: - Frequency f
- Crest factor cf

Media parameters: - Conductivity ϵ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx, and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under thransaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

: 31 of 183 Page

E-field probes:

$$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$$

H-field probes:

Hi =
$$(V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$$

With Vi = compensated signal of channel i (i = x, y, z)
Normi = sensor sensitivity of channel I (i = x, y, z)

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

σ= conductivity in [mho/m] or [Siemens/m]

ε= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 2 / 3770_{or} P_{pwe} = H_{tot}^2 \cdot 37.7$$

Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

Report No.:SZEM180100082701

Rev : 01

Page : 32 of 183

4 SAR measurement variability and uncertainty

4.1 SAR measurement variability

corresponding SAR thresholds.

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is remounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the

Report No.:SZEM180100082701

Rev : 01

Page : 33 of 183

4.2 SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

Report No.:SZEM180100082701

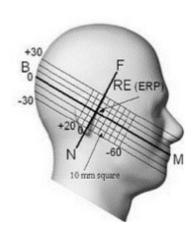
Rev : 01

Page : 34 of 183

5 Description of Test Position

5.1 Head Exposure Condition

5.1.1 SAM Phantom Shape

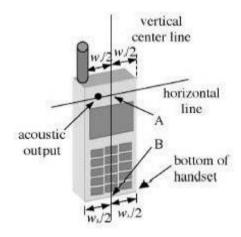

F-3. Front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup.

Note: The centre strip including the nose region has a different thickness tolerance.

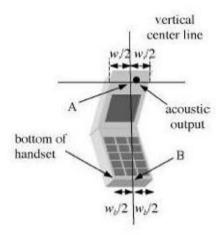
F-4. Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this ideocument is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701


Rev : 01

Page : 35 of 183


F-5. Close-up side view of phantom, showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations

F-6. Side view of the phantom showing relevant markings and seven cross-sectional plane locations

5.1.2 EUT constructions

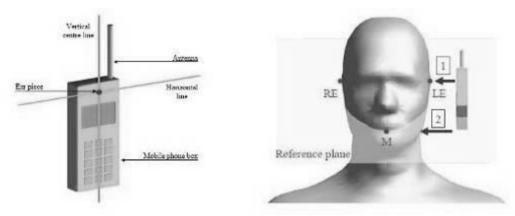
F-7. Handset vertical and horizontal reference lines-"fixed case"

F-8. Handset vertical and horizontal reference lines-"clam-shell case"

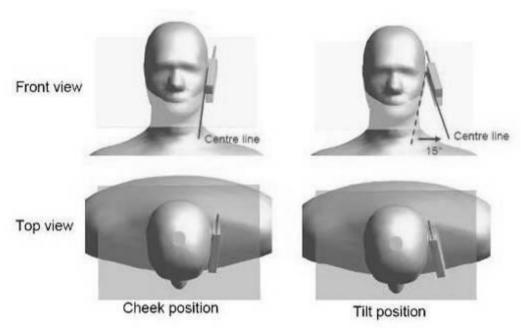
5.1.3 Definition of the "cheek" position

- a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position"). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE.
- b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until telephone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

Report No.:SZEM180100082701


Rev : 01

Page : 36 of 183


5.1.4 Definition of the "tilted" position

a) Position the device in the "cheek" position described above;

b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

F-9. Definition of the reference lines and points, on the phone and on the phantom and initial position

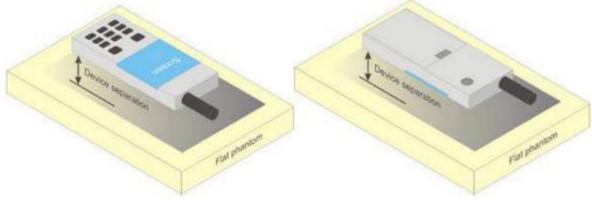
F-10. "Cheek" and "tilt" positions of the mobile phone on the left side

Report No.:SZEM180100082701

Rev : 01

Page : 37 of 183

5.2 Body Exposure Condition


5.2.1 Body-worn accessory exposure conditions

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Bodyworn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

F-11. Test positions for body-worn devices

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

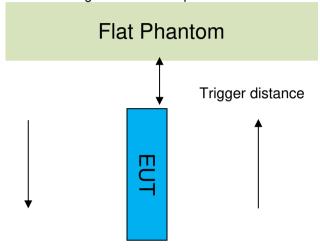
Page : 38 of 183

5.2.2 Wireless Router exposure conditions

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. For devices with form factors smaller than 9 cm x 5 cm, a test separation distance of 5 mm is required.

Report No.:SZEM180100082701

Rev : 01


Page : 39 of 183

5.3 Proximity Sensor Triggering Test

5.3.1 Main antenna Proximity Sensor

1) Proximity sensor triggering distances

The Proximity sensor triggering was applied to LTE Band 7. Proximity sensor triggering distance testing was performed according to the procedures outlined in KDB 616217 D04 section 6.2, and EUT moving further away from the flat phantom and EUT moving toward the flat phantom were both assessed.

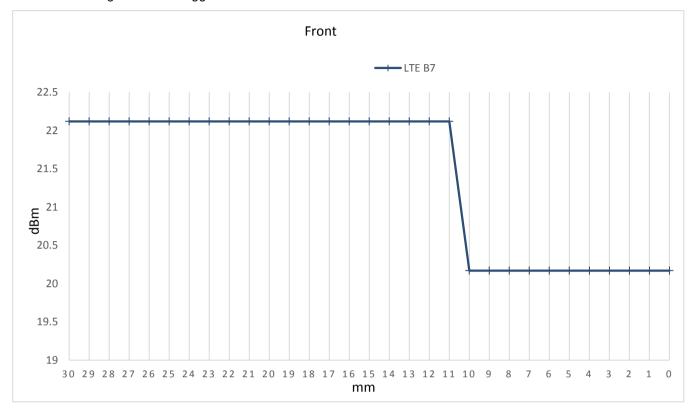
Proximity Sensor Triggering Distance(mm)							
Position	Front	Back	Bottom				
Minimum	10	11	15				
Required SAR Test	9	10	14				

Antenna Band		Trigger Condition	Body exposure condition
		Trigger Condition	Power reduction(dB)
Main Antenna	LTE B7	Front side: Close to 10mm Back side: Close to 11mm Bottom side: Close to 15mm;	2

Note: SAR tests with proximity sensor power reduction are only required for the sides of frequency bands in the table above. For the other sides or other frequency bands of the device, SAR is still tested at the maximum power level with sensor off.

	0.1	Measured	Reduction	
Band	Ch	Max. Power	Power back-off	levels(dB)
LTE Band 7	21100	22.12	20.17	1.95

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this ideocument is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

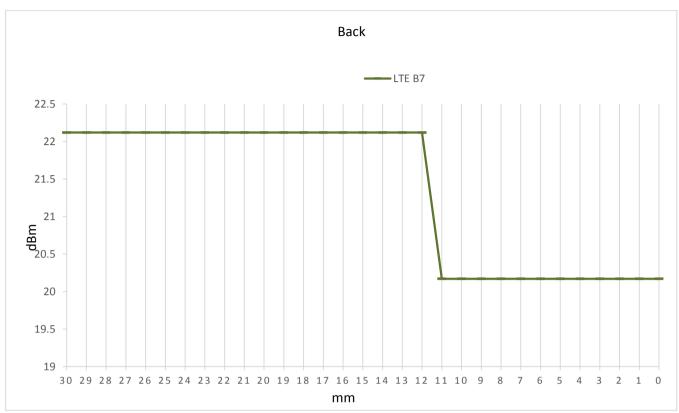


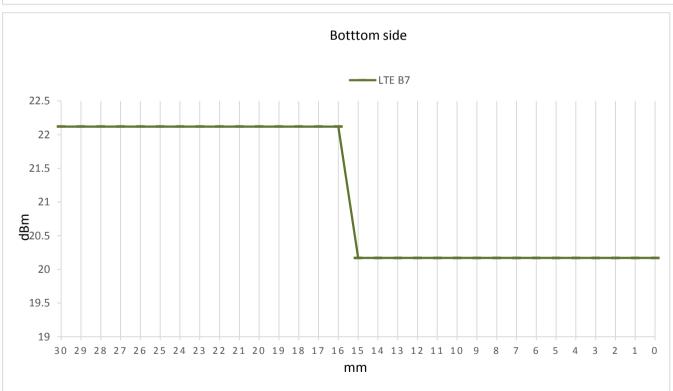
Report No.:SZEM180100082701

Rev : 01

Page : 40 of 183

DUT Moving Toward (Trigger) the Phantom





Report No.:SZEM180100082701

Rev : 01

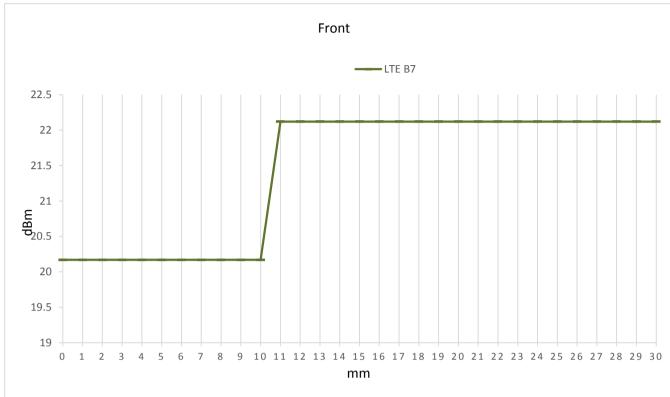
Page : 41 of 183

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 42 of 183



Report No.:SZEM180100082701

Rev : 01

Page : 43 of 183

• DUT Moving Away (Release) from the Phantom

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

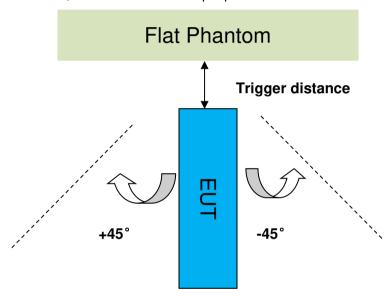
Page : 44 of 183

Report No.:SZEM180100082701

Rev : 01

Page : 45 of 183

2) Proximity sensor coverage


If a sensor is spatially offset from the antenna(s), it is necessary to verify sensor triggering for conditions where the antenna is next to the user but the sensor is laterally further away to ensure sensor coverage is sufficient for reducing the power to maintain compliance. For p-sensor coverage testing, the device is moved and "along the direction of maximum antenna and sensor offset".

The proximity sensor and main antenna use same metallic electrode, so there is no spatial offset.

3) Device tilt angle influences to proximity sensor triggering

The influence of device tilt angles to proximity sensor triggering was determined by positioning each tablet edge that contains a transmitting antenna, perpendicular to the flat phantom.

Rotating the tablet around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ from the vertical position at 0° , and the maximum output power remains in the reduced mode.

The Sensor Triggering Distance(mm)						
Position	Bottom					
Minimum	15					
Required SAR Test	14					

	Summary of Tablet Tilt Angle Influence to Proximity Sensor Triggering for Bottom Side												
		Minimum trigger				Pow	er Red	luctior	n Stati	us			
Band(MHz)	Minimum trigger distance Per KDB616217§6.2	distance at which power reduction was maintained over ±45°	-45°	-35°	-25°	-15°	-5°	0°	5°	15°	25°	35°	45°
LTE B7	15mm	15mm	on	on	on	on	on	on	on	on	on	on	on

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this idocument is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

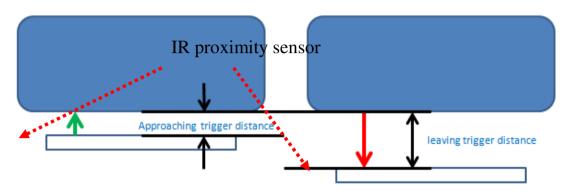
Report No.:SZEM180100082701

Rev : 01

Page : 46 of 183

off

off


off

on

5.3.2 Wifi antenna Determining Proximity Sensor

1) Determining proximity sensor triggering distances

Per FCC KDB 616217 D04v01§6.2, the following procedure is used to determine the triggering distances. As the proximity sensor locates on the front face of the device and detects objects approaching only from the front side ,so triggering distance only need to be checked for the front side when device under voice mode so that sensor is working.

Picture: Proximity sensor triggering distances assessment (Front side)

The DUT is moved towards from the flat phantom:

The Bot is moved towards from the flat phantom.							
Distance between phantom to DUT in mm	60	50	45	40	35	30	25
Condition of Sensor in the front side of the device(under voice mode)	off	off	off	off	on	on	on
The DUT is moved away from the flat phantom:							
Distance between phantom to DUT in mm	85	80	75	70	65	60	55

DUT Moving Toward (Trigger) the Phantom

Condition of Sensor in the front side of the device(under voice mode)

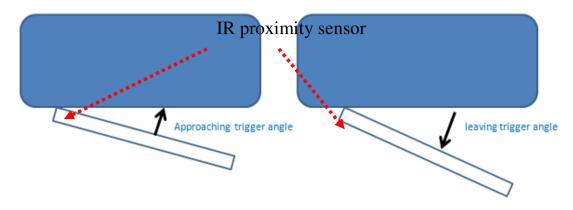
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, torgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 47 of 183

DUT Moving Away (Release) from the Phantom



Report No.:SZEM180100082701

Rev : 01

Page : 48 of 183

2) Determining device tilt angle influences to proximity sensor triggering

The DUT is moved towards and away from SAM phantom.

angle between phantom to DUT in degree	0	5	10	15	20	25	30
Condition of Sensor	on	on	on	on	on	off	off

Report No.:SZEM180100082701

Rev : 01

Page : 49 of 183

6 SAR System Verification Procedure

6.1 Tissue Simulate Liquid

6.1.1 Recipes for Tissue Simulate Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients	Frequency (MHz)									
(% by weight)	45	50	700	-920	1700	-2000	2300-2700			
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body		
Water	38.56	51.16	40.30	50.75	55.24	70.17	55.00	68.53		
Salt (NaCl)	3.95	1.49	1.38	0.94	0.31	0.39	0.2	0.1		
Sucrose	56.32	46.78	57.90	48.21	0	0	0	0		
HEC	0.98	0.52	0.24	0	0	0	0	0		
Bactericide	0.19	0.05	0.18	0.10	0	0	0	0		
Tween	0	0	0	0	44.45	29.44	44.80	31.37		

Salt: $99^+\%$ Pure Sodium Chloride Sucrose: $98^+\%$ Pure Sucrose Water: De-ionized, $16 \text{ M}\Omega^+$ resistivity HEC: Hydroxyethyl Cellulose

Tween: Polyoxyethylene (20) sorbitan monolaurate

HSL5GHz is composed of the following ingredients:

Water: 50-65%
Mineral oil: 10-30%
Emulsifiers: 8-25%
Sodium salt: 0-1.5%

MSL5GHz is composed of the following ingredients:

Water: 64-78%
Mineral oil: 11-18%
Emulsifiers: 9-15%
Sodium salt: 2-3%

Table 3: Recipe of Tissue Simulate Liquid

Report No.:SZEM180100082701

Rev : 01

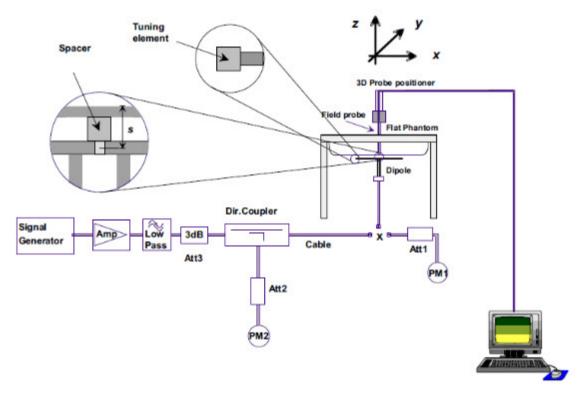
Page : 50 of 183

6.1.2 Measurement for Tissue Simulate Liquid

The dielectric properties for this Tissue Simulate Liquids were measured by using the Agilent Model 85070E Dielectric Probe in conjunction with Agilent E5071C Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in bellow table. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

	Measurement for Tissue Simulate Liquid								
Tissue	Measured Frequency	Target Tiss	sue (±5%)	Measure	d Tissue	Liquid Temp.	Measured		
Туре	(MHz)	ε _r	σ(S/m)	٤ _r	σ(S/m)	(°C)	Date		
750 Head	750	41.9 (39.81~44)	0.89 (0.85~0.94)	40.956	0.888	22.1	2018/2/1		
750 Body	750	55.5 (52.73~58.28)	0.96 (0.91~1.00)	55.841	0.947	22.1	2018/2/10		
835 Head	835	41.5 (39.43~43.58)	0.90 0.86~0.95)	42.134	0.892	22.1	2018/1/31		
835 Head	835	41.5 (39.43~43.58)	0.90 (0.86~0.95)	42.313	0.896	22.1	2018/2/1		
835 Body	835	55.2 (52.44~57.96)	0.97 (0.92~1.02)	54.389	0.987	22.1	2018/2/9		
835 Body	835	55.2 (52.44~57.96)	0.97 (0.92~1.02)	54.789	0.986	22.1	2018/2/10		
1750 Head	1750	40.1 (38.10~42.11)	1.37 (1.30~1.44)	39.617	1.372	22.2	2018/2/3		
1750 Body	1750	53.4 (50.73~56.07)	1.49 (1.42~1.56)	51.003	1.481	22.2	2018/2/5		
1750 Body	1750	53.4 (50.73~56.07)	1.49 (1.42~1.56)	51.303	1.485	22.2	2018/2/6		
1900 Head	1900	40.0 (38.00~42.00)	1.40 (1.33~1.47)	39.564	1.421	22.3	2018/2/2		
1900 Body	1900	53.3 (50.64~55.97)	1.52 (1.44~1.60)	53.025	1.476	22.3	2018/2/4		
1900 Body	1900	53.3 (50.64~55.97)	1.52 (1.44~1.60)	53.103	1.481	22.3	2018/2/5		
2450 Head	2450	39.20 (37.24~41.16)	1.80 (1.71~1.89)	39.49	1.81	22	2018/2/14		
2450 Body	2450	52.70 (50.07~55.34)	1.95 (1.85~2.05)	51.708	1.988	22	2018/2/8		
2600 Head	2600	39.0 (37.05~40.95)	1.96 (1.86~2.06)	38.439	1.928	22.1	2018/2/7		
2600 Body	2600	52.50 (49.88~55.13)	2.16 (2.05~2.27)	51.237	2.182	22.1	2018/2/8		

Table 4: Measurement result of Tissue electric parameters


Report No.:SZEM180100082701

Rev : 01

Page : 51 of 183

6.2 SAR System Check

The microwave circuit arrangement for system check is sketched in bellow figure. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table. During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-12. the microwave circuit arrangement used for SAR system check

Report No.:SZEM180100082701

Rev : 01

Page : 52 of 183

6.2.1 Justification for Extended SAR Dipole Calibrations

- 1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

Report No.:SZEM180100082701

Rev : 01

Page : 53 of 183

6.2.2 Summary System Check Result(s)

	SAR System Validation Result(s)									
Validatio	on Kit	Measured SAR 250mW	Measured SAR 250mW			Target SAR (normalized to 1w) (±10%)	Target SAR (normalized to 1w) (±10%)	Liquid Temp. (°C)	Measured Date	
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)			
D750V2	Head	1.99	1.32	7.96	5.28	8.17 (7.35~8.99)	5.36 (4.82~5.9)	22.1	2018/2/1	
D730V2	Body	2.11	1.4	8.44	5.6	8.57 (7.71~9.43)	5.66 (5.09~6.23)	22.1	2018/2/10	
	Head	2.41	1.57	9.64	6.28	9.59 (8.63~10.55)	6.29 (5.66~6.92)	22.1	2018/1/31	
D835V2	Head	2.42	1.61	9.68	6.44	9.59 (8.63~10.55)	6.29 (5.66~6.92)	22.1	2018/2/1	
D633V2	Body	2.43	1.58	9.72	6.32	9.65 (8.69~10.62)	6.46 (5.81~7.11)	22.1	2018/2/9	
	Body	2.45	1.61	9.8	6.44	9.65 (8.69~10.62)	6.46 (5.81~7.11)	22.1	2018/2/10	
	Head	9.12	4.9	36.48	19.6	36.7 (33.03~40.37)	19.5 (17.55~21.45)	22.2	2018/2/3	
D1750V2	Body	9.41	4.92	37.64	19.68	37 (33.30~40.70)	19.7 (17.73~21.67)	22.2	2018/2/5	
	Body	9.21	4.88	36.84	19.52	37 (33.30~40.70)	19.7 (17.73~21.67)	22.2	2018/2/6	
	Head	10.1	5.31	40.4	21.24	40.7 (36.63~44.77)	21.1 (18.99~23.21)	22.3	2018/2/2	
D1900V2	Body	10.3	5.47	41.2	21.88	41.6 (37.44~45.76)	21.4 (19.26~23.54)	22.3	2018/2/4	
	Body	10.5	5.51	42	22.04	41.6 (37.44~45.76)	21.4 (19.26~23.54)	22.3	2018/2/5	
D2450V2	Head	13.2	6.1	52.8	24.4	53.1 (47.79~58.41)	24.9 (22.41~27.39)	22	2018/2/14	
D2430 V2	Body	12.8	5.91	51.2	23.64	51.0 (45.9~56.1)	23.5 (21.15~25.85)	22	2018/2/8	
D2600V2	Head	14.2	6.34	56.8	25.36	56.6 (50.94~62.26)	25.4 (22.86~27.94)	22.1	2018/2/7	
D2000V2	Body	13.9	6.16	55.6	24.64	54.2 (48.78~59.62)	24.3 (21.87~26.73)	22.2	2018/2/8	

Table 5: SAR System Check Result

6.2.3 Detailed System Check Results

Please see the Appendix A

Report No.:SZEM180100082701

Rev : 01

Page : 54 of 183

7 Test Configuration

7.1 3G SAR Test Reduction Procedure

According to KDB 941225D01, in the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

7.2 Operation Configurations

7.2.1 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a base station by air link. Using CMU200 the power lever is set to "5" and "0" in SAR of GSM 850 and GSM 1900. The tests in the band of GSM 850 and GSM 1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode

Report No.:SZEM180100082701

Rev : 01

Page : 55 of 183

7.2.2 WCDMA Test Configuration

1) . Output Power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

2) . Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure

3) . Body SAR

SAR for body configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported bodyworn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

4) . HSDPA / HSUPA / DC-HSDPA

According to KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is $\leq \frac{1}{4}$ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA

a) HSDPA

HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) are set according to values indicated in the following table. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Report No.:SZEM180100082701

Rev : 01

Page : 56 of 183

Sub-test	βc	Bd	βd(SF)	βc/βd	βhs	CM(dB)	MPR (dB)
1	2/15	15/15	64	2/15	4/15	0.0	0
2	12/15(3)	15/15(3)	64	12/15(3)	24/15	1.0	0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: \triangle ACK, \triangle NACK and \triangle CQI= 8 Ahs = β hs/ β c=30/15 β hs=30/15* β c

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A,and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A,and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK= 8 (Ahs=30/15) with β hs=30/15* β c,and \triangle CQI=

7 (Ahs=24/15) with β hs= $24/15*\beta$ c.

Note3: CM=1 forβc/βd =12/15, βhs/βc=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI"s
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 6: settings of required H-Set 1 QPSK acc. to 3GPP 34.121

Report No.:SZEM180100082701

Rev : 01

Page : 57 of 183

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter- TTI Interval	MaximumH S-DSCH Transport BlockBits/HS- DSCH TTI	Total Soft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 7: HSDPA UE category

b) HSUPA

Due to inner loop power control requirements in HSUPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSUPA should be configured according to the values indicated below as well as other applicable procedures described in the "WCDMA Handset" and "Release 5 HSUPA Data Device" sections of 3G device.

Report No.:SZEM180100082701

Rev : 01

Page : 58 of 183

Sub -test₽	βοσ	βd€	β _d (SF) _e	β₀∕β₄₽	β _{hs} (1	βec↔	β _{ed} ₽	β _e « « (SF)+	β _{ed} ↔ (code	CM ⁽ 2)↔ (dB)↔	MP R↓ (dB)↓	AG ⁽⁴)↔ Inde x↔	E- TFC I&
1₽	11/15(3)+3	15/15(3)	64₽	11/15(3)43	22/15₽	209/22 5 ₄ 3	1039/225	4 0	1₽	1.0₽	0.0₽	20₽	75₽
2₽	6/15₽	15/15∉	64₽	6/15₽	12/15₽	12/15₽	94/75₽	4 0	1₽	3.0₄	2.0₽	12 ₀	67₽
3₽	15/150	9/15₽	64₽	15/9₽	30/15₽	30/15₽	β _{ed1} :47/1 5 ₄ β _{ed2:} 47/1 5 ₄	4₽	2₽	2.0₽	1.0₽	15.0	92₽
4₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	2/15₽	56/75₽	4₽	1₽	3.0₽	2.0₽	17₽	71₽
5₽	15/15(4)43	15/15(4)	64₽	15/15(4)43	30/15₽	24/15₽	134/15₽	4₽	1₽	1.0₽	0.0₽	21₽	81₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 $A_{hs} = \beta_{hs}/\beta_{o} = 30/15$ $\beta_{hs} = 30/15 * \beta_{od}$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g_e.

Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

Table 8: Subtests for UMTS Release 6 HSUPA

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Speading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)	
1	1	4	10	4	7110	0.7296	
2	2	8	2	4	2798	1 4500	
2	2	4	10 4		14484	1.4592	
3	2	4	10	4	14484	1.4592	
4	2	8	2	2	5772	2.9185	
4	2	4	10	2	20000	2.00	
5	2	4	10	2	20000	2.00	
6	4	8	10	2SF2&2SF	11484	5.76	
(No DPDCH)	4	4	2	4	20000	2.00	
7	4	8	2	2SF2&2SF	22996	?	
(No DPDCH)	4	4	10	4	20000	?	

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM.(TS25.306-7.3.0).

Table 9: HSUPA UE category

Report No.:SZEM180100082701

Rev : 01

Page : 59 of 183

c) DC-HSDPA

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a Second serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS 34.108 v9.5.0.

A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5.0

Table E.5.0: Levels for HSDPA connection setup

Parameter During Connection setup	Unit	Value
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13.

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

The measurements were performed with a Fixed Reference Channel (FRC) H-Set 12 with QPSK.

Parameter	Value
Nominal average inf. bit rate	60 kbit/s
Inter-TTI Distance	1 TTI's
Number of HARQ Processes	6 Processes
Information Bit Payload	120 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	960 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	3200 SMLs
Coding Rate	0.15
Number of Physical Channel Codes	1

Table 10: settings of required H-Set 12 QPSK acc. to 3GPP 34.121

Note:

- 1. The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table above.
- 2. Maximum number of transmission is limited to 1,i.e.,retransmission is not allowed. The redundancy and constellation version 0 shall be used.

Report No.:SZEM180100082701

Rev : 01

Page : 60 of 183

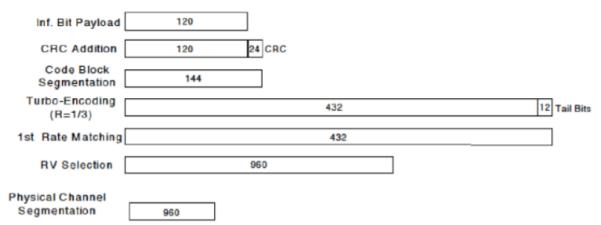


Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 4 Sub-tests for HSDPA were completed according to Release 5 procedures. A summary of subtest settings are illustrated below:

Sub-test∉	β _c ⊷	β _d ⊷	β _d (SF)₽	$\beta_c \cdot / \beta_{d^{\omega}}$	$\beta_{hs}(1)$	CM(dB)(2)	MPR (dB)	ū
1₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	0.0₽	0₽	Þ
2₽	12/15(3)	15/15(3)	64₽	12/15(3)₽	24/15₽	1.0₽	0₽	ø
3₽	15/15₽	8/15₽	64₽	15/8₽	30/15₽	1.5₽	0.5₽	ø
4₽	15/15₽	4/15₽	64₽	15/4₽	30/15₽	1.5₽	0.5₽	ų.
								1

Note: \triangle ACK, \triangle NACK and \triangle CQI=8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_c = 30/15$

Note 2: CM=1 for $\beta_c/\beta_{d=}$ 12/15, $\beta_{hs}/\beta_c=$ 24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

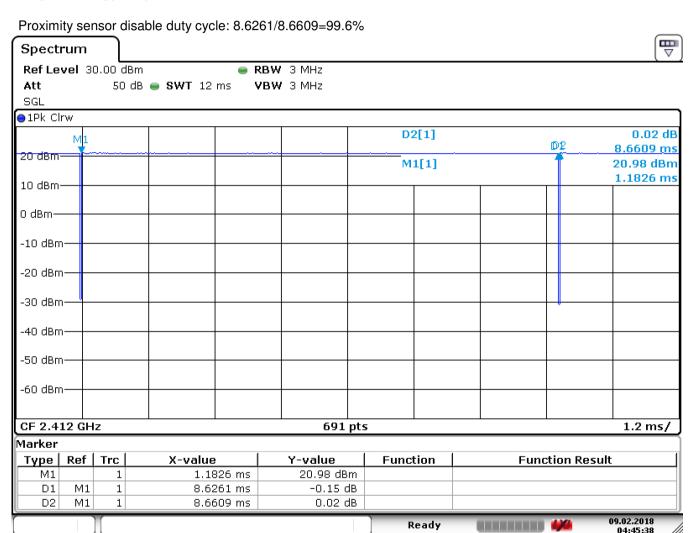
Up commands are set continuously to set the UE to Max power.

Note:

- 1. The Dual Carriers transmission only applies to HSDPA physical channels
- 2. The Dual Carriers belong to the same Node and are on adjacent carriers.
- 3. The Dual Carriers do not support MIMO to serve UEs configured for dual cell operation
- 4. The Dual Carriers operate in the same frequency band.
- 5. The device doesn't support the modulation of 16QAM in uplink but 64QAM in downlink for DC-HSDPA mode.
- 6. The device doesn't support carrier aggregation for it just can operate in Release 8.

Report No.:SZEM180100082701

Rev : 01


Page : 61 of 183

7.2.3 WiFi Test Configuration

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

7.2.3.1 Duty cycle

2.4GHz Wi-Fi 802.11b:

Date: 9.FEB.2018 04:45:38

Report No.:SZEM180100082701

Rev : 01

Page : 62 of 183

7.2.3.2 Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- 1) . When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2) . When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3) . For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. a) Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

7.2.3.3 Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required. SAR test reduction for subsequent highest output test channels is determined according to *reported* SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration.

When the *reported* SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until *reported* SAR is ≤ 1.2 W/kg or all required channels are tested.

7.2.3.4 Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- 1) . When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- 2) . When the highest reported SAR for the initial test configuration (when applicable, include subsequent

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this idocument is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 63 of 183

highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

- 3) . The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
 - a) SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
 - b) SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the *reported* SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- 4) . SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
 - a) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
 - b) replace "initial test configuration" with "all tested higher output power configurations"

Report No.:SZEM180100082701

Rev : 01

Page : 64 of 183

7.2.3.5 2.4 GHz WiFi SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in following.

802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) . When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) . When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) . When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 g/n OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

Report No.:SZEM180100082701

Rev : 01 Page : 65 of 183

7.2.4 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 V15.1.0 (2017-12) Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

C) A-MPF

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > 1/2 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this idocument is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 66 of 183

bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

Report No.:SZEM180100082701

Rev : 01

Page : 67 of 183

8 Test Result

8.1 Measurement of RF Conducted Power

8.1.1 Conducted Power of Main Antenna

8 1 1 1 Conducted Power Of GSM

					GSM 850 1	full power				
Bu	rst Output Pov	ver(dBm))			•	Frame-Ave	rage Output F	Power(dBm)	_
Channe	 el	128	190	251	Tune up	Division Factors	128	190	251	Tune up
GSM(GMSK)	GSM	32.42	32.45	32.41	33	-9.19	23.23	23.26	23.22	23.81
	1 TX Slot	32.43	32.46	21.42	33	-9.19	23.24	23.27	12.23	23.81
GPRS/EGPRS	2 TX Slots	29.44	29.46	29.4	30	-6.18	23.26	23.28	23.22	23.82
(GMSK)	3 TX Slots	27.69	27.68	27.59	28.2	-4.42	23.27	23.26	23.17	23.78
	4 TX Slots	26.45	26.44	26.39	27	-3.17	23.28	23.27	23.22	23.83
	1 TX Slot	26.1	26.05	26.08	27.5	-9.19	16.91	16.86	16.89	18.31
EGPRS(8PSK)	2 TX Slots	22.88	22.78	22.75	25.5	-6.18	16.7	16.6	16.57	19.32
LGF N3(6F3K)	3 TX Slots	21.08	20.93	20.87	23.5	-4.42	16.66	16.51	16.45	19.08
	4 TX Slots	19.68	19.64	19.57	21.5	-3.17	16.51	16.47	16.4	18.33
					GSM 1900	full power				
Bu	rst Output Pov	ver(dBm))		Tune up	Division Factors	Frame-Average Output Power(dBm)			Tuna un
Channe	el	512	661	810	Turie up	DIVISION FACIOIS	512	661	810	Tune up
GSM(GMSK)	GSM	29.73	29.63	29.56	30.5	-9.19	20.54	20.44	20.37	21.31
	1 TX Slot	29.74	29.63	29.54	30.5	-9.19	20.55	20.44	20.35	21.31
GPRS/EGPRS	2 TX Slots	26.72	26.65	26.58	27.5	-6.18	20.54	20.47	20.4	21.32
(GMSK)	3 TX Slots	24.95	24.83	24.73	25.7	-4.42	20.53	20.41	20.31	21.28
	4 TX Slots	23.72	23.64	23.54	24.5	-3.17	20.55	20.47	20.37	21.33
	1 TX Slot	25.34	25.36	25.46	26.5	-9.19	16.15	16.17	16.27	17.31
EGPRS(8PSK)	2 TX Slots	21.97	21.91	22.02	24.5	-6.18	15.79	15.73	15.84	18.32
Larno(oron)	3 TX Slots	19.92	19.96	20.01	22.5	-4.42	15.5	15.54	15.59	18.08
	4 TX Slots	18.47	18.34	18.46	20.5	-3.17	15.3	15.17	15.29	17.33

	GSM 1900 hotspot on											
Bu	ırst Output Po	wer(dBm)		Tune up	Division Factors	Frame-Ave	Frame-Average Output Power(dBm)				
Channe	el	512	661	810	Turie up	DIVISION FACIOIS	512	661	810	Tune up		
GSM(GMSK)	GSM	27.26	27.13	27.03	28	-9.19	18.07	17.94	17.84	18.81		
	1 TX Slot	27.27	27.12	27.01	28	-9.19	18.08	17.93	17.82	18.81		
GPRS/EGPRS	2 TX Slots	24.16	24.04	24.02	25	-6.18	17.98	17.86	17.84	18.82		
(GMSK)	3 TX Slots	22.41	22.26	22.21	23.2	-4.42	17.99	17.84	17.79	18.78		
	4 TX Slots	21.27	21.09	21.07	22	-3.17	18.1	17.92	17.9	18.83		
	1 TX Slot	25.45	25.38	25.42	26.5	-9.19	16.26	16.19	16.23	17.31		
EGPRS(8PSK)	2 TX Slots	22.09	21.93	21.95	24.5	-6.18	15.91	15.75	15.77	18.32		
EGFN3(8PSK)	3 TX Slots	19.93	19.86	20.04	22.5	-4.42	15.51	15.44	15.62	18.08		
	4 TX Slots	18.41	18.34	18.39	20.5	-3.17	15.24	15.17	15.22	17.33		

Table 11: Conducted Power Of GSM

1) . CMW500 measures GSM peak and average output power for active timeslots. For SAR the time based average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 68 of 183

No. of timeslots	1	2	3	4
Duty Cycle	1:8.3	1:4.15	1:2.77	1:2.075
Time based avg. power compared to slotted avg. power	-9.19	-6.18	-4.42	-3.17

- 2) . The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below: Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8
- 3) . When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used

Report No.:SZEM180100082701

Rev : 01

Page : 69 of 183

8.1.1.2 Conducted Power Of WCDMA

	WCDMA	Band II full powe	er		
	Average Con	ducted Power(c	dBm)		
Channel		9262	9400	9538	Tune up
WCDMA	12.2kbps RMC	22.66	22.72	22.76	24
VVCDIVIA	12.2kbps AMR	22.65	22.71	22.75	24
	Subtest 1	21.73	21.77	21.74	23
HSDPA	Subtest 2	22.08	22.1	22.11	23
HSDPA	Subtest 3	21.34	21.36	21.37	22.3
	Subtest 4	21.34	21.41	21.35	22.3
	Subtest 1	21.56	21.57	21.61	22
	Subtest 2	20.58	20.63	20.61	21
HSUPA	Subtest 3	21.57	21.56	21.58	22.5
	Subtest 4	20.61	20.59	20.67	21
	Subtest 5	21.61	21.62	21.63	22.5
	Subtest 1	21.68	21.71	21.72	23
DC HCDDA	Subtest 2	22.07	22.12	22.15	23
DC-HSDPA	Subtest 3	21.33	21.31	21.35	22.3
	Subtest 4	21.37	21.39	21.41	22.3

	WCDMA B	and II Hotspot	on		
	Average Con	ducted Power(d	IBm)		
Channel		9262	9400	9538	Tune up
WCDMA	12.2kbps RMC	17.28	17.24	17.34	18.5
VVCDIVIA	12.2kbps AMR	17.21	17.22	17.25	18.5
	Subtest 1	16.24	16.29	16.26	17.5
ПСДВУ	Subtest 2	16.58	16.6	16.61	17.5
HSDPA	Subtest 3	15.84	15.86	15.87	16.8
	Subtest 4	15.84	15.91	15.85	16.8
	Subtest 1	16.1	16.08	16.12	16.5
	Subtest 2	15.08	15.13	15.11	15.5
HSUPA	Subtest 3	16.09	16.06	16.05	17
	Subtest 4	15.11	15.09	15.17	15.5
	Subtest 5	16.11	16.19	16.13	17
	Subtest 1	16.18	16.21	16.22	17.5
DC-HSDPA	Subtest 2	16.57	16.62	16.55	17.5
DO-HODEA	Subtest 3	15.83	15.81	15.85	16.8
	Subtest 4	15.87	15.92	15.89	16.8

Report No.:SZEM180100082701

Rev : 01

Page : 70 of 183

	WCDMA E	Band IV full pow	er		
	Average Cor	ducted Power(c	IBm)		
Channel		1312	1412	1513	Tune up
WCDMA	12.2kbps RMC	23.23	23.14	23.22	24
WCDIVIA	12.2kbps AMR	22.91	22.72	22.75	24
	Subtest 1	21.74	21.79	21.56	23
HSDPA	Subtest 2	21.88	22.1	22.11	23
HODPA	Subtest 3	21.14	21.16	21.57	22.3
	Subtest 4	21.34	21.41	21.35	22.3
	Subtest 1	21.6	21.78	21.42	22
	Subtest 2	20.78	20.63	20.61	21
HSUPA	Subtest 3	21.59	21.36	21.75	22.5
	Subtest 4	20.61	20.59	20.67	21
	Subtest 5	21.81	21.69	21.43	22.5
	Subtest 1	21.68	21.91	21.72	23
DC HSDBY	Subtest 2	22.07	22.12	22.05	23
DC-HSDPA	Subtest 3	21.13	21.31	21.55	22.3
	Subtest 4	21.37	21.42	21.39	22.3

WCDMA Band IV Hotspot on								
Average Conducted Power(dBm)								
Channel		1312	1412	1513	Tune up			
WCDMA	12.2kbps RMC	18.7	18.73	18.78	19.5			
	12.2kbps AMR	18.41	18.22	18.25	19.5			
	Subtest 1	17.24	17.29	17.06	18.5			
HSDPA	Subtest 2	17.38	17.6	17.61	18.5			
ПЭДРА	Subtest 3	16.64	16.66	17.07	17.8			
	Subtest 4	16.84	16.91	16.85	17.8			
HSUPA	Subtest 1	17.1	17.28	16.92	17.5			
	Subtest 2	16.28	16.13	16.11	16.5			
	Subtest 3	17.09	16.86	17.25	18			
	Subtest 4	16.11	16.09	16.17	16.5			
	Subtest 5	17.31	17.19	16.93	18			
DC-HSDPA	Subtest 1	17.18	17.41	17.22	18.5			
	Subtest 2	17.57	17.62	17.55	18.5			
	Subtest 3	16.63	16.81	17.05	17.8			
	Subtest 4	16.87	16.92	16.89	17.8			

Report No.:SZEM180100082701

Rev : 01

Page : 71 of 183

WCDMA Band V full power							
	Average Cor	nducted Power(c	dBm)				
Channel		4132	4182	4233	Tune up		
WCDMA	12.2kbps RMC	23.11	23.06	22.96	24.5		
WCDIVIA	12.2kbps AMR	23.41	23.17	23.25	24.5		
	Subtest 1	22.24	22.29	22.06	23.5		
LICDDA	Subtest 2	22.33	22.6	22.61	23.5		
HSDPA	Subtest 3	21.64	21.66	22.02	22.8		
	Subtest 4	21.79	21.91	21.85	22.8		
	Subtest 1	22.1	22.28	21.92	22.5		
	Subtest 2	21.28	21.13	21.11	21.5		
HSUPA	Subtest 3	22.09	21.86	22.25	23		
	Subtest 4	21.11	21.09	21.12	21.5		
	Subtest 5	22.31	22.19	21.93	23		
DC-HSDPA	Subtest 1	22.13	22.41	22.22	23.5		
	Subtest 2	22.57	22.57	22.55	23.5		
	Subtest 3	21.63	21.81	22.05	22.8		
	Subtest 4	21.87	21.92	21.89	22.8		

