

Testing Laboratory

0659

FCC Radio Test Report FCC ID: N7NRC76C

Report No. : BTL-FCCP-1-2203T030

Equipment: Module

Model Name : RC7612, RC7612-1

Brand Name : AirPrime

Applicant: Sierra Wireless, Inc.

Address : 13811 Wireless Way, Richmond, BC V6V 3A4, Canada

Manufacturer : Sierra Wireless, Inc.

Address : 13811 Wireless Way, Richmond, BC V6V 3A4, Canada

Radio Function : WCDMA Band V, LTE Band 5

FCC Rule Part(s) : FCC CFR Title 47, Part 22, Subpart H

Measurement : ANSI C63.26-2015 Procedure(s) ANSI/TIA-603-E-2016

FCC KDB 971168 D01 Power Meas License Digital Systems v03r01

Date of Receipt : 2022/3/4

Date of Test : 2022/3/4 ~ 2022/4/26

Issued Date : 2022/6/21

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by : Eric Lee, Engineer

 \wedge

Jerry Chuang, Supervisor

BTL Inc.

Approved by

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2203T030 Page 1 of 89 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2203T030 Page 2 of 89 Report Version: R00

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 1.2 MEASUREMENT UNCERTAINTY 7 1.3 TEST ENVIRONMENT CONDITIONS 7 2 **GENERAL INFORMATION** 8 2.1 **DESCRIPTION OF EUT** 8 **TEST MODES** 10 2.2 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 12 2.4 SUPPORT UNITS 12 3 CONDUCTED OUTPUT POWER AND EFFECTIVE RADIATED POWER **MEASUREMENT** 13 3.1 LIMIT 13 **TEST PROCEDURE** 13 3.2 3.3 **DEVIATION FROM TEST STANDARD** 13 **TEST SETUP** 14 3.4 **EUT OPERATING CONDITIONS** 3.5 14 3.6 **TEST RESULT** 14 4 OCCUPIED BANDWIDTH MEASUREMENT 15 4.1 TEST PROCEDURE 15 4.2 **DEVIATION FROM TEST STANDARD** 15 4.3 **TEST SETUP** 15 4.4 **TEST RESULT** 15 CONDUCTED SPURIOUS EMISSIONS MEASUREMENT 5 16 5.1 LIMIT 16 5.2 **TEST PROCEDURE** 16 5.3 **DEVIATION FROM TEST STANDARD** 16 5.4 **TEST SETUP** 16 5.5 **TEST RESULT** 16 17 6 RADIATED SPURIOUS EMISSIONS TEST 6.1 LIMIT 17 6.2 **TEST PROCEDURE** 17 **DEVIATION FROM TEST STANDARD** 17 6.3 **TEST SETUP** 6.4 18 **EUT OPERATING CONDITIONS** 6.5 18 6.6 **TEST RESULT** 18 7 BAND EDGE MEASUREMENT 19 7.1 LIMIT 19 **TEST PROCEDURE** 7.2 19 7.3 **DEVIATION FROM TEST STANDARD** 19 **TEST SETUP** 7.4 19 7.5 **TEST RESULT** 19 PEAK TO AVERAGE RATIO MEASUREMENT 20 8 8.1 LIMIT 20 8.2 **TEST PROCEDURE** 20 **DEVIATION FROM TEST STANDARD** 8.3 20 8.4 **TEST SETUP** 20 8.5 **TEST RESULT** 20

9	FREQUE	ENCY STABILITY MEASUREMENT	21
9.1	LIMIT		21
9.2	TEST	PROCEDURE	21
9.3	DEVIA	ATION FROM TEST STANDARD	21
9.4	TEST	SETUP	21
9.5	TEST	RESULT	21
10	LIST OF	MEASURING EQUIPMENTS	22
11	EUT TES	ST PHOTO	24
12	EUT PHO	OTOS	24
APPEND	IX A	CONDUCTED OUTPUT POWER AND EFFECTIVE RADIATED POWER	25
APPEND	IX B	OCCUPIED BANDWIDTH	43
APPEND	IX C	CONDUCTED SPURIOUS EMISSION	57
APPEND	IX D	RADIATED SPURIOUS EMISSIONS	63
APPEND	IX E	BAND EDGE	72
APPEND	IX F	PEAK TO AVERAGE RATIO	78
APPEND	IX G	FREQOENCY STABILITY	88

Project No.: 2203T030 Page 4 of 89 Report Version: R00

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2203T030	R00	Original Report.	2022/6/21	Valid

Project No.: 2203T030 Page 5 of 89 Report Version: R00

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions		N/A	NOTE (3)
	Conducted Output Power Effective Radiated Power (ERP)	APPENDIX A	Pass	
2.1049	Occupied Bandwidth	APPENDIX B	Pass	
2.1051 22.917(a)	Conducted Spurious Emissions	APPENDIX C	Pass	
2.1053 22.917(a)	Radiated Spurious Emissions	APPENDIX D	Pass	
2.1051 22.917(a)	Band Edge Measurements	APPENDIX E	Pass	
-	Peak To Average Ratio	APPENDIX F	Pass	Record Only
2.1055 22.355	Frequency Stability	APPENDIX G	Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.
- (3) This is a DC input device.

Project No.: 2203T030 Page 6 of 89 Report Version: R00

1.1 TEST FACILITY

T	he 1	test	: fa	acil	itie	es	used	t t	to	col	lec	t t	he	tes	t c	la	ta	in	th	ιis	re	ро	rt	:
---	------	------	------	------	------	----	------	-----	----	-----	-----	-----	----	-----	-----	----	----	----	----	-----	----	----	----	---

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

C05	CB08	CB11	\boxtimes	CB15	CB16

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately $\mathbf{95}$ %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. Radiated Spurious Emissions test:

pundus Emissions test.								
Test Site	Measurement Frequency Range	U,(dB)						
	0.03 GHz ~ 0.2 GHz	4.17						
	0.2 GHz ~ 1 GHz	4.72						
CB15	1 GHz ~ 6 GHz	5.21						
CB15	6 GHz ~ 18 GHz	5.51						
	18 GHz ~ 26 GHz	3.69						
	26 GHz ~ 40 GHz	4.23						

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
Conducted Output Power	24.6 °C, 67 %	DC 3.7V	Paul Shen
Occupied Bandwidth	24.6 °C, 67 %	DC 3.7V	Paul Shen
Conducted Spurious Emissions	24.6 °C, 67 %	DC 3.7V	Paul Shen
Radiated Spurious Emissions and Effective Radiated Power	Refer to data	DC 3.7V	Vincent Lee
Band Edge	24.6 °C, 67 %	DC 3.7V	Paul Shen
Peak to Average Ratio	24.6 °C, 67 %	DC 3.7V	Paul Shen
Frequency Stability	Normal and E	xtreme	Paul Shen

Project No.: 2203T030 Page 7 of 89 Report Version: R00

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

	.								
Equipment	Module								
Model Name	RC7612, RC7612-1	·							
Brand Name	AirPrime								
Model Difference	RC7612 is LTE Cate	The hardware of the two models is the same, only the software is different. RC7612 is LTE Category 4 RC7612-1 is LTE Category 1							
Power Source	DC Voltage supplied	from host equipmen	nt.						
Power Rating	DC 3.7V								
Products Covered	N/A								
	WCD	MA		LT	E				
IEMI No.	INTEGUO: 9 3 Pourer Class: 3 INTEGUORE PROPERTOR PROPER	cast Ing Tode castion dition123456789 dition255789 displaymonity con Transmit Power 22,770 dith 11955 dith res Status B Test Node BT Test Node Cur UE R9-SSNI Cat: 241 BIOCK Transmitte: —— Leph Block Transmitte: —— Leph Channel Sys Type: UTRA FD0 Sys Type: UTRA FD0	7022/05/11 14/05 Purplemental Pleasurement Parameter End = Parameter 10	Orbot Main Furdisental U. SS 001010125456763 SS3930140000140 4 1 TPANG	Phone-1 LTE Report Power: 23,6 dBm UE Report Report TE Report A Signating Trace Trace Trace				
	Band	UL Frequency (requency (MHz)				
Operation Frequency	WCDMA V	824 ~ 849			869 ~ 894				
	LTE 5	824 ~ 849			869 ~ 894				
	Band	BW (MHz)	Mode		Power (W)				
	WCDMA V	-		-	0.151				
		1.4		PSK	0.080				
		1.1	16QAM		0.066				
Maximum ERP		3		PSK	0.081				
Waximan Era	LTE 5	Ŭ		QAM	0.067				
		5		PSK	0.082				
			16QAM		0.068				
		10		PSK	0.083				
		10	16QAM 0.069						
Test Model	RC7612								
Sample Status	Engineering Sample								
EUT Modification(s)	N/A								

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's

Project No.: 2203T030 Page 8 of 89 Report Version: R00

(2) Channel List:

WCDMA Band V									
Test Frequency ID	UARFCN	Frequency of Uplink (MHz)	UARFCN	Frequency of Downlink (MHz)					
Low Range	4132	826.4	4357	871.4					
Mid Range	4183	836.6	4408	881.5					
High Range	4233	846.6	4458	891.6					

LTE Band 5								
Test Frequency ID	Bandwidth (MHz)	NuL	Frequency of Uplink (MHz)	N _{DL}	Frequency of Downlink (MHz)			
	1.4	20407	824.7	2407	869.7			
Low Bongo	3	20415	825.5	2415	870.5			
Low Range	5	20425	826.5	2425	871.5			
	10	20450	829	2450	874			
Mid Range	1.4/3/5/10	20525	836.5	2525	881.5			
	1.4	20643	848.3	2643	893.3			
High Dongo	3	20635	847.5	2635	892.5			
High Range	5	20625	846.5	2625	891.5			
	10	20600	844	2600	889			

(3) Table for Filed Antenna:

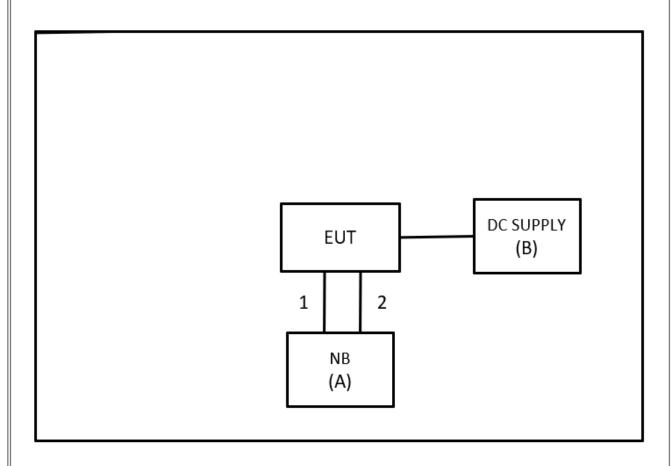
Antenna	Manufacture	Part Number	Type	Connector	Gain (dBi)	Note
1	@Pulse/ ARSEN	SPDA24617/3900	Dipole	SMA-M	1	WCDMA Band V
ı	Antennas	3FDA24017/3900	Dipole	SIVIA-IVI	1	LTE Band 5

Project No.: 2203T030 Page 9 of 89 Report Version: R00

2.2 TEST MODES

WCDMA BAND V MODE								
Test Item	Available Channel	Tested Channel	Mode					
Conducted Output Power and Effective Radiated Power	4132 to 4233	4132, 4183, 4233	WCDMA, HSDPA, HSUPA, HSPA+					
Occupied Bandwidth	4132 to 4233	4132, 4183, 4233	WCDMA					
Conducted Spurious Emissions	4132 to 4233	4183	WCDMA					
Radiated Spurious Emissions	4132 to 4233	4183	WCDMA					
Band Edge	4132 to 4233	4132, 4233	WCDMA					
Peak to Average Ratio	4132 to 4233	4132, 4183, 4233	WCDMA					
Frequency Stability	4132 to 4233	4183	WCDMA					