Table 12: Conducted Power Of WCDMA

Note:

1) when the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

Report No.:SZEM180100082701

Rev : 01

Page : 72 of 183

8.1.1.3 Conducted Power Of LTE

LTE Band 2 full power			Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel 18607	Channel 18900	Channel 19193	Tune up
		1	0	21.43	21.73	21.89	23
		1	2	21.5	21.79	21.88	23
		1	5	21.38	21.64	21.68	23
	QPSK	3	0	21.47	21.76	21.85	23
		3	2	21.49	21.75	21.84	23
		3	3	21.44	21.69	21.84	23
4 48411-		6	0	20.57	20.81	20.91	22
1.4MHz		1	0	20.73	20.99	21.03	22
		1	2	20.8	21.08	21.09	22
		1	5	20.7	20.99	20.9	22
	16QAM	3	0	20.68	20.87	20.88	22
		3	2	20.65	20.81	20.83	22
		3	3	20.62	20.74	20.77	22
		6	0	20.48	20.79	20.8	22
Bandwidth	Madulation	RB	RB	Channel	Channel	Channel	Tune up
Danuwium	Modulation	size	offset	18615	18900	19185	
	QPSK	1	0	21.34	21.68	21.74	23
		1	7	21.59	21.85	21.94	23
		1	14	21.31	21.54	21.53	23
		8	0	20.63	20.85	20.92	22
		8	4	20.65	20.85	20.9	22
		8	7	20.59	20.74	20.78	22
3MHz		15	0	20.56	20.79	20.85	22
SIVITZ		1	0	20.81	21.07	20.99	22
	16QAM	1	7	20.89	21.03	21.18	22
		1	14	20.59	20.77	20.82	22
		8	0	20.55	20.8	20.82	22
		8	4	20.56	20.78	20.83	22
		8	7	20.49	20.68	20.7	22
		15	0	20.5	20.7	20.74	22
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Danuwium	iviodulation	size	offset	18625	18900	19175	
		1	0	22.02	22.34	22.42	23
		1	13	22.13	22.39	22.53	23
5MHz	QPSK	1	24	22.12	22.24	22.24	23
		12	0	21.12	21.44	21.57	22
		12	6	21.22	21.44	21.63	22
		12	13	21.06	21.2	21.4	22
		25	0	21.03	21.26	21.38	22
	16QAM	1	0	21.26	21.68	21.68	22
		1	13	21.33	21.74	21.77	22

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the ilimits of Client's instructions, if any. The Company's sole responsibility is to its Client and todes not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 73 of 183

		l 1	24	21.34	21.4	21.52	22
		12	0	21.04	21.36	21.5	22
		12	6	21.09	21.35	21.56	22
		12	13	21.04	21.09	21.29	22
		25	0	20.96	21.2	21.27	22
	N4 1 1 11	RB	RB	Channel	Channel	Channel	_
Bandwidth	Modulation	size	offset	18650	18900	19150	Tune up
		1	0	21.88	22.26	22.32	23
		1	25	22.5	22.47	22.62	23
		1	49	22.4	22.28	22.32	23
	QPSK	25	0	21.27	21.46	21.58	22
		25	13	21.47	21.47	21.63	22
		25	25	21.46	21.32	21.45	22
4000		50	0	21.36	21.33	21.53	22
10MHz		1	0	21.2	21.59	21.72	22
		1	25	21.75	21.67	21.82	22
		1	49	21.72	21.51	21.63	22
	16QAM	25	0	21.13	21.37	21.55	22
		25	13	21.34	21.39	21.54	22
		25	25	21.31	21.27	21.36	22
		50	0	21.26	21.27	21.38	22
Donalis dala	Maril Jallan	RB	RB	Channel	Channel	Channel	T
Bandwidth	Modulation	size	offset	18675	18900	19125	Tune up
		1	0	21.92	22.33	22.26	23
		1	38	22.59	22.47	22.55	23
	QPSK	1	74	22.33	22.14	22.13	23
		36	0	21.32	21.39	21.51	22
		36	18	21.59	21.49	21.58	22
		36	39	21.47	21.22	21.3	22
458811-		75	0	21.38	21.29	21.39	22
15MHz		1	0	21.19	21.5	21.53	22
		1	38	21.89	21.72	21.86	22
		1	74	21.45	21.37	21.41	22
	16QAM	36	0	21.15	21.27	21.44	22
		36	18	21.46	21.36	21.51	22
		36	39	21.36	21.09	21.23	22
		75	0	21.25	21.19	21.31	22
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tungun
Danuwiulii		size	offset	18700	18900	19100	Tune up
		1	0	21.29	21.78	21.7	23
		1	50	22.25	22.05	22.55	23
		1	99	21.51	21.28	21.79	23
20MHz	QPSK	50	0	20.89	20.8	20.94	22
ZUIVITZ		50	25	21.24	20.92	21.3	22
		50	50	20.87	20.65	20.8	22
		100	0	20.86	20.79	20.84	22

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sepx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.sepx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 74 of 183

1	50	21.52	21.29	21.53	22
1	99	20.67	20.65	20.75	22
50	0	20.76	20.74	20.88	22
50	25	21.1	20.83	21.2	22
50	50	20.81	20.57	20.73	22
100	0	20.77	20.7	20.75	22

LT	E Band 2 Hotspo	t on		Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel 18607	Channel 18900	Channel 19193	Tune up	
		1	0	15.93	16.22	16.37	17	
		1	2	16.07	16.31	16.4	17	
		1	5	15.9	16.13	16.19	17	
	QPSK	3	0	16	16.28	16.34	17	
	α. σ. τ	3	2	16.04	16.27	16.38	17	
		3	3	15.99	16.21	16.33	17	
		6	0	15.98	16.24	16.33	17	
1.4MHz		1	0	16.18	16.52	16.63	17	
		1	2	16.35	16.6	16.77	17	
		1	5	16.25	16.46	16.52	17	
	16QAM	3	0	16.06	16.35	16.49	17	
	TOQAW	3	2	16.08	16.28	16.5	17	
		3	3	15.99	16.25	16.47	17	
		6	0	15.97	16.24	16.4	17	
		RB	RB	Channel	Channel	Channel	_	
Bandwidth	Modulation	size	offset	18615	18900	19185	Tune up	
	QPSK	1	0	15.73	15.97	16.01	17	
		1	7	16.22	16.22	16.35	17	
		1	14	15.67	15.71	15.8	17	
		8	0	15.94	16.13	16.22	17	
		8	4	16.02	16.15	16.24	17	
		8	7	15.92	16.03	16.1	17	
0.00		15	0	15.94	16.07	16.16	17	
3MHz		1	0	16.13	16.39	16.37	17	
		1	7	16.54	16.62	16.6	17	
		1	14	15.96	16.18	16.11	17	
	16QAM	8	0	15.92	16.12	16.23	17	
		8	4	15.99	16.12	16.22	17	
		8	7	15.86	15.98	16.07	17	
		15	0	15.86	15.98	16.13	17	
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tungun	
Dalluwiutii	iviodulation	size	offset	18625	18900	19175	Tune up	
		1	0	16.46	16.61	16.75	17	
5MHz	QPSK	1	13	16.65	16.78	16.79	17	
		1	24	16.49	16.42	16.59	17	

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 75 of 183

		12	0	16.48	16.75	16.75	17
		12	6	16.59	16.77	16.83	17
		12	13	16.48	16.47	16.57	17
		25	0	16.44	16.61	16.55	17
		1	0	16.72	16.85	16.91	17
		1	13	16.84	16.82	16.88	17
		1	24	16.8	16.75	16.91	17
	16QAM	12	0	16.42	16.72	16.7	17
		12	6	16.53	16.67	16.78	17
		12	13	16.43	16.41	16.54	17
		25	0	16.37	16.52	16.47	17
Domaliusi altib	Madulatian	RB	RB	Channel	Channel	Channel	T
Bandwidth	Modulation	size	offset	18650	18900	19150	Tune up
		1	0	16.29	16.49	16.6	17
		1	25	16.89	16.87	16.92	17
		1	49	16.81	16.54	16.66	17
	QPSK	25	0	16.65	16.7	16.87	17
		25	13	16.84	16.79	16.84	17
		25	25	16.82	16.61	16.61	17
40MU-		50	0	16.73	16.62	16.73	17
10MHz		1	0	16.7	16.79	16.97	17
		1	25	16.86	16.84	16.85	17
	16QAM	1	49	16.89	16.86	16.92	17
		25	0	16.57	16.68	16.81	17
		25	13	16.77	16.75	16.78	17
		25	25	16.73	16.6	16.56	17
		50	0	16.65	16.57	16.61	17
Dondwidth	Madulation	RB	RB	Channel	Channel	Channel	Tungun
Bandwidth	Modulation	size	offset	18675	18900	19125	Tune up
		1	0	16.31	16.65	16.65	17
		1	38	16.85	16.94	16.89	17
		1	74	16.73	16.44	16.5	17
	QPSK	36	0	16.74	16.73	16.89	17
		36	18	16.84	16.85	16.98	17
		36	39	16.89	16.59	16.63	17
15MHz		75	0	16.8	16.6	16.76	17
I JIVII IZ		1	0	16.61	16.99	16.95	17
		1	38	16.82	16.84	16.88	17
		1	74	16.83	16.61	16.87	17
	16QAM	36	0	16.67	16.62	16.85	17
		36	18	16.74	16.74	16.92	17
		36	39	16.82	16.49	16.58	17
		75	0	16.72	16.56	16.7	17
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tupous
Dailuwiulii	Modulation	size	offset	18700	18900	19100	Tune up
20MHz	QPSK	1	0	15.39	15.79	15.76	17
Δ ΟΙΝΙΠΖ	Qr3N	1	50	16.57	16.37	16.63	17

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions-aspx and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions-Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01 Page : 76 of 183

15.66

15.97

16.06

15.74

15.88

15.83

16.08

16.51

15.92

15.96

17

17

17

17

17

1	99	15.48	15.4	15.53	17
50	0	16.03	16.01	16.13	17
50	25	16.46	16.1	16.55	17
50	50	16.16	15.78	15.96	17
100	0	16.06	15.93	16.02	17
1	0	15.78	16.02	16.14	17
1	50	16.86	16.71	16.89	17

15.82

16

16.35

16.05

15.94

99

0

25

50

0

50

50

50

100

16QAM

LT	E Band 4 full pov	ver		Conducted Power(dBm)				
Dan desidab	Maral India	RB	RB	Channel	Channel	Channel	т	
Bandwidth	Modulation	size	offset	19957	20175	20393	Tune up	
		1	0	21.81	22.34	22.03	23.5	
		1	2	21.94	22.36	22.04	23.5	
		1	5	21.78	22.21	21.79	23.5	
	QPSK	3	0	21.9	22.36	22.01	23.5	
		3	2	21.93	22.3	21.97	23.5	
		3	3	21.87	22.29	21.91	23.5	
1.4MHz		6	0	20.97	21.33	21.01	22.5	
1.4WITZ	ИHZ	1	0	21.15	21.54	21.18	22.5	
		1	2	21.23	21.59	21.13	22.5	
	16QAM	1	5	21.07	21.46	21.04	22.5	
		3	0	21.08	21.38	21.12	22.5	
		3	2	21.09	21.3	21.06	22.5	
		3	3	20.99	21.31	20.94	22.5	
		6	0	20.96	21.32	21.03	22.5	
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up	
Danuwidin	Modulation	size	offset	19965	20175	20385	rune up	
		1	0	21.69	22.22	21.86	23.5	
		1	7	22.03	22.39	21.98	23.5	
		1	14	21.85	22	21.61	23.5	
	QPSK	8	0	20.97	21.36	21.12	22.5	
		8	4	21.06	21.34	21.1	22.5	
3MHz		8	7	21.11	21.26	20.91	22.5	
SIVILIZ		15	0	21.06	21.31	21.07	22.5	
		1	0	21.13	21.56	21.24	22.5	
		1	7	21.38	21.6	21.36	22.5	
	16QAM	1	14	21.23	21.33	20.99	22.5	
		8	0	20.99	21.24	21.09	22.5	
		8	4	21.03	21.28	21.04	22.5	

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the ilimits of Client's instructions, if any. The Company's sole responsibility is to its Client and todes not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 77 of 183

		8	7	21.08	21.17	20.87	22.5
		15	0	20.99	21.19	20.99	22.5
D 1 · · · · ·	NA 1 1 2	RB	RB	Channel	Channel	Channel	_
Bandwidth	Modulation	size	offset	19975	20175	20375	Tune up
		1	0	21.89	22.33	22.24	23.5
		1	13	22.24	22.42	22.12	23.5
		1	24	22.14	22.18	21.9	23.5
	QPSK	12	0	21.14	21.42	21.33	22.5
		12	6	21.32	21.46	21.29	22.5
		12	13	21.2	21.22	21	22.5
5MHz		25	0	21.1	21.3	21.19	22.5
SWIFTZ		1	0	21.29	21.56	21.57	22.5
		1	13	21.54	21.7	21.4	22.5
		1	24	21.51	21.39	21.23	22.5
	16QAM	12	0	21.1	21.4	21.25	22.5
		12	6	21.25	21.36	21.22	22.5
		12	13	21.14	21.12	20.96	22.5
		25	0	21.03	21.17	21.11	22.5
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Danawiatii	Wioddiation	size	offset	20000	20175	20350	
		1	0	21.67	22.21	22.19	23.5
		1	25	22.28	22.4	22.32	23.5
		1	49	22.23	22.18	22.03	23.5
	QPSK	25	0	21.15	21.41	21.36	22.5
		25	13	21.34	21.33	21.35	22.5
		25	25	21.19	21.19	21.14	22.5
10MHz		50	0	21.26	21.28	21.35	22.5
		1	0	21.11	21.54	21.54	22.5
		1	25	21.72	21.67	21.71	22.5
		1	49	21.57	21.51	21.27	22.5
	16QAM	25	0	21.08	21.36	21.29	22.5
		25	13	21.3	21.26	21.29	22.5
		25	25	21.24	21.11	21.09	22.5
		50	0	21.26	21.2	21.26	22.5
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
		size	offset	20025	20175	20325	·
		1	0	21.84	22.48	22.42	23.5
		1	38	22.21	22.34	22.36	23.5
	ODCK	-	74	22.35	22.16	21.97	23.5
	QPSK	36 36	0 18	21.26 21.25	21.49	21.32	22.5 22.5
15MHz		36	39	21.25	21.44 21.25	21.35	22.5
ISIVITIZ		75	0			21.15	22.5
		1	0	21.24 21.24	21.3 21.77	21.27 21.81	22.5
		1	38	21.24	21.77	21.63	22.5
	16QAM	1	74	21.67	21.39	21.03	22.5
		36	0	21.67	21.34	21.18	22.5
	company subject to its General C	1					

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.sppx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and todes not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 78 of 183

		36	18	21.22	21.33	21.32	22.5
		36	39	21.27	21.14	21.13	22.5
		75	0	21.21	21.23	21.25	22.5
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Danawiatii	iviodulation	size	offset	20050	20175	20300	rune up
		1	0	22.44	22.67	22.44	23.5
		1	50	22.07	22.5	22.41	23.5
	QPSK	1	99	22.27	22.15	22	23.5
		50	0	21.39	21.59	21.48	22.5
		50	25	21.48	21.52	21.57	22.5
		50	50	21.4	21.45	21.43	22.5
20MHz		100	0	21.38	21.51	21.53	22.5
ZOIVII IZ		1	0	21.42	22.01	21.86	22.5
		1	50	21.69	21.8	21.79	22.5
		1	99	21.42	21.46	21.3	22.5
	16QAM	50	0	21.37	21.5	21.53	22.5
		50	25	21.38	21.44	21.49	22.5
		50	50	21.3	21.39	21.35	22.5
		100	0	21.28	21.42	21.45	22.5

LT	E Band 4 Hotspo	t on		Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up	
		1	0	17.06	17.59	17.26	18.5	
		1	2	17.13	17.67	17.32	18.5	
		1	5	16.95	17.5	17.12	18.5	
	QPSK	3	0	17.14	17.65	17.32	18.5	
		3	2	17.14	17.63	17.32	18.5	
		3	3	17.08	17.61	17.21	18.5	
1.4MHz		6	0	17.09	17.58	17.28	18.5	
1.4IVITZ	16QAM	1	0	17.33	17.95	17.47	18.5	
		1	2	17.37	17.95	17.51	18.5	
		1	5	17.18	17.8	17.31	18.5	
		3	0	17.22	17.67	17.35	18.5	
		3	2	17.15	17.69	17.3	18.5	
		3	3	17.12	17.67	17.23	18.5	
		6	0	17.06	17.54	17.24	18.5	
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up	
Danuwiutii	Modulation	size	offset	19965	20175	20385	Turie up	
		1	0	16.94	17.41	17.19	18.5	
		1	7	17.29	17.74	17.34	18.5	
3MHz	QPSK	1	14	16.99	17.29	16.92	18.5	
JIVII IZ	QI SIN	8	0	17.09	17.59	17.32	18.5	
		8	4	17.18	17.63	17.36	18.5	
		8	7	17.19	17.53	17.17	18.5	

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-ConditionsTerms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of clients interventions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 79 of 183

		15	0	17.13	17.56	17.3	18.5
		1	0	17.22	17.79	17.43	18.5
		1	7	17.57	17.96	17.63	18.5
		1	14	17.26	17.47	17.13	18.5
	16QAM	8	0	17.11	17.53	17.28	18.5
		8	4	17.15	17.57	17.34	18.5
		8	7	17.13	17.48	17.11	18.5
		15	0	17.14	17.48	17.25	18.5
Daniel duk	Markether	RB	RB	Channel	Channel	Channel	T
Bandwidth	Modulation	size	offset	19975	20175	20375	Tune up
		1	0	16.88	17.4	17.3	18.5
		1	13	17.25	17.58	17.35	18.5
		1	24	16.99	17.28	17.05	18.5
	QPSK	12	0	17.12	17.45	17.4	18.5
1		12	6	17.23	17.52	17.42	18.5
1		12	13	17.14	17.29	17.16	18.5
C. M. I.		25	0	17.06	17.33	17.3	18.5
5MHz		1	0	17.2	17.77	17.62	18.5
		1	13	17.61	17.94	17.64	18.5
		1	24	17.38	17.61	17.39	18.5
	16QAM	12	0	17.09	17.41	17.36	18.5
	100,	12	6	17.25	17.53	17.36	18.5
		12	13	17.08	17.26	17.14	18.5
		25	0	17.05	17.28	17.24	18.5
Daniel duk	Mark Latin	RB	RB	Channel	Channel	Channel	т
Bandwidth	Modulation	size	offset	20000	20175	20350	Tune up
		1	0	16.7	17.26	17.14	18.5
		1	25	17.41	17.48	17.49	18.5
		1	49	17.25	17.18	17.1	18.5
	QPSK	25	0	17.07	17.47	17.3	18.5
		25	13	17.27	17.36	17.36	18.5
		25	25	17.15	17.21	17.22	18.5
10MU-	10MHz				· · · · — ·		
IUNITZ		50	0	17.17	17.28	17.35	18.5
		50 1	0	17.17 17.03		17.35 17.45	18.5 18.5
			_		17.28		
		1	0	17.03	17.28 17.51	17.45	18.5
	16QAM	1	0 25	17.03 17.78	17.28 17.51 17.9	17.45 17.78	18.5 18.5
	16QAM	1 1 1	0 25 49	17.03 17.78 17.57	17.28 17.51 17.9 17.45	17.45 17.78 17.55	18.5 18.5 18.5
	16QAM	1 1 1 25	0 25 49 0	17.03 17.78 17.57 17.08	17.28 17.51 17.9 17.45 17.42	17.45 17.78 17.55 17.32	18.5 18.5 18.5 18.5
	16QAM	1 1 1 25 25	0 25 49 0 13	17.03 17.78 17.57 17.08 17.29	17.28 17.51 17.9 17.45 17.42 17.32	17.45 17.78 17.55 17.32 17.35	18.5 18.5 18.5 18.5 18.5
Don dividah		1 1 1 25 25 25	0 25 49 0 13 25	17.03 17.78 17.57 17.08 17.29 17.17	17.28 17.51 17.9 17.45 17.42 17.32 17.18	17.45 17.78 17.55 17.32 17.35 17.21	18.5 18.5 18.5 18.5 18.5 18.5 18.5
Bandwidth	16QAM Modulation	1 1 1 25 25 25 25 50	0 25 49 0 13 25	17.03 17.78 17.57 17.08 17.29 17.17	17.28 17.51 17.9 17.45 17.42 17.32 17.18 17.23	17.45 17.78 17.55 17.32 17.35 17.21 17.36	18.5 18.5 18.5 18.5 18.5 18.5
Bandwidth		1 1 1 25 25 25 25 50 RB	0 25 49 0 13 25 0 RB	17.03 17.78 17.57 17.08 17.29 17.17 17.16 Channel	17.28 17.51 17.9 17.45 17.42 17.32 17.18 17.23 Channel	17.45 17.78 17.55 17.32 17.35 17.21 17.36 Channel	18.5 18.5 18.5 18.5 18.5 18.5 18.5
Bandwidth		1 1 25 25 25 50 RB size	0 25 49 0 13 25 0 RB offset	17.03 17.78 17.57 17.08 17.29 17.17 17.16 Channel 20025	17.28 17.51 17.9 17.45 17.42 17.32 17.18 17.23 Channel 20175	17.45 17.78 17.55 17.32 17.35 17.21 17.36 Channel 20325	18.5 18.5 18.5 18.5 18.5 18.5 18.5
Bandwidth 15MHz		1 1 25 25 25 50 RB size 1	0 25 49 0 13 25 0 RB offset	17.03 17.78 17.57 17.08 17.29 17.17 17.16 Channel 20025 16.95	17.28 17.51 17.9 17.45 17.42 17.32 17.18 17.23 Channel 20175 17.62	17.45 17.78 17.55 17.32 17.35 17.21 17.36 Channel 20325 17.33	18.5 18.5 18.5 18.5 18.5 18.5 18.5 Tune up
	Modulation	1 1 25 25 25 50 RB size 1	0 25 49 0 13 25 0 RB offset 0 38	17.03 17.78 17.57 17.08 17.29 17.17 17.16 Channel 20025 16.95 17.43	17.28 17.51 17.9 17.45 17.42 17.32 17.18 17.23 Channel 20175 17.62 17.59	17.45 17.78 17.55 17.32 17.35 17.21 17.36 Channel 20325 17.33 17.36	18.5 18.5 18.5 18.5 18.5 18.5 18.5 Tune up

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.sppx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-Conditions/Terms-e-Document.sppx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and todes not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01 Page : 80 of 183

	İ	1 00	۱ ۵۵		1 47.00	l	
		36	39	17.4	17.38	17.27	18.5
		75	0	17.35	17.38	17.33	18.5
		1	0	17.3	17.88	17.79	18.5
		1	38	17.69	17.88	17.75	18.5
		1	74	17.83	17.62	17.34	18.5
	16QAM	36	0	17.28	17.55	17.34	18.5
		36	18	17.32	17.46	17.35	18.5
		36	39	17.35	17.32	17.22	18.5
		75	0	17.27	17.34	17.26	18.5
Bandwidth	Madulation	RB	RB	Channel	Channel	Channel	T
Danawiath	Modulation	size	offset	20050	20175	20300	Tune up
		1	0	17	17.63	17.49	18.5
		1	50	17.45	17.62	17.54	18.5
		1	99	17.2	17.1	16.96	18.5
	QPSK	50	0	17.21	17.53	17.51	18.5
		50	25	17.39	17.52	17.39	18.5
		50	50	17.28	17.44	17.32	18.5
20MHz		100	0	17.3	17.5	17.42	18.5
ZUIVITZ		1	0	17.21	18.03	17.73	18.5
		1	50	17.8	17.93	17.95	18.5
		1	99	17.44	17.36	17.39	18.5
	16QAM	50	0	17.24	17.48	17.51	18.5
		50	25	17.36	17.46	17.4	18.5
		50	50	17.3	17.38	17.32	18.5
		100	0	17.3	17.45	17.35	18.5

Lī	TE Band 5 full pov	ver		Conducted Power(dBm)				
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up	
Danuwiutii	Modulation	size	offset	20407	20525	20643	Turie up	
		1	0	22.09	22.31	22.03	23.5	
		1	2	22.28	22.45	22.16	23.5	
		1	5	22.23	22.27	22.07	23.5	
	QPSK	3	0	22.14	22.35	22.11	23.5	
		3	2	22.24	22.41	22.18	23.5	
		3	3	22.23	22.34	22.16	23.5	
1.4MHz		6	0	21.31	21.33	21.31	22.5	
1.4WITZ		1	0	21.31	21.41	21.38	22.5	
		1	2	21.51	21.58	21.55	22.5	
		1	5	21.49	21.31	21.42	22.5	
	16QAM	3	0	21.25	21.29	21.31	22.5	
		3	2	21.34	21.32	21.27	22.5	
		3	3	21.31	21.27	21.24	22.5	
		6	0	21.12	21.3	21.22	22.5	
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tungun	
Danuwium	Modulation	size	offset	20415	20525	20635	Tune up	

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-ConditionsTerms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of clients interventions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 81 of 183

	I	l 1	0	21.87	22.05	21.88	23.5
		1	7	22.37	22.42	22.14	23.5
		1	14	21.94	22.02	21.83	23.5
	QPSK	8	0	21.3	21.26	21.09	22.5
	α. σ. τ	8	4	21.27	21.33	21.26	22.5
		8	7	21.17	21.26	21.11	22.5
		15	0	21.17	21.26	21.2	22.5
3MHz		1	0	21.18	21.28	21.03	22.5
		1	7	21.66	21.65	21.57	22.5
		1	14	21.11	21.29	21.15	22.5
	16QAM	8	0	21.08	21.19	21.08	22.5
		8	4	21.22	21.24	21.2	22.5
		8	7	21.09	21.17	21.09	22.5
		15	0	21.06	21.15	21.13	22.5
		RB	RB	Channel	Channel	Channel	
Bandwidth	Modulation	size	offset	20425	20525	20625	Tune up
		1	0	22.27	22.41	22.4	23.5
		1	13	22.33	22.41	22.26	23.5
		1	24	22.32	22.35	22.16	23.5
	QPSK	12	0	21.38	21.34	21.31	22.5
	G. 511	12	6	21.5	21.56	21.41	22.5
		12	13	21.28	21.36	21.2	22.5
		25	0	21.39	21.49	21.42	22.5
5MHz		1	0	21.60	21.73	21.75	22.5
		1	13	21.49	21.73	21.6	22.5
	16QAM	1	24	21.54	21.69	21.45	22.5
		12	0	21.28	21.21	21.22	22.5
		12	6	21.31	21.37	21.33	22.5
		12	13	21.17	21.27	21.12	22.5
		25	0	21.17	21.36	21.26	22.5
Donalis i dala	Madulatian	RB	RB	Channel	Channel	Channel	т
Bandwidth	Modulation	size	offset	20450	20525	20600	Tune up
		1	0	22.41	22.57	22.66	23.5
		1	25	22.77	22.72	22.66	23.5
		1	49	22.46	22.54	22.31	23.5
	QPSK	25	0	21.62	21.57	21.6	22.5
		25	13	21.81	21.8	21.71	22.5
		25	25	21.51	21.49	21.57	22.5
10MHz		50	0	21.55	21.56	21.62	22.5
IUWITZ		1	0	21.71	21.86	22.07	22.5
		1	25	21.97	22.04	21.92	22.5
		1	49	21.76	21.84	21.65	22.5
	16QAM	25	0	21.43	21.43	21.53	22.5
		25	13	21.53	21.68	21.6	22.5
		25	25	21.38	21.45	21.42	22.5
		50	0	21.44	21.5	21.47	22.5

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-ConditionsTerms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of clients interventions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 82 of 183

נז	E Band 7 full por	wer			Conducted I	Power(dBm)	
Bandwidth	Modulation	RB size	RB offset	Channel 20775	Channel 21100	Channel 21425	Tune up
		1	0	21.77	21.73	21.71	23
		1	13	22.06	21.99	21.75	23
		1	24	22.13	21.89	21.5	23
	QPSK	12	0	21.18	21.19	21.03	22
	Q. O.	12	6	21.31	21.17	21.02	22
		12	13	21.22	21.03	20.86	22
		25	0	21.2	21.17	21.07	22
5MHz		1	0	21.08	21.19	21.15	22
		1	13	21.48	21.36	21.15	22
		1	24	21.51	21.18	20.88	22
	16QAM	12	0	21.14	21.11	20.96	22
		12	6	21.22	21.15	20.95	22
		12	13	21.17	20.95	20.79	22
		25	0	21.08	21.06	20.96	22
		RB	RB	Channel	Channel	Channel	
Bandwidth	Modulation	size	offset	20800	21100	21400	Tune up
		1	0	21.38	21.46	21.92	23
		1	25	22.42	22.11	21.98	23
		1	49	22.61	22.16	21.75	23
	QPSK	25	0	20.98	20.85	20.94	22
		25	13	21.22	20.97	20.89	22
		25	25	21.56	21.18	21.21	22
400011		50	0	21.18	20.95	21.14	22
10MHz		1	0	20.81	20.78	21.2	22
		1	25	21.77	21.5	21.4	22
		1	49	21.94	21.49	21.17	22
	16QAM	25	0	20.89	20.75	20.82	22
		25	13	21.12	20.84	20.75	22
		25	25	21.46	21.07	21.07	22
		50	0	21.08	20.85	20.97	22
Dond: :: dtb	Madulatian	RB	RB	Channel	Channel	Channel	T
Bandwidth	Modulation	size	offset	20825	21100	21375	Tune up
		1	0	21.53	21.46	21.99	23
		1	38	22.43	21.9	22	23
		1	74	22.43	21.98	21.52	23
	QPSK	36	0	21.21	20.89	21.36	22
15MHz		36	18	21.54	21.09	21.15	22
		36	39	21.42	20.94	21.08	22
		75	0	21.36	21	21.26	22
	16QAM	1	0	20.76	20.88	21.44	22
	IOQAW	1	38	21.7	21.23	21.4	22

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01 Page : 83 of 183

		1 1	74	21.65	21.38	20.89	22
		36	0	21.09	20.82	21.19	22
		36	18	21.43	21.01	21.06	22
		36	39	21.3	20.86	21.01	22
		75	0	21.23	20.9	21.15	22
Danish did	NA - I I-I'-	RB	RB	Channel	Channel	Channel	т
Bandwidth	Modulation	size	offset	20850	21100	21350	Tune up
		1	0	21.88	22.12	22.58	23
	QPSK	1	50	22.47	21.84	22.36	23
		1	99	22.44	22.22	21.75	23
		50	0	21.33	21.25	21.5	22
		50	25	21.4	21.12	21.33	22
		50	50	21.42	20.97	21.17	22
000411-		100	0	21.76	21.14	21.39	22
20MHz		1	0	21.29	21.58	21.91	22
		1	50	21.75	21.23	21.67	22
		1	99	21.74	21.58	21.18	22
	16QAM	50	0	21.22	21.16	21.39	22
		50	25	21.27	21.01	21.22	22
		50	50	21.28	20.86	21.07	22
		100	0	21.59	21.02	21.2	22

LT	E Band 7 Hotspot	on			Conducted I	Power(dBm)	
Bandwidth	Madulation	RB	RB	Channel	Channel	Channel	T
bandwidth	Modulation	size	offset	20775	21100	21425	Tune up
		1	0	18.4	18.47	18.6	19.5
		1	13	18.66	18.76	18.77	19.5
		1	24	18.65	18.5	18.45	19.5
	QPSK	12	0	18.66	18.72	18.71	19.5
		12	6	18.72	18.82	18.72	19.5
		12	13	18.57	18.52	18.61	19.5
5MHz		25	0	18.59	18.69	18.81	19.5
SIVITIZ		1	0	18.56	18.76	18.93	19.5
		1	13	18.99	19.03	19.04	19.5
		1	24	18.98	18.85	18.74	19.5
	16QAM	12	0	18.64	18.72	18.68	19.5
		12	6	18.69	18.74	18.64	19.5
		12	13	18.6	18.44	18.54	19.5
		25	0	18.55	18.59	18.74	19.5
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tung up
Danuwiutii	ivioudiation	size	offset	20800	21100	21400	Tune up
		1	0	17.9	18.09	18.52	19.5
10MHz	QPSK	1	25	18.94	18.84	18.89	19.5
IUIVITIZ	QF3N	1	49	19.07	18.73	18.58	19.5
		25	0	18.3	18.31	18.44	19.5

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior without approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01 Page : 84 of 183

		25	13	18.49	18.47	18.43	19.5
		25	25	18.82	18.65	18.89	19.5
		50	0	18.39	18.44	18.69	19.5
		1	0	18.21	18.38	18.8	19.5
		1	25	19.32	19.08	19.17	19.5
		1	49	19.36	19.06	18.87	19.5
	16QAM	25	0	18.29	18.24	18.38	19.5
		25	13	18.47	18.39	18.31	19.5
		25	25	18.81	18.56	18.76	19.5
		50	0	18.39	18.35	18.57	19.5
Donduidth	Modulation	RB	RB	Channel	Channel	Channel	Tungun
Bandwidth	Modulation	size	offset	20825	21100	21375	Tune up
		1	0	18.06	18.14	18.63	19.5
		1	38	18.88	18.67	18.83	19.5
		1	74	18.87	18.62	18.43	19.5
	QPSK	36	0	18.56	18.42	18.85	19.5
		36	18	18.83	18.68	18.77	19.5
		36	39	18.66	18.5	18.78	19.5
45MU-		75	0	18.62	18.55	18.84	19.5
15MHz		1	0	18.29	18.39	18.98	19.5
		1	38	19.25	18.95	19.11	19.5
	16QAM	1	74	19.32	18.79	18.76	19.5
		36	0	18.52	18.33	18.78	19.5
		36	18	18.81	18.6	18.71	19.5
		36	39	18.66	18.43	18.7	19.5
		75	0	18.61	18.47	18.75	19.5
Donalissialth	Madulatian	RB	RB	Channel	Channel	Channel	Т
Bandwidth	Modulation	size	offset	20850	21100	21350	Tune up
		1	0	18.35	18.72	19.04	19.5
		1	50	18.71	18.52	19.03	19.5
		1	99	18.91	18.72	18.54	19.5
	QPSK	50	0	18.38	18.62	18.71	19.5
		50	25	18.52	18.5	18.74	19.5
		50	50	18.62	18.37	18.69	19.5
008411-		100	0	18.98	18.54	18.7	19.5
20MHz		1	0	18.64	19.09	19.28	19.5
		1	50	18.93	18.77	19.29	19.5
		1	99	19.21	18.94	18.89	19.5
	16QAM	50	0	18.36	18.58	18.62	19.5
		50	25	18.43	18.47	18.67	19.5
		50	50	18.53	18.3	18.6	19.5
		400		40.00	40.40	40.0	

LTE Band 7 sensor on+hotspot on					Conducted F	Power(dBm)	
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up

18.89

18.46

18.6

19.5

100

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the ilimits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 85 of 183

5MHz	QPSK	1	0 13	16.02	16.1	16.27	17.5
	QPSK		12				
	QPSK	4	13	16.25	16.4	16.48	17.5
	QPSK	1	24	16.17	16.13	16.15	17.5
5MHz		12	0	16.2	16.3	16.42	17.5
5MHz		12	6	16.24	16.36	16.39	17.5
5MHz		12	13	16.07	16.1	16.23	17.5
эмнг ——		25	0	16.12	16.29	16.42	17.5
		1	0	16.25	16.36	16.54	17.5
		1	13	16.54	16.63	16.76	17.5
		1	24	16.39	16.28	16.4	17.5
1	6QAM	12	0	16.19	16.27	16.42	17.5
		12	6	16.28	16.36	16.38	17.5
		12	13	16.15	16.07	16.21	17.5
		25	0	16.12	16.22	16.4	17.5
5 1 111	1 1 1	RB	RB	Channel	Channel	Channel	_
Bandwidth Mo	odulation	size	offset	20800	21100	21400	Tune up
		1	0	15.62	15.7	16.07	17.5
		1	25	16.5	16.51	16.62	17.5
		1	49	16.53	16.46	16.36	17.5
	QPSK	25	0	15.93	15.96	16.06	17.5
		25	13	16.09	16.05	16.07	17.5
		25	25	16.38	16.23	16.51	17.5
40111		50	0	16.05	16.02	16.38	17.5
10MHz		1	0	15.92	15.97	16.34	17.5
		1	25	16.78	16.76	16.84	17.5
		1	49	16.84	16.77	16.58	17.5
1	6QAM	25	0	15.94	15.9	16.01	17.5
		25	13	16.13	16.01	16.02	17.5
		25	25	16.35	16.19	16.49	17.5
		50	0	15.99	15.95	16.31	17.5
Danish dalah	1.1.1	RB	RB	Channel	Channel	Channel	
Bandwidth Mo	odulation	size	offset	20825	21100	21375	Tune up
		1	0	15.4	15.68	15.88	17.5
	<u> </u>	1	38	16.16	16.25	16.45	17.5
		1	74	15.98	16.11	16.11	17.5
	QPSK	36	0	15.95	16.03	16.34	17.5
		36	18	16.15	16.23	16.37	17.5
		36	39	15.93	15.93	16.46	17.5
45111		75	0	15.99	16.07	16.37	17.5
15MHz		1	0	15.77	16.1	16.27	17.5
		1	38	16.57	16.57	16.76	17.5
		1	74	16.44	16.44	16.34	17.5
	6QAM	36	0	15.99	15.94	16.28	17.5
		36	18	16.21	16.15	16.32	17.5
	-	36	39	15.94	15.86	16.41	17.5
		75	0	15.99	16.04	16.3	17.5

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-ConditionsTerms-e-Document.aspx. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and those not excorate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 86 of 183

Bandwidth	Madulatian	RB	RB	Channel	Channel	Channel	T
Danowidin	Modulation	size	offset	20850	21100	21350	Tune up
		1	0	16.35	16.55	16.72	17.5
		1	50	16.77	16.31	16.76	17.5
		1	99	16.84	16.59	16.47	17.5
	QPSK	50	0	16.43	16.54	16.47	17.5
		50	25	16.42	16.37	16.49	17.5
		50	50	16.57	16.18	16.54	17.5
20MHz		100	0	16.9	16.35	16.45	17.5
ZUIVITZ		1	0	16.51	16.86	16.96	17.5
		1	50	16.98	16.58	17.14	17.5
		1	99	17.14	16.86	16.74	17.5
	16QAM	50	0	16.34	16.41	16.35	17.5
		50	25	16.31	16.26	16.39	17.5
		50	50	16.45	16.07	16.44	17.5
		100	0	16.84	16.21	16.39	17.5

Report No.:SZEM180100082701

Rev : 01

Page : 87 of 183

LTE I	FDD Band 12 full	power			Conducted I	Power(dBm)	
Bandwidth	Modulation	RB size	RB offset	Channel 23017	Channel 23095	Channel 23173	Tune up
		1	0	21.57	22.02	22.27	24
		1	2	21.79	22.02	22.24	24
		1	5	21.79	22.12	22.06	24
	QPSK	3	0	21.72	22.14	22.27	24
	QI OIX	3	2	21.72	22.14	22.23	24
		3	3	21.93	22.1	22.15	24
		6	0	20.92	21.2	21.37	23
1.4MHz		1	0	21.01	21.41	21.55	23
		1	2	21.21	21.47	21.58	23
		1	5	21.28	21.49	21.31	23
	16QAM	3	0	20.86	21.24	21.44	23
		3	2	21.02	21.25	21.35	23
		3	3	21.06	21.24	21.21	23
		6	0	20.03	20.36	20.43	22
		RB	RB	Channel	Channel	Channel	
Bandwidth	Modulation	size	offset	23025	23095	23165	Tune up
		1	0	21.35	21.89	22.13	24
		1	7	22.14	22.16	22.43	24
		1	14	21.82	21.92	21.91	24
	QPSK	8	0	20.91	21.14	21.46	23
		8	4	21.18	21.19	21.5	23
		8	7	21.16	21.1	21.28	23
OMILI-		15	0	20.96	21.11	21.37	23
3MHz		1	0	20.8	21.21	21.55	23
		1	7	21.63	21.52	21.82	23
		1	14	21.12	21.34	21.26	23
	16QAM	8	0	20.12	20.28	20.57	22
		8	4	20.36	20.37	20.6	22
		8	7	20.3	20.25	20.33	22
		15	0	20.03	20.2	20.36	22
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Danawiatii	Modulation	size	offset	23035	23095	23155	rune up
		1	0	22.09	22.46	22.78	24
		1	13	22.61	22.68	22.91	24
		1	24	22.44	22.52	22.39	24
	QPSK	12	0	21.53	21.59	21.93	23
5MHz		12	6	21.73	21.73	22.02	23
		12	13	21.56	21.63	21.81	23
		25	0	21.57	21.61	21.92	23
	16QAM	1	0	21.48	21.83	22.2	23
	103/11/1	1	13	22.03	22.04	22.28	23

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 88 of 183

		1	24	21.73	21.86	21.76	23
		12	0	20.62	20.67	21.01	22
		12	6	20.82	20.83	21.13	22
		12	13	20.66	20.72	20.87	22
		25	0	20.62	20.62	20.94	22
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Danuwiutii	Modulation	size	offset	23060	23095	23130	Turie up
		1	0	22.22	22.57	22.51	24
	QPSK	1	25	22.87	23.01	23.25	24
		1	49	22.51	22.72	22.53	24
		25	0	21.7	21.68	21.82	23
		25	13	21.81	21.88	22.07	23
		25	25	21.57	21.8	21.88	23
10MHz		50	0	21.6	21.72	21.8	23
IUIVITZ		1	0	21.56	21.94	21.87	23
		1	25	22.31	22.29	22.56	23
		1	49	21.89	22.07	21.86	23
	16QAM	25	0	20.72	20.67	20.79	22
		25	13	20.82	20.87	21.07	22
		25	25	20.54	20.79	20.89	22
		50	0	20.63	20.71	20.84	22

Report No.:SZEM180100082701

Rev : 01

Page : 89 of 183

LTE I	FDD Band 17 full	power			Conducted I	Power(dBm)	
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Dallawiatii	iviodulation	size	offset	23755	23790	23825	rune up
		1	0	22.21	22.64	22.8	24
		1	13	22.7	22.91	23.1	24
		1	24	22.55	22.86	22.49	24
	QPSK	12	0	21.42	21.81	22.05	23
		12	6	21.7	22	22.14	23
5MHz		12	13	21.62	21.93	21.95	23
		25	0	21.57	21.84	21.99	23
		1	0	21.58	21.97	22.22	23
		1	13	21.97	22.29	22.41	23
		1	24	21.88	22.15	21.81	23
	16QAM	12	0	20.5	20.87	21.14	22
		12	6	20.77	21.04	21.23	22
		12	13	20.7	20.97	21.04	22
		25	0	20.56	20.84	21.04	22
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Danuwiutii	iviodulation	size	offset	23780	23790	23800	Turie up
		1	0	22.2	22.37	22.48	24
		1	25	23.04	23.09	23.2	24
		1	49	22.74	22.75	22.57	24
	QPSK	25	0	21.56	21.65	21.76	23
		25	13	21.94	21.98	22.07	23
		25	25	21.86	21.94	21.88	23
10MHz		50	0	21.73	21.8	21.85	23
TUIVITIZ		1	0	21.63	21.69	21.77	23
		1	25	22.33	22.52	22.6	23
		1	49	21.94	21.89	21.85	23
	16QAM	25	0	20.59	20.69	20.78	22
		25	13	20.92	20.95	21.11	22
		25	25	20.84	20.94	20.86	22
		50	0	20.7	20.77	20.85	22

Table 13: Conducted Power Of LTE

Report No.:SZEM180100082701

Rev : 01

Page : 90 of 183

8.1.2 Conducted Power of Second Antenna

8.1.2.1 Conducted Power Of GSM

	GSM 850 full power													
Bu	rst Output Pov	ver(dBm)			Tungun	Division Factors	Frame-Ave	rage Output F	Power(dBm)	Tungun				
Channe	ıl .	128	190	251	Tune up	DIVISION FACIOIS	128	190	251	Tune up				
GSM(GMSK)	GSM	32.41	32.45	32.42	33	-9.19	23.22	23.26	23.23	23.81				
	1 TX Slot	32.45	32.43	32.41	33	-9.19	23.26	23.24	23.22	23.81				
GPRS/EGPRS	2 TX Slots	29.43	29.46	29.42	30	-6.18	23.25	23.28	23.24	23.82				
(GMSK)	3 TX Slots	27.69	27.68	27.65	28.2	-4.42	23.27	23.26	23.23	23.78				
	4 TX Slots	26.49	26.48	26.46	27	-3.17	23.32	23.31	23.29	23.83				
	1 TX Slot	26.61	26.69	26.74	27.5	-9.19	17.42	17.5	17.55	18.31				
EGPRS(8PSK)	2 TX Slots	23.54	23.56	23.61	25.5	-6.18	17.36	17.38	17.43	19.32				
EGFN3(0F3K)	3 TX Slots	21.67	21.69	21.75	23.5	-4.42	17.25	17.27	17.33	19.08				
	4 TX Slots	20.38	20.49	20.52	21.5	-3.17	17.21	17.32	17.35	18.33				
					GSM 1900	full power								
Bu	rst Output Pov	ver(dBm)			Tune up	Division Factors	Frame-Ave	rage Output F	Power(dBm)	Tune up				
Channe	ıl	512	661	810	Turie up	DIVISION 1 actors	512	661	810	Tune up				
GSM(GMSK)	GSM	29.63	29.52	29.46	30.5	-9.19	20.44	20.33	20.27	21.31				
	1 TX Slot	29.64	29.54	29.44	30.5	-9.19	20.45	20.35	20.25	21.31				
GPRS/EGPRS	2 TX Slots	26.71	26.57	26.48	27.5	-6.18	20.53	20.39	20.3	21.32				
(GMSK)	3 TX Slots	24.93	24.78	24.71	25.7	-4.42	20.51	20.36	20.29	21.28				
	4 TX Slots	23.71	23.56	23.48	24.5	-3.17	20.54	20.39	20.31	21.33				
	1 TX Slot	25.55	25.58	25.52	26.5	-9.19	16.36	16.39	16.33	17.31				
EGPRS(8PSK)	2 TX Slots	22.28	22.13	22.32	24.5	-6.18	16.1	15.95	16.14	18.32				
LGFN3(0F3K)	3 TX Slots	20.09	20.13	20.36	22.5	-4.42	15.67	15.71	15.94	18.08				
	4 TX Slots	18.55	18.51	18.58	20.5	-3.17	15.38	15.34	15.41	17.33				

					GSM 850 R	eceiver on				
Bu	rst Output Pov	ver(dBm))		Tungun	Division Factors	Frame-Average Output Power(dBm)			Tunaum
Channe	Channel		190	251	Tune up	DIVISION FACIOIS	128	190	251	Tune up
GSM(GMSK)	GSM	31.89	31.9	31.87	32.5	-9.19	22.7	22.71	22.68	23.31
	1 TX Slot	31.87	31.89	31.88	32.5	-9.19	22.68	22.7	22.69	23.31
GPRS/EGPRS	2 TX Slots	28.99	28.97	28.94	29.5	-6.18	22.81	22.79	22.76	23.32
(GMSK)	3 TX Slots	27.15	27.14	27.09	27.7	-4.42	22.73	22.72	22.67	23.28
	4 TX Slots	25.91	25.95	25.89	26.5	-3.17	22.74	22.78	22.72	23.33
	1 TX Slot	26.63	26.78	26.81	27.5	-9.19	17.44	17.59	17.62	18.31
ECDDC/ODCK)	2 TX Slots	23.57	23.52	23.63	25.5	-6.18	17.39	17.34	17.45	19.32
EGPRS(8PSK)	3 TX Slots	21.51	21.61	21.56	23.5	-4.42	17.09	17.19	17.14	19.08
	4 TX Slots	20.05	20.14	20.13	21.5	-3.17	16.88	16.97	16.96	18.33
					GSM 1900 F	Receiver on				
Bu	rst Output Pov	ver(dBm))		Tungun	Division Fosters	Frame-Average Output Power(dBm)			Tunaum
Channe	el	512	661	810	Tune up	Division Factors	512	661	810	Tune up
GSM(GMSK)	GSM	28.63	28.54	28.44	29.5	-9.19	19.44	19.35	19.25	20.31
GPRS/EGPRS	1 TX Slot	28.65	28.53	28.43	29.5	-9.19	19.46	19.34	19.24	20.31
(GMSK)	2 TX Slots	25.73	25.61	25.52	26.5	-6.18	19.55	19.43	19.34	20.32

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 91 of 183

	3 TX Slots	23.87	23.78	23.67	24.7	-4.42	19.45	19.36	19.25	20.28
	4 TX Slots	22.71	22.59	22.51	23.5	-3.17	19.54	19.42	19.34	20.33
	1 TX Slot	25.96	25.97	26.02	26.5	-9.19	16.77	16.78	16.83	17.31
EGPRS(8PSK)	2 TX Slots	22.53	22.52	22.57	24.5	-6.18	16.35	16.34	16.39	18.32
EGPH3(0F3K)	3 TX Slots	20.77	20.74	20.89	22.5	-4.42	16.35	16.32	16.47	18.08
	4 TX Slots	19.48	19.41	19.47	20.5	-3.17	16.31	16.24	16.3	17.33

	GSM 850 Hotspot on										
Bu	rst Output Pov	ver(dBm)			Tungun	Division Factors	Frame-Ave	rage Output F	Power(dBm)	Tune up	
Channe	el	128	190	251	Tune up	DIVISION FACIOIS	128	190	251	Turic up	
GSM(GMSK)	GSM	31.89	31.92	31.87	32.5	-9.19	22.7	22.73	22.68	23.31	
	1 TX Slot	31.87	31.91	31.89	32.5	-9.19	22.68	22.72	22.7	23.31	
GPRS/EGPRS	2 TX Slots	28.99	29.01	28.96	29.5	-6.18	22.81	22.83	22.78	23.32	
(GMSK)	3 TX Slots	27.17	27.14	27.11	27.7	-4.42	22.75	22.72	22.69	23.28	
	4 TX Slots	25.98	25.99	25.95	26.5	-3.17	22.81	22.82	22.78	23.33	
	1 TX Slot	26.69	26.64	26.74	27.5	-9.19	17.5	17.45	17.55	18.31	
EGPRS(8PSK)	2 TX Slots	23.53	23.55	23.56	25.5	-6.18	17.35	17.37	17.38	19.32	
Edi 113(01 311)	3 TX Slots	21.56	21.65	21.69	23.5	-4.42	17.14	17.23	17.27	19.08	
	4 TX Slots	20.07	20.15	20.19	21.5	-3.17	16.9	16.98	17.02	18.33	
					GSM 1900 I	Hotspot on					
Bu	rst Output Pov	ver(dBm)			Tungun	Tune up Division Factors		Frame-Average Output Power(dBm)			
Channe	el	512	661	810	Tune up	DIVISION 1 actors	512	661	810	Tune up	
GSM(GMSK)	GSM	28.62	28.47	28.42	29.5	-9.19	19.43	19.28	19.23	20.31	
	1 TX Slot	28.61	28.48	28.4	29.5	-9.19	19.42	19.29	19.21	20.31	
GPRS/EGPRS	2 TX Slots	25.71	25.57	25.49	26.5	-6.18	19.53	19.39	19.31	20.32	
(GMSK)	3 TX Slots	23.84	23.73	23.65	24.7	-4.42	19.42	19.31	19.23	20.28	
	4 TX Slots	22.69	22.57	22.49	23.5	-3.17	19.52	19.4	19.32	20.33	
	1 TX Slot	25.54	25.44	25.41	26.5	-9.19	16.35	16.25	16.22	17.31	
EGPRS(8PSK)	2 TX Slots	22.08	22.05	22.01	24.5	-6.18	15.9	15.87	15.83	18.32	
LGFN3(6F3K)	3 TX Slots	20.02	20.03	20.1	22.5	-4.42	15.6	15.61	15.68	18.08	
	4 TX Slots	18.54	18.49	18.51	20.5	-3.17	15.37	15.32	15.34	17.33	

Table 14: Conducted Power Of GSM Note:

1) . CMU200 measures GSM peak and average output power for active timeslots. For SAR the time based average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1:8.3	1:4.15	1:2.77	1:2.075
Time based avg. power compared to slotted avg. power	-9.19	-6.18	-4.42	-3.17

- 2) . The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below: Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8
- 3) . When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this idocument is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 92 of 183

8.1.2.2 Conducted Power Of WCDMA

	WCDMA Band II full power								
	Average Conducted Power(dBm)								
Channel		9262	9400	9538	Tune up				
WCDMA	12.2kbps RMC	22.67	22.75	22.81	24				
WGDIVIA	12.2kbps AMR	22.65	22.72	22.75	24				
	Subtest 1	21.64	21.79	21.76	23				
HSDPA	Subtest 2	22	22.1	22.11	23				
ПОДРА	Subtest 3	21.38	21.36	21.37	22.3				
	Subtest 4	21.34	21.43	21.35	22.3				
	Subtest 1	21.6	21.58	21.62	22				
	Subtest 2	20.58	20.67	20.61	21				
HSUPA	Subtest 3	21.59	21.56	21.55	22.5				
	Subtest 4	20.61	20.59	20.67	21				
	Subtest 5	21.61	21.69	21.63	22.5				
	Subtest 1	21.81	21.77	21.72	23				
DC HCDDA	Subtest 2	22.07	22.12	22.05	23				
DC-HSDPA	Subtest 3	21.33	21.31	21.35	22.3				
	Subtest 4	21.37	21.42	21.39	22.3				

	WCDMA Bar	nd II Receiver or	1		
	Average Condi	ucted Power(dB	m)		
Channel		9262	9400	9538	Tune up
MODMA	12.2kbps RMC	17.42	17.45	17.46	18.5
WCDMA	12.2kbps AMR	17.21	17.22	17.25	18.5
	Subtest 1	17.14	17.29	17.26	17.5
LICDDA	Subtest 2	16.5	16.6	16.61	17.5
HSDPA	Subtest 3	15.88	16.86	16.87	16.8
	Subtest 4	16.84	15.93	15.85	16.8
	Subtest 1	16.1	17.08	17.12	16.5
	Subtest 2	16.08	15.17	16.11	15.5
HSUPA	Subtest 3	16.09	17.06	16.05	17
	Subtest 4	16.11	15.09	16.17	15.5
	Subtest 5	16.11	17.19	16.13	17
	Subtest 1	17.31	17.27	16.22	17.5
	Subtest 2	17.57	16.62	17.55	17.5
DC-HSDPA	Subtest 3	16.83	16.81	15.85	16.8
	Subtest 4	15.87	16.92	15.89	16.8

WCDMA Band II Hotspot on								
Average Conducted Power(dBm)								
Channel		9262	9400	9538	Tune up			
WCDMA	12.2kbps RMC	17.32	17.31	17.32	18.5			
VVGDIVIA	12.2kbps AMR	17.11	17.12	17.15	18.5			
HSDPA	Subtest 1	17.04	17.19	17.16	17.5			

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the illimits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 93 of 183

	Subtest 2	16.4	16.5	16.51	17.5
	Subtest 3	15.78	16.76	16.77	16.8
	Subtest 4	16.74	15.83	15.75	16.8
	Subtest 1	16	16.98	17.02	16.5
	Subtest 2	15.98	15.07	16.01	15.5
HSUPA	Subtest 3	15.99	16.96	15.95	17
	Subtest 4	16.01	14.99	16.07	15.5
	Subtest 5	16.01	17.09	16.03	17
	Subtest 1	17.21	17.17	16.12	17.5
DC-HSDPA	Subtest 2	17.47	16.52	17.45	17.5
DO-HODFA	Subtest 3	16.73	16.71	15.75	16.8
	Subtest 4	15.77	16.82	15.79	16.8

	WCDMA Ba	and IV full power	r		
	Average Cond	ucted Power(dE	Bm)		
Channel		1312	1412	1513	Tune up
WCDMA	12.2kbps RMC	23.21	23.17	23.23	24
WODIVIA	12.2kbps AMR	23.19	23.2	23.23	24
	Subtest 1	23.12	23.27	23.24	23
LICDDA	Subtest 2	22.48	22.58	22.59	23
HSDPA	Subtest 3	21.86	22.84	22.85	22.3
	Subtest 4	22.82	21.91	21.83	22.3
	Subtest 1	21.8	21.78	21.82	22
	Subtest 2	20.78	20.87	20.81	21
HSUPA	Subtest 3	21.79	21.76	21.75	22.5
	Subtest 4	20.81	20.79	20.87	21
	Subtest 5	21.81	21.89	21.83	22.5
	Subtest 1	22.01	21.97	21.92	23
DO HODDA	Subtest 2	22.27	22.32	22.25	23
DC-HSDPA	Subtest 3	21.53	21.51	21.55	22.3
	Subtest 4	21.57	21.62	21.59	22.3

WCDMA Band IV Receiver on								
Average Conducted Power(dBm)								
Channel		1312	1412	1513	Tune up			
WCDMA	12.2kbps RMC	19.18	19.22	19.25	20			
VVCDIVIA	12.2kbps AMR	19.06	19.07	19.1	20			
	Subtest 1	18.99	19.14	19.11	19			
HSDPA	Subtest 2	18.35	18.45	18.46	19			
ПЭДГА	Subtest 3	17.73	18.71	18.72	18.3			
	Subtest 4	18.69	17.78	17.7	18.3			
	Subtest 1	17.95	18.93	18.97	18			
	Subtest 2	17.93	17.02	17.96	17			
HSUPA	Subtest 3	17.94	18.91	17.9	18.5			
	Subtest 4	17.96	16.94	18.02	17			
	Subtest 5	18.06	18.14	18.08	18.5			

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-ConditionsTerms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of clients interventions, if any. The Company's sole responsibility is to its Client and those not excorate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 94 of 183

DC-HSDPA	Subtest 1	18.26	18.22	18.17	19
	Subtest 2	18.52	18.57	18.5	19
	Subtest 3	17.78	17.76	17.8	18.3
	Subtest 4	17.82	17.87	17.84	18.3

	WCDMA Band IV Hotspot on								
Average Conducted Power(dBm)									
Channel		1312	1412	1513	Tune up				
WCDMA	12.2kbps RMC	19.09	19.15	19.2	20				
VVCDIVIA	12.2kbps AMR	18.91	18.92	18.95	20				
	Subtest 1	18.84	18.99	18.96	19				
LICDDA	Subtest 2	18.2	18.3	18.31	19				
HSDPA	Subtest 3	17.58	18.56	18.57	18.3				
	Subtest 4	18.54	17.63	17.55	18.3				
	Subtest 1	17.8	18.78	18.82	18				
	Subtest 2	17.78	16.87	17.81	17				
HSUPA	Subtest 3	17.79	18.76	17.75	18.5				
	Subtest 4	16.91	16.89	16.97	17				
	Subtest 5	17.91	17.99	17.93	18.5				
	Subtest 1	18.11	18.07	18.02	19				
DC HCDDA	Subtest 2	18.37	18.42	18.35	19				
DC-HSDPA	Subtest 3	17.63	17.61	17.65	18.3				
	Subtest 4	17.67	17.72	17.69	18.3				

	WCDMA Band V full power									
Average Conducted Power(dBm)										
(Channel	4132	4182	4233	Tune up					
WCDMA	12.2kbps RMC	23.16	23.09	23	24.5					
WGDIVIA	12.2kbps AMR	23.14	23.08	23	24.5					
	Subtest 1	22.19	22.17	22.14	23.5					
LICDDA	Subtest 2	22.68	22.48	22.49	23.5					
HSDPA	Subtest 3	21.96	21.74	21.75	22.8					
	Subtest 4	21.92	21.81	21.73	22.8					
	Subtest 1	21.98	21.96	21.87	22.5					
	Subtest 2	20.96	20.95	20.94	21.5					
HSUPA	Subtest 3	22.57	22.41	22.33	23					
	Subtest 4	21.09	21.04	22.12	21.5					
	Subtest 5	22.39	22.24	22.18	23					
	Subtest 1	22.29	22.22	22.17	23.5					
DC-HSDPA	Subtest 2	22.75	22.67	22.6	23.5					
DO-USDEA	Subtest 3	21.91	21.86	21.9	22.8					
	Subtest 4	22.15	21.97	21.94	22.8					

WCDMA Band V Receiver on	
Average Conducted Power(dBm)	Ī

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the illimits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 95 of 183

(Channel	4132	4182	4233	Tune up
WCDMA	12.2kbps RMC	20.71	20.6	20.52	22
WCDIVIA	12.2kbps AMR	20.64	20.58	20.5	22
	Subtest 1	19.69	19.67	19.64	21
HSDPA	Subtest 2	20.19	19.98	19.97	21
ПЭДРА	Subtest 3	19.47	19.24	19.23	20.3
	Subtest 4	19.43	19.31	19.21	20.3
	Subtest 1	19.49	19.43	19.35	20
	Subtest 2	18.47	18.42	18.42	19
HSUPA	Subtest 3	20.08	19.88	19.81	20.5
	Subtest 4	18.6	18.51	19.6	19
	Subtest 5	19.9	19.71	19.66	20.5
	Subtest 1	19.8	19.69	19.65	21
DC-HSDPA	Subtest 2	20.26	20.14	20.08	21
DO-HODEA	Subtest 3	19.42	19.33	19.4	20.3
	Subtest 4	19.66	19.44	19.44	20.3

	WCDMA Band V Hotspot on									
Average Conducted Power(dBm)										
(Channel	4132	4182	4233	Tune up					
WCDMA	12.2kbps RMC	20.63	20.57	20.48	22					
WCDIVIA	12.2kbps AMR	20.56	20.5	20.42	22					
	Subtest 1	19.61	19.59	19.56	21					
HSDPA	Subtest 2	20.11	19.9	19.89	21					
HODPA	Subtest 3	19.39	19.16	19.15	20.3					
	Subtest 4	19.35	19.23	19.13	20.3					
	Subtest 1	19.41	19.35	19.27	20					
	Subtest 2	18.39	18.34	18.34	19					
HSUPA	Subtest 3	20	19.8	19.73	20.5					
	Subtest 4	18.52	18.43	19.52	19					
	Subtest 5	19.82	19.63	19.58	20.5					
	Subtest 1	19.72	19.61	19.57	21					
DC-HSDPA	Subtest 2	20.18	20.06	20	21					
DO-UODEA	Subtest 3	19.34	19.25	19.32	20.3					
	Subtest 4	19.58	19.36	19.36	20.3					

Table 15: Conducted Power Of WCDMA

Note:

1) when the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.

Report No.:SZEM180100082701

Rev : 01

Page : 96 of 183

8.1.2.3 Conducted Power Of LTE

L	TE Band 2 full p	ower		Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel 18607	Channel 18900	Channel 19193	Tune up	
		1	0	21.3	21.56	21.7	23	
		1	2	21.39	21.56	21.72	23	
		1	5	21.33	21.46	21.57	23	
	QPSK	3	0	21.4	21.59	21.71	23	
		3	2	21.42	21.57	21.69	23	
		3	3	21.38	21.5	21.64	23	
1.4MHz		6	0	20.49	20.64	20.69	22	
1.4IVITZ		1	0	20.73	20.85	20.91	22	
		1	2	20.86	20.85	21	22	
		1	5	20.7	20.8	20.82	22	
	16QAM	3	0	20.47	20.69	20.78	22	
		3	2	20.6	20.58	20.73	22	
		3	3	20.5	20.57	20.75	22	
		6	0	20.46	20.58	20.65	22	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tungun	
Danuwiutii	iviodulation	nd size	nd oliset	18615	18900	19185	Tune up	
		1	0	20.77	21.26	21.52	23	
		1	7	21.05	21.36	21.61	23	
		1	14	20.8	21.01	21.22	23	
	QPSK	8	0	20.13	20.46	20.67	22	
		8	4	20.19	20.43	20.63	22	
		8	7	20.15	20.32	20.55	22	
3MHz		15	0	20.16	20.44	20.63	22	
SIVITIZ		1	0	20.22	20.67	20.92	22	
		1	7	20.59	20.81	20.86	22	
		1	14	20.31	20.37	20.52	22	
	16QAM	8	0	20.18	20.47	20.65	22	
		8	4	20.27	20.42	20.66	22	
		8	7	20.22	20.36	20.51	22	
		15	0	20.18	20.39	20.56	22	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up	
Danawiatii	Woddiation	TID SIZE	TID Oliset	18625	18900	19175	Turie up	
		1	0	21.41	21.83	22.16	23	
		1	13	21.65	21.88	22.1	23	
		1	24	21.65	21.73	21.89	23	
	QPSK	12	0	20.7	21.02	21.31	22	
5MHz		12	6	20.81	20.99	21.33	22	
		12	13	20.78	20.74	21.11	22	
		25	0	20.72	20.91	21.13	22	
	16QAM	1	0	20.92	21.27	21.59	22	
	TOGAIN	1	13	21.15	21.28	21.54	22	

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the ilimits of Client's instructions, if any. The Company's sole responsibility is to its Client and todes not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 97 of 183

		1 1	24	21.09	20.96	21.27	22
		12	0	20.72	21	21.34	22
		12	6	20.83	21.03	21.35	22
		12	13	20.81	20.76	21.08	22
		25	0	20.7	20.84	21.07	22
B 1 1 111	N4 1 1 1	DD :	DD " .	Channel	Channel	Channel	-
Bandwidth	Modulation	RB size	RB offset	18650	18900	19150	Tune up
		1	0	21.41	21.98	22.33	23
		1	25	22.14	22.13	22.49	23
		1	49	22.14	21.93	22.09	23
	QPSK	25	0	21.01	21.24	21.63	22
		25	13	21.25	21.2	21.54	22
		25	25	21.32	21.01	21.26	22
40001-		50	0	21.19	21.05	21.43	22
10MHz		1	0	20.99	21.39	21.77	22
		1	25	21.73	21.53	21.92	22
		1	49	21.65	21.37	21.48	22
	16QAM	25	0	21.06	21.18	21.56	22
		25	13	21.23	21.15	21.46	22
		25	25	21.24	20.96	21.2	22
		50	0	21.1	20.99	21.36	22
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tungun
Danuwiulii	iviodulation	ND SIZE		18675	18900	19125	Tune up
		1	0	21.56	22.21	22.35	23
		1	38	22.28	22.37	22.73	23
	QPSK	1	74	22.43	22.13	22.51	23
		36	0	21.01	21.29	21.71	22
		36	18	21.38	21.38	21.85	22
		36	39	21.51	21.33	21.81	22
15MHz		75	0	21.27	21.29	21.83	22
1311112		1	0	21.08	21.66	21.72	22
		1	38	21.67	21.75	22.09	22
		1	74	21.86	21.51	21.88	22
	16QAM	36	0	20.98	21.23	21.64	22
		36	18	21.35	21.34	21.76	22
		36	39	21.46	21.27	21.75	22
		75	0	21.25	21.23	21.75	22
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danamatii	Wodalation	115 0120	TID SHOOL	18700	18900	19100	·
		1	0	21.34	21.88	21.67	23
		1	50	22.43	21.94	22.43	23
		1	99	21.53	21.28	21.31	23
20MHz	QPSK	50	0	21.04	20.93	21.14	22
-V:#!! !£		50	25	21.44	20.89	21.53	22
		50	50	21.17	20.57	20.93	22
		100	0	21.08	20.79	21	22
	16QAM	1	0	20.54	21.18	21.05	22

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.spx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-Conditions-Terms-e-Document.spx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and tobs not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 98 of 183

1	50	21.66	21.33	21.81	22
1	99	20.82	20.52	20.62	22
50	0	20.96	20.84	21.05	22
50	25	21.37	20.81	21.44	22
50	50	21.08	20.5	20.85	22
100	0	20.99	20.71	20.89	22

	LTE Band 2 Receiver on					Conducted Power(dBm)			
Dan dani dila	NA - d. latta -	DD .: .	DD - (()	Channel	Channel	Channel	-		
Bandwidth	Modulation	RB size	RB offset	18607	18900	19193	Tune up		
		1	0	16.06	16.2	16.44	18		
		1	2	16.21	16.36	16.53	18		
		1	5	16.13	16.15	16.3	18		
	QPSK	3	0	16.19	16.31	16.53	18		
		3	2	16.26	16.31	16.54	18		
		3	3	16.2	16.26	16.49	18		
1 4844-		6	0	16.19	16.35	16.5	18		
1.4MHz		1	0	16.47	16.66	16.82	18		
		1	2	16.61	16.76	16.8	18		
		1	5	16.4	16.49	16.66	18		
	16QAM	3	0	16.27	16.46	16.57	18		
		3	2	16.32	16.51	16.59	18		
		3	3	16.24	16.44	16.54	18		
		6	0	16.19	16.32	16.51	18		
Dan duvi dth	Madulation	DD a:	DD offeet	Channel	Channel	Channel	T		
Bandwidth	Modulation	RB size	RB offset	18615	18900	19185	Tune up		
		1	0	15.64	16.03	16.27	18		
		1	7	16.2	16.32	16.59	18		
	QPSK	1	14	15.77	15.81	16.06	18		
		8	0	16.05	16.25	16.53	18		
		8	4	16.14	16.27	16.54	18		
		8	7	16.06	16.14	16.39	18		
ONALI-		15	0	16.05	16.19	16.46	18		
3MHz		1	0	16.19	16.42	16.62	18		
		1	7	16.63	16.73	16.92	18		
		1	14	16.15	16.19	16.4	18		
	16QAM	8	0	16.13	16.33	16.57	18		
		8	4	16.19	16.39	16.5	18		
		8	7	16.13	16.2	16.43	18		
		15	0	16.07	16.21	16.47	18		
Bandwidth	Modulation	DR oizo	RB offset	Channel	Channel	Channel	Tungun		
Danuwiulii	Modulation	RB size	nd oliset	18625	18900	19175	Tune up		
		1	0	16.37	16.73	17.03	18		
5MHz	QPSK	1	13	16.72	16.84	17.08	18		
	· 	1	24	16.72	16.53	16.79	18		

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-ConditionsTerms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of clients interventions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 99 of 183

1	ı	1	•	1	1	1	ı
		12	0	16.62	16.83	17.13	18
		12	6	16.77	16.9	17.17	18
		12	13	16.74	16.58	16.88	18
		25	0	16.67	16.73	16.89	18
		1	0	16.89	17.14	17.37	18
		1	13	17.16	17.15	17.42	18
		1	24	17.08	16.86	17.21	18
	16QAM	12	0	16.69	16.91	17.14	18
		12	6	16.84	16.89	17.21	18
		12	13	16.77	16.65	16.9	18
		25	0	16.68	16.68	16.89	18
5			DD " .	Channel	Channel	Channel	_
Bandwidth	Modulation	RB size	RB offset	18650	18900	19150	Tune up
		1	0	16.26	16.61	16.96	18
		1	25	17.14	16.95	17.28	18
		1	49	17.04	16.59	16.91	18
	QPSK	25	0	16.75	16.84	17.29	18
		25	13	17.07	16.89	17.18	18
		25	25	17.08	16.7	16.87	18
		50	0	16.92	16.79	17.13	18
10MHz		1	0	16.73	17.09	17.42	18
		1	25	17.52	17.41	17.62	18
		1	49	17.38	16.97	17.23	18
	16QAM	25	0	16.8	16.84	17.26	18
	100/11/1	25	13	17.07	16.83	17.15	18
	ļ	25	25	17.09	16.72	16.86	18
		50	0	16.92	16.72	17.05	18
		30	-	Channel	Channel	Channel	10
Bandwidth	Modulation	RB size	RB offset	18675	18900	19125	Tune up
		1	0	16.39	16.84	17.07	18
		1	38	17.41	17.04	17.07	18
		1	74	17.41	16.58	16.75	18
	QPSK	36	0	16.95	16.56	17.39	18
	QFSK	36	18	17.39	16.97	17.39	18
		36	39	17.39	16.97	17.40	18
		75	0	17.27	16.86	17.01	18
15MHz		1	0	16.8	17.35	17.2	18
		-	Ÿ				
		1	38 74	17.79	17.46	17.84	18
	10000	1		17.43	16.92	17.07	18
	16QAM	36	0	16.95	16.9	17.38	18
		36	18	17.4	16.97	17.38	18
		36	39	17.21	16.63	16.99	18
		75	0	17.18	16.8	17.17	18
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
				18700	18900	19100	•
20MHz	QPSK	1	0	15.86	16.35	16.17	18
	-, -, -	1	50	17.33	16.76	17.15	18

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-ConditionsTerms-e-Document.aspx. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of clients instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 100 of 183

		1	99	16.1	15.84	15.87	18
		50	0	16.65	16.46	16.72	18
		50	25	17.13	16.55	17.12	18
		50	50	16.82	16.22	16.47	18
		100	0	16.71	16.41	16.62	18
		1	0	16.15	16.78	16.54	18
		1	50	17.58	17.19	17.48	18
		1	99	16.35	16.21	16.18	18
	16QAM	50	0	16.61	16.47	16.74	18
		50	25	17.1	16.51	17.13	18
		50	50	16.79	16.16	16.46	18
		100	0	16.66	16.36	16.62	18

LT	E Band 2 Hotspot	ton		Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel 18607	Channel 18900	Channel 19193	Tune up	
		1	0	16.54	16.75	16.87	18	
		1	2	16.66	16.82	16.92	18	
		1	5	16.51	16.65	16.69	18	
	QPSK	3	0	16.61	16.81	16.86	18	
		3	2	16.65	16.79	16.87	18	
		3	3	16.61	16.68	16.82	18	
1.4MHz		6	0	16.61	16.71	16.84	18	
1.4WITZ		1	0	16.9	17.02	17.09	18	
		1	2	16.88	17.14	17.14	18	
	16QAM	1	5	16.8	16.95	16.93	18	
		3	0	16.7	16.86	16.92	18	
		3	2	16.76	16.8	16.91	18	
		3	3	16.68	16.76	16.84	18	
		6	0	16.59	16.71	16.81	18	
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tungun	
Danuwidin	Modulation	size	offset	18615	18900	19185	Tune up	
		1	0	16.47	16.66	16.73	18	
		1	7	16.88	16.87	17	18	
		1	14	16.46	16.35	16.47	18	
	QPSK	8	0	16.68	16.76	16.85	18	
		8	4	16.75	16.77	16.9	18	
		8	7	16.63	16.65	16.75	18	
3MHz		15	0	16.63	16.71	16.83	18	
		1	0	16.75	16.85	17	18	
		1	7	17.06	17.12	17.26	18	
	16QAM	1	14	16.63	16.53	16.78	18	
	ΙΟΩΛΙΝΙ	8	0	16.59	16.77	16.8	18	
		8	4	16.73	16.72	16.88	18	
		8	7	16.6	16.63	16.71	18	

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the ilimits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 101 of 183

		15	0	16.54	16.59	16.77	18
Dondwidth	Modulation	RB	RB	Channel	Channel	Channel	Tungun
Bandwidth	Modulation	size	offset	18625	18900	19175	Tune up
		1	0	17.16	17.3	17.45	18
		1	13	17.5	17.31	17.4	18
		1	24	17.32	17.06	17.12	18
	QPSK	12	0	17.29	17.34	17.42	18
		12	6	17.36	17.32	17.45	18
		12	13	17.27	17.02	17.15	18
5MHz		25	0	17.22	17.18	17.18	18
SIVITIZ		1	0	17.39	17.59	17.82	18
		1	13	17.69	17.63	17.67	18
		1	24	17.5	17.27	17.42	18
	16QAM	12	0	17.18	17.3	17.4	18
		12	6	17.32	17.24	17.41	18
		12	13	17.23	17.01	17.14	18
		25	0	17.14	17.08	17.11	18
Domaliusi altib	Madulatian	RB	RB	Channel	Channel	Channel	т
Bandwidth	Modulation	size	offset	18650	18900	19150	Tune up
		1	0	16.95	17.23	17.43	18
		1	25	17.78	17.45	17.63	18
		1	49	17.59	17.07	17.15	18
	QPSK	25	0	17.32	17.37	17.58	18
		25	13	17.57	17.33	17.47	18
		25	25	17.58	17.13	17.16	18
408811-		50	0	17.45	17.18	17.37	18
10MHz		1	0	17.19	17.54	17.67	18
		1	25	17.99	17.64	17.89	18
		1	49	17.76	17.33	17.33	18
	16QAM	25	0	17.26	17.28	17.51	18
		25	13	17.51	17.22	17.41	18
		25	25	17.54	17.07	17.09	18
		50	0	17.39	17.14	17.3	18
Day doct to	Madelan	RB	RB	Channel	Channel	Channel	
Bandwidth	Modulation	size	offset	18675	18900	19125	Tune up
		1	0	17	17.44	17.46	18
		1	38	17.91	17.51	17.81	18
		1	74	17.55	17.03	17.04	18
	QPSK	36	0	17.52	17.43	17.69	18
		36	18	17.87	17.47	17.74	18
40000		36	39	17.68	17.11	17.27	18
15MHz		75	0	17.54	17.3	17.49	18
		1	0	17.21	17.74	17.67	18
		1	38	18.21	17.83	18.08	18
	16QAM	1	74	17.62	17.34	17.31	18
		36	0	17.43	17.36	17.63	18
		36	18	17.76	17.36	17.67	18
	company subject to its General C						

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and todes not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 102 of 183

		36	39	17.64	17	17.2	18
		75	0	17.48	17.19	17.4	18
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Danuwiutii	Modulation	size	offset	18700	18900	19100	Tune up
		1	0	16.34	16.78	16.64	18
		1	50	17.66	17.13	17.53	18
		1	99	16.46	16.16	16.21	18
	QPSK	50	0	17.12	16.91	17.15	18
		50	25	17.56	16.9	17.44	18
		50	50	17.2	16.54	16.79	18
20MHz		100	0	17.09	16.76	16.96	18
ZUIVITIZ		1	0	16.57	17.08	16.93	18
		1	50	17.92	17.4	17.86	18
		1	99	16.78	16.46	16.46	18
	16QAM	50	0	16.99	16.86	17.05	18
		50	25	17.47	16.86	17.3	18
		50	50	17.17	16.51	16.67	18
		100	0	17.06	16.73	16.9	18

Ľ	TE Band 4 full p	ower			Conducted I	Power(dBm)	
Dondwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tungun
Bandwidth	Modulation	ND SIZE	RD Ollset	19957	20175	20393	Tune up
		1	0	21.73	22.37	21.82	23.5
		1	2	21.8	22.39	21.72	23.5
		1	5	21.66	22.23	21.56	23.5
	QPSK	3	0	21.84	22.35	21.77	23.5
		3	2	21.81	22.31	21.9	23.5
		3	3	21.82	22.34	21.8	23.5
1.4MHz		6	0	20.94	21.38	20.85	22.5
1.4ΝΙΠΖ		1	0	21.15	21.58	21.16	22.5
		1	2	21.16	21.58	21.09	22.5
		1	5	21.04	21.58	21.01	22.5
	16QAM	3	0	20.99	21.46	20.96	22.5
		3	2	20.98	21.35	20.92	22.5
		3	3	20.91	21.38	20.88	22.5
		6	0	20.89	21.33	20.89	21.5
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tupo up
Danawiath	iviodulation	nd Size	nd oliset	19965	20175	20385	Tune up
		1	0	21.56	22.1	21.79	23.5
		1	7	21.76	22.35	21.87	23.5
		1	14	21.6	21.99	21.45	23.5
3MHz	QPSK	8	0	20.81	21.38	20.93	22.5
		8	4	20.93	21.39	20.92	22.5
		8	7	20.92	21.24	20.76	22.5
		15	0	20.9	21.33	20.92	22.5

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-ConditionsTerms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of clients interventions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 103 of 183

		l 1	0	21.08	21.5	21.13	22.5
		1	7	21.27	21.58	21.16	22.5
		1	14	21.09	21.31	20.89	22.5
	16QAM	8	0	20.86	21.34	20.88	21.5
		8	4	20.92	21.35	20.92	21.5
		8	7	21	21.14	20.75	21.5
		15	0	20.87	21.21	20.85	21.5
5		DD :	DD (()	Channel	Channel	Channel	
Bandwidth	Modulation	RB size	RB offset	19975	20175	20375	Tune up
		1	0	21.68	22.24	22	23.5
		1	13	21.91	22.38	21.98	23.5
		1	24	21.91	22.2	21.72	23.5
	QPSK	12	0	20.93	21.44	21.1	22.5
		12	6	21.15	21.49	21.08	22.5
		12	13	20.99	21.2	20.81	22.5
5MHz		25	0	20.91	21.31	21.01	22.5
SIVITZ		1	0	21.17	21.58	21.35	22.5
	16QAM	1	13	21.45	21.65	21.28	22.5
		1	24	21.28	21.41	21.01	22.5
		12	0	20.98	21.36	21.08	21.5
		12	6	21.15	21.43	21.04	21.5
		12	13	20.98	21.13	20.78	21.5
		25	0	20.93	21.22	20.9	21.5
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danawiatii	Modulation	ND SIZE	no onset	20000	20175	20350	Turie up
		1	0	21.53	22.13	22.06	23.5
	QPSK	1	25	22.09	22.45	22.11	23.5
		1	49	22.05	22.19	21.86	23.5
		25	0	21.05	21.49	21.21	22.5
		25	13	21.21	21.37	21.18	22.5
		25	25	21.04	21.24	20.98	22.5
10MHz		50	0	21.13	21.3	21.17	22.5
TOWNIZ		1	0	21.02	21.57	21.38	22.5
		1	25	21.68	21.71	21.5	22.5
		1	49	21.53	21.67	21.21	22.5
	16QAM	25	0	21.01	21.41	21.15	21.5
		25	13	21.2	21.28	21.12	21.5
		25	25	21.03	21.13	20.92	21.5
		50	0	21.13	21.19	21.12	21.5
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danamani	Wioddiation	1 12 0120		20025	20175	20325	
		1	0	21.84	22.51	22.48	23.5
		1	38	22.07	22.36	22.39	23.5
15MHz	QPSK	1	74	22.15	22.31	22.12	23.5
10141112	Qi Oit	36	0	21.14	21.49	21.37	22.5
		36	18	21.15	21.56	21.44	22.5
				21.18		21.3	

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.spx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-Conditions-Terms-and-C