		LTE BA	ND 5 MODE		
Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	Mode
	20407 to 20643	20407, 20525, 20643	1.4MHz	QPSK, 16QAM,64QAM	1RB/3RB/6RB
Conducted Output	20415 to 20635	20415, 20525, 20635	3MHz	QPSK, 16QAM,64QAM	1RB/8RB/15RB
Power	20425 to 20625	20425, 20525, 20625	5MHz	QPSK, 16QAM,64QAM	1RB/12RB/25RB
	20450 to 20600	20450, 20525, 20600	10MHz	QPSK, 16QAM,64QAM	1RB/25RB/50RB
Effective Radiated Power	20450 to 20600	20450, 20525, 20600	10MHz	QPSK	1RB/25RB/50RB
	20407 to 20643	20407, 20525, 20643	1.4MHz	QPSK, 16QAM,64QAM	6RB
Occupied	20415 to 20635	20415, 20525, 20635	3MHz	QPSK, 16QAM,64QAM	15RB
Bandwidth	20425 to 20625	20425, 20525, 20625	5MHz	QPSK, 16QAM,64QAM	25RB
	20450 to 20600	20450, 20525, 20600	10MHz	QPSK, 16QAM,64QAM	50RB
Conducted	20407 to 20643			QPSK	1RB
Spurious	20425 to 20625	20525	5MHz	QPSK	1RB
Emissions	20450 to 20600	20525	10MHz	QPSK	1RB
Radiated	20407 to 20643	20525	1.4MHz	QPSK	1RB
Spurious	20425 to 20625	20525	5MHz	QPSK	1RB
Emissions	20450 to 20600	20525	10MHz	QPSK	1RB
	20407 to 20643	20407, 20643	1.4MHz	QPSK	1RB/6RB
Band Edge	20415 to 20635	20415, 20635	3MHz	QPSK	1RB/15RB
Band Edge	20425 to 20625	20425, 20625	5MHz	QPSK	1RB/25RB
	20450 to 20600	20450, 20600	10MHz	QPSK	1RB/50RB
	20407 to 20643	20407, 20525, 20643	1.4MHz	QPSK, 16QAM,64QAM	1RB
Peak To	20415 to 20635	20415, 20525, 20635	3MHz	QPSK, 16QAM,64QAM	1RB
Average Ratio	20425 to 20625	20425, 20525, 20625	5MHz	QPSK, 16QAM,64QAM	1RB
	20450 to 20600	20450, 20525, 20600	10MHz	QPSK, 16QAM,64QAM	1RB
	20407 to 20643	20525	1.4MHz	QPSK	1RB
Frequency	20415 to 20635	20525	3MHz	QPSK	1RB
Stability	20425 to 20625	20525	5MHz	QPSK	1RB
	20450 to 20600	20525	10MHz	QPSK	1RB


- (1) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.
- (2) For Radiated Spurious Emissions both QPSK, 16QAM and 64QAM are evaluated, but only the worst case (QPSK) is recorded.

Project No.: 2203T030 Page 11 of 89 Report Version: R00

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	NB	HP	TPN-I119	N/A	Furnished by test lab.
В	DC Power Supply	ABM	8303D	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	0.5m	Micro USB Cable	Furnished by test lab.
2	N/A	N/A	1m	Micro USB Cable	Furnished by test lab.

3 CONDUCTED OUTPUT POWER AND EFFECTIVE RADIATED POWER MEASUREMENT

3.1 LIMIT

The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts (38.45 dBm).

NOTE

(1) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
-29.66	+	34.26	II	4.60

Measurement Value		Limit Value		Margin Level
4.60	-	38.45	=	-33.85

3.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 5.

EIRP / ERP Power Measurement:

EIRP = Conducted Power + Antenna gain.

ERP power = EIPR power - 2.15 dBi.

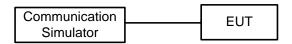
Conducted Measurement:

The EUT was set up for the maximum power with WCDMA and LTE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

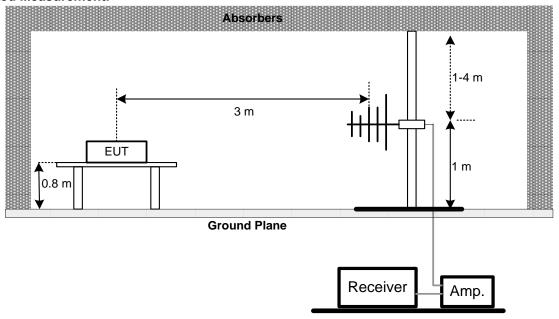
Radiated Measurement:

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. ERP can be calculated form EIRP by subtracting the gain of dipole, ERP = EIPR 2.15dBi..
- e. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

3.3 DEVIATION FROM TEST STANDARD


No deviation.

Project No.: 2203T030 Page 13 of 89 Report Version: R00



3.4 TEST SETUP

Conducted Measurement:

Radiated Measurement:

3.5 EUT OPERATING CONDITIONS

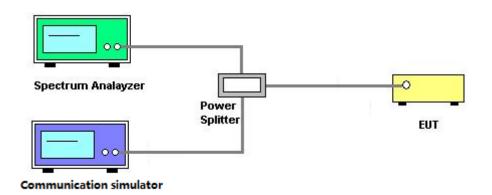
The EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULT

Please refer to the APPENDIX A.

4 OCCUPIED BANDWIDTH MEASUREMENT

4.1 TEST PROCEDURE


The testing follows FCC KDB 971168 v03r01 Section 4.

- a. The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth and 26dB bandwidth.
- b. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- c. RBW = (1% ~ 5%)*EBW VBW ≥ 3 * RBW.
- d. Set spectrum analyzer with Peak detector.

4.2 DEVIATION FROM TEST STANDARD

No deviation.

4.3 TEST SETUP

4.4 TEST RESULT

Please refer to the APPENDIX B

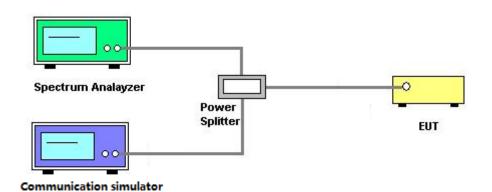
Project No.: 2203T030 Page 15 of 89 Report Version: R00

5 CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

5.1 LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit equal to -13dBm.

5.2 TEST PROCEDURE


The testing follows FCC KDB 971168 v03r01 Section 6.

- a. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- b. The band edges of low and high channels for the highest RF powers were measured. Set RBW>=1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- c. Set spectrum analyzer with Peak detector.
- d. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

5.5 TEST RESULT

Please refer to the APPENDIX C

Project No.: 2203T030 Page 16 of 89 Report Version: R00

6 RADIATED SPURIOUS EMISSIONS TEST

6.1 LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit equal to -13dBm.

NOTE:

(1) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
-50.43	+	-2.11	=	-52.54

Measurement Value		Limit Value		Margin Level
-52.54	-	-13	=	-39.54

6.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 6.2.

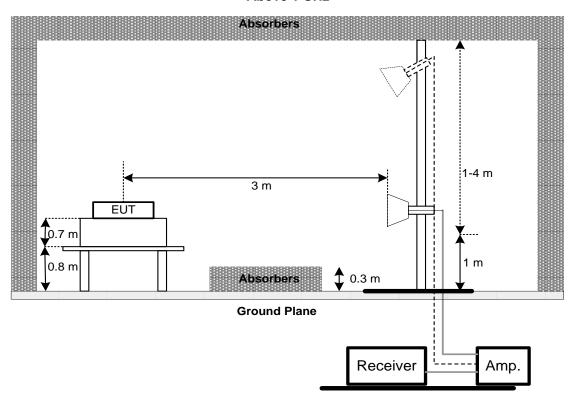
- a. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. ERP can be calculated form EIRP by subtracting the gain of dipole, ERP = EIPR 2.15dBi.
- e. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

6.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2203T030 Page 17 of 89 Report Version: R00

6.4 TEST SETUP


Absorbers

Absorbers

Ground Plane

Receiver Amp.