Report No.:SZEM180100082701

Rev : 01

Page : 104 of 183

I	1	ı	i _ 1	1	1	1	1
		75	0	21.23	21.47	21.33	22.5
		1	0	21.36	21.85	21.77	22.5
		1	38	21.59	21.77	21.68	22.5
		1	74	21.49	21.61	21.45	22.5
	16QAM	36	0	21.13	21.38	21.36	21.5
		36	18	21.23	21.45	21.39	21.5
		36	39	21.16	21.31	21.26	21.5
		75	0	21.19	21.36	21.29	21.5
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tupo up
Danawiath	iviodulation	nd Size	nd oliset	20050	20175	20300	Tune up
	QPSK	1	0	22.36	22.65	22.5	23.5
		1	50	22.09	22.6	22.43	23.5
		1	99	22.24	22.14	21.8	23.5
		50	0	21.39	21.59	21.62	22.5
		50	25	21.4	21.57	21.54	22.5
		50	50	21.38	21.59	21.3	22.5
20MHz		100	0	21.37	21.55	21.5	22.5
ZUIVITZ		1	0	21.42	22.01	21.93	22.5
		1	50	21.75	21.73	21.91	22.5
		1	99	21.61	21.44	20.98	22.5
	16QAM	50	0	21.34	21.47	21.46	21.5
		50	25	21.34	21.48	21.43	21.5
		50	50	21.27	21.49	21.21	21.5
		100	0	21.26	21.45	21.42	21.5

Ľ	TE Band 4 Recei	ver on		Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tungun	
Danuwiutii	Modulation	ND SIZE	nd oliset	19957	20175	20393	Tune up	
		1	0	18.39	19.22	18.69	20.5	
		1	2	18.48	19.24	18.67	20.5	
		1	5	18.39	19.1	18.57	20.5	
	QPSK	3	0	18.53	19.21	18.75	20.5	
		3	2	18.58	19.23	18.79	20.5	
		3	3	18.53	19.23	18.76	20.5	
1.4MHz		6	0	18.57	19.2	18.82	20.5	
1.4111112		1	0	18.84	19.51	18.96	20.5	
		1	2	18.83	19.42	19.08	20.5	
		1	5	18.71	19.37	19.02	20.5	
	16QAM	3	0	18.73	19.29	18.93	20.5	
		3	2	18.72	19.24	18.9	20.5	
		3	3	18.6	19.28	18.82	20.5	
		6	0	18.57	19.23	18.82	20.5	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up	
Balluwiutii	Modulation	TID SIZE	TID UIISEL	19965	20175	20385		
3MHz	QPSK	1	0	18.29	18.96	18.67	20.5	

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 105 of 183

		1 1	7	18.65	19.26	18.84	20.5
		1	14	18.37	18.91	18.46	20.5
		8	0	18.54	19.16	18.83	20.5
		8	4	18.63	19.18	18.86	20.5
		8	7	18.6	19.1	18.69	20.5
		15	0	18.63	19.17	18.85	20.5
		1	0	18.77	19.35	19.07	20.5
		1	7	19.06	19.63	19.12	20.5
		1	14	18.77	19.17	18.82	20.5
	16QAM	8	0	18.61	19.15	18.91	20.5
		8	4	18.67	19.21	18.92	20.5
		8	7	18.65	19.1	18.76	20.5
		15	0	18.65	19.16	18.84	20.5
Donalis dala	Madulatian	DD -:	DD -#+	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	19975	20175	20375	Tune up
		1	0	18.47	19.1	18.85	20.5
		1	13	18.74	19.35	18.89	20.5
	QPSK	1	24	18.68	19.07	18.71	20.5
		12	0	18.68	19.23	18.93	20.5
		12	6	18.83	19.31	18.99	20.5
		12	13	18.7	19.09	18.75	20.5
5MHz		25	0	18.65	19.12	18.88	20.5
		1	0	18.93	19.54	19.33	20.5
		1	13	19.15	19.71	19.35	20.5
		1	24	19.03	19.42	19	20.5
	16QAM	12	0	18.75	19.25	18.96	20.5
		12	6	18.86	19.32	19.08	20.5
		12	13	18.74	19.07	18.8	20.5
		25	0	18.67	19.11	18.92	20.5
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tuno un
Danawiatii	Modulation	ND SIZE	ND Ollset	20000	20175	20350	Tune up
		1	0	18.22	18.94	18.79	20.5
		1	25	18.8	19.37	19.05	20.5
		1	49	18.7	18.94	18.72	20.5
	QPSK	25	0	18.62	19.28	18.95	20.5
		25	13	18.77	19.19	18.96	20.5
		25	25	18.69	19.06	18.83	20.5
10MHz		50	0	18.73	19.1	18.98	20.5
I OIVII IZ		1	0	18.75	19.39	19.16	20.5
		1	25	19.25	19.62	19.41	20.5
		1	49	19.08	19.15	19.15	20.5
	16QAM	25	0	18.64	19.18	18.96	20.5
		25	13	18.84	19.16	18.95	20.5
		25	25	18.72	19.05	18.81	20.5
		50	0	18.75	19.07	18.95	20.5
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danawiatii	Iviodulation	110 3126	TID OHSEL	20025	20175	20325	Turie up

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and those not excorate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 106 of 183

Ī	1			l .a.==	1 40.05	10.10	
		1	0	18.55	19.25	19.12	20.5
		1	38	18.86	19.35	19.08	20.5
		1	74	18.99	19.08	18.77	20.5
	QPSK	36	0	18.79	19.31	19.13	20.5
		36	18	18.92	19.33	19.05	20.5
		36	39	19	19.2	18.88	20.5
15MHz		75	0	18.9	19.21	19.06	20.5
1 JIVII 12		1	0	19.07	19.63	19.59	20.5
		1	38	19.24	19.73	19.41	20.5
	16QAM	1	74	19.45	19.29	19.1	20.5
		36	0	18.85	19.27	19.08	20.5
		36	18	18.88	19.24	19.05	20.5
		36	39	18.95	19.13	18.87	20.5
		75	0	18.85	19.17	18.99	20.5
Donalusialth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Bandwidth		nd Size	ND UIISEL	20050	20175	20300	Turie up
		1	0	18.77	19.3	19.31	20.5
		1	50	19.08	19.45	19.25	20.5
		1	99	19.05	18.94	18.71	20.5
	QPSK	50	0	18.9	19.34	19.34	20.5
		50	25	19.07	19.37	19.23	20.5
		50	50	19.04	19.34	19.05	20.5
000411-		100	0	19	19.37	19.22	20.5
20MHz		1	0	19.22	19.66	19.74	20.5
		1	50	19.55	19.84	19.63	20.5
		1	99	19.47	19.29	19.09	20.5
	16QAM	50	0	18.9	19.33	19.29	20.5
		50	25	19.09	19.4	19.17	20.5
		50	50	19.06	19.31	19.03	20.5
		100	0	19.02	19.34	19.18	20.5

LT	LTE Band 4 Hotspot on				Conducted Power(dBm)				
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up		
Danawiath	Modulation	size	offset	19957	20175	20393	Tune up		
		1	0	18.76	19.42	18.93	20.5		
		1	2	18.85	19.44	18.9	20.5		
	QPSK	1	5	18.72	19.3	18.72	20.5		
		3	0	18.86	19.44	18.91	20.5		
		3	2	18.84	19.4	18.98	20.5		
1.4MHz		3	3	18.78	19.4	18.89	20.5		
		6	0	18.86	19.38	18.95	20.5		
		1	0	19.15	19.69	19.05	20.5		
	16QAM	1	2	19.14	19.74	19.14	20.5		
	IOQAW	1	5	18.99	19.59	19	20.5		
		3	0	18.91	19.5	18.96	20.5		

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-ConditionsTerms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of clients interventions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 107 of 183

		3	2	18.89	19.42	18.97	20.5
		3	3	18.87	19.44	18.93	20.5
		6	0	18.81	19.38	18.91	20.5
Dan dani dala	Maral Jalia	RB	RB	Channel	Channel	Channel	т
Bandwidth	Modulation	size	offset	19965	20175	20385	Tune up
		1	0	18.65	19.34	18.84	20.5
		1	7	18.94	19.51	18.98	20.5
		1	14	18.71	19.13	18.63	20.5
	QPSK	8	0	18.82	19.42	18.97	20.5
		8	4	18.89	19.41	18.98	20.5
		8	7	18.9	19.33	18.8	20.5
3MHz		15	0	18.85	19.37	18.94	20.5
SIVITIZ		1	0	18.94	19.53	19.11	20.5
		1	7	19.21	19.81	19.17	20.5
		1	14	19.04	19.38	18.8	20.5
	16QAM	8	0	18.88	19.41	18.94	20.5
		8	4	18.89	19.37	18.91	20.5
		8	7	18.96	19.29	18.76	20.5
		15	0	18.81	19.28	18.86	20.5
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Bullawiatii	Wioddiation	size	offset	19975	20175	20375	· ·
		1	0	18.81	19.39	19.1	20.5
		1	13	19.1	19.58	19.05	20.5
		1	24	18.93	19.28	18.79	20.5
	QPSK	12	0	18.93	19.47	19.09	20.5
		12	6	19.11	19.53	19.13	20.5
		12	13	18.96	19.3	18.87	20.5
5MHz		25	0	18.87	19.35	19.02	20.5
OIIII IZ		1	0	19.1	19.69	19.39	20.5
		1	13	19.45	19.81	19.29	20.5
		1	24	19.32	19.52	18.97	20.5
	16QAM	12	0	18.93	19.41	19.08	20.5
		12	6	19.12	19.48	19.07	20.5
		12	13	18.98	19.27	18.81	20.5
		25	0	18.85	19.28	18.97	20.5
Bandwidth	Modulation	RB	RB -#t	Channel	Channel	Channel	Tune up
		size	offset	20000	20175	20350	·
		1	0	18.58	19.28	19.06	20.5
		1	25	19.21	19.56	19.21	20.5
	OPOL	1	49	19.07	19.24	18.85	20.5
	QPSK	25	0	18.89	19.46	19.18	20.5
10MHz		25	13	19.13	19.4	19.16	20.5
		25	25	19.03	19.27	18.98	20.5
		50	0	19.03	19.33	19.16	20.5
	4004**	1	0	18.95	19.49	19.33	20.5
	16QAM	1	25	19.54	19.8	19.53	20.5
		1	49	19.33	19.49	19.1	20.5

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sepx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.sepx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and todes not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 108 of 183

		25	0	18.91	19.37	19.1	20.5
		25	13	19.09	19.33	19.07	20.5
		25	25	18.97	19.19	18.91	20.5
		50	0	19	19.25	19.08	20.5
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Danuwiutii	Modulation	size	offset	20025	20175	20325	Turie up
		1	0	18.91	19.63	19.46	20.5
		1	38	19.18	19.56	19.25	20.5
		1	74	19.34	19.27	18.87	20.5
	QPSK	36	0	19.1	19.52	19.31	20.5
		36	18	19.2	19.51	19.26	20.5
		36	39	19.26	19.38	19.04	20.5
15MU-	15MHz	75	0	19.18	19.4	19.2	20.5
IOWITZ		1	0	19.21	19.83	19.72	20.5
		1	38	19.37	19.88	19.53	20.5
		1	74	19.57	19.49	19.11	20.5
	16QAM	36	0	19.08	19.44	19.22	20.5
		36	18	19.17	19.43	19.2	20.5
		36	39	19.22	19.31	18.97	20.5
		75	0	19.14	19.31	19.15	20.5
Bandwidth	Maakalatiaa	RB	RB	Channel	Channel	Channel	Tune up
Danawiatii	Modulation	size	offset	20050	20175	20300	
		1	0	19.07	19.65	19.54	20.5
		1	50	19.42	19.69	19.59	20.5
		1	99	19.27	19.21	18.83	20.5
	QPSK	50	0	19.18	19.59	19.52	20.5
		50	25	19.33	19.57	19.43	20.5
		50	50	19.32	19.45	19.22	20.5
20MHz		100	0	19.25	19.54	19.39	20.5
ZUIVITZ		1	0	19.32	19.78	19.8	20.5
		1	50	19.53	20	19.81	20.5
		1	99	19.66	19.4	19.06	20.5
	16QAM	50	0	19.21	19.57	19.45	20.5
		50	25	19.3	19.48	19.34	20.5
		50	50	19.27	19.37	19.15	20.5
		100	0	19.19	19.46	19.32	20.5

L	LTE Band 5 full power					Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tungun			
	Modulation	ND SIZE	ND Ollset	20407	20525	20643	Tune up			
	QPSK	1	0	21.98	22.21	22.12	23.5			
		1	2	22.19	22.4	22.17	23.5			
1.4MHz		1	5	22.15	22.26	22.12	23.5			
		3	0	22.1	22.36	22.19	23.5			
		3	2	22.19	22.4	22.25	23.5			

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sg.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sg.com/en/Terms-and-ConditionsTerms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of clients interventions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 109 of 183

16QAM	3 6 1 1	3 0 0 2 5	22.18 21.24 21.26 21.34	22.34 21.38 21.55 21.69	22.24 21.39 21.52 21.58	23.5 22.5 22.5 22.5
16QAM	1	2	21.26 21.34	21.55 21.69	21.52	22.5
16OAM		2	21.34	21.69		
16QAM	1					
16OAM	_ ·	J	21.31	21.4	21.51	22.5
	3	0	21.12	21.36	21.35	22.5
	3	2	21.21	21.47	21.41	22.5
						22.5
						22.5
Modulation	RB size	RB offset				Tune up
	1	0				23.5
		7				23.5
		14				23.5
QPSK						22.5
						22.5
	8	7	21.07	21.26	21.13	22.5
						22.5
						22.5
						22.5
16QAM						22.5
						22.5
						22.5
						22.5
		0		21.2		22.5
		55 "		Channel		
Modulation	RB size	RB offset				Tune up
	1	0	22.1	22.37	22.34	23.5
	1	13	22.28	22.43	22.3	23.5
	1	24	22.21	22.35	22.18	23.5
QPSK	12	0	21.17	21.36	21.3	22.5
	12	6	21.34	21.5	21.33	22.5
	12	13	21.19	21.28	21.22	22.5
	25	0	21.21	21.41	21.41	22.5
	1	0	21.5	21.73	21.67	22.5
	1	13	21.57	21.69	21.55	22.5
	1	24	21.38	21.76	21.47	22.5
16QAM	12	0	21.09	21.31	21.21	22.5
	12	6	21.21	21.41	21.24	22.5
	12	13	21.1	21.24	21.14	22.5
	25	0	21.1	21.3	21.32	22.5
	RB size	DD affect	Channel	Channel	Channel	
\	L RR CIZO	RB offset			20600	Tune up
Modulation	110 3126	TID OHOO!	20450	20525	20000	
Modulation	1	0	20450	22.66	22.9	23.5
						23.5 23.5
Modulation QPSK	1	0	22.6	22.66	22.9	
		1	Company	Modulation RB size RB offset Channel 20415 1 0 21.71 1 7 22.28 1 14 21.79 QPSK 8 0 21.06 8 4 21.17 8 7 21.07 15 0 21.04 1 7 21.54 1 14 20.98 1 1 0 21.04 1 7 21.54 1 14 20.98 1 1 0 20.97 8 4 21.08 8 7 20.98 1 15 0 20.95 Modulation RB size RB offset Channel 20425 1 1 0 22.1 1 13 22.28 1 24 22.21 QPSK 12 0 21.17 12 6 21.34 12 13 21.19 25 0 21.21 1 0 21.5 1 1 13 21.57 1 1 24 21.38 1 1 24 21.38 1 1 24 21.38 1 1 24 21.38 1 1 24 21.38 1 1 24 21.38 1 1 24 21.38 1 1 24 21.38 1 1 24 21.38 1 1 24 21.38 1 1 24 21.38 1 1 24 21.38 1 1 24 21.38 1 1 24 21.38 1 1 2 13 21.19	Modulation RB size RB offset Channel 20415 Channel 20525 1 0 21.71 22.05 1 7 22.28 22.41 1 14 21.79 22.01 1 14 21.79 22.01 1 14 21.79 22.01 2 8 4 21.17 21.33 8 7 21.06 21.28 15 0 21.06 21.27 1 0 21.04 21.36 1 7 21.54 21.68 1 14 20.98 21.28 1 14 20.98 21.28 8 4 21.08 21.28 8 7 20.98 21.24 15 0 20.95 21.2 Modulation RB size RB offset Channel Channel QPSK 1 0 22.1 22.37 1 1 <t< td=""><td>Modulation RB size RB offset Channel Channel Channel Amodulation RB size RB offset Channel Channel Channel Amodulation 1 0 21.71 22.05 21.88 1 7 22.28 22.41 22.2 1 14 21.79 22.01 21.87 2 1 14 21.79 22.01 21.87 8 0 21.06 21.28 21.11 8 7 21.07 21.26 21.13 15 0 21.06 21.27 21.21 1 1 0 21.04 21.36 21.08 1 1 1 20.98 21.28 21.19 16QAM 8 0 20.97 21.26 21.08 16QAM 8 4 21.08 21.22 21.17 16QAM 1 0 20.95 21.2 21.17 1</td></t<>	Modulation RB size RB offset Channel Channel Channel Amodulation RB size RB offset Channel Channel Channel Amodulation 1 0 21.71 22.05 21.88 1 7 22.28 22.41 22.2 1 14 21.79 22.01 21.87 2 1 14 21.79 22.01 21.87 8 0 21.06 21.28 21.11 8 7 21.07 21.26 21.13 15 0 21.06 21.27 21.21 1 1 0 21.04 21.36 21.08 1 1 1 20.98 21.28 21.19 16QAM 8 0 20.97 21.26 21.08 16QAM 8 4 21.08 21.22 21.17 16QAM 1 0 20.95 21.2 21.17 1

Report No.:SZEM180100082701

Rev : 01

Page : 110 of 183

1	İ	0.5	10	04.00	04.00	04.05	00.5
		25	13	21.83	21.98	21.85	22.5
		25	25	21.7	21.65	21.69	22.5
		50	0	21.67	21.73	21.76	22.5
		1	0	21.68	21.92	22.14	22.5
		1	25	22.04	22.08	22.11	22.5
		1	49	21.85	21.85	21.83	22.5
	16QAM	25	0	21.55	21.62	21.67	22.5
		25	13	21.64	21.85	21.74	22.5
		25	25	21.5	21.58	21.58	22.5
		50	0	21.54	21.65	21.61	22.5

Ľ	TE Band 5 Rece	iver on			Conducted F	Power(dBm)	
Dan desidab	Madulatian	DD sins	DD -#+	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	20407	20525	20643	Tune up
		1	0	19.7	20.21	20.2	21.5
		1	2	19.89	20.29	20.29	21.5
		1	5	19.83	20.11	20.15	21.5
	QPSK	3	0	19.8	20.27	20.21	21.5
	4MHz 16QAM	3	2	19.87	20.32	20.29	21.5
		3	3	19.86	20.25	20.25	21.5
1 /MU-		6	0	19.83	20.28	20.25	21.5
1.4111112		1	0	20.01	20.55	20.5	21.5
		1	2	20.19	20.62	20.57	21.5
		1	5	20.05	20.42	20.37	21.5
		3	0	19.83	20.31	20.31	21.5
		3	2	19.93	20.39	20.33	21.5
		3	3	19.92	20.28	20.28	21.5
		6	0	19.83	20.28	20.29	21.5
Bandwidth	Modulation	DB cizo	RB offset	Channel	Channel	Channel	Tune up
Danawiatii	Modulation	RB size	ND Ollset	20415	20525	20635	rune up
		1	0	19.46	19.94	19.89	21.5
		1	7	20.02	20.37	20.32	21.5
		1	14	19.61	19.87	19.86	21.5
	QPSK	8	0	19.84	20.22	20.09	21.5
		8	4	19.96	20.26	20.25	21.5
		8	7	19.87	20.18	20.12	21.5
3MHz		15	0	19.86	20.19	20.19	21.5
SIVITZ		1	0	19.87	20.29	20.06	21.5
		1	7	20.27	20.57	20.6	21.5
		1	14	19.91	20.14	20.2	21.5
	16QAM	8	0	19.81	20.19	20.09	21.5
		8	4	19.89	20.28	20.24	21.5
		8	7	19.79	20.16	20.07	21.5
		15	0	19.76	20.13	20.08	21.5
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up

Report No.:SZEM180100082701

Rev : 01

Page : 111 of 183

				20425	20525	20625	
		1	0	19.93	20.4	20.37	21.5
		1	13	20.11	20.37	20.31	21.5
		1	24	20.04	20.25	20.26	21.5
	QPSK	12	0	19.92	20.32	20.26	21.5
		12	6	20.09	20.45	20.33	21.5
		12	13	19.94	20.22	20.15	21.5
5MHz		25	0	19.95	20.35	20.32	21.5
ЭІИПZ		1	0	20.23	20.67	20.61	21.5
		1	13	20.37	20.63	20.56	21.5
		1	24	20.29	20.62	20.51	21.5
	16QAM	12	0	19.92	20.27	20.25	21.5
		12	6	20.07	20.42	20.3	21.5
		12	13	19.93	20.2	20.14	21.5
		25	0	19.9	20.28	20.28	21.5
	Madulatian	RR size					
Randwidth	Modulation	BB cizo	RR offcot	Channel	Channel	Channel	Tungun
Bandwidth	Modulation	RB size	RB offset	Channel 20450	Channel 20525	Channel 20600	Tune up
Bandwidth	Modulation	RB size	RB offset				Tune up 21.5
Bandwidth	Modulation			20450	20525	20600	·
Bandwidth		1	0	20450 20.02	20525 20.51	20600 20.61	21.5 21.5 21.5
Bandwidth	Modulation QPSK	1	0 25	20450 20.02 20.57	20525 20.51 20.75	20600 20.61 20.74	21.5 21.5
Bandwidth		1 1 1	0 25 49	20450 20.02 20.57 20.43	20525 20.51 20.75 20.45	20600 20.61 20.74 20.44	21.5 21.5 21.5
Bandwidth		1 1 1 25	0 25 49	20450 20.02 20.57 20.43 20.22	20525 20.51 20.75 20.45 20.4	20600 20.61 20.74 20.44 20.41	21.5 21.5 21.5 21.5
		1 1 1 25 25	0 25 49 0 13 25	20450 20.02 20.57 20.43 20.22 20.39	20525 20.51 20.75 20.45 20.4 20.64	20600 20.61 20.74 20.44 20.41 20.56	21.5 21.5 21.5 21.5 21.5
Bandwidth 10MHz		1 1 1 25 25 25	0 25 49 0 13 25	20450 20.02 20.57 20.43 20.22 20.39 20.31	20525 20.51 20.75 20.45 20.4 20.64 20.34	20600 20.61 20.74 20.44 20.41 20.56 20.49	21.5 21.5 21.5 21.5 21.5 21.5 21.5
		1 1 1 25 25 25 25 50	0 25 49 0 13 25	20450 20.02 20.57 20.43 20.22 20.39 20.31 20.27	20525 20.51 20.75 20.45 20.4 20.64 20.34 20.43	20600 20.61 20.74 20.44 20.41 20.56 20.49 20.47	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5
	QPSK	1 1 25 25 25 50 1 1	0 25 49 0 13 25 0 0 25 49	20450 20.02 20.57 20.43 20.22 20.39 20.31 20.27 20.4	20525 20.51 20.75 20.45 20.4 20.64 20.34 20.43 20.67 20.92 20.76	20600 20.61 20.74 20.44 20.41 20.56 20.49 20.47 20.88	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5
		1 1 25 25 25 50 1 1 1 25	0 25 49 0 13 25 0 0 25 49	20450 20.02 20.57 20.43 20.22 20.39 20.31 20.27 20.4 20.8 20.78 20.18	20525 20.51 20.75 20.45 20.4 20.64 20.34 20.43 20.67 20.92 20.76 20.32	20600 20.61 20.74 20.44 20.41 20.56 20.49 20.47 20.88 20.92 20.7 20.33	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5
	QPSK	1 1 25 25 25 50 1 1 1 25 25	0 25 49 0 13 25 0 0 25 49	20450 20.02 20.57 20.43 20.22 20.39 20.31 20.27 20.4 20.8 20.78	20525 20.51 20.75 20.45 20.4 20.64 20.34 20.43 20.67 20.92 20.76	20600 20.61 20.74 20.44 20.41 20.56 20.49 20.47 20.88 20.92 20.7	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5
	QPSK	1 1 25 25 25 50 1 1 1 25	0 25 49 0 13 25 0 0 25 49	20450 20.02 20.57 20.43 20.22 20.39 20.31 20.27 20.4 20.8 20.78 20.18	20525 20.51 20.75 20.45 20.4 20.64 20.34 20.43 20.67 20.92 20.76 20.32	20600 20.61 20.74 20.44 20.41 20.56 20.49 20.47 20.88 20.92 20.7 20.33	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5

LT	E Band 5 Hotspo		Conducted Power(dBm)				
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Danaman	Modelation	size	offset	20407	20525	20643	rano ap
		1	0	19.98	20.3	20.22	21.5
		1	2	20.17	20.47	20.33	21.5
		1	5	20.13	20.26	20.18	21.5
	QPSK	3	0	20.01	20.36	20.25	21.5
1.4MHz		3	2	20.13	20.43	20.31	21.5
1.4111112		3	3	20.11	20.36	20.29	21.5
	16QAM	6	0	20.07	20.33	20.29	21.5
		1	0	20.27	20.43	20.37	21.5
		1	2	20.47	20.75	20.54	21.5
		1	5	20.4	20.43	20.48	21.5

Report No.:SZEM180100082701

Rev : 01

Page : 112 of 183

		3	0	20.09	20.34	20.3	21.5
		3	2	20.12	20.38	20.35	21.5
		3	3	20.12	20.31	20.29	21.5
		6	0	20.02	20.32	20.25	21.5
Developi dul	Maral Jarea	RB	RB	Channel	Channel	Channel	т
Bandwidth	Modulation	size	offset	20415	20525	20635	Tune up
		1	0	19.71	20.06	19.9	21.5
		1	7	20.32	20.53	20.32	21.5
		1	14	19.79	19.99	19.92	21.5
	QPSK	8	0	20.02	20.31	20.16	21.5
		8	4	20.15	20.37	20.26	21.5
		8	7	20.04	20.29	20.1	21.5
3MHz		15	0	20.03	20.3	20.19	21.5
JIVII IZ		1	0	19.98	20.27	20.09	21.5
		1	7	20.46	20.74	20.52	21.5
		1	14	19.98	20.2	20.15	21.5
	16QAM	8	0	19.99	20.23	20.13	21.5
		8	4	20.18	20.27	20.2	21.5
		8	7	20.01	20.23	20.1	21.5
		15	0	19.93	20.18	20.12	21.5
Bandwidth	Modulation	RB	RB -#t	Channel	Channel	Channel	Tune up
		size	offset	20425	20525	20625	·
		1	0	20.16	20.52	20.48	21.5
		1	13	20.3	20.52	20.37	21.5
	QPSK	12	24	20.29	20.4	20.26	21.5
	QPSK	12	0 6	20.18 20.31	20.39 20.52	20.34 20.37	21.5 21.5
		12	13	20.31	20.32	20.37	21.5
		25	0	20.17	20.31	20.18	21.5
5MHz		1	0	20.19	20.67	20.68	21.5
		1	13	20.49	20.73	20.59	21.5
		1	24	20.44	20.57	20.48	21.5
	16QAM	12	0	20.14	20.3	20.28	21.5
	100,	12	6	20.26	20.42	20.3	21.5
		12	13	20.09	20.21	20.14	21.5
		25	0	20.08	20.33	20.32	21.5
Daniel III	Madel	RB	RB	Channel	Channel	Channel	
Bandwidth	Modulation	size	offset	20450	20525	20600	Tune up
		1	0	20.32	20.61	20.69	21.5
		1	25	20.76	20.79	20.81	21.5
		1	49	20.51	20.52	20.5	21.5
	QPSK	25	0	20.45	20.47	20.54	21.5
10MHz		25	13	20.58	20.71	20.66	21.5
		25	25	20.39	20.43	20.53	21.5
		50	0	20.41	20.52	20.57	21.5
	16OAM	1	0	20.51	20.92	20.96	21.5
	16QAM	1	25	20.86	21.07	21.05	21.5

Report No.:SZEM180100082701

Rev : 01

Page : 113 of 183

1	49	20.74	20.86	20.7	21.5
25	0	20.34	20.38	20.46	21.5
25	13	20.41	20.64	20.54	21.5
25	25	20.25	20.37	20.38	21.5
50	0	20.27	20.44	20.41	21.5

L	TE Band 7 full p	ower			Conducted I	Power(dBm)	
Dondwidth	Madulation	RB size	DD offeet	Channel	Channel	Channel	Tungun
Bandwidth	Modulation	ND SIZE	RB offset	20775	21100	21425	Tune up
		1	0	21.83	21.81	21.66	23
		1	13	22.17	22.06	21.76	23
		1	24	22.19	21.97	21.62	23
	QPSK	12	0	21.31	21.24	21.01	22
		12	6	21.43	21.28	21.03	22
		12	13	21.37	21.13	20.91	22
CA411-		25	0	21.36	21.27	21.1	22
5MHz		1	0	21.44	21.29	21.03	22
		1	13	21.64	21.51	21.16	22
		1	24	21.65	21.33	21.01	22
	16QAM	12	0	21.31	21.18	20.97	22
		12	6	21.43	21.23	20.99	22
		12	13	21.33	21.06	20.84	22
		25	0	21.29	21.17	20.99	22
Dan desidab	Maril Inflan	DD .:	DD - (()	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	20800	21100	21400	Tune up
		1	0	21.74	21.53	21.74	23
		1	25	22.69	22.23	22	23
		1	49	22.72	22.29	21.86	23
	QPSK	25	0	21.23	20.97	20.81	22
		25	13	21.49	21.1	20.83	22
		25	25	21.79	21.32	21.21	22
10MHz		50	0	21.38	21.07	21.06	22
IUWITZ		1	0	21.04	20.99	21.06	22
		1	25	22.09	21.61	21.41	22
		1	49	22.16	21.7	21.22	22
	16QAM	25	0	21.19	20.86	20.69	22
		25	13	21.41	20.99	20.71	22
		25	25	21.68	21.21	21.08	22
		50	0	21.28	20.94	20.95	22
Dondd.lb	Modulatian	DD a!=a	DD c#sst	Channel	Channel	Channel	Tuna
Bandwidth	Modulation	RB size	RB offset	20825	21100	21375	Tune up
		1	0	21.77	21.63	22.03	23
15MU-	ODOK	1	38	22.44	21.98	22.23	23
15MHz	QPSK	1	74	22.63	22.03	21.79	23
		36	0	21.3	20.98	21.3	22

Report No.:SZEM180100082701

Rev : 01

Page : 114 of 183

1	1	۱ ۵۵	۱ ، ۵				٠
		36	18	21.68	21.15	21.4	22
		36	39	21.81	21.3	21.14	22
		75	0	21.59	21.17	21.24	22
		1	0	21.23	21.07	21.49	22
		1	38	21.85	21.45	21.59	22
		1	74	21.97	21.53	21.27	22
	16QAM	36	0	21.22	20.91	21.18	22
		36	18	21.52	21.09	21.28	22
		36	39	21.7	21.21	21.01	22
		75	0	21.49	21.05	21.12	22
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tupo up
Danawiath	Modulation	nd size	nd oliset	20850	21100	21350	Tune up
		1	0	22.14	22.11	22.62	23
		1	50	22.56	21.99	22.22	23
		1	99	22.38	22.34	21.83	23
	QPSK	50	0	21.56	21.37	21.48	22
		50	25	21.52	21.28	21.31	22
		50	50	21.43	21.14	21.16	22
001411-		100	0	21.86	21.24	21.3	22
20MHz		1	0	21.56	21.58	22.1	22
		1	50	21.95	21.43	21.68	22
		1	99	21.68	21.75	21.21	22
	16QAM	50	0	21.41	21.23	21.35	22
		50	25	21.43	21.15	21.18	22
		50	50	21.34	21.02	21.03	22
		100	0	21.73	21.18	21.18	22

L	TE Band 7 Recei		Conducted Power(dBm)				
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tupo up
Danuwiutii	Modulation	ND SIZE	nd onset	20775	21100	21425	Tune up
		1	0	15.76	15.74	15.7	17
		1	13	16.13	16.17	16.11	17
	QPSK	1	24	16	15.79	15.79	17
		12	0	16.14	16.12	15.95	17
		12	6	16.18	16.18	16.11	17
		12	13	15.98	15.9	16.03	17
5MHz		25	0	16.04	16.09	16.18	17
SIVITIZ		1	0	16.16	16.21	16.1	17
		1	13	16.43	16.44	16.47	17
		1	24	16.32	16.15	16.14	17
	16QAM	12	0	16.16	16.13	15.99	17
		12	6	16.2	16.19	16.08	17
		12	13	16.02	15.86	16	17
		25	0	16.02	16.02	16.11	17
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up

Report No.:SZEM180100082701

Rev : 01

Page : 115 of 183

		1	0	15.41	15.35	15.38	47
		-	-	10.11		13.30	17
		1	25	16.35	16.32	16.19	17
		1	49	16.22	16.14	16.02	17
	QPSK	25	0	15.75	15.7	15.51	17
i l		25	13	15.86	15.89	15.68	17
		25	25	16.09	16.06	16.3	17
4000		50	0	15.73	15.84	15.93	17
10MHz		1	0	15.81	15.74	15.76	17
		1	25	16.77	16.72	16.53	17
		1	49	16.67	16.42	16.39	17
	16QAM	25	0	15.73	15.64	15.47	17
		25	13	15.84	15.82	15.62	17
		25	25	16.11	16	16.24	17
		50	0	15.76	15.77	15.87	17
Dometric delle	Madulatic	DD at	DD -#	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	20825	21100	21375	Tune up
		1	0	15.55	15.42	15.35	17
		1	38	16.27	16.18	15.9	17
		1	74	15.9	16.05	15.85	17
	QPSK	36	0	16.09	15.83	15.8	17
		36	18	16.26	16.15	15.89	17
		36	39	15.87	15.85	16.11	17
458811-		75	0	16	16.03	15.96	17
15MHz		1	0	16	15.86	15.64	17
	16QAM	1	38	16.63	16.45	16.24	17
		1	74	16.17	16.39	16.14	17
		36	0	16.01	15.82	15.74	17
		36	18	16.19	16.15	15.84	17
		36	39	15.84	15.85	16.03	17
		75	0	15.93	15.94	15.87	17
Bandwidth	Moduletien	DD a!=4	DD offeet	Channel	Channel	Channel	Tuna
Bandwidth	Modulation	RB size	RB offset	20850	21100	21350	Tune up
		1	0	16.03	15.94	16.05	17
		1	50	16.14	16.08	15.93	17
		1	99	16.01	16.12	16.09	17
	QPSK	50	0	15.97	16.1	15.7	17
		50	25	15.78	16.12	15.75	17
		50	50	15.73	15.91	15.98	17
201414-		100	0	16.26	16.05	15.84	17
20MHz		1	0	16.33	16.38	16.56	17
		1	50	16.49	16.55	16.39	17
		1	99	16.34	16.62	16.48	17
	16QAM	50	0	15.91	16.1	15.74	17
		50	25	15.72	16.03	15.76	17
		50	50	15.69	15.84	15.98	17
		100	0	16.2	15.98	15.84	17

Report No.:SZEM180100082701

Rev : 01

Page : 116 of 183

LT	E Band 7 Hotspo	t on			Conducted F	Power(dBm)	
Bandwidth	Modulation	RB size	RB offset	Channel 20775	Channel 21100	Channel 21425	Tune up
		1	0	16.21	16.07	16.1	17
		1	13	16.55	16.5	16.31	17
		1	24	16.43	16.26	16.14	17
	QPSK	12	0	16.45	16.37	16.3	17
		12	6	16.51	16.44	16.3	17
		12	13	16.34	16.2	16.18	17
		25	0	16.38	16.37	16.33	17
5MHz		1	0	16.49	16.34	16.35	17
		1	13	16.81	16.8	16.54	17
		1	24	16.75	16.53	16.39	17
	16QAM	12	0	16.43	16.34	16.27	17
		12	6	16.56	16.42	16.27	17
		12	13	16.31	16.14	16.14	17
		25	0	16.37	16.3	16.28	17
		RB	RB	Channel	Channel	Channel	
Bandwidth	Modulation	size	offset	20800	21100	21400	Tune up
		1	0	15.83	15.74	15.95	17
		1	25	16.76	16.64	16.53	17
		1	49	16.74	16.58	16.4	17
	QPSK	25	0	16.2	15.95	15.9	17
		25	13	16.36	16.09	15.93	17
		25	25	16.63	16.36	16.43	17
408411		50	0	16.24	16.05	16.25	17
10MHz		1	0	16.16	16.06	16.26	17
		1	25	17.15	16.93	16.77	17
		1	49	16.97	16.93	16.62	17
	16QAM	25	0	16.12	15.88	15.85	17
		25	13	16.28	16.02	15.87	17
		25	25	16.55	16.29	16.38	17
		50	0	16.17	15.98	16.2	17
Damakeet altib	Madeletter	RB	RB	Channel	Channel	Channel	Т
Bandwidth	Modulation	size	offset	20825	21100	21375	Tune up
		1	0	16.01	15.81	16.04	17
		1	38	16.92	16.4	16.33	17
		1	74	16.56	16.45	16.18	17
	QPSK	36	0	16.49	16.15	16.29	17
15MHz		36	18	16.75	16.42	16.25	17
		36	39	16.44	16.19	16.35	17
		75	0	16.5	16.26	16.35	17
	10000	1	0	16.28	16.1	16.35	17
	16QAM	1	38	17.09	16.7	16.64	17

Report No.:SZEM180100082701

Rev : 01

Page : 117 of 183

		1	74	16.8	16.78	16.49	17
		36	0	16.42	16.04	16.23	17
		36	18	16.7	16.3	16.19	17
		36	39	16.39	16.14	16.31	17
		75	0	16.45	16.13	16.3	17
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Danawiatii	Modulation	size	offset	20850	21100	21350	Turie up
		1	0	16.44	16.39	16.71	17
		1	50	16.81	16.32	16.47	17
		1	99	16.54	16.67	16.29	17
	QPSK	50	0	16.47	16.37	16.31	17
		50	25	16.42	16.35	16.22	17
		50	50	16.36	16.19	16.28	17
20MHz		100	0	16.86	16.3	16.3	17
20ΙΝΙΠΖ		1	0	16.79	16.65	17.02	17
		1	50	16.96	16.6	16.82	17
		1	99	16.86	16.93	16.51	17
	16QAM	50	0	16.42	16.32	16.23	17
		50	25	16.3	16.25	16.18	17
		50	50	16.29	16.06	16.24	17
		100	0	16.79	16.16	16.24	17

Report No.:SZEM180100082701

Rev : 01

Page : 118 of 183

LTE	FDD Band 12 fu	II power			Conducted I	Power(dBm)	
Pondwidth	Modulation	DP oizo	RB offset	Channel	Channel	Channel	Tungun
Bandwidth	Modulation	RB size	RD Oliset	23017	23095	23173	Tune up
		1	0	21.47	22.08	22.34	24
		1	2	21.68	22.24	22.39	24
		1	5	21.88	22.14	22.23	24
	QPSK	3	0	21.67	22.3	22.44	24
		3	2	21.87	22.29	22.37	24
		3	3	21.9	22.22	22.28	24
1.4MHz		6	0	20.87	21.34	21.53	23
1.41/1112		1	0	20.97	21.57	21.75	23
		1	2	21.04	21.56	21.77	23
		1	5	21.21	21.51	21.6	23
	16QAM	3	0	20.9	21.41	21.63	23
		3	2	21.04	21.42	21.54	23
		3	3	21.07	21.34	21.46	23
		6	0	20.02	20.47	20.63	22
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danawiatii	Modulation	TID SIZE	TID Oliset	23025	23095	23165	·
		1	0	21.27	22.01	22.08	24
		1	7	22.08	22.25	22.47	24
		1	14	21.84	21.97	21.95	24
	QPSK	8	0	20.83	21.32	21.5	23
		8	4	21.14	21.33	21.59	23
		8	7	21.2	21.19	21.39	23
3MHz		15	0	20.96	21.24	21.43	23
OWN 12		1	0	20.68	21.37	21.57	23
		1	7	21.56	21.7	21.99	23
		1	14	21.35	21.28	21.35	23
	16QAM	8	0	20.08	20.45	20.61	22
		8	4	20.35	20.49	20.75	22
		8	7	20.36	20.28	20.53	22
		15	0	20.1	20.32	20.52	22
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
24	Wioddiation			23035	23095	23155	·
		1	0	21.93	22.62	22.67	24
		1	13	22.68	22.73	22.97	24
		1	24	22.6	22.47	22.51	24
	QPSK	12	0	21.54	21.76	21.87	23
5MHz		12	6	21.81	21.88	22.09	23
		12	13	21.71	21.69	21.95	23
		25 1	0	21.65	21.73	21.99	23
	16QAM		0	21.4	22.09	22.13	23
		1	13	22.05	22.17	22.39	23

Report No.:SZEM180100082701

Rev : 01

Page : 119 of 183

					_	_	
		1	24	21.98	21.84	21.86	23
		12	0	20.57	20.85	21.03	22
		12	6	20.87	20.93	21.16	22
		12	13	20.77	20.73	21.02	22
		25	0	20.69	20.78	21.03	22
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tungun
Danawiath	iviodulation	nd Size	nd oliset	23060	23095	23130	Tune up
		1	0	22.17	22.68	22.64	24
		1	25	23.13	23.11	23.12	24
		1	49	22.54	22.69	22.68	24
	QPSK	25	0	21.78	21.87	21.83	23
		25	13	21.98	22.03	22.01	23
		25	25	21.76	21.84	21.89	23
10MHz		50	0	21.77	21.85	21.85	23
IOWINZ		1	0	21.59	22.15	21.99	23
		1	25	22.57	22.4	22.48	23
		1	49	21.96	22	21.93	23
	16QAM	25	0	20.88	20.97	20.88	22
		25	13	21.09	21.07	21.05	22
		25	25	20.81	20.87	20.92	22
		50	0	20.8	20.82	20.88	22