Above 1 GHz

6.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULT

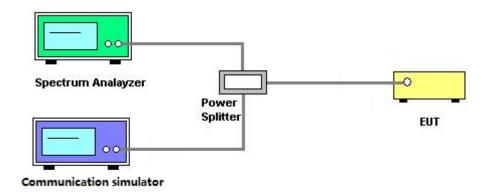
Please refer to the APPENDIX D

7 BAND EDGE MEASUREMENT

7.1 LIMIT

A Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

7.2 TEST PROCEDURE


The testing follows FCC KDB 971168 v03r01 Section 6.

- a. All measurements were done at low and high operational frequency range.
- b. Record the max trace plot into the test report.

7.3 DEVIATION FROM TEST STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULT

Please refer to the APPENDIX E

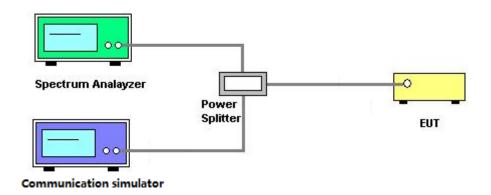
Project No.: 2203T030 Page 19 of 89 Report Version: R00

8 PEAK TO AVERAGE RATIO MEASUREMENT

8.1 LIMIT

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB.

8.2 TEST PROCEDURE


The testing follows FCC KDB 971168 v03r01 Section 5.7.

- a. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- b. Set the number of counts to a value that stabilizes the measured CCDF curve;
- c. Record the maximum PAPR level associated with a probability of 0.1%.

8.3 DEVIATION FROM TEST STANDARD

No deviation.

8.4 TEST SETUP

8.5 TEST RESULT

Please refer to the APPENDIX F

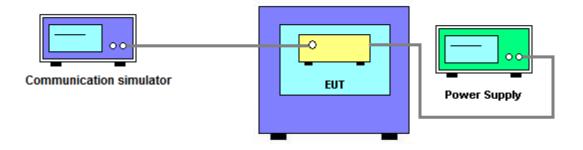
Project No.: 2203T030 Page 20 of 89 Report Version: R00

9 FREQUENCY STABILITY MEASUREMENT

9.1 LIMIT

±1.5 ppm is for base and fixed station. ±2.5 ppm is for mobile station.

9.2 TEST PROCEDURE


The testing follows FCC KDB 971168 v03r01 Section 9.

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error..
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ±0.5°C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.
- d. The frequency error was recorded frequency error from the communication simulator.

9.3 DEVIATION FROM TEST STANDARD

No deviation.

9.4 TEST SETUP

9.5 TEST RESULT

Please refer to the APPENDIX G

Project No.: 2203T030 Page 21 of 89 Report Version: R00

10 LIST OF MEASURING EQUIPMENTS

		Co	onducted Output	Power		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	8960 Series 10 Wireless Com Test Set	Agilent	E5515C	GB47390193	2021/7/23	2022/7/22
2	Radio Communication Analyzer	Anritsu	MT8820C	6201381608	2021/12/15	2022/12/14

	Ef	fective Radiated I	Power and Radiate	ed Spurious Emis	ssions	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC02325	980217	2021/4/8	2022/4/7
2	Preamplifier	EMCI	EMC012645B	980222	2021/4/8	2022/4/7
3	Test Cable	EMCI	EMC104-SM-100 0	180809	2021/4/8	2022/4/7
4	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2021/4/8	2022/4/7
5	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2021/4/8	2022/4/7
6	MXE EMI Receiver	Agilent	N9038A	MY56400087	2021/5/27	2022/5/26
7	Signal Analyzer	Agilent	N9010A	MY56480554	2021/8/25	2022/8/24
8	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/2	2022/6/1
9	Horn Ant	Schwarzbeck	BBHA 9170	340	2021/7/9	2022/7/8
10	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-352	2021/8/11	2022/8/10
11	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/8/11	2022/8/10
12	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A
13	8960 Series 10 Wireless Com Test Set	Agilent	E5515C	GB47390193	2021/7/23	2022/7/22
14	Radio Communication Analyzer (LTE)	Anritsu	MT8821C	6262044728	2021/11/28	2022/11/27

		Freque	ency Stability Me	asurement		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	8960 Series 10 Wireless Com Test Set	Agilent	E5515C	GB47390193	2021/7/23	2022/7/22
2	Radio Communication Analyzer	Anritsu	MT8820C	6201381608	2021/5/27	2022/5/26
3	Thermal Chamber	HOLINK	H-T-1F-D	BA03101701	2021/6/28	2022/6/27

Project No.: 2203T030 Page 22 of 89 Report Version: R00

		Other	s Conducted Me	asurement		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	8960 Series 10 Wireless Com Test Set	Agilent	E5515C	GB47390193	2021/6/8	2022/6/7
2	Radio Communication Analyzer	Anritsu	MT8820C	6201381608	2021/5/27	2022/5/26
3	Spectrum Analyzer	Agilent	N9010A	MY54200240	2021/5/27	2022/5/26

"N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year. Remark:

11 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2203T030-FCCP-1 (APPENDIX-TEST PHOTOS).
12 EUT PHOTOS
Please refer to document Appendix No.: EP-2203T030-2 (APPENDIX-EUT PHOTOS).

Project No.: 2203T030 Page 24 of 89 Report Version: R00

APPENDIX A CONDUCTED OUTPUT POWER AND EFFECTIVE RADIATED POWER

Project No.: 2203T030 Page 25 of 89 Report Version: R00

Conducted Output Power:

Band	Mode	UL/DL Channel No.	Frequency(MHz)	Average power(dBm)	ERP Power (dBm)	ERP Power (W)
		4132/4357	826.4	22.80	21.65	0.146
WCDMA Band V	Rel 99	4183/4408	836.6	22.94	21.79	0.151
		4233/4458	846.6	22.88	21.73	0.149

Band	Sub-test	UL/DL Channel No. 4132/4357 4183/4408 4233/4458 4132/4357 4183/4408 4233/4458 4132/4357 4183/4408	Frequency(MHz)	Average power(dBm)	ERP Power (dBm)	ERP Power (W)
		4132/4357	826.4	22.63	21.48	0.141
	1	4183/4408	836.6	22.84	21.69	0.148
		4233/4458	846.6	22.72	21.57	0.144
		4132/4357	826.4	22.18	21.03	0.127
	2	4183/4408	836.6	22.39	21.24	0.133
HSDPA V		4233/4458	846.6	22.27	21.12	0.129
HODPA V		4132/4357	826.4	21.73	20.58	0.114
	3	4183/4408	836.6	21.94	20.79	0.120
		4233/4458	846.6	21.82	20.67	0.117
		4132/4357	826.4	21.65	20.50	0.112
	4	4183/4408	836.6	21.87	20.72	0.118
		4233/4458	846.6	21.75	20.60	0.115

Band	Sub-test	UL/DL Channel No.	Frequency(MHz)	Average power(dBm)	ERP Power (dBm)	ERP Power (W)
		4132/4357	826.4	22.73	21.58	0.144
	1	4183/4408	836.6	22.87	21.72	0.149
		4233/4458	846.6	22.81	21.66	0.147
		4132/4357	826.4	20.79	19.64	0.092
	2	4183/4408	836.6	20.93	19.78	0.095
		4233/4458	846.6	20.87	19.72	0.094
		4132/4357	826.4	21.85	20.70	0.117
HSUPA V	3	4183/4408	836.6	21.99	20.84	0.121
		4233/4458	846.6	21.93	20.78	0.120
		4132/4357	826.4	20.73	19.58	0.091
	4	4183/4408	836.6	20.87	19.72	0.094
		4233/4458	846.6	20.81	19.66	0.092
		4132/4357	826.4	22.64	21.49	0.141
	5	4183/4408	836.6	22.78	21.63	0.146
		4233/4458	846.6	22.72	21.57	0.144

Band	UL/DL Channel No.	Frequency(MHz)	Average power(dBm)	ERP Power (dBm)	ERP Power (W)
	4132/4357	826.4	22.61	21.46	0.140
HSPA+ V	4183/4408	836.6	22.85	21.70	0.148
	4233/4458	846.6	22.69	21.54	0.143

NOTE:

- (1) EIRP = Average power + Antenna gain.
- (2) ERP = EIRP 2.15. (3) P(W) = 1 W \cdot 10^{(P(dBm)/10)} / 1000
- (4) The maximum antenna gain is applied.

Project No.: 2203T030 Page 26 of 89 Report Version: R00

Band	BW	Channel	Frequency	Mode	UL RB	UL RB	MPR	Average power	ERP power	ERP power
	(MHz)		(MHz)		Allocation	Offset		(dBm)	(dBm)	(W)
					1	0	0	22.18	19.0	0.080
					1	2	0	22.01	18.9	0.077
					1	5	0	21.74	18.6	0.072
				QPSK	3	0	0	22.18	19.0	0.080
					3	1	0	22.01	18.9	0.077
					3	2	0	21.74	18.6	0.072
		20407	824.7		6	0	1	21.24	18.1	0.064
					1	0	1	21.36	18.2	0.066
					1	2	1	21.32	18.2	0.066
					1	5	1	20.81	17.7	0.058
				16QAM	3	0	1	21.36	18.2	0.066
					3	1	1	21.32	18.2	0.066
					3	2	1	20.81	17.7	0.058
					6	0	2	20.33	17.2	0.052
					1	0	0	22.10	19.0	0.079
					1	2	0	21.99	18.8	0.077
			.5 836.5		1	5	0	21.96	18.8	0.076
				QPSK	3	0	0	22.10	19.0	0.079
					3	1	0	21.99	18.8	0.077
					3	2	0	21.96	18.8	0.076
5	1.4	20525			6	0	1	21.16	18.0	0.063
	1.4	20323			1	0	1	21.28	18.1	0.065
					1	2	1	21.24	18.1	0.064
					1	5	1	21.03	17.9	0.061
				16QAM	3	0	1	21.28	18.1	0.065
					3	1	1	21.24	18.1	0.064
					3	2	1	21.03	17.9	0.061
					6	0	2	20.50	17.4	0.054
					1	0	0	21.89	18.7	0.075
]		1	2	0	21.88	18.7	0.075
					1	5	0	21.97	18.8	0.076
				QPSK	3	0	0	21.89	18.7	0.075
]		3	1	0	21.88	18.7	0.075
					3	2	0	21.97	18.8	0.076
	20643	848.3		6	0	1	21.17	18.0	0.063	
		040.3		1	0	1	21.07	17.9	0.062	
]		1	2	1	21.03	17.9	0.061	
		1		1	5	1	21.04	17.9	0.062	
			16QAM	3	0	1	21.07	17.9	0.062	
			1		3	1	1	21.03	17.9	0.061
					3	2	1	21.04	17.9	0.062
					6	0	2	20.60	17.5	0.056

- (1) EIRP = Average power + Antenna gain.
 (2) ERP = EIRP 2.15.
 (3) P(W) = 1 W ⋅ 10^{(P(dBm) / 10)} / 1000

- (4) The maximum antenna gain is applied.

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB Offset	MPR	Average power (dBm)	ERP power (dBm)	ERP power (W)
	, ,		, ,		1	0	0	22.23	19.1	0.081
					1	7	0	22.06	18.9	0.078
					1	14	0	21.79	18.6	0.073
				QPSK	8	0	1	21.34	18.2	0.066
					8	4	1	21.10	18.0	0.062
					8	7	1	20.97	17.8	0.061
		20445	025.5		15	0	1	21.29	18.1	0.065
		20415	825.5		1	0	1	21.41	18.3	0.067
					1	7	1	21.37	18.2	0.066
					1	14	1	20.86	17.7	0.059
				16QAM	8	0	2	20.24	17.1	0.051
					8	4	2	20.20	17.1	0.051
					8	7	2	19.82	16.7	0.046
					15	0	2	20.38	17.2	0.053
				QPSK	1	0	0	22.15	19.0	0.079
					1	7	0	22.04	18.9	0.077
					1	14	0	22.01	18.9	0.077
					8	0	1	21.26	18.1	0.065
			525 836.5		8	4	1	21.08	17.9	0.062
					8	7	1	21.19	18.0	0.064
5	3	20525			15	0	1	21.21	18.1	0.064
3] 3	20323			1	0	1	21.33	18.2	0.066
					1	7	1	21.29	18.1	0.065
					1	14	1	21.08	17.9	0.062
				16QAM	8	0	2	20.16	17.0	0.050
					8	4	2	20.18	17.0	0.050
					8	7	2	20.04	16.9	0.049
					15	0	2	20.30	17.2	0.052
					1	0	0	21.94	18.8	0.076
					1	7	0	21.93	18.8	0.076
					1	14	0	22.02	18.9	0.077
				QPSK	8	0	1	21.05	17.9	0.062
					8	4	1	20.97	17.8	0.061
					8	7	1	21.20	18.1	0.064
	20635 847.5	8475		15	0	1	21.22	18.1	0.064	
		047.3		1	0	1	21.12	18.0	0.063	
				1	7	1	21.08	17.9	0.062	
				1	14	1	21.09	17.9	0.062	
		16QAM	16QAM	8	0	2	19.95	16.8	0.048	
				10QAIVI	8	4	2	20.07	16.9	0.049
]			8	7	2	20.05	16.9	0.049
					15	0	2	20.09	16.9	0.049