LTE	FDD Band 12 Re	ceiver on			Conducted I	Power(dBm)	
Bandwidth	Madulation	RB size	DD offeet	Channel	Channel	Channel	Tungun
bandwidth	Modulation	RB SIZE	RB offset	23017	23095	23173	Tune up
		1	0	19.98	20.73	20.86	22.5
		1	2	20.27	20.84	20.97	22.5
		1	5	20.38	20.68	20.82	22.5
	QPSK	3	0	20.21	20.79	21.01	22.5
		3	2	20.36	20.86	20.98	22.5
		3	3	20.38	20.76	20.87	22.5
1.4MHz		6	0	20.27	20.79	20.95	22.5
1.4111112		1	0	20.41	21.07	21.22	22.5
		1	2	20.59	21.14	21.27	22.5
		1	5	20.67	20.97	21.11	22.5
	16QAM	3	0	20.25	20.89	21.11	22.5
		3	2	20.41	20.88	21.07	22.5
		3	3	20.45	20.84	20.96	22.5
		6	0	19.85	20.32	20.54	22
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Balluwiutii	Modulation	IND SIZE	rib onset	23025	23095	23165	rune up
		1	0	19.77	20.53	20.64	22.5
3MHz	QPSK	1	7	20.68	20.85	21.12	22.5
SIVITIZ	QF3N	1	14	20.48	20.49	20.59	22.5
		8	0	20.31	20.8	20.91	22.5

Report No.:SZEM180100082701

Rev : 01

Page : 120 of 183

		8	4	20.62	20.8	21.02	22.5
		8	7	20.67	20.65	20.84	22.5
		15	0	20.45	20.72	20.86	22.5
		1	0	20.16	20.86	20.99	22.5
		1	7	20.95	21.07	21.39	22.5
		1	14	20.84	20.76	20.8	22.5
	16QAM	8	0	19.91	20.32	20.53	22
		8	4	20.24	20.31	20.67	22
		8	7	20.25	20.19	20.47	22
		15	0	19.97	20.2	20.46	22
				Channel	Channel	Channel	
Bandwidth	Modulation	RB size	RB offset	23035	23095	23155	Tune up
		1	0	20.35	21.18	21.21	22.5
		1	13	21.22	21.23	21.51	22.5
		1	24	21.12	21.01	21.15	22.5
	QPSK	12	0	20.84	21.18	21.29	22.5
		12	6	21.16	21.24	21.49	22.5
		12	13	21.14	21.05	21.39	22.5
5MHz		25	0	21.04	21.1	21.41	22.5
ЭМП		1	0	20.75	21.42	21.57	22.5
		1	13	21.51	21.45	21.77	22.5
		1	24	21.37	21.24	21.4	22.5
	16QAM	12	0	20.39	20.77	20.87	22
		12	6	20.7	20.84	21	22
		12	13	20.62	20.68	20.87	22
		25	0	20.5	20.69	20.9	22
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danawiatii	Modulation	TID SIZE	TID Offset	23060	23095	23130	rune up
		1	0	20.52	21.29	21.09	22.5
		1	25	21.66	21.58	21.64	22.5
		1	49	21.01	21.15	21.23	22.5
	QPSK	25	0	21.16	21.29	21.21	22.5
		25	13	21.41	21.39	21.41	22.5
		25	25	21.12	21.18	21.29	22.5
10MHz		50	0	21.15	21.19	21.24	22.5
. 0.71112		1	0	20.98	21.56	21.52	22.5
		1	25	21.96	21.9	21.95	22.5
		1	49	21.29	21.44	21.47	22.5
	16QAM	25	0	20.69	20.77	20.74	22
		25	13	20.95	20.87	20.94	22
		25	25	20.66	20.65	20.83	22
		50	0	20.62	20.66	20.76	22

Report No.:SZEM180100082701

Rev : 01

Page : 121 of 183

LTE F	DD Band 12 Hots	spot on			Conducted I	Power(dBm)	
Bandwidth	Modulation	RB size	RB offset	Channel 23017	Channel 23095	Channel 23173	Tune up
		1	0	20.19	20.92	21.11	22.5
		1	2	20.46	20.99	21.15	22.5
		1	5	20.55	20.88	20.97	22.5
	QPSK	3	0	20.34	20.98	21.19	22.5
		3	2	20.55	20.98	21.12	22.5
	16QAM	3	3	20.59	20.91	21.02	22.5
4 48811		6	0	20.47	20.93	21.12	22.5
1.4MHz		1	0	20.58	21.1	21.47	22.5
		1	2	20.8	21.27	21.41	22.5
		1	5	20.77	21.09	21.27	22.5
	16QAM	3	0	20.42	21.01	21.19	22.5
		3	2	20.6	21.02	21.15	22.5
		3	3	20.66	20.95	21.02	22.5
		6	0	20.08	20.54	20.66	22
Donducidth	Madulation	RB	RB	Channel	Channel	Channel	Tungun
Bandwidth	Modulation	size	offset	23025	23095	23165	Tune up
		1	0	19.99	20.76	20.87	22.5
		1	7	20.89	21.06	21.29	22.5
		1	14	20.51	20.68	20.77	22.5
	QPSK	8	0	20.46	20.93	21.16	22.5
		8	4	20.74	20.94	21.25	22.5
		8	7	20.81	20.8	21.05	22.5
3MHz		15	0	20.59	20.85	21.09	22.5
SIVILIZ		1	0	20.36	20.99	21.14	22.5
		1	7	21.2	21.29	21.6	22.5
		1	14	20.8	20.99	21.06	22.5
	16QAM	8	0	20.09	20.54	20.66	22
		8	4	20.4	20.55	20.82	22
		8	7	20.42	20.41	20.54	22
		15	0	20.11	20.4	20.59	22
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Danuwiutii	wiodulation	size	offset	23035	23095	23155	rune up
		1	0	20.59	21.36	21.46	22.5
		1	13	21.35	21.45	21.75	22.5
		1	24	21.2	21.22	21.28	22.5
	QPSK	12	0	21.07	21.39	21.52	22.5
5MHz		12	6	21.35	21.47	21.69	22.5
		12	13	21.25	21.28	21.54	22.5
	16QAM	25	0	21.18	21.32	21.58	22.5
		1	0	20.96	21.61	21.74	22.5
	IOQAIVI	1	13	21.63	21.7	21.97	22.5

Report No.:SZEM180100082701

Rev : 01

Page : 122 of 183

		1	24	21.51	21.44	21.48	22.5
		12	0	20.64	20.91	21.04	22
		12	6	20.92	21.01	21.2	22
		12	13	20.82	20.8	21.05	22
		25	0	20.71	20.81	21.06	22
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Danuwiutii	iviodulation	size	offset	23060	23095	23130	Turie up
		1	0	20.74	21.44	21.38	22.5
		1	25	21.74	21.78	21.86	22.5
		1	49	21.13	21.33	21.32	22.5
	QPSK	25	0	21.29	21.43	21.42	22.5
		25	13	21.53	21.54	21.60	22.5
		25	25	21.28	21.35	21.48	22.5
10MHz		50	0	21.27	21.35	21.45	22.5
IUIVITIZ		1	0	21.08	21.72	21.63	22.5
		1	25	22.08	22.12	22.14	22.5
		1	49	21.48	21.61	21.53	22.5
	16QAM	25	0	20.86	20.95	20.89	22
		25	13	21.07	21.07	21.1	22
		25	25	20.81	20.86	20.96	22
		50	0	20.8	20.83	20.94	22

Report No.:SZEM180100082701

Rev : 01

Page : 123 of 183

LTE	FDD Band 17 fu	II power			Conducted I	Power(dBm)	
Dan desidab	Madulatian	DD -:	DD -#+	Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	23755	23790	23825	Tune up
		1	0	22.3	22.62	22.73	24
		1	13	22.85	22.79	23.04	24
		1	24	22.55	22.77	22.63	24
	QPSK	12	0	21.6	21.77	22	23
		12	6	21.9	21.97	22.21	23
		12	13	21.75	21.88	22.06	23
5MHz		25	0	21.74	21.82	22.04	23
JIVII IZ		1	0	21.84	22.12	22.25	23
		1	13	22.32	22.25	22.5	23
		1	24	21.99	22.1	21.98	23
	16QAM	12	0	20.71	20.88	21.12	22
		12	6	20.98	21.05	21.27	22
		12	13	20.79	20.93	21.11	22
		25	0	20.79	20.86	21.1	22
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Buildwidth	Wioddiation	110 3120		23780	23790	23800	•
		1	0	22.37	22.42	22.53	24
		1	25	23.01	23.03	23.13	24
		1	49	22.77	22.85	22.72	24
	QPSK	25	0	21.68	21.73	21.77	23
		25	13	21.95	21.95	22.02	23
		25	25	21.8	21.92	21.89	23
10MHz		50	0	21.76	21.82	21.86	23
1011112		1	0	21.76	21.88	21.99	23
		1	25	22.32	22.45	22.59	23
		1	49	22.07	22.18	22.03	23
	16QAM	25	0	20.76	20.76	20.85	22
		25	13	20.96	20.97	21.06	22
		25	25	20.84	20.94	20.92	22
		50	0	20.79	20.85	20.9	22

Report No.:SZEM180100082701

Rev : 01

Page : 124 of 183

LTE	FDD Band 17 Re	eceiver on			Conducted I	Power(dBm)	
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danawiatii	Modulation	110 3120		23755	23790	23825	,
		1	0	20.86	21.17	21.25	22.5
		1	13	21.35	21.33	21.61	22.5
		1	24	21.01	21.27	21.17	22.5
	QPSK	12	0	21.01	21.23	21.45	22.5
		12	6	21.31	21.36	21.6	22.5
		12	13	21.14	21.27	21.48	22.5
5MHz		25	0	21.14	21.21	21.51	22.5
JIVII IZ		1	0	21.19	21.52	21.52	22.5
		1	13	21.63	21.65	21.9	22.5
		1	24	21.33	21.6	21.42	22.5
	16QAM	12	0	20.65	20.86	21.02	22
		12	6	20.81	20.96	21.17	22
		12	13	20.7	20.85	21.04	22
		25	0	20.62	20.75	20.98	22
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up
Danawiatii	Modulation	TID SIZE	TID Ollset	23780	23790	23800	Turie up
		1	0	20.82	20.96	20.99	22.5
		1	25	21.51	21.56	21.66	22.5
		1	49	21.22	21.34	21.24	22.5
	QPSK	25	0	21.06	21.13	21.19	22.5
		25	13	21.32	21.37	21.45	22.5
		25	25	21.17	21.33	21.33	22.5
10MHz		50	0	21.19	21.23	21.27	22.5
I OIVII IZ		1	0	21.15	21.29	21.42	22.5
		1	25	21.82	21.76	21.92	22.5
		1	49	21.45	21.55	21.55	22.5
	16QAM	25	0	20.58	20.61	20.71	22
		25	13	20.86	20.84	20.91	22
		25	25	20.71	20.8	20.8	22
		50	0	20.67	20.71	20.76	22

Report No.:SZEM180100082701

Rev : 01

Page : 125 of 183

LTE F	DD Band 17 Hots	pot on			Conducted F	Power(dBm)	
Bandwidth	Modulation	RB size	RB offset	Channel 23755	Channel 23790	Channel 23825	Tune up
		1	0	21.11	21.47	21.54	22.5
		1	13	21.56	21.63	21.9	22.5
		1	24	21.33	21.54	21.36	22.5
	QPSK	12	0	21.21	21.46	21.66	22.5
		12	6	21.52	21.6	21.83	22.5
		12	13	21.37	21.51	21.68	22.5
53411		25	0	21.36	21.45	21.66	22.5
5MHz		1	0	21.41	21.75	21.8	22.5
		1	13	21.86	21.85	22.13	22.5
		1	24	21.56	21.75	21.6	22.5
	16QAM	12	0	20.79	20.98	21.19	22
		12	6	21.06	21.12	21.35	22
		12	13	20.94	21.03	21.22	22
		25	0	20.86	20.95	21.17	22
Bandwidth	Modulation	RB	RB	Channel	Channel	Channel	Tune up
Danuwidin	Modulation	size	offset	23780	23790	23800	rune up
		1	0	21.1	21.2	21.33	22.5
		1	25	21.74	21.79	21.92	22.5
		1	49	21.4	21.53	21.35	22.5
	QPSK	25	0	21.27	21.36	21.4	22.5
		25	13	21.53	21.58	21.64	22.5
		25	25	21.39	21.55	21.52	22.5
10MHz		50	0	21.35	21.45	21.48	22.5
1 01411 12		1	0	21.32	21.49	21.57	22.5
		1	25	21.94	21.95	22.23	22.5
		1	49	21.56	21.7	21.57	22.5
	16QAM	25	0	20.76	20.85	20.89	22
		25	13	21.04	21.08	21.15	22
		25	25	20.88	21.04	21.01	22
		50	0	20.82	20.88	20.97	22

Report No.:SZEM180100082701

Rev : 01

Page : 126 of 183

8.1.1 Conducted Power of Downlink LTE CA

In this section, the following conducted power measurement results of downlink LTE carrier aggregation are provided to quantify downlink only carrier aggregation SAR test exclusion per KDB 941225 D05A. Uplink maximum output power is measured with downlink carrier aggregation active, using the channel with highest measured maximum output power when downlink carrier aggregation is inactive, to confirm that when downlink carrier aggregation is active uplink maximum output power remains within the specified tune-up tolerance limits and not more than ½ dB higher than the maximum output power measured when downlink carrier aggregation inactive.

Power test equipment: R&S Radio Communication Tester CMW500 and/or Anritsu Radio Communication Analyzer

The device supports Rel. 10 downlink only LTE Carrier Aggregation and certain network enhancement features. It supports a maximum of 2 carriers in the downlink

The possible downlink LTE CA combinations supported by this device are as below tables per 3GPP TS 36.101 V15.1.0 (2017-12). The detailed conducted power measurement results of downlink LTE CA are provided in the SAR report per 3GPP TS 36.521 V13.2.0 (2016-06). According to KDB 941225 D05A, the downlink only carrier aggregation conditions for this device can be excluded from SAR testing and PAG requirements.

Report No.:SZEM180100082701

Rev : 01

Page : 127 of 183

initial (Conditions										
	nvironment as 508[7] subcla	s specified in use 4.1		NC, TL/VL, TL/VH, TH/VL, TH/VH							
TS 36.9	s, and PCC a	s specified in ause 4.3.1 for different C nd SCCs are mapped on ng to Table 6.1-2.		C: Mid ra	nge						
subcla	use 5.4.2A.1	on setting (N _{RB_agg}) as sp for the CA Configuration ion sets supported by th	across	Lowest N _{RB_agg} Highest N _{RB_agg} (Note 2)							
Toct D	arameters for	CA Configurations		1							
	arameters for	CA Configurations DL Allocation	СС	UL Alloc	ation						
	nfiguration	DL Allocation	CC MOD	UL Alloc	ation						
CA Co	nfiguration			UL Alloc N _{RB_alloc}		RB allocation	ns				
CA Co / N _{RB_a} PCC N _{RB}	nfiguration	DL Allocation PCC & SCC RB			PCC & SCC		ns -	-			
CA Co / N _{RB_a} PCC N _{RB}	nfiguration gg SCCs N _{RB}	DL Allocation PCC & SCC RB	MOD	N _{RB_alloc}	PCC & SCC (L _{CRB} @ RB _s	tart)	- -	-			
CA Co / N _{RB_a} PCC	SCCs N _{RB}	DL Allocation PCC & SCC RB allocation	MOD	N _{RB_alloc}	PCC & SCC (LCRB @ RBs	S_0@0	- - -				

The conducted power measurement results of downlink LTE CA Conducted Power are as below, so the downlink only carrier aggregation conditions for this device can be excluded from SAR testing

Note 2: If in the CA Configuration UE supports multiple CC Combinations with the same N_{RB_agg}, only the first of those

applicable aggregated channel bandwidths are specified in Table 5.4.2A.1-1

is tested, according to the order on the Test Configuration Table list.

Intra-band

mura-	bana											_
	Main Antenna Full Power											
	PCC						SCC				Power	
DL LTE CA Class	LTE Band	BW (MHz)	Freq. (MHz)	Channel	UL# RB	UL RB Offset	LTE Band	BW (MHz)	Freq. (MHz)	Channel	LTE Rel 10 Tx.Power(dBm)	LTE Rel 8 Tx.Power(dBm)
CA_7C	Band 7	20M	2560	21350	1	0	Band 7	20M	2660.2	3152	22.51	22.58
CA_12B	Band 12	10M	711	23130	1	25	Band 12	10M	733.8	5058	23.26	23.25
						Main An	tenna Hots	spot on				
DL LTE			PC	С				S	CC		Pov	wer
CA Class	LTE Band	BW (MHz)	Freq. (MHz)	Channel	UL# RB	UL RB Offset	LTE Band	BW (MHz)	Freq. (MHz)	Channel	LTE Rel 10 Tx.Power(dBm)	LTE Rel 8 Tx.Power(dBm)
CA_7C	Band 7	20M	2560	21350	1	0	Band 7	20M	2660.2	3152	19.09	19.04

Report No.:SZEM180100082701

Rev : 01

Page : 128 of 183

	Second Antenna Full Power												
						Second A	Intenna Fu				T		
			PC	С				S	CC		Po	wer	
DL LTE CA Class	LTE Band	BW (MHz)	Freq. (MHz)	Channel	UL# RB	UL RB Offset	LTE Band	BW (MHz)	Freq. (MHz)	Channel	LTE Rel 10 Tx.Power(dBm)	LTE Rel 8 Tx.Power(dBm)	
CA_7C	Band 7	20M	2560	21350	1	0	Band 7	20M	2660.2	3152	22.64	22.62	
CA_12B	Band 12	10M	711	23130	1	25	Band 12	10M	733.8	5058	23.13	23.13	
	Second Antenna Receiver on												
	PCC SCC Power							wer					
DL LTE CA Class	LTE Band	BW (MHz)	Freq. (MHz)	Channel	UL# RB	UL RB Offset	LTE Band	BW (MHz)	Freq. (MHz)	Channel	LTE Rel 10 Tx.Power(dBm)	LTE Rel 8 Tx.Power(dBm)	
CA_7C	Band 7	20M	2510	20850	100	0	Band 7	20M	2529.8	3048	16.18	16.26	
CA_12B	Band 12	10M	711	23130	1	25	Band 12	10M	733.8	5058	21.60	21.64	
					9	Second A	Antenna Ho	tspot on					
			PC	С				S	CC		Po	wer	
DL LTE CA Class	LTE Band	BW (MHz)	Freq. (MHz)	Channel	UL# RB	UL RB Offset	LTE Band	BW (MHz)	Freq. (MHz)	Channel	LTE Rel 10 Tx.Power(dBm)	LTE Rel 8 Tx.Power(dBm)	
CA_7C	Band 7	20M	2510	20850	100	0	Band 7	20M	2529.8	3048	16.82	16.86	
CA_12B	Band 12	10M	711	23130	1	25	Band 12	10M	733.8	5058	21.82	21.86	

Report No.:SZEM180100082701

Rev : 01

Page : 129 of 183

Inter Band

					М	ain Ante	nna Full Po	wer				
			PC	С				SC	CC		Por	wer
DL LTE CA Class	LTE Band	BW (MHz)	Freq. (MHz)	Channel	UL# RB	UL RB Offset	LTE Band	BW (MHz)	Freq. (MHz)	Channel	LTE Rel 10 Tx.Power(dBm)	LTE Rel 8 Tx.Power(dBm)
	Band 2	20M	1900	19100	1	50	Band 5	10M	874	2450	22.64	22.55
CA_2A-5A	Band 5	10M	829	20450	1	25	Band 2	20M	1980	1100	22.74	22.67
CA_2A-12A	Band 2	20M	1900	19100	1	50	Band 12	10M	741	5130	22.46	22.55
CA_4A-7A	Band 4	20M	1745	20300	1	50	Band 7	20M	2680	3350	22.66	22.61
	Band 4	20M	1745	20300	1	50	Band 5	10M	874	2450	22.63	22.61
CA_4A-5A	Band 5	10M	829	20450	1	25	Band 4	20M	2145	2300	22.70	22.67
	Band 4	20M	1745	20300	1	50	Band 12	10M	741	5130	22.67	22.61
CA_4A-12A	Band 12	10M	711	23130	1	25	Band 4	20M	2145	2300	23.11	23.25
CA_4A-17A	Band 4	20M	1745	20300	1	50	Band 17	10M	741	5800	22.68	22.61
	Band 5	10M	829	20450	1	25	Band 7	20M	2680	3350	22.69	22.67
CA_5A-7A	Band 7	20M	2560	21350	1	0	Band 5	10M	874	2450	22.50	22.58
CA_7A-12A	Band 7	20M	2560	21350	1	0	Band 12	10M	741	5130	22.66	22.58
					М	ain Antei	nna Hotspo	t on				
			PC	С				SC	CC		Po	wer
DL LTE CA Class	LTE Band	BW (MHz)	Freq. (MHz)	Channel	UL# RB	UL RB Offset	LTE Band	BW (MHz)	Freq. (MHz)	Channel	LTE Rel 10 Tx.Power(dBm)	LTE Rel 8 Tx.Power(dBm)
CA_4A-7A	Band 4	20M	1745	20300	1	50	Band 7	20M	2680	3350	17.52	17.54

					Se	cond Ant	enna Full F	ower				
			PC	С				SC	CC		Po	wer
DL LTE CA Class	LTE Band	BW (MHz)	Freq. (MHz)	Channel	UL# RB	UL RB Offset	LTE Band	BW (MHz)	Freq. (MHz)	Channel	LTE Rel 10 Tx.Power(dBm)	LTE Rel 8 Tx.Power(dBm)
	Band 2	20M	1900	19100	1	50	Band 5	10M	889	2600	22.46	22.43
CA_2A-5A	Band 5	10M	844	20600	1	0	Band 2	20M	1980	1100	22.81	22.9
CA_2A-12A	Band 2	20M	1900	19100	1	50	Band 12	10M	734	5060	22.44	22.43
CA_4A-7A	Band 4	20M	1745	20300	1	50	Band 7	20M	2680	3350	22.61	22.53
	Band 4	20M	1745	20300	1	50	Band 5	10M	889	2600	22.62	22.53
CA_4A-5A	Band 5	10M	844	20600	1	0	Band 4	20M	2145	2300	22.85	22.9
	Band 4	20M	1745	20300	1	50	Band 12	10M	734	5060	22.47	22.53
CA_4A-12A	Band 12	10M	704	23060	1	25	Band 4	20M	2145	2300	23.17	23.13
CA_4A-17A	Band 4	20M	1745	20300	1	50	Band 17	10M	741	5800	22.43	22.53
	Band 5	10M	844	20600	1	0	Band 7	20M	2680	3350	22.99	22.9
CA_5A-7A	Band 7	20M	2560	21350	1	0	Band 5	10M	889	2600	22.65	22.62

Report No.:SZEM180100082701

Rev : 01

Page : 130 of 183

CA_7A-12A	Band 7	20M	2560	21350	1	0	Band 12	10M	734	5060	22.57	22.62
					Sec	ond Ante	nna Recei	ver on				
			PC	С				so	CC		Por	wer
DL LTE CA Class	LTE Band	BW (MHz)	Freq. (MHz)	Channel	UL# RB	UL RB Offset	LTE Band	BW (MHz)	Freq. (MHz)	Channel	LTE Rel 10 Tx.Power(dBm)	LTE Rel 8 Tx.Power(dBm)
	Band 2	20M	1860	18700	1	50	Band 5	10M	889	2600	17.25	17.33
CA_2A-5A	Band 5	10M	844	20600	1	25	Band 2	20M	1940	700	20.80	20.74
CA_2A-12A	Band 2	20M	1860	18700	1	50	Band 12	10M	734	5060	17.37	17.33
CA_4A-7A	Band 4	20M	1745	20300	50	0	Band 7	20M	2630	2850	19.42	19.34
	Band 4	20M	1745	20300	50	0	Band 5	10M	889	2600	19.44	19.34
CA_4A-5A	Band 5	10M	844	20600	1	25	Band 4	20M	2145	2300	20.78	20.74
	Band 4	20M	1745	20300	50	0	Band 12	10M	734	5060	19.40	19.34
CA_4A-12A	Band 12	10M	704	23060	1	25	Band 4	20M	2145	2300	21.72	21.66
CA_4A-17A	Band 4	20M	1745	20300	50	0	Band 17	10M	741	5800	19.26	19.34
	Band 5	10M	844	20600	1	25	Band 7	20M	2630	2850	20.83	20.74
CA_5A-7A	Band 7	20M	2510	20850	100	0	Band 5	10M	889	2600	16.16	16.26
CA_7A-12A	Band 7	20M	2510	20850	100	0	Band 12	10M	734	5060	16.30	16.26
					Sec	cond Ant	enna Hotsp	ot on				
			PC	С				SC	CC		Pov	wer
DL LTE CA Class	LTE Band	BW (MHz)	Freq. (MHz)	Channel	UL# RB	UL RB Offset	LTE Band	BW (MHz)	Freq. (MHz)	Channel	LTE Rel 10 Tx.Power(dBm)	LTE Rel 8 Tx.Power(dBm)
	Band 2	20M	1860	18700	1	50	Band 5	10M	889	2600	17.61	17.66
CA_2A-5A	Band 5	10M	844	20600	1	25	Band 2	20M	1940	700	20.86	20.81
CA_2A-12A	Band 2	20M	1860	18700	1	50	Band 12	10M	734	5060	17.62	17.66
CA_4A-7A	Band 4	20M	1745	20300	1	50	Band 7	20M	2630	2850	19.65	19.59
	Band 4	20M	1745	20300	1	50	Band 5	10M	889	2600	19.68	19.59
CA_4A-5A	Band 5	10M	844	20600	1	25	Band 4	20M	2145	2300	20.79	20.81
	Band 4	20M	1745	20300	1	50	Band 12	10M	741	5130	19.53	19.59
CA_4A-12A	Band 12	10M	711	23130	1	25	Band 4	20M	2145	2300	21.81	21.86
CA_4A-17A	Band 4	20M	1745	20300	1	50	Band 17	10M	741	5800	19.62	19.59
	Band 5	10M	844	20600	1	25	Band 7	20M	2630	2850	20.75	20.81
CA_5A-7A	Band 7	20M	2510	20850	100	0	Band 5	10M	889	2600	16.82	16.86
CA_7A-12A	Band 7	20M	2560	20850	100	0	Band 12	10M	741	5130	16.22	16.26

Report No.:SZEM180100082701

Rev : 01

Page : 131 of 183

8.1.2 Conducted Power of WIFI and BT

		WIFI2.40	G Full Power			
Mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Tune up	Average Power (dBm)	SAR Test
	1	2412		18.5	17.17	NO
802.11b	6	2437	1	18.5	17.16	NO
	11	2462		18.5	17.18	Yes
	1	2412		17	15.96	NO
802.11g	6	2437	6	17	16.05	NO
	11	2462		17	16.07	NO
000 11 =	1	2412		15.5	14.86	NO
802.11n	6	2437	6.5	15.5	14.95	NO
HT20 SISO	11	2462		15.5	15	NO
802 11n	3	2422		15.5	14.73	NO
802.11n HT40 SISO 6		2437	13.5	15.5	14.71	NO
11140 3130	9	2452		15.5	14.35	NO

		WIFI2.4G infrared proxin	nity sensor on Redu	ice power		
Mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Tune up	Average Power (dBm)	SAR Test
	1	2412		14.5	13.65	NO
802.11b	6	2437	1	14.5	13.09	NO
	11	2462		14.5	13.87	Yes
	1	2412		15	14.37	NO
802.11g	6	2437	6	15	14.03	NO
	11	2462		15	14.35	NO
000 11 =	1	2412		14.5	14.31	NO
802.11n HT20 SISO	6	2437	6.5	14.5	14.05	NO
11120 3130	11	2462		14.5	14.3	NO
000 11=	3	2422		14.5	13.84	NO
802.11n HT40 SISO	6	2437	13.5	14.5	13.82	NO
11140 3130	9	2452		14.5	13.4	NO

Table 16: Conducted Power Of WIFI

Note:

- a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
- b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

Report No.:SZEM180100082701

Rev : 01

Page : 132 of 183

1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.

- 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
- c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

	BT			Average Conducted
Modulation	Channel	Frequency(MHz)	Tune up (dBm)	Average Conducted Power(dBm)
	0	2402	11	10.31
GFSK	39	2441	11	10.81
	78	2480	11	10.58
	0	2402	9	8.42
π/4DQPSK	39	2441	9	8.75
	78	2480	9	8.56
	0	2402	9	8.39
8DPSK	39	2441	9	8.71
	78	2480	9	8.54

	BLE			Average Conducted
Modulation	Channel	Frequency(MHz)	Tune up (dBm)	Average Conducted Power(dBm)
	0	2402	6	4.89
GFSK	19	2440	6	5.22
	39	2480	6	5.43

Table 17: Conducted Power Of BT

Report No.:SZEM180100082701

Rev : 01

Page : 133 of 183

8.2 Stand-alone SAR test evaluation

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

Freq.	Frequency (GHz)	Position		rage wer	Test Separation	Calculate Value	Exclusion Threshold	Exclusion	
Dallu	(GHZ)		dBm	mW	(mm)	value	Tillesiloid	(Y/N)	
		Head	15	31.62	0	9.96	3	N	
Wi-Fi	2.48	Body-worn	18.5	70.79	7.43	4.69	3	N	
		Hotspot	18.5	70.79	10	11.15	3	N	
		Head	11	12.59	0	3.97	3	N	
Bluetooth	2.48	Body-worn	11	12.59	15	1.32	3	Υ	
		Hotspot	11	12.59	10	1.98	3	Υ	

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison.

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Report No.:SZEM180100082701

Rev : 01

Page : 134 of 183

8.3 Measurement of SAR Data

8.3.1 SAR Result Of GSM850

				Mair	Antenna T	est data				
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp
					Head Test d	ata				
Left cheek	GSM	251/848.8	1:8.3	0.0954	0.09	32.46	33.5	1.271	0.121	22.1
Left tilted	GSM	251/848.8	1:8.3	0.0825	0.12	32.46	33.5	1.271	0.105	22.1
Right cheek	GSM	251/848.8	1:8.3	0.152	0.09	32.46	33.5	1.271	0.193	22.1
Right tilted	GSM	251/848.8	1:8.3	0.0888	0.15	32.46	33.5	1.271	0.113	22.1
Right cheek	GSM	128/824.2	1:8.3	0.131	0.07	32.42	33.5	1.282	0.168	22.1
Right cheek	GSM	190/836.6	1:8.3	0.158	0.01	32.45	33.5	1.274	0.201	22.1
			Н	ead Test Da	ta at the wor	st case with SIM	2			
Right cheek	GSM	190/836.6	1:8.3	0.156	0.03	32.45	33.5	1.274	0.199	22.1
			Hea	d Test Data	at the worst	case with Battery	y 2#			
Right cheek	GSM	190/836.6	1:8.3	0.138	0.05	32.45	33.5	1.274	0.176	22.1
			Hea	d Test Data	at the worst	case with Battery	y 3#			
Right cheek	GSM	190/836.6	1:8.3	0.143	0.15	32.45	33.5	1.274	0.182	22.1
				Body worn	Test data(Se	eparate 15mm)				
Front side	GSM	251/848.8	1:8.3	0.214	0.05	32.46	33.5	1.271	0.272	22.1
Back side	GSM	251/848.8	1:8.3	0.311	0.07	32.46	33.5	1.271	0.395	22.1
Front side	GPRS 4TS	251/848.8	1:2.075	0.194	-0.08	26.49	27.5	1.262	0.245	22.1
Back side	GPRS 4TS	251/848.8	1:2.075	0.28	-0.02	26.49	27.5	1.262	0.353	22.1
Back side	GSM	128/824.2	1:8.3	0.316	0.01	32.42	33.5	1.282	0.405	22.1
Back side	GSM	190/836.6	1:8.3	0.324	0.04	32.45	33.5	1.274	0.413	22.1
				Body w	orn Test data	a with SIM2				
Back side	GSM	190/836.6	1:8.3	0.312	0.05	32.45	33.5	1.274	0.397	22.1
				Body worr	n Test data w	ith Battery 2#				
Back side	GSM	190/836.6	1:8.3	0.312	0.02	32.45	33.5	1.274	0.397	22.1
				Body worr	n Test data w	rith Battery 3#				
Back side	GSM	190/836.6	1:8.3	0.295	0.03	32.45	33.5	1.274	0.376	22.1
				Hotspot T	est data(Sep	parate 10mm)				
Front side	GPRS 4TS	251/848.8	1:2.075	0.205	0.03	26.49	27.5	1.262	0.259	22.1
Back side	GPRS 4TS	251/848.8	1:2.075	0.295	-0.05	26.49	27.5	1.262	0.372	22.1
Left side	GPRS 4TS	251/848.8	1:2.075	0.142	-0.04	26.49	27.5	1.262	0.179	22.1
Right side	GPRS 4TS	251/848.8	1:2.075	0.192	0.03	26.49	27.5	1.262	0.242	22.1
Bottom side	GPRS 4TS	251/848.8	1:2.075	0.158	0.08	26.49	27.5	1.262	0.199	22.1
Back side	GPRS 4TS	128/824.2	1:2.075	0.295	0.01	26.45	27.5	1.274	0.376	22.1
Back side	GPRS 4TS	190/836.6	1:2.075	0.323	0.06	26.44	27.5	1.276	0.412	22.1
			Hotspo	t Test Data	at the worst	case with SIM2(1	0mm)			
Back side	GPRS 4TS	251/848.8	1:2.075	0.322	0.01	26.44	27.5	1.276	0.411	22.1

Report No.:SZEM180100082701

Rev : 01

Page : 135 of 183

	Hotspot Test Data at the worst case with Battery 2#(10mm)													
Back side GPRS 4TS 251/848.8 1:2.075 0.308 0.04 26.44 27.5 1.276 0.393 22.1														
			Hotspot T	est Data at	the worst cas	se with Battery 3	#(10mm)							
Back side	Back side GPRS 4TS 251/848.8 1:2.075 0.287 -0.01 26.44 27.5 1.276 0.366 22.1													

				Secon	d Antenna 1	Test data				
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp
					Head Test da	ata				
Left cheek	GSM	190/836.6	1:8.3	0.460	-0.02	31.9	33	1.288	0.593	22.1
Left tilted	GSM	190/836.6	1:8.3	0.288	0.02	31.9	33	1.288	0.371	22.1
Right cheek	GSM	190/836.6	1:8.3	0.646	0.02	31.9	33	1.288	0.832	22.1
Right tilted	GSM	190/836.6	1:8.3	0.459	-0.09	31.9	33	1.288	0.591	22.1
Right cheek	GSM	128/824.2	1:8.3	0.683	0.02	31.89	33	1.291	0.882	22.1
Right cheek	GSM	251/848.8	1:8.3	0.654	0.06	31.87	33	1.297	0.848	22.1
			He	ead Test Dat	ta at the wors	st case with SIM2	2			
Right cheek	GSM	128/824.2	1:8.3	0.682	0.01	31.89	33	1.291	0.881	22.1
			Head	d Test Data	at the worst o	case with Battery	2#			
Right cheek	GSM	128/824.2	1:8.3	0.636	0.02	31.89	33	1.291	0.821	22.1
			Head	d Test Data	at the worst o	case with Battery	3#			
Right cheek	GSM	128/824.2	1:8.3	0.62	0.03	31.89	33	1.291	0.801	22.1
				Body worn	Test data(Se	parate 15mm)				
Front side	GSM	190/836.6	1:8.3	0.146	0.00	32.45	33.5	1.274	0.186	22.1
Back side	GSM	190/836.6	1:8.3	0.231	0.03	32.45	33.5	1.274	0.294	22.1
Front side	GPRS 4TS	128/824.2	1:2.075	0.139	0.06	26.49	27.5	1.262	0.175	22.1
Back side	GPRS 4TS	128/824.2	1:2.075	0.223	0.00	26.49	27.5	1.262	0.281	22.1
Back side	GSM	128/824.2	1:8.3	0.234	0.01	32.45	33.5	1.274	0.298	22.1
Back side	GSM	251/848.8	1:8.3	0.213	0.04	32.45	33.5	1.274	0.271	22.1
				Body wo	rn Test data	with SIM2				
Back side	GSM	128/824.2	1:8.3	0.233	-0.05	32.45	33.5	1.274	0.297	22.1
				Body worn	Test data w	ith Battery 2#				
Back side	GSM	128/824.2	1:8.3	0.189	0.05	32.45	33.5	1.274	0.241	22.1
				Body worn	Test data w	ith Battery 3#				
Back side	GSM	128/824.2	1:8.3	0.19	0.02	32.45	33.5	1.274	0.242	22.1
				Hotspot Te	est data(Sep	arate 10mm)				
Front side	GPRS 4TS	190/836.6	1:2.075	0.129	0.0727	25.99	27	1.262	0.163	22.1
Back side	GPRS 4TS	190/836.6	1:2.075	0.172	0.02	25.99	27	1.262	0.217	22.1
Left side	GPRS 4TS	190/836.6	1:2.075	0.202	0.04	25.99	27	1.262	0.255	22.1
Right side	GPRS 4TS	190/836.6	1:2.075	0.113	0.13	25.99	27	1.262	0.143	22.1
Top side	GPRS 4TS	190/836.6	1:2.075	0.0761	0.02	25.99	27	1.262	0.096	22.1
Left side	GPRS 4TS	128/824.2	1:2.075	0.259	0.07	25.98	27	1.265	0.328	22.1
Left side	GPRS 4TS	251/848.8	1:2.075	0.211	0.04	25.95	27	1.274	0.269	22.1
			Hotspot	Test Data a	at the worst c	ase with SIM2(10	Omm)			
Left side	GPRS 4TS	128/824.2	1:2.075	0.258	0.06	25.98	27	1.265	0.326	22.1
			Hotspot To	est Data at t	he worst cas	e with Battery 2#	(10mm)			
Left side	GPRS 4TS	128/824.2	1:2.075	0.241	-0.02	25.98	27	1.265	0.305	22.1
		-	Hotspot To	est Data at t	he worst cas	e with Battery 3#	(10mm)			
Left side	GPRS 4TS	128/824.2	1:2.075	0.242	0.03	25.98	27	1.265	0.306	22.1

Table 18: SAR of GSM850 for Head and Body.

Report No.:SZEM180100082701

Rev : 01

Page : 136 of 183

Note:

1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B

2) Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.:SZEM180100082701

Rev : 01

Page : 137 of 183

8.3.2 SAR Result Of GSM1900

				Main	Antenna Te	est data				
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp
					Head Test d	ata				
Left cheek	GSM	512/1850.2	1:8.3	0.0962	-0.08	29.73	30.5	1.194	0.115	22.1
Left tilted	GSM	512/1850.2	1:8.3	0.0462	0.09	29.73	30.5	1.194	0.055	22.1
Right cheek	GSM	512/1850.2	1:8.3	0.0373	-0.04	29.73	30.5	1.194	0.045	22.1
Right tilted	GSM	512/1850.2	1:8.3	0.0301	0.14	29.73	30.5	1.194	0.036	22.1
Left cheek	GSM	661/1880	1:8.3	0.0774	0.07	29.63	30.5	1.194	0.092	22.1
Left cheek	GSM	810/1909.8	1:8.3	0.0787	-0.03	29.56	30.5	1.194	0.094	22.1
			He	ead Test Dat	ta at the wor	st case with SIM	2	•		
Left cheek	GSM	512/1850.2	1:8.3	0.0824	0.05	29.73	30.5	1.194	0.098	22.1
			Head	Test Data	at the worst	case with Battery	2#			
Left cheek	GSM	512/1850.2	1:8.3	0.0826	-0.2	29.73	30.5	1.194	0.099	22.1
			Head	Test Data	at the worst	case with Battery	3#			
Left cheek	GSM	512/1850.2	1:8.3	0.0665	0.1	29.73	30.5	1.194	0.079	22.1
				Body worn	Test data(Se	parate 15mm)				
Front side	GSM	512/1850.2	1:8.3	0.249	0.14	29.73	30.5	1.194	0.297	22.1
Back side	GSM	512/1850.2	1:8.3	0.278	-0.09	29.73	30.5	1.194	0.332	22.1
Front side	GPRS 4TS	512/1850.2	1:2.075	0.284	0.04	23.72	24.5	1.197	0.340	22.1
Back side	GPRS 4TS	512/1850.2	1:2.075	0.306	0.09	23.72	24.5	1.197	0.366	22.1
Back side	GPRS 4TS	661/1880	1:2.075	0.315	0.09	23.64	24.5	1.219	0.384	22.1
Back side	GPRS 4TS	810/1909.8	1:2.075	0.322	0.05	23.54	24.5	1.247	0.402	22.1
			Body	worn Test [Data at the w	orst case with SI	M2			
Back side	GPRS 4TS	810/1909.8	1:2.075	0.32	0.02	23.54	24.5	1.247	0.399	22.1
			Body w	orn Test Da	ta at the wor	st case with Batt	ery 2#			
Back side	GPRS 4TS	810/1909.8	1:2.075	0.211	0.02	23.54	24.5	1.247	0.263	22.1
			Body w	orn Test Da	ta at the wor	st case with Batt	ery 3#			
Back side	GPRS 4TS	810/1909.8	1:2.075	0.204	0.08	23.54	24.5	1.247	0.254	22.1
				Hotspot Te	est data(Sep	arate 10mm)				
Front side	GPRS 4TS	512/1850.2	1:2.075	0.293	0.07	21.27	22	1.183	0.347	22.1
Back side	GPRS 4TS	512/1850.2	1:2.075	0.328	0.03	21.27	22	1.183	0.388	22.1
Left side	GPRS 4TS	512/1850.2	1:2.075	0.0677	0.17	21.27	22	1.183	0.080	22.1
Right side	GPRS 4TS	512/1850.2	1:2.075	0.0194	0.09	21.27	22	1.183	0.023	22.1
Bottom side	GPRS 4TS	512/1850.2	1:2.075	0.579	0.02	21.27	22	1.183	0.685	22.1
Bottom side	GPRS 4TS	661/1880	1:2.075	0.484	0	21.09	22	1.233	0.597	22.1
Bottom side	GPRS 4TS	810/1909.8	1:2.075	0.478	-0.02	21.07	22	1.239	0.592	22.1

Report No.:SZEM180100082701

Rev : 01

Page : 138 of 183

	Hotspot Test Data at the worst case with SIM2(10mm)											
Bottom side	Bottom side GPRS 4TS 512/1850.2 1:2.075 0.577 0.01 21.27 22 1.183 0.683 22.1											
	Hotspot Test Data at the worst case with Battery 2#(10mm)											
Bottom side	GPRS 4TS	512/1850.2	1:2.075	0.559	0	21.27	22	1.183	0.661	22.1		
	Hotspot Test Data at the worst case with Battery 3#(10mm)											
Bottom side												

Second Antenna Test data											
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp	
					Head Test d	ata					
Left cheek	GSM	512/1850.2	1:8.3	0.162	-0.01	28.63	29.5	1.222	0.198	22.1	
Left tilted	GSM	512/1850.2	1:8.3	0.188	0.02	28.63	29.5	1.222	0.230	22.1	
Right cheek	GSM	512/1850.2	1:8.3	0.517	-0.01	28.63	29.5	1.222	0.632	22.1	
Right tilted	GSM	512/1850.2	1:8.3	0.513	-0.05	28.63	29.5	1.222	0.627	22.1	
Right cheek	GSM	661/1880	1:8.3	0.469	-0.06	28.54	29.5	1.247	0.585	22.1	
Right cheek	GSM	810/1909.8	1:8.3	0.486	-0.03	28.44	29.5	1.276	0.620	22.1	
			Не	ead Test Dat	a at the wor	st case with SIM	2				
Right cheek	GSM	512/1850.2	1:8.3	0.511	0.03	28.63	29.5	1.222	0.624	22.1	
			Head	d Test Data a	at the worst	case with Battery	2#				
Right cheek	GSM	512/1850.2	1:8.3	0.471	0.02	28.63	29.5	1.222	0.575	22.1	
			Head	d Test Data a	at the worst	case with Battery	3#				
Right cheek	GSM	512/1850.2	1:8.3	0.51	0.09	28.63	29.5	1.222	0.623	22.1	
				Body worn ⁻	Гest data(Se	parate 15mm)					
Front side	GSM	512/1850.2	1:8.3	0.0378	0.12	29.63	30.5	1.222	0.046	22.1	
Back side	GSM	512/1850.2	1:8.3	0.0575	0.04	29.63	30.5	1.222	0.070	22.1	
Front side	GPRS 4TS	512/1850.2	1:2.075	0.0389	-0.05	23.71	24.5	1.199	0.047	22.1	
Back side	GPRS 4TS	512/1850.2	1:2.075	0.0698	0.03	23.71	24.5	1.199	0.084	22.1	
Back side	GPRS 4TS	661/1880	1:2.075	0.0397	0.04	34.56	24.5	0.099	0.004	22.1	
Back side	GPRS 4TS	810/1909.8	1:2.075	0.035	-0.02	23.48	24.5	1.265	0.044	22.1	
			Body	worn Test D	ata at the w	orst case with SI	M2				
Back side	GPRS 4TS	512/1850.2	1:2.075	0.0559	0.09	23.71	24.5	1.199	0.067	22.1	
			Body w	orn Test Dat	a at the wor	st case with Batt	ery 2#				
Back side	GPRS 4TS	512/1850.2	1:2.075	0.0436	0.07	23.71	24.5	1.199	0.052	22.1	
			Body w	orn Test Dat	at the wor	st case with Batt	ery 3#				
Back side	GPRS 4TS	512/1850.2	1:2.075	0.0518	0.19	23.71	24.5	1.199	0.062	22.1	
				Hotspot Te	est data(Sep	arate 10mm)					
Front side	GPRS 4TS	512/1850.2	1:2.075	0.0721	0.08	22.69	23.5	1.205	0.087	22.1	
Back side	GPRS 4TS	512/1850.2	1:2.075	0.111	0.18	22.69	23.5	1.205	0.134	22.1	
Left side	GPRS 4TS	512/1850.2	1:2.075	0.108	0.19	22.69	23.5	1.205	0.130	22.1	
Right side	GPRS 4TS	512/1850.2	1:2.075	0.0212	0.02	22.69	23.5	1.205	0.026	22.1	

Report No.:SZEM180100082701

Rev : 01

Page : 139 of 183

		_										
Top side	GPRS 4TS	512/1850.2	1:2.075	0.0992	0.03	22.69	23.5	1.205	0.120	22.1		
Back side	GPRS 4TS	661/1880	1:2.075	0.0895	0.04	22.57	23.5	1.239	0.111	22.1		
Back side	GPRS 4TS	810/1909.8	1:2.075	0.0828	-0.01	22.49	23.5	1.262	0.104	22.1		
Hotspot Test Data at the worst case with SIM2												
Back side	GPRS 4TS	512/1850.2	1:2.075	0.105	-0.11	22.69	23.5	1.205	0.127	22.1		
			Hotspo	ot Test Data	at the worst	case with Batter	y 2#					
Back side	GPRS 4TS	512/1850.2	1:2.075	0.0987	0.04	22.69	23.5	1.205	0.119	22.1		
	Hotspot Test Data at the worst case with Battery 3#											
Back side	GPRS 4TS	512/1850.2	1:2.075	0.101	-0.11	22.69	23.5	1.205	0.122	22.1		

Table 19: SAR of GSM1900 for Head and Body.

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.:SZEM180100082701

Rev : 01

Page : 140 of 183

8.3.3 SAR Result Of WCDMA Band II

	Main Antenna Test data											
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp		
		•			Head Test	data		•				
Left cheek	RMC	9538/1907.6	1:1	0.172	0.01	22.76	24	1.330	0.229	22.3		
Left tilted	RMC	9538/1907.6	1:1	0.101	-0.01	22.76	24	1.330	0.134	22.3		
Right cheek	RMC	9538/1907.6	1:1	0.0577	0.02	22.76	24	1.330	0.077	22.3		
Right tilted	RMC	9538/1907.6	1:1	0.0737	0.08	22.76	24	1.330	0.098	22.3		
Left cheek	RMC	9262/1852.4	1:1	0.0563	0.01	22.66	24	1.361	0.077	22.3		
Left cheek	RMC	9400/1880	1:1	0.119	0.01	22.72	24	1.343	0.160	22.3		
•		•	ŀ	Head Test D	ata at the wo	rst case with SIN	12	•				
Left cheek	RMC	9538/1907.6	1:1	0.109	0.06	22.76	24	1.330	0.145	22.3		
•		•	He	ad Test Data	at the worst	case with Batter	y 2#	•				
Left cheek	RMC	9538/1907.6	1:1	0.102	-0.09	22.76	24	1.330	0.136	22.3		
			He	ad Test Data	at the worst	case with Batter	y 3#					
Left cheek	RMC	9538/1907.6	1:1	0.0791	-0.05	22.76	24	1.330	0.105	22.3		
				Body worn	Test data(S	eparate 15mm)						
Front side	RMC	9538/1907.6	1:1	0.486	0.18	22.76	24	1.330	0.647	22.3		
Back side	RMC	9538/1907.6	1:1	0.522	0.17	22.76	24	1.330	0.694	22.3		
Back side	RMC	9262/1852.4	1:1	0.605	-0.19	22.66	24	1.361	0.824	22.3		
Back side	RMC	9400/1880	1:1	0.574	0.18	22.72	24	1.343	0.771	22.3		
			Boo	ly worn Test	Data at the	worst case with S	SIM2					
Back side	RMC	9262/1852.4	1:1	0.604	-0.08	22.66	24	1.361	0.822	22.3		
			Body	worn Test Da	ata at the wo	rst case with Bat	tery 2#					
Back side	RMC	9262/1852.4	1:1	0.53	0.11	22.66	24	1.361	0.722	22.3		
			Body	worn Test Da	ata at the wo	rst case with Bat	tery 3#					
Back side	RMC	9262/1852.4	1:1	0.499	0.04	22.66	24	1.361	0.679	22.3		
				Hotspot ⁻	Γest data(Se	parate 10mm)						
Front side	RMC	9538/1907.6	1:1	0.301	0.08	17.34	18.5	1.306	0.393	22.3		
Back side	RMC	9538/1907.6	1:1	0.319	0.07	17.34	18.5	1.306	0.417	22.3		
Left side	RMC	9538/1907.6	1:1	0.081	0.09	17.34	18.5	1.306	0.106	22.3		
Right side	RMC	9538/1907.6	1:1	0.0161	0.13	17.34	18.5	1.306	0.021	22.3		
Bottom side	RMC	9538/1907.6	1:1	0.593	0.01	17.34	18.5	1.306	0.775	22.3		
Bottom side	RMC	9262/1852.4	1:1	0.582	0.14	17.28	18.5	1.324	0.771	22.3		
Bottom side	RMC	9400/1880	1:1	0.596	0.13	17.24	18.5	1.337	0.797	22.3		
		•	Hotsp	ot Test Data	at the worst	case with SIM2(10mm)	-				
Bottom side	RMC	9400/1880	1:1	0.595	0.15	17.24	18.5	1.337	0.795	22.1		
		•	Hotspot	Test Data at	the worst ca	se with Battery 2	#(10mm)	-				
Bottom side	RMC	9400/1880	1:1	0.544	0.01	17.24	18.5	1.337	0.727	22.1		
		•	Hotspot	Test Data at	the worst ca	se with Battery 3	#(10mm)	•				

Report No.:SZEM180100082701

Rev : 01

Page : 141 of 183

Bottom side RMC 9400/1880 1:1 0.547 0.09 17.24 18.5 1.337 0.731 22.1

	Second Antenna Test data											
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- q	Power Drift(dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp		
		•		<u> </u>	Head Test	data						
Left cheek	RMC	9538/1907.6	1:1	0.156	0.1	17.46	18.5	1.271	0.198	22.3		
Left tilted	RMC	9538/1907.6	1:1	0.172	0.12	17.46	18.5	1.271	0.219	22.3		
Right cheek	RMC	9538/1907.6	1:1	0.407	-0.01	17.46	18.5	1.271	0.517	22.3		
Right tilted	RMC	9538/1907.6	1:1	0.322	0.05	17.46	18.5	1.271	0.409	22.3		
Right cheek	RMC	9262/1852.4	1:1	0.331	0.07	17.42	18.5	1.282	0.424	22.3		
Right cheek	RMC	9400/1880	1:1	0.364	0	17.45	18.5	1.274	0.464	22.3		
	l		I	Head Test D	ata at the wo	rst case with SIM	12	I.				
Right cheek	RMC	9538/1907.6	1:1	0.405	0.02	17.46	18.5	1.271	0.515	22.3		
	I .		He	ad Test Data	a at the worst	case with Batter	y 2#	I				
Right cheek	RMC	9538/1907.6	1:1	0.342	0.01	17.46	18.5	1.271	0.435	22.3		
	I .		He	ad Test Data	a at the worst	case with Batter	y 3#	I				
Right cheek	RMC	9538/1907.6	1:1	0.356	-0.04	17.46	18.5	1.271	0.452	22.3		
	I		l .	Body wor	n Test data(S	eparate 15mm)			1			
Front side	RMC	9538/1907.6	1:1	0.082	0.15	22.81	24	1.315	0.108	22.3		
Back side	RMC	9538/1907.6	1:1	0.117	0.03	22.81	24	1.315	0.154	22.3		
Back side	RMC	9262/1852.4	1:1	0.1	0.06	22.67	24	1.358	0.136	22.3		
Back side	RMC	9400/1880	1:1	0.0987	0.09	22.75	24	1.334	0.132	22.3		
	l		Во	dy worn Test	Data at the	worst case with S	SIM2	I.				
Back side	RMC	9538/1907.6	1:1	0.104	0.06	22.81	24	1.315	0.137	22.3		
	I .		Body	worn Test D	ata at the wo	rst case with Bat	tery 2#	I				
Back side	RMC	9538/1907.6	1:1	0.0929	0.19	22.81	24	1.315	0.122	22.3		
	I		Body	worn Test D	ata at the wo	rst case with Bat	tery 3#		1			
Back side	RMC	9538/1907.6	1:1	0.0865	0.01	22.81	24	1.315	0.114	22.3		
	Į.	ı		Hotspot	L Test data(Se	parate 10mm)						
Front side	RMC	9538/1907.6	1:1	0.0558	0.04	17.32	18.5	1.312	0.073	22.3		
Back side	RMC	9538/1907.6	1:1	0.0784	0.01	17.32	18.5	1.312	0.103	22.3		
Left side	RMC	9538/1907.6	1:1	0.0581	0.07	17.32	18.5	1.312	0.076	22.3		
Right side	RMC	9538/1907.6	1:1	0.0175	0.09	17.32	18.5	1.312	0.023	22.3		
Top side	RMC	9538/1907.6	1:1	0.0423	0.06	17.32	18.5	1.312	0.056	22.3		
Back side	RMC	9262/1852.4	1:1	0.0747	0.07	17.32	18.5	1.312	0.098	22.3		
Back side	RMC	9400/1880	1:1	0.0794	0.04	17.31	18.5	1.315	0.104	22.3		
			Hotsp	oot Test Data	at the worst	case with SIM2(10mm)					

Report No.:SZEM180100082701

Rev : 01

Page : 142 of 183

Back side	RMC	9400/1880	1:1	0.0788	0.05	17.31	18.5	1.315	0.104	22.3	
	Hotspot Test Data at the worst case with Battery 2#(10mm)										
Back side	RMC	9400/1880	1:1	0.0686	0.01	17.31	18.5	1.315	0.090	22.3	
	Hotspot Test Data at the worst case with Battery 3#(10mm)										
Back side	RMC	9400/1880	1:1	0.0676	0.05	17.31	18.5	1.315	0.089	22.3	

Table 20: SAR of WCDMA Band II for Head and Body.

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph Results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.:SZEM180100082701

Rev : 01

Page : 143 of 183

8.3.4 SAR Result Of WCDMA Band IV

				,	Ant1 Test da	ta				
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp
				ŀ	Head Test da	ta				
Left cheek	RMC	1312/1712.4	1:1	0.135	-0.09	23.23	24	1.194	0.161	22.3
Left tilted	RMC	1312/1712.4	1:1	0.0541	-0.02	23.23	24	1.194	0.065	22.3
Right cheek	RMC	1312/1712.4	1:1	0.0619	0.01	23.23	24	1.194	0.074	22.3
Right tilted	RMC	1312/1712.4	1:1	0.0602	-0.18	23.23	24	1.194	0.072	22.3
Left cheek	RMC	1412/1732.4	1:1	0.146	0.11	23.14	24	1.219	0.178	22.3
Left cheek	RMC	1513/1752.6	1:1	0.135	0.08	23.22	24	1.197	0.162	22.3
		•	Не	ead Test Dat	a at the wors	t case with SIM2			1	
Left cheek	RMC	1412/1732.4	1:1	0.14	0.03	23.14	24	1.219	0.171	22.3
			Head	d Test Data a	at the worst c	ase with Battery	2#			
Left cheek	RMC	1412/1732.4	1:1	0.137	0.03	23.14	24	1.219	0.167	22.3
			Head	d Test Data a	at the worst c	ase with Battery	3#			
Left cheek	RMC	1412/1732.4	1:1	0.107	0.09	23.14	24	1.219	0.13	22.3
				Body worn 7	Test data(Ser	parate 15mm)			1	
Front side	RMC	1312/1712.4	1:1	0.463	0.03	23.23	24	1.194	0.553	22.3
Back side	RMC	1312/1712.4	1:1	0.523	0.07	23.23	24	1.194	0.624	22.3
Back side	RMC	1412/1732.4	1:1	0.539	-0.03	23.14	24	1.219	0.657	22.3
Back side	RMC	1513/1752.6	1:1	0.556	-0.16	23.22	24	1.197	0.665	22.3
			Body	wornTest D	ata at the wo	rst case with SIM	12			
Back side	RMC	1513/1752.6	1:1	0.553	-0.07	23.22	24	1.197	0.662	22.3
			Body w	orn Test Dat	a at the wors	t case with Batter	ry 2#			
Back side	RMC	1513/1752.6	1:1	0.552	0	23.22	24	1.197	0.661	22.3
			Body w	orn Test Dat	a at the wors	t case with Batter	ry 3#			
Back side	RMC	1513/1752.6	1:1	0.563	-0.01	23.22	24	1.197	0.674	22.3
		l	I	Hotspot Te	est data(Sepa	arate 10mm)				
Front side	RMC	1513/1752.6	1:1	0.358	0.05	18.78	19.5	1.180	0.423	22.3
Back side	RMC	1513/1752.6	1:1	0.395	0.04	18.78	19.5	1.180	0.466	22.3
Left side	RMC	1513/1752.6	1:1	0.0464	0.1	18.78	19.5	1.180	0.055	22.3
Right side	RMC	1513/1752.6	1:1	0.046	0.06	18.78	19.5	1.180	0.054	22.3
Bottom side	RMC	1513/1752.6	1:1	0.668	0.06	18.78	19.5	1.180	0.788	22.3
Bottom side	RMC	1312/1712.4	1:1	0.618	-0.08	18.7	19.5	1.202	0.743	22.3
Bottom side	RMC	1412/1732.4	1:1	0.658	0.04	18.73	19.5	1.194	0.786	22.3
			Hot	spot Test Da	ta at the wor	st case with SIM2	2			
Bottom side	RMC	1513/1752.6	1:1	0.663	0.03	18.78	19.5	1.180	0.783	22.3
		T	Hotsp	ot Test Data		case with Battery			1	
Bottom side	RMC	1513/1752.6	1:1	0.664	0.03	18.78	19.5	1.180	0.784	22.3

Report No.:SZEM180100082701

Rev : 01

Page : 144 of 183

Hotspot Test Data at the worst case with Battery 3#											
Bottom side	RMC	1513/1752.6	1:1	0.639	0.04	18.78	19.5	1.180	0.754	22.3	

				Second	I Antenna Te	est data				
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- q	Power Drift(dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp
		•		- <u></u>	lead Test dat	ta				
Left cheek	RMC	1513/1752.6	1:1	0.126	0.04	19.25	20	1.189	0.150	22.3
Left tilted	RMC	1513/1752.6	1:1	0.145	0.05	19.25	20	1.189	0.172	22.3
Right cheek	RMC	1513/1752.6	1:1	0.507	0.08	19.25	20	1.189	0.603	22.3
Right tilted	RMC	1513/1752.6	1:1	0.493	0.05	19.25	20	1.189	0.586	22.3
Right cheek	RMC	1312/1712.4	1:1	0.522	0.02	19.18	20	1.208	0.630	22.3
Right cheek	RMC	1412/1732.4	1:1	0.513	0.05	19.22	20	1.197	0.614	22.3
			He	ad Test Data	a at the worst	case with SIM2				
Right cheek	RMC	1312/1712.4	1:1	0.519	0.02	19.18	20	1.208	0.627	22.3
			Head	Test Data a	t the worst ca	ase with Battery	2#			
Right cheek	RMC	1312/1712.4	1:1	0.485	-0.01	19.18	20	1.208	0.586	22.3
			Head	Test Data a	t the worst ca	ase with Battery	3#			
Right cheek	RMC	1312/1712.4	1:1	0.411	-0.11	19.18	20	1.208	0.496	22.3
				Body worn T	est data(Sep	arate 15mm)				
Front side	RMC	1513/1752.6	1:1	0.0849	0.01	23.23	24	1.194	0.101	22.3
Back side	RMC	1513/1752.6	1:1	0.106	0.08	23.23	24	1.194	0.127	22.3
Back side	RMC	1312/1712.4	1:1	0.115	-0.03	23.21	24	1.199	0.138	22.3
Back side	RMC	1412/1732.4	1:1	0.111	0	23.17	24	1.211	0.134	22.3
		1	Body	wornTest Da	ata at the wo	rst case with SIM	12		Т	ı
Back side	RMC	1312/1712.4	1:1	0.107	0.2	23.21	24	1.199	0.128	22.3
			Body wo	rn Test Data	at the worst	case with Batter	y 2#			
Back side	RMC	1312/1712.4	1:1	0.106	0.03	23.21	24	1.199	0.127	22.3
		1	Body wo	rn Test Data	at the worst	case with Batter	y 3#			
Back side	RMC	1312/1712.4	1:1	0.108	0.17	23.21	24	1.199	0.130	22.3
		Ţ	ı	Hotspot Te	st data(Sepa	rate 10mm)			T	ı
Front side	RMC	1513/1752.6	1:1	0.0564	0.02	19.2	20	1.202	0.068	22.3
Back side	RMC	1513/1752.6	1:1	0.0794	0.08	19.2	20	1.202	0.095	22.3
Left side	RMC	1513/1752.6	1:1	0.0738	0.04	19.2	20	1.202	0.089	22.3
Right side	RMC	1513/1752.6	1:1	0.0168	0.03	19.2	20	1.202	0.020	22.3
Top side	RMC	1513/1752.6	1:1	0.106	0.12	19.2	20	1.202	0.127	22.3
Top side	RMC	1312/1712.4	1:1	0.14	0.18	19.09	20	1.233	0.173	22.3
Top side	RMC	1412/1732.4	1:1	0.133	0.08	19.15	20	1.216	0.162	22.3
			Hots	pot Test Dat	ta at the wors	st case with SIM2	2			
Top side	RMC	1312/1712.4	1:1	0.137	0.06	19.09	20	1.233	0.169	22.3

Report No.:SZEM180100082701

Rev : 01

Page : 145 of 183

	Hotspot Test Data at the worst case with Battery 2#													
Top side RMC 1312/1712.4 1:1 0.132 0.19 19.09 20 1.233 0.163 22.3														
	Hotspot Test Data at the worst case with Battery 3#													
Top side	Top side RMC 1312/1712.4 1:1 0.131 0.18 19.09 20 1.233 0.162 22.3													

Table 21: SAR of WCDMA Band IV for Head and Body.

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph Results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.:SZEM180100082701

Rev : 01

Page : 146 of 183

8.3.5 SAR Result Of WCDMA Band V

				Mai	n Antenna 1	Test data				
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp
			1		Head Test		T	T		
Left cheek	RMC	4132/826.4	1:1	0.106	-0.01	23.11	24.5	1.377	0.146	22.3
Left tilted	RMC	4132/826.4	1:1	0.0897	-0.08	23.11	24.5	1.377	0.124	22.3
Right cheek	RMC	4132/826.4	1:1	0.173	0.03	23.11	24.5	1.377	0.238	22.3
Right tilted	RMC	4132/826.4	1:1	0.099	-0.07	23.11	24.5	1.377	0.136	22.3
Right cheek	RMC	4233/846.6	1:1	0.177	0.04	22.96	24.5	1.426	0.252	22.3
Right cheek	RMC	4182/836.4	1:1	0.195	-0.08	23.06	24.5	1.393	0.272	22.3
			I	Head Test D	ata at the wo	rst case with SIN	12			
Right cheek	RMC	4182/836.4	1:1	0.19	0.01	23.06	24.5	1.393	0.265	22.3
			He	ad Test Data	a at the worst	t case with Batter	ry 2#			
Right cheek	RMC	4182/836.4	1:1	0.157	0.12	23.06	24.5	1.393	0.219	22.3
			He	ad Test Data	a at the worst	t case with Batter	y 3#			
Right cheek	RMC	4182/836.4	1:1	0.152	0.09	23.06	24.5	1.393	0.212	22.3
				Body worr	Test data(S	eparate 15mm)				
Front side	RMC	4132/826.4	1:1	0.191	-0.16	23.11	24.5	1.377	0.263	22.3
Back side	RMC	4132/826.4	1:1	0.274	0.05	23.11	24.5	1.377	0.377	22.3
Back side	RMC	4182/836.4	1:1	0.31	0	23.06	24.5	1.393	0.432	22.3
Back side	RMC	4233/846.6	1:1	0.282	0.06	22.96	24.5	1.426	0.402	22.3
			Boo			worst case with S		I		
Back side	RMC	4182/836.4	1:1	0.3	0.03	23.06	24.5	1.393	0.418	22.3
					ı	rst case with Bat				
Back side	RMC	4182/836.4	1:1	0.309	0.04	23.06	24.5	1.393	0.430	22.3
Back side	RMC	4182/836.4	1:1	0.275	-0.07	rst case with Bat 23.06	24.5	1.393	0.383	22.3
Dack side	TilVIO	4102/000.4	1.1				24.5	1.090	0.505	
Format alala	DMO	4400/000 4	4.4		1	parate 10mm)	04.5	4 077	0.474	00.0
Front side	RMC	4132/826.4	1:1	0.124	0.07	23.11	24.5	1.377	0.171	22.3
Back side	RMC	4132/826.4	1:1	0.298	0.03	23.11	24.5	1.377	0.410	22.3
Left side	RMC	4132/826.4	1:1	0.169	-0.01	23.11	24.5	1.377	0.233	22.3
Right side	RMC	4132/826.4	1:1	0.285	0.02	23.11	24.5	1.377	0.393	22.3
Bottom side	RMC	4132/826.4	1:1	0.0839	0.08	23.11	24.5	1.377	0.116	22.3
Back side	RMC	4182/836.4	1:1	0.358	0.03	23.06	24.5	1.393	0.499	22.3
Back side	RMC	4233/846.6	1:1	0.323	-0.08	22.96	24.5	1.426	0.460	22.3
			Ho		ı	orst case with SI	ı	T		
Back side	RMC	4182/836.4	1:1	0.355	0.01	23.06	24.5	1.393	0.495	22.3
			Hots	pot Test Dat	a at the wors	st case with Batte	ery 2#			
Back side	RMC	4182/836.4	1:1	0.322	-0.1	23.06	24.5	1.393	0.449	22.3
			Hots	pot Test Dat	a at the wors	st case with Batte	ery 3#			
Back side	RMC	4182/836.4	1:1	0.321	-0.12	23.06	24.5	1.393	0.447	22.3

Report No.:SZEM180100082701

Rev : 01

Page : 147 of 183

	Second Antenna Test data Test Test Duty SAR Rever Conducted Tune up Scaled Scaled Liquid												
Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp			
					Head Test d	ata							
Left cheek	RMC	4132/826.4	1:1	0.369	0.07	20.71	22	1.346	0.497	22.3			
Left tilted	RMC	4132/826.4	1:1	0.252	-0.03	20.71	22	1.346	0.339	22.3			
Right cheek	RMC	4132/826.4	1:1	0.486	0.09	20.71	22	1.346	0.654	22.3			
Right tilted	RMC	4132/826.4	1:1	0.356	-0.04	20.71	22	1.346	0.479	22.3			
Right cheek	RMC	4182/836.6	1:1	0.489	0.03	20.6	22	1.380	0.675	22.3			
Right cheek	RMC	4233/846.6	1:1	0.466	-0.06	20.52	22	1.406	0.655	22.3			
				ead Test Da	ta at the wor	st case with SIM	2						
Right cheek	RMC	4182/836.6	1:1	0.466	0.07	20.6	22	1.380	0.643	22.3			
ļ		1				case with Battery		ı	T				
Right cheek	RMC	4182/836.6	1:1	0.394	-0.06	20.6	22	1.380	0.544	22.3			
Dialet also als	DMO	4400/000 0				case with Battery		1 000	0.400	00.0			
Right cheek	RMC	4182/836.6	1:1	0.357	0.18	20.6	22	1.380	0.493	22.3			
Front oids	DMC	4100/006 4	1.1			eparate 15mm)	04.5	1 201	0.140	20.0			
Front side	RMC	4132/826.4	1:1	0.104	-0.02	23.16	24.5	1.361	0.142	22.3			
Back side	RMC	4132/826.4	1:1	0.135	0.04	23.16	24.5	1.361	0.184	22.3			
Back side	RMC	4182/836.4	1:1	0.182	0.08	23.09	24.5	1.384	0.252	22.3			
Back side	RMC	4233/846.6	1:1	0.224	0.03	23	24.5	1.413	0.316	22.3			
 		1,000/0400				orst case with SI	I						
Back side	RMC	4233/846.6	1:1	0.196	0.05	23	24.5	1.413	0.277	22.3			
De de d'ala	DMO	4000/040.0				st case with Batte		4 440	0.040	00.0			
Back side	RMC	4233/846.6	1:1	0.155	0.02	23	24.5	1.413	0.219	22.3			
Back side	RMC	4233/846.6	1:1	0.167	0.12	st case with Batte	24.5	1.413	0.236	22.3			
Dack Side	HIVIO	4233/040.0	1.1				24.3	1.413	0.230	22.3			
Fueret elele	DMC	4100/000 4	4.4	1	ı	arate 10mm)	00	1.071	0.105	00.0			
Front side	RMC	4132/826.4	1:1	0.0985	0.14	20.63	22	1.371	0.135	22.3			
Back side	RMC	4132/826.4	1:1	0.131	0.04	20.63	22	1.371	0.180	22.3			
Left side	RMC	4132/826.4	1:1	0.108	0.08	20.63	22	1.371	0.148	22.3			
Right side	RMC	4132/826.4	1:1	0.0403	0.13	20.63	22	1.371	0.055	22.3			
Top side	RMC	4132/826.4	1:1	0.056	0.2	20.63	22	1.371	0.077	22.3			
Back side	RMC	4182/836.4	1:1	0.14	0.08	20.57	22	1.390	0.195	22.3			
Back side	RMC	4233/846.6	1:1	0.117	0.01	20.48	22	1.419	0.166	22.3			
			Ho	tspot Test D	ata at the wo	rst case with SIM	12						
Back side	RMC	4182/836.4	1:1	0.139	0.08	20.57	22	1.390	0.193	22.3			
			Hotsp	oot Test Data	at the worst	case with Batter	y 2#						
Back side	RMC	4182/836.4	1:1	0.124	-0.05	20.57	22	1.390	0.172	22.3			
		1	Hotsp	oot Test Data	at the worst	case with Batter	y 3#	1	1	ı			
Back side	RMC	4182/836.4	1:1	0.138	0.05	20.57	22	1.390	0.192	22.3			

SAR of WCDMA Band V for Head and Body.

Report No.:SZEM180100082701

Rev : 01

Page : 148 of 183

Note:

1) The maximum Scaled SAR value is marked in bold. Graph Results refer to Appendix B

2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.:SZEM180100082701

Rev : 01

Page : 149 of 183

8.3.6 SAR Result Of LTE Band 2

	Main Antenna Test data												
Test position	BW.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp.		
		•			Head Tes	t data(1RB_	50 offset)						
Left cheek	20	QPSK	19100/1900	1:1	0.119	0.09	22.55	23	1.109	0.132	22.3		
Left tilted	20	QPSK	19100/1900	1:1	0.0771	0.15	22.55	23	1.109	0.086	22.3		
Right cheek	20	QPSK	19100/1900	1:1	0.0706	0.09	22.55	23	1.109	0.078	22.3		
Right tilted	20	QPSK	19100/1900	1:1	0.0527	0.04	22.55	23	1.109	0.058	22.3		
Left cheek	20	QPSK	18700/1860	1:1	0.14	0.01	22.55	23	1.109	0.155	22.3		
Left cheek	20	QPSK	18900/1880	1:1	0.113	0.34	22.55	23	1.109	0.125	22.3		
					Н	ead Test da	ta(50%RB_25 of	ffset)					
Left cheek	20	QPSK	19100/1900	1:1	0.0915	-0.04	21.3	22	1.175	0.108	22.3		
Left tilted	20	QPSK	19100/1900	1:1	0.0594	-0.06	21.3	22	1.175	0.070	22.3		
Right cheek	20	QPSK	19100/1900	1:1	0.0538	-0.03	21.3	22	1.175	0.063	22.3		
Right tilted	20	QPSK	19100/1900	1:1	0.0419	-0.02	21.3	22	1.175	0.049	22.3		
	•	•		Hea	ad Test Data	at the worst	case with SIM2						
Left cheek	20	QPSK	18700/1860	1:1	0.128	0.06	22.55	23	1.109	0.142	22.3		
				Head	Test Data at	the worst ca	ase with Battery	2#					
Left cheek	20	QPSK	18700/1860	1:1	0.121	0.01	22.55	23	1.109	0.134	22.3		
				Head	Test Data at	the worst ca	ase with Battery	3#					
Left cheek	20	QPSK	18700/1860	1:1	0.114	0.01	22.55	23	1.109	0.126	22.3		
				Body wo	orn Test data	(Separate 1	5mm 1RB_50 of	fset)					
Front side	20	QPSK	19100/1900	1:1	0.384	0.19	22.55	23	1.109	0.426	22.3		
Back side	20	QPSK	19100/1900	1:1	0.408	0.01	22.55	23	1.109	0.453	22.3		
Back side	20	QPSK	18700/1860	1:1	0.521	0.09	22.25	23	1.189	0.619	22.3		
Back side	20	QPSK	18900/1880	1:1	0.423	0.04	22.05	23	1.245	0.526	22.3		
			В	ody worn	Test data (Separate 15	mm 50%RB_25	offset)					
Front side	20	QPSK	19100/1900	1:1	0.307	-0.08	21.3	22	1.175	0.361	22.3		
Back side	20	QPSK	19100/1900	1:1	0.314	-0.07	21.3	22	1.175	0.369	22.3		
				Body v	worn Test Da	ata at the wo	rst case with SI	M2					
Back side	20	QPSK	18700/1860	1:1	0.318	-0.09	22.25	23	1.189	0.378	22.3		
				Body wo	rn Test Data	at the worst	case with Batte	ry 2#					
Back side	20	QPSK	18700/1860	1:1	0.449	-0.01	22.25	23	1.189	0.534	22.3		
				Body wo	rn Test Data	at the wors	case with Batte	ry 3#					
Back side	20	QPSK	18700/1860	1:1	0.459	0.04	22.25	23	1.189	0.546	22.3		
				Hotspo	t Test data(S	Separate 10	nm 1RB_50 offs	et)					
Front side	20	QPSK	19100/1900	1:1	0.213	0.09	16.63	17	1.089	0.232	22.3		

Report No.:SZEM180100082701

Rev : 01

Page : 150 of 183

Back side	20	QPSK	19100/1900	1:1	0.234	0.02	16.63	17	1.089	0.255	22.3
Left side	20	QPSK	19100/1900	1:1	0.0528	0.1	16.63	17	1.089	0.057	22.3
Right side	20	QPSK	19100/1900	1:1	0.00904	0.01	16.63	17	1.089	0.010	22.3
Bottom side	20	QPSK	19100/1900	1:1	0.559	-0.12	16.63	17	1.089	0.609	22.3
Bottom side	20	QPSK	18700/1860	1:1	0.567	0.07	16.57	17	1.104	0.626	22.3
Bottom side	20	QPSK	18900/1880	1:1	0.37	-0.05	16.37	17	1.156	0.428	22.3
			ı	Hotspot ⁻	Γest data (Se	eparate 10m	m 50%RB_25 of	fset)			
Front side	20	QPSK	19100/1900	1:1	0.214	0.02	16.55	17	1.109	0.237	22.3
Back side	20	QPSK	19100/1900	1:1	0.234	0.02	16.55	17	1.109	0.260	22.3
Left side	20	QPSK	19100/1900	1:1	0.0534	0.01	16.55	17	1.109	0.059	22.3
Right side	20	QPSK	19100/1900	1:1	0.00899	0.05	16.55	17	1.109	0.010	22.3
Bottom side	20	QPSK	19100/1900	1:1	0.549	-0.05	16.55	17	1.109	0.609	22.3
				Hots	oot Test Data	a at the wors	t case with SIM2	2			
Bottom side	20	QPSK	18700/1860	1:1	0.562	0.03	16.57	17	1.104	0.620	22.3
				Hotspot	Test Data a	t the worst o	ase with Battery	2#			
Bottom side	20	QPSK	18700/1860	1:1	0.495	-0.01	16.57	17	1.104	0.547	22.3
				Hotspot	Test Data a	at the worst o	ase with Battery	3#			
Bottom side	20	QPSK	18700/1860	1:1	0.499	-0.02	16.57	17	1.104	0.551	22.3

	Second Antenna Test data											
Test position	BW.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp.	
					Head Te	st data(1RB	_50 offset)					
Left cheek	20	QPSK	18700/1860	1:1	0.142	0.04	17.33	18	1.167	0.166	22.3	
Left tilted	20	QPSK	18700/1860	1:1	0.157	0.08	17.33	18	1.167	0.183	22.3	
Right cheek	20	QPSK	18700/1860	1:1	0.586	0.08	17.33	18	1.167	0.684	22.3	
Right tilted	20	QPSK	18700/1860	1:1	0.604	0.09	17.33	18	1.167	0.705	22.3	
Right tilted	20	QPSK	18900/1880	1:1	0.208	0.16	16.76	18	1.330	0.277	22.3	
Right tilted	20	QPSK	19100/1900	1:1	0.408	0.06	17.15	18	1.216	0.496	22.3	
					Н	ead Test da	ta(50%RB_25 of	fset)				
Left cheek	20	QPSK	18700/1860	1:1	0.135	-0.18	17.13	18	1.222	0.165	22.3	
Left tilted	20	QPSK	18700/1860	1:1	0.149	-0.08	17.13	18	1.222	0.182	22.3	
Right cheek	20	QPSK	18700/1860	1:1	0.557	-0.18	17.13	18	1.222	0.681	22.3	
Right tilted	20	QPSK	18700/1860	1:1	0.575	0.05	17.13	18	1.222	0.703	22.3	
				He	ad Test Dat	a at the wors	t case with SIM	2				
Right tilted	20	QPSK	18700/1860	1:1	0.418	0.05	17.33	18	1.167	0.488	22.3	
				Head	Test Data a	at the worst o	ase with Battery	2#				
Right tilted	20	QPSK	18700/1860	1:1	0.363	0.05	17.33	18	1.167	0.424	22.3	
				Head	Test Data a	at the worst o	ase with Battery	3#				

Report No.:SZEM180100082701

Rev : 01

Page : 151 of 183

Right tilted	20	QPSK	18700/1860	1:1	0.383	-0.07	17.33	18	1.167	0.447	22.3
				Body w	orn Test dat	a(Separate	15mm 1RB_50 c	offset)			
Front side	20	QPSK	19100/1900	1:1	0.112	0.19	22.43	23	1.140	0.128	22.3
Back side	20	QPSK	19100/1900	1:1	0.0927	0.18	22.43	23	1.140	0.106	22.3
Front side	20	QPSK	18700/1860	1:1	0.0893	0.08	22.43	23	1.140	0.102	22.3
Front side	20	QPSK	18900/1880	1:1	0.0395	-0.13	21.94	23	1.276	0.050	22.3
	l	I	<u> </u>	Body wor	n Test data	(Separate 15	5mm 50%RB_25	offset)	1		I
Front side	20	QPSK	19100/1900	1:1	0.0639	-0.03	21.53	22	1.114	0.071	22.3
Back side	20	QPSK	19100/1900	1:1	0.0756	-0.08	21.53	22	1.114	0.084	22.3
	<u>I</u>			Body	worn Test d	ata at the wo	orst case with SI	 М2	II I		I
Front side	20	QPSK	19100/1900	1:1	0.0783	0.06	22.43	23	1.140	0.089	22.3
	<u>I</u>			Body wo	ı orn Test data	a at the wors	t case with Batte	ery 2#	ļ l		<u> </u>
Front side	20	QPSK	19100/1900	1:1	0.0572	0.08	22.43	23	1.140	0.065	22.3
	<u>I</u>			Body wo	rn Test data	a at the wors	t case with Batte	ery 3#	II I		I
Front side	20	QPSK	19100/1900	1:1	0.0654	0.06	22.43	23	1.140	0.075	22.3
				Hotsp	ot Test data	(Separate 10)mm 1RB_50 off				
Front side	20	QPSK	18700/1860	1:1	0.0723	0.02	17.66	18	1.081	0.078	22.3
Back side	20	QPSK	18700/1860	1:1	0.0797	0.03	17.66	18	1.081	0.086	22.3
Left side	20	QPSK	18700/1860	1:1	0.103	0.08	17.66	18	1.081	0.111	22.3
Right side	20	QPSK	18700/1860	1:1	0.065	0.08	17.66	18	1.081	0.070	22.3
Top side	20	QPSK	18700/1860	1:1	0.0848	0.05	17.66	18	1.081	0.092	22.3
Left side	20	QPSK	18900/1880	1:1	0.0383	0.04	17.13	18	1.222	0.047	22.3
Left side	20	QPSK	19100/1900	1:1	0.0737	0.08	17.53	18	1.114	0.082	22.3
				Hotspot		L Separate 10r	nm 50%RB_25 o				
Front side	20	QPSK	18700/1860	1:1	0.0682	-0.12	17.56	18	1.107	0.075	22.3
Back side	20	QPSK	18700/1860	1:1	0.0993	0.02	17.56	18	1.107	0.110	22.3
Left side	20	QPSK	18700/1860	1:1	0.0973	0.13	17.56	18	1.107	0.108	22.3
Right side	20	QPSK	18700/1860	1:1	0.0544	-0.08	17.56	18	1.107	0.060	22.3
Top side	20	QPSK	18700/1860	1:1	0.0804	0.04	17.56	18	1.107	0.089	22.3
	I .	I	T		<u>'</u>		rst case with SIN	ı	Т		Ι .
Left side	20	QPSK	18700/1860	1:1	0.101	0.13	17.66	18	1.081	0.109	22.3
Left side	20	QPSK	18700/1860	Hotspo 1:1	0.0755	at the worst 0.06	case with Batter	ry 2# 18	1.081	0.082	22.3
Leit Side	20	Uran	10/00/1000				case with Batte		1.001	0.002	22.3
Left side	20	QPSK	18700/1860	1:1	0.084	0.01	17.66	18	1.081	0.091	22.3

Table 23: SAR of LTE Band 2 for Head and Body.