- (1) EIRP = Average power + Antenna gain.
 (2) ERP = EIRP 2.15.
 (3) P(W) = 1 W ⋅ 10^{(P(dBm) / 10)} / 1000

- (4) The maximum antenna gain is applied.

Project No.: 2203T030 Page 28 of 89 Report Version: R00

Band	BW	Channel	Frequency	Mode	UL RB	UL RB	MPR	Average power	ERP power	ERP power
24.14	(MHz)	Or identified	(MHz)		Allocation	Offset		(dBm)	(dBm)	(W)
					1	0	0	22.28	19.1	0.082
					1	12	0	22.11	19.0	0.079
					1	24	0	21.84	18.7	0.074
				QPSK	12	0	1	21.39	18.2	0.067
					12	6	1	21.15	18.0	0.063
					12	11	1	21.02	17.9	0.061
		20425	826.5		25	0	1	21.34	18.2	0.066
		20.20	020.0		1	0	1	21.46	18.3	0.068
					1	12	1	21.42	18.3	0.067
					1	24	1	20.91	17.8	0.060
				16QAM	12	0	2	20.29	17.1	0.052
					12	6	2	20.25	17.1	0.051
					12	11	2	19.87	16.7	0.047
					25	0	2	20.43	17.3	0.053
				QPSK	1	0	0	22.20	19.1	0.080
					1	12	0	22.09	18.9	0.078
					1	24	0	22.06	18.9	0.078
					12	0	1	21.31	18.2	0.065
					12	6	1	21.13	18.0	0.063
			5 836.5		12	11	1	21.24	18.1	0.064
5	5	20525			25	0	1	21.26	18.1	0.065
					1	0	1	21.38	18.2	0.067
					1	12	1	21.34	18.2	0.066
					1	24	1	21.13	18.0	0.063
				16QAM	12	0	2	20.21	17.1	0.051
					12	6	2	20.23	17.1	0.051
					12	11	2	20.09	16.9	0.049
					25	0	2	20.35	17.2	0.052
					1	0	0	21.99	18.8	0.077
					1	12	0	21.98	18.8	0.076
					1	24	0	22.07	18.9	0.078
				QPSK	12	0	1	21.10	18.0	0.062
					12	6	1	21.02	17.9	0.061
					12	11	1	21.25	18.1	0.065
	20625	846.5		25	0	1	21.27	18.1	0.065	
		0 10.0		1	0	1	21.17	18.0	0.063	
				1	12	1	21.13	18.0	0.063	
				1	24	1	21.14	18.0	0.063	
				16QAM	12	0	2	20.00	16.9	0.048
					12	6	2	20.12	17.0	0.050
					12	11	2	20.10	17.0	0.050
					25	0	2	20.14	17.0	0.050

- (1) EIRP = Average power + Antenna gain.
 (2) ERP = EIRP 2.15.
 (3) P(W) = 1 W ⋅ 10^{(P(dBm) / 10)} / 1000

- (4) The maximum antenna gain is applied.

Project No.: 2203T030 Page 29 of 89 Report Version: R00

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB Offset	MPR	Average power (dBm)	ERP power (dBm)	ERP power (W)
	(1011 12)		(1711 12)		1	0	0	22.33	19.2	0.083
					1	24	0	22.16	19.0	0.080
					1	49	0	21.89	18.7	0.075
				QPSK	25	0	1	21.44	18.3	0.067
				α. σ. τ	25	12	1	21.20	18.1	0.064
					25	24	1	21.07	17.9	0.062
					50	0	1	21.39	18.2	0.067
		20450	829.0		1	0	1	21.51	18.4	0.069
					1	24	1	21.47	18.3	0.068
					1	49	1	20.96	17.8	0.060
				16QAM	25	0	2	20.34	17.2	0.052
					25	12	2	20.30	17.2	0.052
					25	24	2	19.92	16.8	0.048
					50	0	2	20.48	17.3	0.054
					1	0	0	22.25	19.1	0.081
					1	24	0	22.14	19.0	0.079
					1	49	0	22.11	19.0	0.079
				QPSK	25	0	1	21.36	18.2	0.066
		20525			25	12	1	21.18	18.0	0.064
					25	24	1	21.29	18.1	0.065
_			000 5		50	0	1	21.31	18.2	0.065
5	10	20525	836.5		1	0	1	21.43	18.3	0.067
					1	24	1	21.39	18.2	0.067
					1	49	1	21.18	18.0	0.064
				16QAM	25	0	2	20.26	17.1	0.051
					25	12	2	20.28	17.1	0.052
					25	24	2	20.14	17.0	0.050
					50	0	2	20.40	17.3	0.053
					1	0	0	22.04	18.9	0.077
					1	24	0	22.03	18.9	0.077
					1	49	0	22.12	19.0	0.079
				QPSK	25	0	1	21.15	18.0	0.063
					25	12	1	21.07	17.9	0.062
					25	24	1	21.30	18.2	0.065
	20600	20600	844.0		50	0	1	21.32	18.2	0.066
		844.0		1	0	1	21.22	18.1	0.064	
				1	24	1	21.18	18.0	0.064	
				1	49	1	21.19	18.0	0.064	
			16QAM	25	0	2	20.05	16.9	0.049	
				16QAM	25	12	2	20.17	17.0	0.050
					25	24	2	20.15	17.0	0.050
						0	2	20.19	17.0	0.051

- (1) EIRP = Average power + Antenna gain.
 (2) ERP = EIRP 2.15.
 (3) P(W) = 1 W ⋅ 10^{(P(dBm) / 10)} / 1000

- (4) The maximum antenna gain is applied.

Project No.: 2203T030 Page 30 of 89 Report Version: R00

Effective Radiated Power:

1	Test Mo	de	WCDMA Band V			Test Date		2022/3/10			
Te	st Char	nnel	CH	4132		Polarization	า	Ver	tical		
	Temp		2	1°C		Hum.		64	4%		
40.0 dB	m									_	
										1	
30										-	
20										1	
10			1 X								
0										-	
-10										-	
-20											
-30										-	
-40										-	
-50											
-60.0											
810.000	815.00	820.00	825.00	830.00	835.00 8	40.00 84	5.00 850	0.00	860.00	_ MHz	
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over				
			Level	Factor	ment	· · ·		5	_	<u> </u>	
		MHz	dBm	dB	dBm	dBm	dB		Comme	ent	
1	*	826.9583	-21.76	34.00	12.24	38.45	-26.21	peak			

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			IA Band V		Test Date			2/3/10	
T	est Cha	innel		4132		Polarizatio	n	Horiz	zontal	
	Temp	0	2	1°C		Hum.		64	4%	
10.0 d	Bm									7
30										-
20			1 *							
o			×							
10										-
20										-
30										
40										-
50										+
60.0										
810.00			825.00	830.00).00	860.00	МН
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	∍nt
1	*	826.9850	-17.32	33.49	16.17	38.45	-22.28	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			1A Band V		Test Date			2/3/10	
le	est Char			4183 1°C		Polarization Hum.	n		tical 4%	
10.0 dB	Temp			1 0		nuiii.		02	+ 70	
										Ŧ
30										-
20										
10					1 ×					
ı										-
10										
20										
30										-
40										
50										-
60.0										
810.000			825.00	830.00			5.00 850	.00	860.00	МН
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	ent
1	*	834.9250	-22.55	33.90	11.35	38.45	-27.10	peak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			1A Band V		Test Date			2/3/10	
Т	est Cha			4183		Polarization	on		zontal	
	Temp)	2	1°C		Hum.		64	4%	
40.0 d	Bm			-						_
30										7
20										
.					1 X					
10 —										-
, 📙										
,										1
10										-
20										1
30										
40										1
50										_
-60.0										
810.00	0 815.00	820.00	825.00	830.00	835.00	840.00 8	345.00 850).00	860.00	_мн
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over			_
			Level	Factor	ment					
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	ent
1	*	837.0033	-18.31	33.23	14.92	38.45	-23.53	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mode Test Channel		WCDMA Band V			Test Date		2022/3/10			
			4233	Polarization			Vertical			
Temp		21°C		Hum.			64	64%		
40.0 d	IBm -									7
30										-
20										
10							1 ×			
) 										-
10										
20										-
30										-
40										-
50										-
60.0										
810.00 No.	0 815.00 Mk.	920.00 Freq.	825.00 Reading	830.00 Correct	835.00 84 Measure-	0.00 84 Limit	5.00 850 Over).00	860.00	МН
. 10.		1 104.	Level	Factor	ment					
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	ent
1	*	845.7500	-22.21	33.77	11.56	38.45	-26.89	peak	· · · · · · · · · · · · · · · · · · ·	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mode			1A Band V			2022/3/10				
Test Channel			14233	Polarization		Horizontal				
Temp		21°C		Hum.		64%				
10.0 d	Bm									_
										4
30										1
20										
10							*			
,										
10										
20										
30										
40										-
50										-
60.0										
810.00			825.00	830.00).00	860.00	МН
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	ent
1	*	845.2467	-19.29	33.02	13.73	38.45	-24.72	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			Band 5		Test Date			2/3/10	
16	est Char Temp			20450 1°C		Polarizatior Hum.	I		tical 1%	
40.0 dB						Tidiii.			170	
										7
30										1
20			1 X							-
10			<u> </u>							-
)										-
10										
20										-
30										
40										
50										-
60.0										
800.000			830.00	840.00			0.00 880	0.00	900.00	_мн
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	ent
1	*	824.5566	-16.68	34.03	17.35	38.45	-21.10	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			Band 5		Test Date			2/3/10	
Te	est Cha			20450		Polarizatio	n		zontal	
	Temp)	2	1°C		Hum.		64	4%	
40.0 dE	3 m							-		=
30										-
.o			×							
0										
.										
10										
20										
30										-
40										$\frac{1}{1}$
50										-
60.0	010.00	020.00	020.00	040.00	050.00	20.00	70.00	100	000.00	
800.000 No.	Mk.	920.00 Freq.	830.00 Reading Level	840.00 Correct Factor	Measure- ment	60.00 87 Limit	0.00 880 Over	0.00	900.00	MH
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	ent
1	*	824.6400	-10.34	33.55	23.21	38.45	-15.24	peak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			Band 5		Test Date			2/3/10	
T	est Cha			20525		Polarizatio	n		tical	
	Temp)	2	1°C		Hum.		64	4%	
10.0 d	Bm							-		=
30										-
20			1 ×							
o			^							
ı										
10										
20										
30										
40										
50										-
60.Q										
800.00			830.00	840.00			0.00 880	0.00	900.00	МН
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	ent
1	*	832.1400	-15.76	33.93	18.17	38.45	-20.28	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			Band 5		Test Date			2/3/10 zontal	
16	st Char Temp			20525 1°C		Polarization Hum.	I		zontai 4%	
40.0 dB				1 0		Tidili.		0-	770	
										₹
:0										7
20			X							
.0										
0										-
,										
10										1
20										_
20										
30										
40										-
50										
60.0										
800.000	810.00	820.00	830.00	840.00	850.00 8	60.00 87	0.00 880	1.00	900.00	_мн
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over			
		MHz	Level dBm	Factor dB	ment dBm	dBm	dB	Detector	Comme	ent
1	*	832.0533	-10.12	33.36	23.24	38.45	-15.21	peak	30111110	<i>711</i> 10

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			Band 5		Test Date			2/3/10	
1	est Cha	nnel		20600		Polarizatio	n		tical	
	Temp		2	1°C		Hum.		64	4%	
40.0	IBm .									_
30										-
-										
:0				×						-
0										
ı										
10										-
20										-
30 -										$\frac{1}{1}$
40										-
50										-
60.0										
800.00			830.00	840.00			0.00 880).00	900.00	МН
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	∍nt
1	*	839.5400	-16.25	33.85	17.60	38.45	-20.85	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			Band 5		Test Date			2/3/10	
	Test Char			20600		Polarization	n		zontal	
10.0	Temp	l .		1°C		Hum.		62	4%	
	abiii									₹
30 <u> </u>										-
20				1 X						
10										
,										
10										
20										
30										
40										
50										-
60.0										
800.00			830.00	840.00			0.00 880	.00	900.00	МН
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	ent
1	*	839.5300	-10.49	33.17	22.68	38.45	-15.77	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