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.:SZEM180100082701

Rev : 01

Page : 152 of 183

8.3.1 SAR Result Of LTE Band 4

					Main An	tenna Test	data				
Test position	BW.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- q	Power Drift(dB)	Conducted power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp.
					Head Test	data(1RB_0	offset)				
Left cheek	20	QPSK	20175/1732.5	1:1	0.127	0.07	22.67	23.5	1.211	0.154	22.3
Left tilted	20	QPSK	20175/1732.5	1:1	0.0685	0.03	22.67	23.5	1.211	0.083	22.3
Right cheek	20	QPSK	20175/1732.5	1:1	0.0729	0.07	22.67	23.5	1.211	0.088	22.3
Right tilted	20	QPSK	20175/1732.5	1:1	0.0626	0.06	22.67	23.5	1.211	0.076	22.3
Left cheek	20	QPSK	20050/1720	1:1	0.0906	0.18	22.07	23.5	1.390	0.126	22.3
Left cheek	20	QPSK	20300/1745	1:1	0.103	0.09	22.44	23.5	1.276	0.131	22.3
		•			Hea	ad Test data	(50%RB_0 offse	t)			•
Left cheek	20	QPSK	20175/1732.5	1:1	0.106	-0.06	21.59	22.5	1.211	0.128	22.3
Left tilted	20	QPSK	20175/1732.5	1:1	0.0612	-0.02	21.59	22.5	1.233	0.075	22.3
Right cheek	20	QPSK	20175/1732.5	1:1	0.0603	0.09	21.59	22.5	1.233	0.074	22.3
Right tilted	20	QPSK	20175/1732.5	1:1	0.0511	-0.03	21.59	22.5	1.233	0.063	22.3
		•		Head	Test Data a	at the worst o	ase with SIM2				•
Left cheek	20	QPSK	20175/1732.5	1:1	0.122	0.01	22.67	23.5	1.211	0.148	22.3
		•		Head Te	est Data at t	he worst cas	e with Battery 2	#			•
Left cheek	20	QPSK	20175/1732.5	1:1	0.141	0.04	22.67	23.5	1.211	0.171	22.3
		•		Head Te	est Data at t	he worst cas	e with Battery 3	#			•
Left cheek	20	QPSK	20175/1732.5	1:1	0.127	0.02	22.67	23.5	1.211	0.154	22.3
		•		Body wor	n Test data	(Separate 15	mm 1RB_0 offse	et)			•
Front side	20	QPSK	20175/1732.5	1:1	0.455	0.08	22.67	23.5	1.211	0.551	22.3
Back side	20	QPSK	20175/1732.5	1:1	0.527	0.01	22.67	23.5	1.211	0.638	22.3
Back side	20	QPSK	20300/1745	1:1	0.48	-0.18	22.44	23.5	1.276	0.613	22.3
Back side	20	QPSK	20050/1720	1:1	0.395	-0.03	22.44	23.5	1.276	0.503	22.3
		•	Вс	dy worn	Test data (S	eparate 15m	nm 50%RB_0 off	set)			•
Front side	20	QPSK	20175/1732.5	1:1	0.407	0.05	21.59	22.5	1.233	0.502	22.3
Back side	20	QPSK	20175/1732.5	1:1	0.472	0	21.59	22.5	1.233	0.582	22.3
		•		Body wo	orn Test Dat	a at the wors	st case with SIM	2			•
Back side	20	QPSK	20175/1732.5	1:1	0.526	0.03	22.67	23.5	1.211	0.637	22.3
		•	В	ody worn	Test Data a	at the worst o	ase with Battery	2#			•
Back side	20	QPSK	20175/1732.5	1:1	0.642	0.03	22.67	23.5	1.211	0.777	22.3
	•	•	В	ody worn	Test Data a	at the worst o	ase with Battery	3#			•
Back side	20	QPSK	20175/1732.5	1:1	0.469	0.02	22.67	23.5	1.211	0.568	22.3
	•			Hotspot	Test data (S	Separate 10n	nm 1RB_0 offset)			
Front side	20	QPSK	20175/1732.5	1:1	0.305	0.09	17.63	18.5	1.222	0.373	22.3
Back side	20	QPSK	20175/1732.5	1:1	0.364	0.05	17.63	18.5	1.222	0.445	22.3
Left side	20	QPSK	20175/1732.5	1:1	0.0377	-0.06	17.63	18.5	1.222	0.046	22.3
Right side	20	QPSK	20175/1732.5	1:1	0.0434	0.09	17.63	18.5	1.222	0.053	22.3

Report No.:SZEM180100082701

Rev : 01

Page : 153 of 183

							-				_
Bottom side	20	QPSK	20175/1732.5	1:1	0.583	0.05	17.63	18.5	1.222	0.712	22.3
			F	lotspot T	est data (Se	parate 10mn	n 50%RB_0 offs	et)			
Front side	20	QPSK	20175/1732.5	1:1	0.379	0.08	17.53	18.5	1.250	0.474	22.3
Back side	20	QPSK	20175/1732.5	1:1	0.428	0.06	17.53	18.5	1.250	0.535	22.3
Left side	20	QPSK	20175/1732.5	1:1	0.0457	0.18	17.53	18.5	1.250	0.057	22.3
Right side	20	QPSK	20175/1732.5	1:1	0.05	0.02	17.53	18.5	1.250	0.063	22.3
Bottom side	20	QPSK	20175/1732.5	1:1	0.701	-0.11	17.53	18.5	1.250	0.876	22.3
Bottom side	20	QPSK	20050/1720	1:1	0.494	0.02	17.21	18.5	1.346	0.665	22.3
Bottom side	20	QPSK	20300/1745	1:1	0.577	-0.08	17.51	18.5	1.256	0.725	22.3
		_	Н	otspot Te	est data (Sep	parate 10mm	100%RB_0 offs	set)			
Bottom side	20	QPSK	20175/1732.5	1:1	0.656	-0.05	17.5	18.5	1.259	0.826	22.3
		_		Hotspo	t Test Data	at the worst	case with SIM2				
Bottom side	20	QPSK	20175/1732.5	1:1	0.683	-0.11	17.53	18.5	1.250	0.854	22.3
			ŀ	Hotspot -	Γest Data at	the worst ca	se with Battery 2	2#			
Bottom side	20	QPSK	20175/1732.5	1:1	0.655	0.08	17.53	18.5	1.250	0.819	22.3
			ŀ	Hotspot -	Test Data at	the worst ca	se with Battery	3#		•	
Bottom side	20	QPSK	20175/1732.5	1:1	0.685	0	17.53	18.5	1.250	0.856	22.3

	Second Antenna Test data											
Test position	BW.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp.	
					Head Tes	t data(1RB_	50 offset)					
Left cheek	20	QPSK	20175/1732.5	1:1	0.14	0.07	19.45	20.5	1.274	0.178	22.3	
Left tilted	20	QPSK	20175/1732.5	1:1	0.176	0.01	19.45	20.5	1.274	0.224	22.3	
Right cheek	20	QPSK	20175/1732.5	1:1	0.566	-0.13	19.45	20.5	1.274	0.721	22.3	
Right tilted	20	QPSK	20175/1732.5	1:1	0.613	0.05	19.45	20.5	1.274	0.781	22.3	
Right tilted	20	QPSK	20050/1720	1:1	0.427	-0.01	19.08	20.5	1.387	0.592	22.3	
Right tilted	20	QPSK	20300/1745	1:1	0.366	-0.03	19.25	20.5	1.334	0.488	22.3	
	Head Test data(50%RB_25 offset)											
Left cheek	20	QPSK	20175/1732.5	1:1	0.131	-0.02	19.37	20.5	1.297	0.170	22.3	
Left tilted	20	QPSK	20175/1732.5	1:1	0.166	0.06	19.37	20.5	1.297	0.215	22.3	
Right cheek	20	QPSK	20175/1732.5	1:1	0.529	-0.04	19.37	20.5	1.297	0.686	22.3	
Right tilted	20	QPSK	20175/1732.5	1:1	0.54	-0.09	19.37	20.5	1.297	0.700	22.3	
				Hea	nd Test Data	at the worst	case with SIM2					
Right tilted	20	QPSK	20175/1732.5	1:1	0.551	-0.07	19.45	20.5	1.274	0.702	22.3	
				Head	Test Data at	the worst ca	ase with Battery	2#				
Right tilted	20	QPSK	20175/1732.5	1:1	0.572	-0.06	19.45	20.5	1.274	0.728	22.3	
				Head	Test Data at	the worst ca	ase with Battery	3#				
Right tilted	20	QPSK	20175/1732.5	1:1	0.541	0.14	19.45	20.5	1.274	0.689	22.3	
	Body worn Test data(Separate 15mm 1RB_0 offset)											
Front side	20	QPSK	20175/1732.5	1:1	0.0942	0.05	22.65	23.5	1.216	0.115	22.3	

Report No.:SZEM180100082701

Rev : 01

Page : 154 of 183

Back side	20	QPSK	20175/1732.5	1:1	0.107	0.03	22.65	23.5	1.216	0.130	22.3
Back side	20	QPSK	20050/1720	1:1	0.0918	0.04	22.36	23.5	1.30	0.119	22.3
Back side	20	QPSK	20300/1745	1:1	0.117	-0.05	22.50	23.5	1.259	0.147	22.3
			E	Body wor	n Test data ((Separate 15	mm 50%RB_0 c	offset)			
Front side	20	QPSK	20175/1732.5	1:1	0.0932	0.01	21.62	22.5	1.225	0.114	22.3
Back side	20	QPSK	20175/1732.5	1:1	0.0964	0.04	21.62	22.5	1.225	0.118	22.3
				Body	worn Test D	ata at the wo	rst case with SI	И 2	•		•
Back side	20	QPSK	20300/1745	1:1	0.114	-0.07	22.50	23.5	1.259	0.144	22.3
			l	Body wo	rn Test Data	at the wors	case with Batte	ry 2#			l .
Back side	20	QPSK	20300/1745	1:1	0.0836	0.09	22.50	23.5	1.259	0.105	22.3
			•	Body wo	rn Test Data	at the wors	case with Batte	ry 3#	•		l .
Back side	20	QPSK	20300/1745	1:1	0.113	0.07	22.50	23.5	1.259	0.142	22.3
			l	Hotspo	t Test data(Separate 10	nm 1RB_50 offs	et)			l .
Front side	20	QPSK	20175/1732.5	1:1	0.107	0.03	19.69	20.5	1.205	0.129	22.3
Back side	20	QPSK	20175/1732.5	1:1	0.157	0.01	19.69	20.5	1.205	0.189	22.3
Left side	20	QPSK	20175/1732.5	1:1	0.12	0.03	19.69	20.5	1.205	0.145	22.3
Right side	20	QPSK	20175/1732.5	1:1	0.0257	0.09	19.69	20.5	1.205	0.031	22.3
Top side	20	QPSK	20175/1732.5	1:1	0.201	0.07	19.69	20.5	1.205	0.242	22.3
Top side	20	QPSK	20050/1720	1:1	0.136	0.13	19.42	20.5	1.282	0.174	22.3
Top side	20	QPSK	20300/1745	1:1	0.167	0.13	19.59	20.5	1.233	0.206	22.3
			I	Hotspot	Test data (S	Separate 10n	nm 50%RB_0 of	fset)	l		l
Front side	20	QPSK	20175/1732.5	1:1	0.104	0.1	19.59	20.5	1.233	0.128	22.3
Back side	20	QPSK	20175/1732.5	1:1	0.154	0.07	19.59	20.5	1.233	0.190	22.3
Left side	20	QPSK	20175/1732.5	1:1	0.117	0.13	19.59	20.5	1.233	0.144	22.3
Right side	20	QPSK	20175/1732.5	1:1	0.0254	0.06	19.59	20.5	1.233	0.031	22.3
Top side	20	QPSK	20175/1732.5	1:1	0.195	0.17	19.59	20.5	1.233	0.240	22.3
				Hotsp	ot Test Dat	ta at the wor	st case with SIM	2			
Top side	20	QPSK	20175/1732.5	1:1	0.166	-0.03	19.69	20.5	1.205	0.200	22.3
				Hotspot	Test Data	at the worst	case with Battery	/ 2#			
Top side	20	QPSK	20175/1732.5	1:1	0.158	0.18	19.69	20.5	1.205	0.190	22.3
		_	T	Hotspot	Test Data	at the worst	case with Battery	/ 3#			T
Top side	20	QPSK	20175/1732.5	1:1	0.194	0.12	19.69	20.5	1.205	0.234	22.3

Table 24: SAR of LTE Band 4 for Head and Body.

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.:SZEM180100082701

Rev : 01

Page : 155 of 183

8.3.2 SAR Result Of LTE Band 5

					Ar	it1 Test data	а				
Test position	BW.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp.
					Head Test	data(1RB_2	25 offset)				
Left cheek	10	QPSK	20450/829	1:1	0.0673	0.03	22.77	23.5	1.183	0.080	22.3
Left tilted	10	QPSK	20450/829	1:1	0.0522	0.07	22.77	23.5	1.183	0.062	22.3
Right cheek	10	QPSK	20450/829	1:1	0.145	0.03	22.77	23.5	1.183	0.172	22.3
Right tilted	10	QPSK	20450/829	1:1	0.0519	0.04	22.77	23.5	1.183	0.061	22.3
Right cheek	10	QPSK	20525/836.5	1:1	0.133	0.2	22.72	23.5	1.197	0.159	22.3
Right cheek	10	QPSK	20600/844	1:1	0.15	0.03	22.66	23.5	1.213	0.182	22.3
			•		He	ead Test dat	a(25RB_13 offse	et)		1	
Left cheek	10	QPSK	20450/829	1:1	0.0632	0.01	21.81	22.5	1.172	0.074	22.3
Left tilted	10	QPSK	20450/829	1:1	0.0487	0.05	21.81	22.5	1.172	0.057	22.3
Right cheek	10	QPSK	20450/829	1:1	0.0994	0.08	21.81	22.5	1.172	0.117	22.3
Right tilted	10	QPSK	20450/829	1:1	0.0488	0.06	21.81	22.5	1.172	0.057	22.3
			•	Hea	d Test Data	at the worst	case with SIM2			1	
Right cheek	10	QPSK	20600/844	1:1	0.145	0.03	22.66	23.5	1.213	0.176	22.3
	ı	l.	•	Head 7	est Data at	the worst ca	se with Battery 2	2#			
Right cheek	10	QPSK	20600/844	1:1	0.142	-0.07	22.66	23.5	1.213	0.172	22.3
	ı	l.	•	Head 7	est Data at	the worst ca	se with Battery 3	3#			
Right cheek	10	QPSK	20600/844	1:1	0.136	0.07	22.66	23.5	1.213	0.165	22.3
		l.	•	Body wo	rn Test data	(Separate 15	5mm 1RB_25 off	set)			
Front side	10	QPSK	20450/829	1:1	0.207	-0.01	22.77	23.5	1.183	0.245	22.3
Back side	10	QPSK	20450/829	1:1	0.289	0.02	22.77	23.5	1.183	0.342	22.3
Back side	10	QPSK	20525/836.5	1:1	0.326	0.09	22.72	23.5	1.197	0.390	22.3
Back side	10	QPSK	20600/844	1:1	0.302	0.11	22.66	23.5	1.213	0.366	22.3
			В	ody worr	Test data (Separate 15	mm 25RB_13 of	fset)		1	
Front side	10	QPSK	20450/829	1:1	0.161	-0.1	21.81	22.5	1.172	0.189	22.3
Back side	10	QPSK	20450/829	1:1	0.223	-0.1	21.81	22.5	1.172	0.261	22.3
		l.	•	Body v	vorn Test da	ta at the wor	st case with SIM	2			
Back side	10	QPSK	20525/836.5	1:1	0.325	0	22.72	23.5	1.197	0.389	22.3
	•	•		Body wor	n Test data	at the worst	case with Batter	y 2#			
Back side	10	QPSK	20525/836.5	1:1	0.262	0.02	22.72	23.5	1.197	0.314	22.3
	•			Body wor	n Test data	at the worst	case with Batter	y 3#			
Back side	10	QPSK	20525/836.5	1:1	0.262	0.03	22.72	23.5	1.197	0.314	22.3
	1	1		Hotspot	Test data(S	eparate 10n	nm 1RB_25 offse	et)	ī	1	ī.

Report No.:SZEM180100082701

Rev : 01

Page : 156 of 183

l =	٠. ا	l		l	٠	٠			, , , , ,		۱
Front side	10	QPSK	20450/829	1:1	0.11	0.12	22.77	23.5	1.183	0.130	22.3
Back side	10	QPSK	20450/829	1:1	0.141	0.06	22.77	23.5	1.183	0.167	22.3
Left side	10	QPSK	20450/829	1:1	0.109	0.11	22.77	23.5	1.183	0.129	22.3
Right side	10	QPSK	20450/829	1:1	0.043	0.07	22.77	23.5	1.183	0.051	22.3
Bottom side	10	QPSK	20450/829	1:1	0.0206	0.07	22.77	23.5	1.183	0.024	22.3
Back side	10	QPSK	20525/836.5	1:1	0.153	0.11	22.72	23.5	1.197	0.183	22.3
Back side	10	QPSK	20600/844	1:1	0.136	0.05	22.66	23.5	1.213	0.165	22.3
				Hotspot ⁷	Test data (S	eparate 10m	m 25RB_13 offs	et)			
Front side	10	QPSK	20450/829	1:1	0.105	0.15	21.81	22.5	1.172	0.123	22.3
Back side	10	QPSK	20450/829	1:1	0.133	0.05	21.81	22.5	1.172	0.156	22.3
Left side	10	QPSK	20450/829	1:1	0.103	0.06	21.81	22.5	1.172	0.121	22.3
Right side	10	QPSK	20450/829	1:1	0.0412	0.07	21.81	22.5	1.172	0.048	22.3
Bottom side	10	QPSK	20450/829	1:1	0.0193	0.09	21.81	22.5	1.172	0.023	22.3
				Hotsp	ot Test data	at the worst	case with SIM2				
Back side	10	QPSK	20525/836.5	1:1	0.141	0	22.72	23.5	1.197	0.169	22.3
				Hotspot	Test data at	the worst ca	ase with Battery	2#			
Back side	10	QPSK	20525/836.5	1:1	0.292	0.14	22.72	23.5	1.197	0.349	22.3
				Hotspot	Test data at	the worst ca	ase with Battery	3#		<u> </u>	
Back side	10	QPSK	20525/836.5	1:1	0.27	-0.01	22.72	23.5	1.197	0.323	22.3

Report No.:SZEM180100082701

Rev : 01

Page : 157 of 183

					Second	I Antenna T	est data				
Test position	BW.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp.
					Head Te	st data(1RB	25 offset)				
Left cheek	10	QPSK	20525/836.5	1:1	0.366	0.05	20.75	21.5	1.189	0.435	22.3
Left tilted	10	QPSK	20525/836.5	1:1	0.255	0.03	20.75	21.5	1.189	0.303	22.3
Right cheek	10	QPSK	20525/836.5	1:1	0.409	0.03	20.75	21.5	1.189	0.486	22.3
Right tilted	10	QPSK	20525/836.5	1:1	0.331	0.04	20.75	21.5	1.189	0.393	22.3
Right cheek	10	QPSK	20450/829	1:1	0.357	0.03	20.57	21.5	1.239	0.442	22.3
Right cheek	10	QPSK	20600/844	1:1	0.36	0.03	20.74	21.5	1.191	0.429	22.3
					He	ead Test dat	a(25RB_13 offse	et)			
Left cheek	10	QPSK	20525/836.5	1:1	0.365	0.04	20.64	21.5	1.219	0.445	22.3
Left tilted	10	QPSK	20525/836.5	1:1	0.24	0.03	20.64	21.5	1.219	0.293	22.3
Right cheek	10	QPSK	20525/836.5	1:1	0.373	0.04	20.64	21.5	1.219	0.455	22.3
Right tilted	10	QPSK	20525/836.5	1:1	0.309	0.05	20.64	21.5	1.219	0.377	22.3
				Hea	ad Test Data	a at the wors	t case with SIM2	2			
Right cheek	10	QPSK	20525/836.5	1:1	0.373	0.04	20.75	21.5	1.189	0.443	22.3
				Head	Test Data a	t the worst c	ase with Battery	2#			
Right cheek	10	QPSK	20525/836.5	1:1	0.450	0.03	20.75	21.5	1.189	0.535	22.3
				Head	Test Data a	t the worst c	ase with Battery	3#			
Right cheek	10	QPSK	20525/836.5	1:1	0.413	0.03	20.75	21.5	1.189	0.491	22.3
				Body wo	orn Test data	a(Separate 1	5mm 1RB_25 o	ffset)			
Front side	10	QPSK	20525/836.5	1:1	0.15	0.03	22.85	23.5	1.161	0.174	22.3
Back side	10	QPSK	20525/836.5	1:1	0.191	0.02	22.85	23.5	1.161	0.222	22.3
Back side	10	QPSK	20450/829	1:1	0.144	-0.07	22.84	23.5	1.164	0.168	22.3
Back side	10	QPSK	20600/844	1:1	0.241	0.1	22.78	23.5	1.180	0.284	22.3
				Body wor	n Test data	(Separate 1	5mm 25RB_13 (offset)	_		
Front side	10	QPSK	20525/836.5	1:1	0.117	-0.05	21.98	22.5	1.127	0.132	22.3
Back side	10	QPSK	20525/836.5	1:1	0.148	-0.06	21.98	22.5	1.127	0.167	22.3
				Body	worn Test D	ata at the wo	orst case with SI	M2			
Back side	10	QPSK	20600/844	1:1	0.235	0.03	22.78	23.5	1.180	0.277	22.3
				Body wo	rn Test Data	a at the wors	t case with Batte	ery 2#			
Back side	10	QPSK	20600/844	1:1	0.175	-0.01	22.78	23.5	1.180	0.207	22.3
				Body wo	rn Test Data	a at the wors	t case with Batte	ery 3#			
Back side	10	QPSK	20600/844	1:1	0.172	-0.05	22.78	23.5	1.180	0.203	22.3
				Hotspo	t Test data(Separate 10	mm 1RB_25 offs	set)			
Front side	10	QPSK	20525/836.5	1:1	0.13	0.12	20.79	21.5	1.178	0.153	22.3

Report No.:SZEM180100082701

Rev : 01

Page : 158 of 183

	1	1	ı	i	ı	ı	1	1	1 1		ı
Back side	10	QPSK	20525/836.5	1:1	0.14	0.04	20.79	21.5	1.178	0.165	22.3
Left side	10	QPSK	20525/836.5	1:1	0.0953	0.09	20.79	21.5	1.178	0.112	22.3
Right side	10	QPSK	20525/836.5	1:1	0.0594	0.1	20.79	21.5	1.178	0.070	22.3
Top side	10	QPSK	20525/836.5	1:1	0.0544	0.09	20.79	21.5	1.178	0.064	22.3
				Hotspot	Test data (Separate 10r	mm 25RB_13 off	set)			
Front side	10	QPSK	20525/836.5	1:1	0.127	0.06	20.71	21.5	1.199	0.152	22.3
Back side	10	QPSK	20525/836.5	1:1	0.14	-0.03	20.71	21.5	1.199	0.168	22.3
Left side	10	QPSK	20525/836.5	1:1	0.0945	0.06	20.71	21.5	1.199	0.113	22.3
Right side	10	QPSK	20525/836.5	1:1	0.0591	-0.01	20.71	21.5	1.199	0.071	22.3
Top side	10	QPSK	20525/836.5	1:1	0.054	0.01	20.71	21.5	1.199	0.065	22.3
Back side	10	QPSK	20450/829	1:1	0.133	-0.03	20.58	21.5	1.236	0.164	22.3
Back side	10	QPSK	20600/844	1:1	0.12	0.08	20.66	21.5	1.213	0.146	22.3
	•	•		Hots	oot Test Da	ta at the wor	st case with SIM	2			
Back side	10	QPSK	20525/836.5	1:1	0.139	-0.09	20.71	21.5	1.199	0.167	22.3
Hotspot Test Data at the worst case with Battery 2#											
Back side	10	QPSK	20525/836.5	1:1	0.127	0.04	20.71	21.5	1.199	0.152	22.3
				Hotspot	Test Data	at the worst	case with Battery	y 3#			
Back side	10	QPSK	20525/836.5	1:1	0.129	0.05	20.71	21.5	1.199	0.155	22.3

Table 25: SAR of LTE Band 5 for Head and Body.

Note

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.:SZEM180100082701

Rev : 01

Page : 159 of 183

8.3.3 SAR Result Of LTE Band 7

					Main Ar	ntenna Test	data				
Test position	BW.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp.
					Head Test	data(1RB_0	offset)				
Left cheek	20	QPSK	21350/2560	1:1	0.0606	0.08	22.58	23	1.102	0.067	22.3
Left tilted	20	QPSK	21350/2560	1:1	0.0125	0.09	22.58	23	1.102	0.014	22.3
Right cheek	20	QPSK	21350/2560	1:1	0.0335	0.08	22.58	23	1.102	0.037	22.3
Right tilted	20	QPSK	21350/2560	1:1	0.031	0.18	22.58	23	1.102	0.034	22.3
Left cheek	20	QPSK	20850/2510	1:1	0.111	0.01	21.88	23	1.294	0.144	22.3
Left cheek	20	QPSK	21100/2535.5	1:1	0.0947	0.08	22.12	23	1.225	0.116	22.3
					Head Test	t data(50%R	B_0 offset)				
Left cheek	20	QPSK	21350/2560	1:1	0.0465	0.05	21.5	22	1.122	0.052	22.3
Left tilted	20	QPSK	21350/2560	1:1	0.018	0.03	21.5	22	1.122	0.020	22.3
Right cheek	20	QPSK	21350/2560	1:1	0.0392	-0.13	21.5	22	1.122	0.044	22.3
Right tilted	20	QPSK	21350/2560	1:1	0.0125	0.09	21.5	22	1.122	0.014	22.3
				Head	Test Data a	at the worst o	ase with SIM2				
Left cheek	20	QPSK	20850/2510	1:1	0.0909	0.02	21.88	23	1.294	0.118	22.3
				Head Te	est Data at t	he worst cas	e with Battery 2	#			
Left cheek	20	QPSK	20850/2510	1:1	0.0856	0.09	21.88	23	1.294	0.111	22.3
				Head To	est Data at t	he worst cas	e with Battery 3	#			
Left cheek	20	QPSK	20850/2510	1:1	0.123	0.04	21.88	23	1.294	0.159	22.3
				Body wor	n Test data	(Separate 15	mm 1RB_0 offs	et)			
Front side	20	QPSK	21350/2560	1:1	0.28	0.01	22.58	23	1.102	0.308	22.3
Back side	20	QPSK	21350/2560	1:1	0.326	0.03	22.58	23	1.102	0.359	22.3
Back side	20	QPSK	20850/2510	1:1	0.356	0.09	21.88	23	1.294	0.461	22.3
Back side	20	QPSK	21100/2535.5	1:1	0.304	-0.07	22.12	23	1.225	0.372	22.3
			Вс	dy worn	Test data (S	eparate 15m	m 50%RB_0 of	set)			
Front side	20	QPSK	21350/2560	1:1	0.177	-0.04	21.5	22	1.122	0.199	22.3
Back side	20	QPSK	21350/2560	1:1	0.207	0.04	21.5	22	1.122	0.232	22.3
		•		Body wo	rn Test Data	a at the wors	t case with SIM2	2			
Back side	20	QPSK	20850/2510	1:1	0.334	-0.08	21.88	23	1.294	0.432	22.3
			В	ody worn	Test Data a	t the worst o	ase with Battery	2#			
Back side	20	QPSK	20850/2510	1:1	0.273	0.02	21.88	23	1.294	0.353	22.3
			В	ody worn	Test Data a	t the worst o	ase with Battery	3#			
Back side	20	QPSK	20850/2510	1:1	0.32	0.05	21.88	23	1.294	0.414	22.3
			Hots	pot Test	data(Separa	ate 10mm 1F	RB_0 offset) sens	sor off			
Back side	20	QPSK	21350/2560	1:1	0.251	0	19.04	19.5	1.112	0.279	22.3
Left side	20	QPSK	21350/2560	1:1	0.115	0.06	19.04	19.5	1.112	0.128	22.3
Right side	20	QPSK	21350/2560	1:1	0.0463	0.01	19.04	19.5	1.112	0.051	22.3
Front side	20	QPSK	21350/2560	1:1	0.334	0.02	19.04	19.5	1.112	0.371	22.3

Report No.:SZEM180100082701

Rev : 01

Page : 160 of 183

Front side	20	QPSK	20850/2510	1:1	0.328	0.02	19.04	19.5	1.112	0.365	22.3	
Front side	20	QPSK	21100/2535.5	1:1	0.267	0.19	19.04	19.5	1.112	0.297	22.3	
1 TOTIL SIGO		QI OIX					B 99 offset) ser		1.112	0.207		
Bottom side	20	QPSK	20850/2510	1:1	0.211	0.02	16.84	17.5	1.164	0.246	22.3	
Hotspot Test data(Separate 14mm 1RB_0 offset) sensor off												
Bottom side	20	QPSK	21350/2560	1:1	0.295	0.15	19.04	19.5	1.112	0.328	22.3	
Hotspot Test data(Separate 10mm 50RB_25 offset) sensor off												
Back side	20	QPSK	21350/2560	1:1	0.187	0	18.74	19.5	1.191	0.223	22.3	
Left side	20	QPSK	21350/2560	1:1	0.0832	0.01	18.74	19.5	1.191	0.099	22.3	
Right side	20	QPSK	21350/2560	1:1	0.0351	-0.03	18.74	19.5	1.191	0.042	22.3	
Front side	20	QPSK	21350/2560	1:1	0.226	-0.06	18.74	19.5	1.191	0.269	22.3	
	•		Hotsp	ot Test d	ata(Separat	e 10mm 50F	B_50 offset) se	nsor on				
Bottom side	20	QPSK	20850/2510	1:1	0.203	-0.07	16.57	17.5	1.239	0.251	22.3	
		•	Hotsp	ot Test d	ata(Separate	e 14mm 50F	RB_25 offset) se	nsor off			-	
Bottom side	20	QPSK	21350/2560	1:1	0.197	-0.01	18.74	19.5	1.191	0.235	22.3	
	•			Hotspo	t Test Data	at the worst	case with SIM2					
Front side	20	QPSK	21350/2560	1:1	0.271	0.01	19.04	19.5	1.112	0.301	22.3	
	ı	•	ŀ	-lotspot	Test Data at	the worst ca	se with Battery	2#	1. 1.			
Front side	20	QPSK	21350/2560	1:1	0.235	0.02	19.04	19.5	1.112	0.261	22.3	
			ŀ	Hotspot -	Test Data at	the worst ca	se with Battery	3#			•	
Front side	20	QPSK	21350/2560	1:1	0.317	0.01	19.04	19.5	1.112	0.352	22.3	

Report No.:SZEM180100082701

Rev : 01

Page : 161 of 183

					Second	Antenna To	est data				
Test position	BW.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- a	Power Drift(dB)	Conducted power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp.
					3	t data(1RB_	99 offset)				
Left cheek	20	QPSK	21100/2535.5	1:1	0.118	0.06	16.12	17	1.225	0.145	22.3
Left tilted	20	QPSK	21100/2535.5	1:1	0.127	0.01	16.12	17	1.225	0.156	22.3
Right cheek	20	QPSK	21100/2535.5	1:1	0.486	0.07	16.12	17	1.225	0.595	22.3
Right tilted	20	QPSK	21100/2535.5	1:1	0.489	0.07	16.12	17	1.225	0.599	22.3
Right tilted	20	QPSK	20850/2510	1:1	0.395	0.03	16.12	17	1.225	0.484	22.3
Right tilted	20	QPSK	21350/2560	1:1	0.357	-0.02	16.12	17	1.225	0.437	22.3
	ı	I			Hea	ad Test data	(50%RB_25 offs	et)			
Left cheek	20	QPSK	21100/2535.5	1:1	0.0902	0.05	16.12	17	1.225	0.110	22.3
Left tilted	20	QPSK	21100/2535.5	1:1	0.104	0.09	16.12	17	1.225	0.127	22.3
Right cheek	20	QPSK	21100/2535.5	1:1	0.384	0.06	16.12	17	1.225	0.470	22.3
Right tilted	20	QPSK	21100/2535.5	1:1	0.393	0.02	16.12	17	1.225	0.481	22.3
	<u>I</u>	<u>I</u>		Hea	ad Test Data	at the wors	case with SIM2				
Right tilted 20 QPSK 21100/2535.5 1:1 0.476 0.05 16.12 17 1.225 0.583 22.3											22.3
	<u>I</u>	<u>I</u>		Head	Test Data at	the worst ca	ase with Battery	2#			
Right tilted	20	QPSK	21100/2535.5	1:1	0.372	-0.06	16.12	17	1.225	0.456	22.3
	ı	I		Head	Test Data at	the worst ca	ase with Battery	3#			
Right tilted	20	QPSK	21100/2535.5	1:1	0.418	0.02	16.12	17	1.225	0.512	22.3
	ı	I		Body w	orn Test dat	a(Separate	15mm 1RB_0 off	set)			
Front side	20	QPSK	21350/2560	1:1	0.111	0.02	22.62	23	1.091	0.121	22.3
Back side	20	QPSK	21350/2560	1:1	0.17	0.08	22.62	23	1.091	0.186	22.3
Back side	20	QPSK	20850/2510	1:1	0.21	0.08	22.14	23	1.219	0.256	22.3
Back side	20	QPSK	21100/2535.5	1:1	0.169	0.12	22.11	23	1.227	0.207	22.3
	<u>I</u>	<u>l</u>	<u> </u>	Body wor	n Test data (Separate 15	imm 50%RB_0 c	offset)			
Front side	20	QPSK	21350/2560	1:1	0.101	-0.01	21.48	22	1.127	0.114	22.3
Back side	20	QPSK	21350/2560	1:1	0.152	-0.02	21.48	22	1.127	0.171	22.3
	l			Body v	vorn Test Da	ata at the wo	rst case with SIN	/I2		<u> </u>	
Back side	20	QPSK	20850/2510	1:1	0.194	0.07	22.14	23	1.219	0.236	22.3
				Body wo	rn Test Data	at the worst	case with Batte	ry 2#			
Back side	20	QPSK	20850/2510	1:1	0.183	0.04	22.14	23	1.219	0.223	22.3
				Body wo	rn Test Data	at the worst	case with Batte	ry 3#			
Back side	20	QPSK	20850/2510	1:1	0.174	0.0953	22.14	23	1.219	0.212	22.3
				Hotspo	t Test data (Separate 10	mm 1RB_50 offs	set)		•	
Front side	20	QPSK	20850/2510	1:1	0.0748	-0.09	16.81	17	1.045	0.078	22.3
Back side	20	QPSK	20850/2510	1:1	0.106	0.02	16.81	17	1.045	0.111	22.3
Left side	20	QPSK	20850/2510	1:1	0.0683	0.07	16.81	17	1.045	0.071	22.3

Report No.:SZEM180100082701

Rev : 01

Page : 162 of 183

Right side	20	QPSK	20850/2510	1:1	0.01	0.01	16.81	17	1.045	0.010	22.3
Top side	20	QPSK	20850/2510	1:1	0.0361	-0.09	16.81	17	1.045	0.038	22.3
Back side	20	QPSK	21100/2535.5	1:1	0.0798	-0.02	16.32	17	1.169	0.093	22.3
Back side	20	QPSK	21350/2560	1:1	0.0731	-0.05	16.47	17	1.130	0.083	22.3
				Hotspot 7	Test data (S	Separate 10n	nm 50%RB_0 of	fset)			
Front side	20	QPSK	20850/2510	1:1	0.0579	-0.05	16.47	17	1.130	0.065	22.3
Back side	20	QPSK	20850/2510	1:1	0.0807	-0.09	16.47	17	1.130	0.091	22.3
Left side	20	QPSK	20850/2510	1:1	0.0732	0.06	16.47	17	1.130	0.083	22.3
Right side	20	QPSK	20850/2510	1:1	0.0112	0.09	16.81	17	1.045	0.012	22.3
Top side	20	QPSK	20850/2510	1:1	0.0384	0.02	16.47	17	1.130	0.043	22.3
				Hotsp	oot Test Dat	a at the wor	st case with SIM	2			
Back side	20	QPSK	20850/2510	1:1	0.0873	0.05	16.81	17	1.045	0.091	22.3
				Hotspot	Test Data a	at the worst of	case with Battery	2#			
Back side 20 QPSK 20850/2510 1:1 0.0893 0.02 16.81 17 1.045 0								0.093	22.3		
				Hotspot	Test Data a	at the worst o	case with Battery	/ 3#			
Back side	20	QPSK	20850/2510	1:1	0.0806	0.06	16.81	17	1.045	0.084	22.3

Table 26: SAR of LTE Band 7 for Head and Body.

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.:SZEM180100082701

Rev : 01

Page : 163 of 183

8.3.4 SAR Result Of LTE Band 12

	Main Antenna Test data SAR Review Conducted Type up Scaled Scaled Liquid												
Test position	BW.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp.		
				•	Head Tes	t data(1RB_	25 offset)		•				
Left cheek	10	QPSK	23130/711	1:1	0.034	0.06	23.25	24	1.189	0.040	22.3		
Left tilted	10	QPSK	23130/711	1:1	0.0251	0.06	23.25	24	1.189	0.030	22.3		
Right cheek	10	QPSK	23130/711	1:1	0.0383	-0.16	23.25	24	1.189	0.046	22.3		
Right tilted	10	QPSK	23130/711	1:1	0.022	0.09	23.25	24	1.189	0.026	22.3		
Right cheek	10	QPSK	23060/704	1:1	0.0129	0.05	22.87	24	1.297	0.017	22.3		
Right cheek	10	QPSK	23095/707.5	1:1	0.0398	0.09	23.01	24	1.256	0.050	22.3		
					He	ead Test data	a(50%RB_13 off	set)					
Left cheek	10	QPSK	23130/711	1:1	0.0166	0.08	22.07	23	1.239	0.021	22.3		
Left tilted	10	QPSK	23130/711	1:1	0.0144	-0.02	22.07	23	1.239	0.018	22.3		
Right cheek	10	QPSK	23130/711	1:1	0.021	0.06	22.07	23	1.239	0.026	22.3		
Right tilted	10	QPSK	23130/711	1:1	0.0119	0.05	22.07	23	1.239	0.015	22.3		
				Hea	ad Test Data	at the worst	case with SIM2						
Right cheek	10	QPSK	23095/707.5	1:1	0.0247	0.1	23.01	24	1.256	0.031	22.3		
				Head	Test Data at	the worst ca	ase with Battery	2#					
Right cheek	10	QPSK	23095/707.5	1:1	0.0256	-0.09	23.01	24	1.256	0.032	22.3		
				Head	Test Data at	the worst ca	ase with Battery	3#					
Right cheek	10	QPSK	23095/707.5	1:1	0.0264	0.1	23.01	24	1.256	0.033	22.3		
				Body wo	orn Test data	a(Separate 1	5mm 1RB_25 of	fset)					
Front side	10	QPSK	23130/711	1:1	0.0356	0.17	23.25	24	1.189	0.042	22.3		
Back side	10	QPSK	23130/711	1:1	0.0414	0.15	23.25	24	1.189	0.049	22.3		
Back side	10	QPSK	23060/704	1:1	0.0877	0.19	22.87	24	1.297	0.114	22.3		
Back side	10	QPSK	23095/707.5	1:1	0.0577	0.03	23.01	24	1.256	0.072	22.3		
				Body wor	n Test data	(Separate 15	5mm 25RB_13 o	ffset)					
Front side	10	QPSK	23130/711	1:1	0.0287	-0.04	22.07	23	1.239	0.036	22.3		
Back side	10	QPSK	23130/711	1:1	0.0337	-0.02	22.07	23	1.239	0.042	22.3		
		1	T			ata at the wo	rst case with SIM	//2	1	, · · · · · · · · · · · · · · · · · · ·			
Back side	10	QPSK	23060/704	1:1	0.0874	0.17	22.87	24	1.297	0.113	22.3		
		1	T	Body wo	rn Test data	at the worst	case with Batte	ry 2#	1	, ·			
Back side	10	QPSK	23060/704	1:1	0.0708	0.1	22.87	24	1.297	0.092	22.3		
	1	1	T	Body wo			case with Batte		1	<u> </u>			
Back side	10	QPSK	23060/704	1:1	0.0714	0.09	22.87	24	1.297	0.093	22.3		
		1	T	Hotspo		Separate 10	mm 1RB_25 offs	_	1	, ·			
Front side	10	QPSK	23130/711	1:1	0.046	0.07	23.25	24	1.189	0.055	22.3		
Back side	10	QPSK	23130/711	1:1	0.0523	0.05	23.25	24	1.189	0.062	22.3		
Left side	10	QPSK	23130/711	1:1	0.0338	0.05	23.25	24	1.189	0.040	22.3		
Right side	10	QPSK	23130/711	1:1	0.0476	0.07	23.25	24	1.189	0.057	22.3		
Bottom side	10	QPSK	23130/711	1:1	0.0197	0.05	23.25	24	1.189	0.023	22.3		
Back side	10	QPSK	23060/704	1:1	0.0958	0.02	22.87	24	1.297	0.124	22.3		
Back side	10	QPSK	23095/707.5	1:1	0.0629	-0.01	23.01	24	1.256	0.079	22.3		

Report No.:SZEM180100082701

Rev : 01

Page : 164 of 183

				Hotspot	Test data (S	Separate 10r	nm 25RB_13 of	fset)						
Front side	10	QPSK	23130/711	1:1	0.0375	-0.06	22.07	23	1.239	0.046	22.3			
Back side	10	QPSK	23130/711	1:1	0.0421	-0.09	22.07	23	1.239	0.052	22.3			
Left side	10	QPSK	23130/711	1:1	0.0269	-0.09	22.07	23	1.239	0.033	22.3			
Right side	10	QPSK	23130/711	1:1	0.0381	-0.09	22.07	23	1.239	0.047	22.3			
Bottom side	Bottom side 10 QPSK 23130/711 1:1 0.0162 -0.02 22.07 23 1.239 0.020 22.3													
	Hotspot Test data at the worst case with SIM2													
Back side	10	QPSK	23060/704	1:1	0.0952	0.03	22.87	24	1.297	0.123	22.3			
				Hotspo	Test data a	t the worst o	ase with Battery	/ 2#						
Back side	10	QPSK	23060/704	1:1	0.0929	-0.06	22.87	24	1.297	0.121	22.3			
	Hotspot Test data at the worst case with Battery 3#													
Back side	10	QPSK	23060/704	1:1	0.0937	0.06	22.87	24	1.297	0.122	22.3			

Report No.:SZEM180100082701

Rev : 01

Page : 165 of 183

	Second Antenna Test data													
Test position	BW.	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg)1- g	Power Drift(dB)	Conducted power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp.			
			•		Head Test	data(1RB2	offset)							
Left cheek	10	QPSK	23095/707.5	1:1	0.307	0.02	21.58	22.5	1.236	0.379	22.3			
Left tilted	10	QPSK	23095/707.5	1:1	0.193	0.06	21.58	22.5	1.236	0.239	22.3			
Right cheek	10	QPSK	23095/707.5	1:1	0.421	0.19	21.58	22.5	1.236	0.520	22.3			
Right tilted	10	QPSK	23095/707.5	1:1	0.317	0.01	21.58	22.5	1.236	0.392	22.3			
					He	ad Test data	a(25%RB_13 offs	set)						
Left cheek	10	QPSK	23095/707.5	1:1	0.297	-0.09	21.39	22.5	1.291	0.383	22.3			
Left tilted	10	QPSK	23095/707.5	1:1	0.189	0.16	21.39	22.5	1.291	0.244	22.3			
Right cheek	10	QPSK	23095/707.5	1:1	0.409	0.08	21.39	22.5	1.291	0.528	22.3			
Right tilted	10	QPSK	23095/707.5	1:1	0.307	0.06	21.39	22.5	1.291	0.396	22.3			
Right cheek	10	QPSK	23060/704	1:1	0.412	0.14	21.66	22.5	1.213	0.500	22.3			
Right cheek	10	QPSK	23130/711	1:1	0.515	0.01	21.64	22.5	1.219	0.628	22.3			
				Head	Test Data	at the worst	case with SIM2							
Right cheek	10	QPSK	23130/711	1:1	0.42	-0.01	21.64	22.5	1.219	0.512	22.3			
	1	1		Head T	est Data at t	he worst cas	se with Battery 2	#	r	1	•			
Right cheek	10	QPSK	23130/711	1:1	0.448	0.05	21.64	22.5	1.219	0.546	22.3			
	1	1		Head T	est Data at t	he worst cas	se with Battery 3	#	r	1	•			
Right cheek	10	QPSK	23130/711	1:1	0.47	-0.01	21.64	22.5	1.219	0.573	22.3			
	1	ı		Body wor	n Test data(Separate 15	mm 1RB_25 offs	1	T	T				
Front side	10	QPSK	23095/707.5	1:1	0.123	0.01	23.13	24	1.222	0.150	22.3			
Back side	10	QPSK	23095/707.5	1:1	0.163	0.07	23.13	24	1.222	0.199	22.3			
Back side	10	QPSK	23060/704	1:1	0.154	0.08	23.1	24	1.230	0.189	22.3			
Back side	10	QPSK	23130/711	1:1	0.153	0.07	23.12	24	1.225	0.187	22.3			
	ı	ı				· ·	mm 25RB_13 off	_	T	T				
Front side	10	QPSK	23095/707.5	1:1	0.0943	0.05	22.03	23	1.250	0.118	22.3			
Back side	10	QPSK	23095/707.5	1:1	0.121	-0.04	22.03	23	1.250	0.151	22.3			
	ı	ı	<u> </u>				st case with SIM		T	T				
Back side	10	QPSK	23095/707.5	1:1	0.157	0.09	23.13	24	1.222	0.192	22.3			
	1			_			case with Battery							
Back side	10	QPSK	23095/707.5	1:1	0.157	0.09	23.13	24	1.222	0.192	22.3			
	1		1				case with Battery							
Back side	10	QPSK	23095/707.5	1:1	0.121	0.05	23.13	24	1.222	0.148	22.3			
Front 11	10	OPOL	00400/744	· ·	,		m 1RB_25 offse	,	4.50	0.445	00.0			
Front side	10	QPSK	23130/711	1:1	0.125	0.08	21.86	22.5	1.159	0.145	22.3			
Back side	10	QPSK	23130/711	1:1	0.161	0.14	21.86	22.5	1.159	0.187	22.3			
Left side	10	QPSK	23130/711	1:1	0.251	0.12	21.86	22.5	1.159	0.291	22.3			
Right side	10	QPSK	23130/711	1:1	0.191	0.01	21.86	22.5	1.159	0.221	22.3			
Top side	10	QPSK	23130/711	1:1	0.0494	0.04	21.86	22.5	1.159	0.057	22.3			
Left side	10	QPSK	23060/704	1:1	0.258	-0.01	21.78	22.5	1.180	0.305	22.3			
Left side	10	QPSK	23095/707.5	1:1	0.265	0.1	21.74	22.5	1.191	0.316	22.3			

Report No.:SZEM180100082701

Rev : 01

Page : 166 of 183

	Hotspot Test data (Separate 10mm 25RB_13 offset)													
Front side	10	QPSK	23130/711	1:1	0.112	0.12	21.6	22.5	1.230	0.138	22.3			
Back side 10 QPSK 23130/711 1:1 0.145 0.01 21.6 22.5 1.230 0.178 22.3														
Left side	10	QPSK	23130/711	1:1	0.23	-0.04	21.6	22.5	1.230	0.283	22.3			
Right side	10	QPSK	23130/711	1:1	0.173	0.09	21.6	22.5	1.230	0.213	22.3			
Top side	Top side 10 QPSK 23130/711 1:1 0.0442 -0.01 21.6 22.5 1.230 0.054 22.3													
				Hotspo	t Test Data	at the worst	case with SIM2							
Left side	10	QPSK	23095/707.5	1:1	0.263	0.11	21.74	22.5	1.191	0.313	22.3			
				Hotspot [*]	Test Data at	the worst ca	ase with Battery	2#						
Left side	10	QPSK	23095/707.5	1:1	0.186	0.09	21.74	22.5	1.191	0.222	22.3			
				Hotspot	Test Data at	the worst ca	ase with Battery	3#						
Left side	10	QPSK	23095/707.5	1:1	0.195	0.07	21.74	22.5	1.191	0.232	22.3			

Table 27: SAR of LTE Band 7 for Head and Body.

Note:

- 3) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 4) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.:SZEM180100082701

Rev : 01

Page : 167 of 183

8.3.5 SAR Result Of LTE Band 17

LTE band 17 can be excluded from SAR testing by LTE band 12.

- 1.LTE band 12 and LTE band 17 use the same RF Components
- 2.The maximum output power, including tolerance for the LTE band 17 ≤ LTE band 12
- 3. The channel bandwidth and other operating parameter for LTE band 17 can be fully supported by LTE band 12

Report No.:SZEM180100082701

Rev : 01

Page : 168 of 183

8.3.6 SAR Result Of 2.4GHz WIFI

					WiF	Test data					
Test position	Test mode	Test Ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg)1- g	Power drift(dB)	Conducted power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp.
					Hea	d Test data					
Left cheek	802.11b	1/2412	99.60%	1.004	0.311	0.02	14.37	14.5	1.030	0.322	22
Left tilted	802.11b	1/2412	99.60%	1.004	0.16	-0.01	14.37	14.5	1.030	0.166	22
Right cheek	802.11b	1/2412	99.60%	1.004	0.101	0.05	14.37	14.5	1.030	0.104	22
Right tilted	802.11b	1/2412	99.60%	1.004	0.0926	0.05	14.37	14.5	1.030	0.096	22
Left cheek	802.11b	6/2437	99.60%	1.004	0.319	-0.05	14.03	14.5	1.114	0.357	22
Left cheek	802.11b	11/2462	99.60%	1.004	0.302	-0.19	14.35	14.5	1.035	0.314	22
			<u> </u>	Head Te	st Data at th	e worst case	with Battery 2#	14.0	1.000	0.014	
Left cheek	802.11b	6/2437	99.60%	1.004	0.25	0.03	14.03	14.5	1.114	0.280	22
	002.110	0/210/	00.0070				with Battery 3#	11.0		0.200	1
Left cheek	802.11b	6/2437	99.60%	1.004	0.295	0.09	14.03	14.5	1.114	0.330	22
				ı	dy worn Test	data(Separa	I.	l	l		<u>I</u>
Front side	802.11b	11/2462	99.60%	1.004	0.0529	0.1	17.18	18.5	1.355	0.072	22
Back side	802.11b	11/2462	99.60%	1.004	0.0967	0.06	17.18	18.5	1.355	0.132	22
Back side	802.11b	1/2412	99.60%	1.004	0.0606	0.01	17.16	18.5	1.361	0.083	22
Back side	802.11b	6/2437	99.60%	1.004	0.0881	0.03	17.17	18.5	1.358	0.120	22
			E	Body worn	Test Data at	the worst ca	ase with Battery 2	2#			
Back side	802.11b	11/2462	99.60%	1.004	0.0582	0.09	17.18	18.5	1.355	0.079	22
			. E	Body worn	Test Data at	the worst ca	se with Battery 3	3#			
Back side	802.11b	11/2462	99.60%	1.004	0.058	0.04	17.18	18.5	1.355	0.079	22
				Ho	otspot Test d	ata (Separat	te 10mm)	1		1	
Front side	802.11b	11/2462	99.60%	1.004	0.105	0.09	17.18	18.5	1.355	0.143	22
Back side	802.11b	11/2462	99.60%	1.004	0.194	0.07	17.18	18.5	1.355	0.264	22
Right side	802.11b	11/2462	99.60%	1.004	0.207	-0.03	17.18	18.5	1.355	0.282	22
Top side	802.11b	11/2462	99.60%	1.004	0.0783	0.05	17.18	18.5	1.355	0.107	22
Right side	802.11b	1/2412	99.60%	1.004	0.155	0.06	17.16	18.5	1.361	0.212	22
Right side	802.11b	6/2437	99.60%	1.004	0.213	0.06	17.17	18.5	1.358	0.290	22
	T	ı	1	Hotspot To	est Data at t	he worst cas	e with Battery 2#	<u> </u>	1	T	
Right side	802.11b	6/2437	99.60%	1.004	0.189	0.04	17.17	18.5	1.358	0.258	22
				Hotspot To	est Data at t	he worst cas	e with Battery 3#	ŧ			
Right side	802.11b	6/2437	99.60%	1.004	0.209	0.06	17.17	18.5	1.358	0.285	22

Report No.:SZEM180100082701

Rev : 01

Page : 169 of 183

Table 28: SAR of 2.4GHz WIFI for Head and Body

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3) Each channel was tested at the lowest data rate.
- 4) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, 802.11g/n OFDM SAR Test is not required.

Report No.:SZEM180100082701

Rev : 01

Page : 170 of 183

8.3.1 SAR Result Of Bluetooth

					Blueto	oth Test da	ta				
Test position	Test mode	Test Ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg)1- g	Power drift(dB)	Conducted power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR(W/kg)	Liquid Temp.
	Head Test data										
Left cheek	DH5	39/2441	100.00%	1	0.094	0.08	10.81	11	1.045	0.098	22
Left tilted	DH5	39/2441	100.00%	1	0.0623	-0.12	10.81	11	1.045	0.065	22
Right cheek	DH5	39/2441	100.00%	1	0.0446	0.09	10.81	11	1.045	0.047	22
Right tilted	DH5	39/2441	100.00%	1	0.0497	0.05	10.81	11	1.045	0.052	22
Left cheek	DH5	0/2402	100.00%	1	0.0901	0.06	10.31	11	1.172	0.106	22
Left cheek	DH5	78/2480	100.00%	1	0.113	-0.15	10.58	11	1.102	0.124	22
	Į.			Head Tes	st Data at th	e worst case	with Battery 2#				
Left cheek	DH5	78/2480	100.00%	1	0.112	-0.02	10.58	11	1.102	0.123	22
				Head Tes	st Data at th	e worst case	e with Battery 2#				
Left cheek	DH5	78/2480	100.00%	1	0.11	-0.09	10.58	11	1.102	0.121	22
				Ho	tspot Test o	lata (Separa	te 10mm)				
Front side	DH5	39/2441	100.00%	1	0.0113	0.07	10.81	11	1.045	0.012	22
Back side	DH5	39/2441	100.00%	1	0.0242	-0.09	10.81	11	1.045	0.025	22
Right side	DH5	39/2441	100.00%	1	0.0227	-0.07	10.81	11	1.045	0.024	22
Top side	DH5	39/2441	100.00%	1	0.00954	-0.07	10.81	11	1.045	0.010	22
Back side	DH5	0/2402	100.00%	1	0.0218	-0.05	10.31	11	1.172	0.026	22
Back side	DH5	78/2480	100.00%	1	0.0226	-0.06	10.58	11	1.102	0.025	22
	Hotspot Test Data at the worst case with Battery 2#										
Back side	DH5	0/2402	100.00%	1	0.02	0.01	10.31	11	1.172	0.023	22
				Hotspot Te	est Data at t	he worst cas	se with Battery 3	#			
Back side	DH5	0/2402	100.00%	1	0.0199	-0.05	10.31	11	1.172	0.023	22

Table 29: SAR of Bluetooth for Head and Body

Note

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No.:SZEM180100082701

Rev : 01

Page : 171 of 183

8.4 Multiple Transmitter Evaluation

8.4.1 Simultaneous SAR SAR test evaluation

Simultaneous Transmission

Transinission				
NO	Configuration	Head	Body-worn	Hotspot
1	GSM Voice(Ant 2) + BT	Yes	Yes	N/A
2	GSM DATA (Ant 2)+ BT	N/A	Yes	Yes
3	GSM Voice(Ant 2) + WiFi	Yes	Yes	N/A
4	GSM DATA(Ant 2) + WiFi	N/A	Yes	Yes
5	UMTS (Ant 2)+ BT	Yes	Yes	Yes
6	UMTS(Ant 2) + WiFi	Yes	Yes	Yes
7	LTE(Ant 2) + BT	Yes	Yes	Yes
8	LTE (Ant 2)+ WiFi	Yes	Yes	Yes
9	GSM Voice(Ant 1) + BT	Yes	Yes	N/A
10	GSM DATA (Ant 1)+ BT	N/A	Yes	Yes
11	GSM Voice(Ant 1) + WiFi	Yes	Yes	N/A
12	GSM DATA(Ant 1) + WiFi	N/A	Yes	Yes
13	UMTS (Ant 1)+ BT	Yes	Yes	Yes
14	UMTS (Ant 1)+ WiFi	Yes	Yes	Yes
15	LTE (Ant 1) +BT	Yes	Yes	Yes
16	LTE (Ant 1) +WiFi	Yes	Yes	Yes

Note:

- 1) Wi-Fi and Bluetooth share the same Tx antenna and can't transmit simultaneously.
- 2) The device does not support DTM function.
- 3) * VoLTE or pre-installed VOIP applications are considered.
- 4) The Main Antenna and Second Antenna can't transmit simultaneously.
- 6) The device supports VoWIFI function.

Report No.:SZEM180100082701

Rev : 01

Page : 172 of 183

8.4.2 Estimated SAR

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

 \bullet 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Estimated SAR Result

Freq. Band	Frequency (GHz)	Test Position	Max. power(dBm)	Max. power(mw)	Test Separation (mm)	Estimated SAR 1g (W/kg)
Bluetooth	2.48	Body- worn	11	12.58	15	0.176

Report No.:SZEM180100082701

Rev : 01

Page : 173 of 183

1) Simultaneous Transmission SAR Summation Scenario for head

	aneous Transm	ission SAR Summ	ation Scenario	for nead			
WWAN Band (Main Antenna)	Exposure position	① MAX.WWANSA R(W/kg)	② MAX.WLAN SAR(W/kg)	③ MAX.BT SAR(W/kg)	∑1-g SAR ①+②	∑1-g SAR ①+③	Case NO.
	Left Cheek	0.121	0.357	0.124	0.478	0.245	N/A
GSM 850	Left Tilt	0.105	0.166	0.065	0.271	0.17	N/A
	Right Cheek	0.201	0.104	0.047	0.305	0.248	N/A
	Right Tilt	0.113	0.096	0.052	0.209	0.165	N/A
	Left Cheek	0.115	0.357	0.124	0.472	0.239	N/A
GSM	Left Tilt	0.055	0.166	0.065	0.221	0.12	N/A
1900	Right Cheek	0.045	0.104	0.047	0.149	0.092	N/A
	Right Tilt	0.036	0.096	0.052	0.132	0.088	N/A
	Left Cheek	0.229	0.357	0.124	0.586	0.353	N/A
WCDMA	Left Tilt	0.134	0.166	0.065	0.3	0.199	N/A
B2	Right Cheek	0.077	0.104	0.047	0.181	0.124	N/A
	Right Tilt	0.098	0.096	0.052	0.194	0.15	N/A
	Left Cheek	0.178	0.357	0.124	0.535	0.302	N/A
WCDMA	Left Tilt	0.065	0.166	0.065	0.231	0.13	N/A
B4	Right Cheek	0.074	0.104	0.047	0.178	0.121	N/A
	Right Tilt	0.072	0.096	0.052	0.168	0.124	N/A
	Left Cheek	0.151	0.357	0.124	0.508	0.275	N/A
WCDMA	Left Tilt	0.128	0.166	0.065	0.294	0.193	N/A
B5	Right Cheek	0.272	0.104	0.047	0.376	0.319	N/A
	Right Tilt	0.141	0.096	0.052	0.237	0.193	N/A
	Left Cheek	0.142	0.357	0.124	0.499	0.266	N/A
LTE	Left Tilt	0.086	0.166	0.065	0.252	0.151	N/A
B2	Right Cheek	0.078	0.104	0.047	0.182	0.125	N/A
	Right Tilt	0.058	0.096	0.052	0.154	0.11	N/A
	Left Cheek	0.171	0.357	0.124	0.528	0.295	N/A
LTE	Left Tilt	0.083	0.166	0.065	0.249	0.148	N/A
B4	Right Cheek	0.088	0.104	0.047	0.192	0.135	N/A
	Right Tilt	0.076	0.096	0.052	0.172	0.128	N/A
LTE	Left Cheek	0.08	0.357	0.124	0.437	0.204	N/A
B5	Left Tilt	0.062	0.166	0.065	0.228	0.127	N/A

Report No.:SZEM180100082701

Rev : 01

Page : 174 of 183

	Right Cheek	0.182	0.104	0.047	0.286	0.229	N/A
	Right Tilt	0.061	0.096	0.052	0.157	0.113	N/A
	Left Cheek	0.159	0.357	0.124	0.516	0.283	N/A
LTE	Left Tilt	0.02	0.166	0.065	0.186	0.085	N/A
B7	Right Cheek	0.044	0.104	0.047	0.148	0.091	N/A
	Right Tilt	0.034	0.096	0.052	0.13	0.086	N/A
	Left Cheek	0.04	0.357	0.124	0.397	0.164	N/A
LTE	Left Tilt	0.03	0.166	0.065	0.196	0.095	N/A
B12	Right Cheek	0.05	0.104	0.047	0.154	0.097	N/A
	Right Tilt	0.026	0.096	0.052	0.122	0.078	N/A

WWAN Band (Second Antenna)	Exposure position	① MAX.WWANSAR(W/ kg)	② MAX.WLAN SAR(W/kg)	③ MAX.BT SAR(W/kg)	∑1-g SAR ①+②	Σ1-g SAR ①+③	Case NO.
	Left Cheek	0.593	0.357	0.124	0.95	0.717	N/A
GSM	Left Tilt	0.371	0.166	0.065	0.537	0.436	N/A
850	Right Cheek	0.882	0.104	0.047	0.986	0.929	N/A
	Right Tilt	0.591	0.096	0.052	0.687	0.643	N/A
	Left Cheek	0.198	0.357	0.124	0.555	0.322	N/A
GSM	Left Tilt	0.23	0.166	0.065	0.396	0.295	N/A
1900	Right Cheek	0.632	0.104	0.047	0.736	0.679	N/A
	Right Tilt	0.627	0.096	0.052	0.723	0.679	N/A
	Left Cheek	0.198	0.357	0.124	0.555	0.322	N/A
WCDMA	Left Tilt	0.219	0.166	0.065	0.385	0.284	N/A
B2	Right Cheek	0.517	0.104	0.047	0.621	0.564	N/A
	Right Tilt	0.409	0.096	0.052	0.505	0.461	N/A
	Left Cheek	0.15	0.357	0.124	0.507	0.274	N/A
WCDMA	Left Tilt	0.172	0.166	0.065	0.338	0.237	N/A
B4	Right Cheek	0.63	0.104	0.047	0.734	0.677	N/A
	Right Tilt	0.586	0.096	0.052	0.682	0.638	N/A
	Left Cheek	0.497	0.357	0.124	0.854	0.621	N/A
WCDMA	Left Tilt	0.339	0.166	0.065	0.505	0.404	N/A
B5	Right Cheek	0.675	0.104	0.047	0.779	0.722	N/A
	Right Tilt	0.479	0.096	0.052	0.575	0.531	N/A

Report No.:SZEM180100082701

Rev : 01

Page : 175 of 183

	Left Cheek	0.166	0.357	0.124	0.523	0.29	N/A
LTE	Left Tilt	0.183	0.166	0.065	0.349	0.248	N/A
B2	Right Cheek	0.684	0.104	0.047	0.788	0.731	N/A
	Right Tilt	0.705	0.096	0.052	0.801	0.757	N/A
	Left Cheek	0.178	0.357	0.124	0.535	0.302	N/A
LTE	Left Tilt	0.224	0.166	0.065	0.39	0.289	N/A
B4	Right Cheek	0.721	0.104	0.047	0.825	0.768	N/A
	Right Tilt	0.781	0.096	0.052	0.877	0.833	N/A
	Left Cheek	0.445	0.357	0.124	0.802	0.569	N/A
LTE	Left Tilt	0.303	0.166	0.065	0.469	0.368	N/A
B5	Right Cheek	0.535	0.104	0.047	0.639	0.582	N/A
	Right Tilt	0.393	0.096	0.052	0.489	0.445	N/A
	Left Cheek	0.145	0.357	0.124	0.502	0.269	N/A
LTE	Left Tilt	0.156	0.166	0.065	0.322	0.221	N/A
B7	Right Cheek	0.595	0.104	0.047	0.699	0.642	N/A
	Right Tilt	0.599	0.096	0.052	0.695	0.651	N/A
	Left Cheek	0.383	0.357	0.124	0.74	0.507	N/A
LTE	Left Tilt	0.244	0.166	0.065	0.41	0.309	N/A
B12	Right Cheek	0.628	0.104	0.047	0.732	0.675	N/A
	Right Tilt	0.396	0.096	0.052	0.492	0.448	N/A

Report No.:SZEM180100082701

Rev : 01

Page : 176 of 183

Simultaneous Transmission SAR Summation Scenario for body worn

2) Simultane	2) Simultaneous Transmission SAR Summation Scenario for body worn										
WWAN Band (Main Antenna)	Exposure position	① MAX.WWANS AR(W/kg)	② MAX.WLAN SAR(W/kg)	③ MAX.BT SAR(W/kg	∑1-g SAR ①+②	∑1-g SAR ①+③	Case NO.				
	Front(voice)	0.272	0.072	0.176	0.344	0.448	N/A				
GSM	Back(voice)	0.413	0.132	0.176	0.545	0.589	N/A				
850	Front(data)	0.245	0.072	0.176	0.317	0.421	N/A				
	Back(data)	0.353	0.132	0.176	0.485	0.529	N/A				
	Front(voice)	0.297	0.072	0.176	0.369	0.473	N/A				
GSM	Back(voice)	0.332	0.132	0.176	0.464	0.508	N/A				
1900	Front(data)	0.340	0.072	0.176	0.412	0.516	N/A				
	Back(data)	0.402	0.132	0.176	0.534	0.578	N/A				
WCDMA	Front	0.647	0.072	0.176	0.719	0.823	N/A				
B2	Back	0.824	0.132	0.176	0.956	1.000	N/A				
WCDMA	Front	0.553	0.072	0.176	0.625	0.729	N/A				
B4	Back	0.674	0.132	0.176	0.806	0.850	N/A				
WCDMA	Front	0.263	0.072	0.176	0.335	0.439	N/A				
B5	Back	0.432	0.132	0.176	0.564	0.608	N/A				
LTE	Front	0.426	0.072	0.176	0.498	0.602	N/A				
B2	Back	0.619	0.132	0.176	0.751	0.795	N/A				
LTE	Front	0.551	0.072	0.176	0.623	0.727	N/A				
B4	Back	0.777	0.132	0.176	0.909	0.953	N/A				
LTE	Front	0.245	0.072	0.176	0.317	0.421	N/A				
B5	Back	0.390	0.132	0.176	0.522	0.566	N/A				
LTE	Front	0.308	0.072	0.176	0.380	0.484	N/A				
B7	Back	0.461	0.132	0.176	0.593	0.637	N/A				
LTE	Front	0.042	0.072	0.176	0.114	0.218	N/A				
B12	Back	0.114	0.132	0.176	0.246	0.290	N/A				

Report No.:SZEM180100082701

Rev : 01

Page : 177 of 183

WWAN Band (Second Antenna)	Exposure position	① MAX.WWANS AR(W/kg)	② MAX.WLAN SAR(W/kg)	③ MAX.BT SAR(W/kg	Σ1-g SAR ①+②	∑1-g SAR ①+③	Case NO.
	Front(voice)	0.186	0.072	0.176	0.258	0.342	N/A
GSM	Back(voice)	0.298	0.132	0.176	0.430	0.442	N/A
850	Front(data)	0.175	0.072	0.176	0.247	0.332	N/A
	Back(data)	0.281	0.132	0.176	0.413	0.427	N/A
	Front(voice)	0.046	0.072	0.176	0.258	0.222	N/A
GSM	Back(voice)	0.070	0.132	0.176	0.202	0.246	N/A
1900	Front(data)	0.047	0.072	0.176	0.119	0.223	N/A
	Back(data)	0.084	0.132	0.176	0.216	0.260	N/A
WCDMA	Front	0.108	0.072	0.176	0.180	0.284	N/A
B2	Back	0.154	0.132	0.176	0.286	0.330	N/A
WCDMA	Front	0.101	0.072	0.176	0.173	0.277	N/A
B4	Back	0.138	0.132	0.176	0.270	0.314	N/A
WCDMA	Front	0.142	0.072	0.176	0.214	0.318	N/A
B5	Back	0.316	0.132	0.176	0.448	0.492	N/A
LTE	Front	0.128	0.072	0.176	0.200	0.304	N/A
B2	Back	0.106	0.132	0.176	0.238	0.282	N/A
LTE	Front	0.115	0.072	0.176	0.187	0.291	N/A
B4	Back	0.147	0.132	0.176	0.279	0.323	N/A
LTE	Front	0.174	0.072	0.176	0.246	0.350	N/A
B5	Back	0.284	0.132	0.176	0.416	0.460	N/A
LTE	Front	0.121	0.072	0.176	0.193	0.297	N/A
B7	Back	0.256	0.132	0.176	0.388	0.432	N/A
LTE	Front	0.150	0.072	0.176	0.222	0.326	N/A
B12	Back	0.199	0.132	0.176	0.331	0.375	N/A

Report No.:SZEM180100082701

Rev : 01

Page : 178 of 183

3) Simultaneous Transmission SAR Summation Scenario for hotspot

3) Simultaneous Transmission SAR Summation Scenario for hotspot										
WWAN Band	Exposure	1	2	3	∑1-g	∑1-g	Case			
(Main	position	MAX.WWANSAR(W/kg)	MAX.WLAN	MAX.BT	SAR	SAR	NO.			
Antenna)	poomon	WAX.WWANSAH(W/kg)	SAR(W/kg)	SAR(W/kg)	1+2	1+3				
	Front	0.242	0.143	0.012	0.385	0.254	N/A			
	Back	0.412	0.264	0.026	0.676	0.409	N/A			
GSM	Left	0.168	0.000	0	0.168	0.168	N/A			
850	Right	0.226	0.290	0.024	0.516	0.250	N/A			
	Тор	0	0.107	0.01	0.107	0.010	N/A			
	Bottom	0.187	0.000	0	0.187	0.187	N/A			
	Front	0.347	0.143	0.012	0.490	0.359	N/A			
	Back	0.388	0.264	0.026	0.652	0.414	N/A			
GSM	Left	0.08	0.000	0	0.080	0.080	N/A			
1900	Right	0.023	0.290	0.024	0.313	0.047	N/A			
	Тор	0	0.107	0.01	0.107	0.010	N/A			
	Bottom	0.685	0.000	0	0.685	0.685	N/A			
	Front	0.393	0.143	0.012	0.536	0.405	N/A			
	Back	0.417	0.264	0.026	0.681	0.443	N/A			
WCDMA	Left	0.106	0.000	0	0.106	0.106	N/A			
B2	Right	0.021	0.290	0.024	0.311	0.045	N/A			
	Тор	0	0.107	0.01	0.107	0.010	N/A			
	Bottom	0.797	0.000	0	0.797	0.797	N/A			
	Front	0.423	0.143	0.012	0.566	0.435	N/A			
	Back	0.466	0.264	0.026	0.730	0.492	N/A			
WCDMA	Left	0.055	0.000	0	0.055	0.055	N/A			
B4	Right	0.054	0.290	0.024	0.344	0.078	N/A			
	Тор	0.000	0.107	0.01	0.107	0.010	N/A			
	Bottom	0.788	0.000	0	0.788	0.788	N/A			
	Front	0.171	0.143	0.012	0.314	0.183	N/A			
	Back	0.499	0.264	0.026	0.763	0.525	N/A			
WCDMA	Left	0.233	0.000	0	0.233	0.233	N/A			
B5	Right	0.393	0.290	0.024	0.683	0.417	N/A			
	Тор	0	0.107	0.01	0.107	0.010	N/A			
	Bottom	0.116	0.000	0	0.116	0.116	N/A			
	Front	0.237	0.143	0.012	0.380	0.249	N/A			
	Back	0.26	0.264	0.026	0.524	0.286	N/A			
LTE	Left	0.059	0.000	0	0.059	0.059	N/A			
B2	Right	0.01	0.290	0.024	0.300	0.034	N/A			
	Тор	0	0.107	0.01	0.107	0.010	N/A			
	Bottom	0.626	0.000	0	0.626	0.626	N/A			
	Front	0.474	0.143	0.012	0.617	0.486	N/A			
	Back	0.535	0.264	0.026	0.799	0.561	N/A			
LTE	Left	0.057	0.000	0	0.057	0.057	N/A			
B4	Right	0.063	0.290	0.024	0.353	0.087	N/A			
	Top	0	0.107	0.01	0.107	0.010	N/A			
	Bottom	0.876	0.000	0	0.876	0.876	N/A			

Report No.:SZEM180100082701

Rev : 01

Page : 179 of 183

1	1 _ 1		1	ı	ı	ı	
	Front	0.13	0.143	0.012	0.273	0.142	N/A
	Back	0.349	0.264	0.026	0.613	0.375	N/A
LTE	Left	0.129	0.000	0	0.129	0.129	N/A
B5	Right	0.051	0.290	0.024	0.341	0.075	N/A
	Тор	0	0.107	0.01	0.107	0.010	N/A
	Bottom	0.024	0.000	0	0.024	0.024	N/A
	Front	0.371	0.143	0.012	0.514	0.383	N/A
	Back	0.279	0.264	0.026	0.543	0.305	N/A
LTE	Left	0.128	0.000	0	0.128	0.128	N/A
B7	Right	0.051	0.290	0.024	0.341	0.075	N/A
	Тор	0.000	0.107	0.01	0.107	0.010	N/A
	Bottom	0.328	0.000	0	0.328	0.328	N/A
	Front	0.055	0.143	0.012	0.198	0.067	N/A
	Back	0.124	0.264	0.026	0.388	0.150	N/A
LTE	Left	0.04	0.000	0	0.040	0.040	N/A
B12	Right	0.057	0.290	0.024	0.347	0.081	N/A
	Тор	0	0.107	0.01	0.107	0.010	N/A
	Bottom	0.023	0.000	0	0.023	0.023	N/A

WWAN Band (Second Antenna)	Exposure position	① MAX.WWANSAR(W/kg)	② MAX.WLAN SAR(W/kg)	③ MAX.BT SAR(W/kg)	Σ1-g SAR ①+②	Σ1-g SAR ①+③	Case NO.
	Front	0.163	0.143	0.012	0.306	0.175	N/A
	Back	0.217	0.264	0.026	0.481	0.243	N/A
GSM	Left	0.328	0.000	0	0.328	0.328	N/A
850	Right	0.143	0.290	0.024	0.433	0.167	N/A
	Тор	0.096	0.107	0.01	0.203	0.106	N/A
	Bottom	0	0.000	0	0.000	0.000	N/A
	Front	0.087	0.143	0.012	0.230	0.099	N/A
	Back	0.134	0.264	0.026	0.398	0.160	N/A
GSM	Left	0.130	0.000	0	0.130	0.130	N/A
1900	Right	0.000	0.290	0.024	0.290	0.024	N/A
	Top	0.120	0.107	0.01	0.227	0.130	N/A
	Bottom	0.000	0.000	0	0.000	0.000	N/A
	Front	0.073	0.143	0.012	0.216	0.085	N/A
	Back	0.104	0.264	0.026	0.368	0.130	N/A
WCDMA	Left	0.076	0.000	0	0.076	0.076	N/A
B2	Right	0.023	0.290	0.024	0.313	0.047	N/A
	Top	0.056	0.107	0.01	0.163	0.066	N/A
	Bottom	0.000	0.000	0	0.000	0.000	N/A
	Front	0.068	0.143	0.012	0.211	0.080	N/A
	Back	0.095	0.264	0.026	0.359	0.121	N/A
WCDMA	Left	0.089	0.000	0	0.089	0.089	N/A
B4	Right	0.020	0.290	0.024	0.310	0.044	N/A
	Тор	0.173	0.107	0.01	0.280	0.183	N/A
	Bottom	0.000	0.000	0	0.000	0.000	N/A

Report No.:SZEM180100082701

Rev : 01

Page : 180 of 183

	Front	0.135	0.143	0.012	0.278	0.147	N/A
	Back	0.195	0.264	0.026	0.459	0.221	N/A
WCDMA	Left	0.148	0.000	0	0.148	0.148	N/A
B5	Right	0.055	0.290	0.024	0.345	0.079	N/A
	Тор	0.077	0.107	0.01	0.184	0.087	N/A
	Bottom	0.000	0.000	0	0.000	0.000	N/A
	Front	0.078	0.143	0.012	0.221	0.090	N/A
	Back	0.110	0.264	0.026	0.374	0.136	N/A
LTE	Left	0.111	0.000	0	0.111	0.111	N/A
B2	Right	0.000	0.290	0.024	0.290	0.024	N/A
	Тор	0.092	0.107	0.01	0.199	0.102	N/A
	Bottom	0.000	0.000	0	0.000	0.000	N/A
	Front	0.129	0.143	0.012	0.272	0.141	N/A
	Back	0.190	0.264	0.026	0.454	0.216	N/A
LTE	Left	0.145	0.000	0	0.145	0.145	N/A
B4	Right	0.031	0.290	0.024	0.321	0.055	N/A
	Тор	0.242	0.107	0.01	0.349	0.252	N/A
	Bottom	0.000	0.000	0	0.000	0.000	N/A
	Front	0.153	0.143	0.012	0.296	0.165	N/A
	Back	0.168	0.264	0.026	0.432	0.194	N/A
LTE	Left	0.113	0.000	0	0.113	0.113	N/A
B5	Right	0.071	0.290	0.024	0.361	0.095	N/A
	Тор	0.065	0.107	0.01	0.172	0.075	N/A
	Bottom	0.000	0.000	0	0.000	0.000	N/A
	Front	0.078	0.143	0.012	0.221	0.090	N/A
	Back	0.111	0.264	0.026	0.375	0.137	N/A
LTE	Left	0.083	0.000	0	0.083	0.083	N/A
B7	Right	0.000	0.290	0.024	0.290	0.024	N/A
	Тор	0.043	0.107	0.01	0.150	0.053	N/A
	Bottom	0.000	0.000	0	0.000	0.000	N/A
	Front	0.145	0.143	0.012	0.288	0.157	N/A
	Back	0.187	0.264	0.026	0.451	0.213	N/A
LTE	Left	0.316	0.000	0	0.316	0.316	N/A
B12	Right	0.221	0.290	0.024	0.511	0.245	N/A
	Тор	0.057	0.107	0.01	0.164	0.067	N/A
	Bottom	0.000	0.000	0	0.000	0.000	N/A

Report No.:SZEM180100082701

Rev : 01

Page : 181 of 183

9 Equipment list

Test Platform	SPEAG DASY5 Professional		
Location	SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch		
Description	SAR Test System (Frequency range 300MHz-6GHz)		
Software Reference	DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)		

Hardware Reference

Equipment		Manufacturer	Model	Serial Number	Calibration Date	Due date of calibration
	Robot	Staubli	RX90L	F03/5V32A1/ A01	NCR	NCR
\boxtimes	ELI	SPEAG	ELI V5.0	1239	NCR	NCR
\boxtimes	Twin Phantom	SPEAG	SAM 1	1824	NCR	NCR
\boxtimes	DAE	SPEAG	DAE4	1267	2017-11-28	2018-11-27
\boxtimes	E-Field Probe	SPEAG	EX3DV4	3923	2017-08-24	2018-08-23
\boxtimes	Validation Kits	SPEAG	D750V3	1160	2016-06-22	2019-06-21
\boxtimes	Validation Kits	SPEAG	D835V2	4d105	2016-12-08	2019-12-07
\boxtimes	Validation Kits	SPEAG	D1750V2	1149	2016-06-23	2019-06-22
\boxtimes	Validation Kits	SPEAG	D1900V2	5d028	2016-12-07	2019-12-06
\boxtimes	Validation Kits	SPEAG	D2450V2	733	2016-12-07	2019-12-06
	Validation Kits	SPEAG	D2600V2	1125	2016-06-22	2019-06-21
\boxtimes	Agilent Network Analyzer	Agilent	E5071C	MY46523590	2017-03-06	2018-03-05
\boxtimes	Dielectric Probe Kit	Agilent	85070E	US01440210	NCR	NCR
	Universal Radio Communication Tester	R&S	CMU200	123090	2017-06-21	2018-06-20
	Universal Radio Communication Tester	R&S	CMW500	152271	2017-03-06	2018-03-05
\boxtimes	RF Bi-Directional Coupler	Agilent	86205-60001	MY31400031	NCR	NCR
\boxtimes	Signal Generator	Agilent	N5171B	MY53050736	2017-03-06	2018-03-05
\boxtimes	Preamplifier	Mini-Circuits	ZHL-42W	15542	NCR	NCR
\boxtimes	Power Meter	Agilent	E4416A	GB41292095	2017-03-06	2018-03-05
\boxtimes	Power Sensor	Agilent	8481H	MY41091234	2017-03-05	2018-03-04
\boxtimes	Power Sensor	R&S	NRP-Z92	100025	2017-03-06	2018-03-05
\boxtimes	Attenuator	SHX	TS2-3dB	30704	NCR	NCR
\boxtimes	Coaxial low pass filter	Mini-Circuits	VLF-2500(+)	NA	NCR	NCR
\boxtimes	Coaxial low pass filter	Microlab Fxr	LA-F13	NA	NCR	NCR
\boxtimes	50 Ω coaxial load	Mini-Circuits	KARN-50+	00850	NCR	NCR
\boxtimes	DC POWER SUPPLY	SAKO	SK1730SL5A	NA	NCR	NCR
\boxtimes	Speed reading thermometer	MingGao	T809	NA	2017-03-08	2018-03-07

Report No.:SZEM180100082701

Rev : 01

Page : 182 of 183

\boxtimes	Humidity and Temperature Indicator	KIMTOKA	KIMTOKA	NA	2017-03-08	2018-03-07
-------------	------------------------------------	---------	---------	----	------------	------------

10 Calibration certificate

Please see the Appendix C

11 Photographs

Please see the Appendix D

Report No.:SZEM180100082701

Rev : 01

Page : 183 of 183

Appendix A: Detailed System Validation Results

Appendix B: Detailed Test Results

Appendix C: Calibration certificate

Appendix D: Photographs

---END---