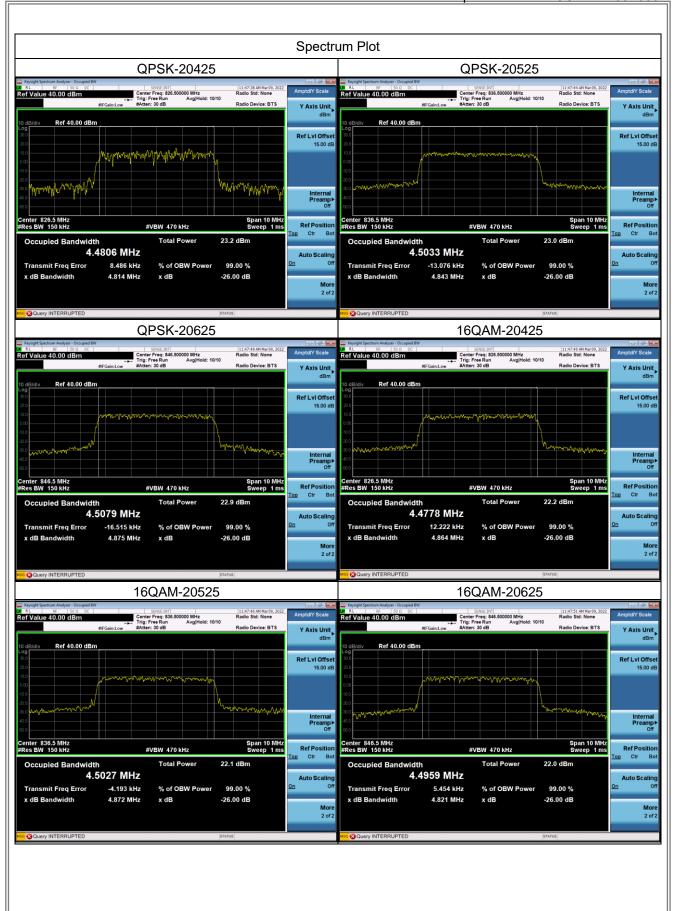
APPENDIX B	OCCUPIED BANDWIDTH

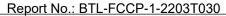
Project No.: 2203T030 Page 43 of 89 Report Version: R00

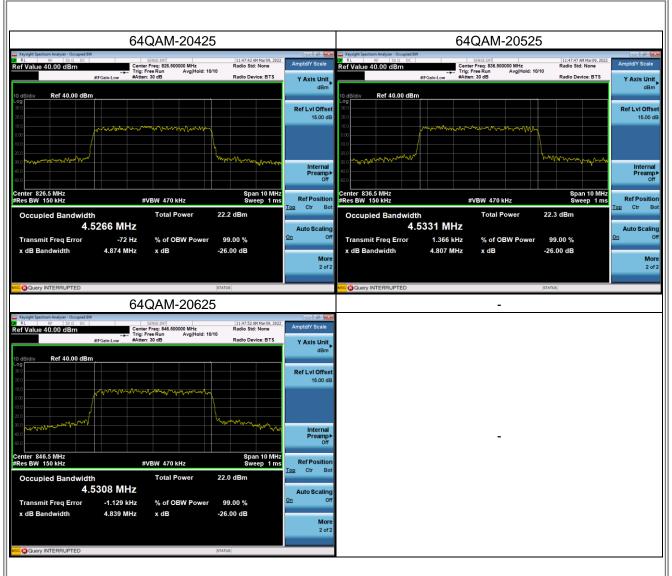
	WCDMA Band V_WCDMA								
	QPSK								
Channel	Channel Frequency (MHz) 99% Occupied Bandwidth (MHz) Channel Frequency (MHz) 26dB Bandwidth (MHz)								
4132	826.4	4.1340	4132	826.4	4.721				
4183	836.6	4.1349	4183	836.3	4.710				
4233	846.6	4.1245	4233	846.6	4.696				

		LTE B	Band 5_1.4M		
			QPSK		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20407	824.7	1.0989	20407	824.7	1.198
20525	836.5	1.1015	20525	836.5	1.235
20643	848.3	1.1000	20643	848.3	1.275
		•	16QAM		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20407	824.7	1.1201	20407	824.7	1.247
20525	836.5	1.0965	20525	836.5	1.236
20643	848.3	1.0986	20643	848.3	1.220
		(64QAM		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20407	824.7	1.1015	20407	824.7	1.244
20525	836.5	1.1013	20525	836.5	1.235
20643	848.3	1.0991	20643	848.3	1.242

		ITE	Band 5_3M		
			QPSK		
	_		Q1 OIX	_	
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20415	825.5	2.7267	20415	825.5	2.927
20525	836.5	2.7318	20525	836.5	2.944
20635	847.5	2.7277	20635	847.5	3.001
		•	I6QAM		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20415	825.5	2.6910	20415	825.5	2.911
20525	836.5	2.7117	20525	836.5	2.922
20635	847.5	2.6943	20635	847.5	2.917
		(64QAM		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20415	825.5	2.6980	20415	825.5	2.941
20525	836.5	2.7035	20525	836.5	2.939
20635	847.5	2.6953	20635	847.5	2.940






		LTE	Band 5_5M		
			QPSK		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20425	826.5	4.4806	20425	826.5	4.814
20525	836.5	4.5033	20525	836.5	4.843
20625	846.5	4.5079	20625	846.5	4.875
		1	I6QAM		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20425	826.5	4.4778	20425	826.5	7.864
20525	836.5	4.5027	20525	836.5	4.872
20625	846.5	4.4959	20625	846.5	4.821
		6	64QAM		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20425	826.5	4.5266	20425	826.5	4.874
20525	836.5	4.5331	20525	836.5	4.807
20625	846.5	4.5308	20625	846.5	4.839

		LIEE	Band 5_10M		
			QPSK		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20450	829.0	8.9309	20450	829.0	9.404
20525	836.5	8.9603	20525	836.5	9.454
20600	844.0	8.9109	20600	844.0	9.417
		1	16QAM		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20450	829.0	8.9314	20450	829.0	9.450
20525	836.5	8.9163	20525	836.5	9.453
20600	844.0	8.8992	20600	844.0	9.515
		6	64QAM		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20450	829.0	8.9605	20450	829.0	9.479
20525	836.5	8.9810	20525	836.5	9.606
20600	844.0	8.9198	20600	844.0	9.483