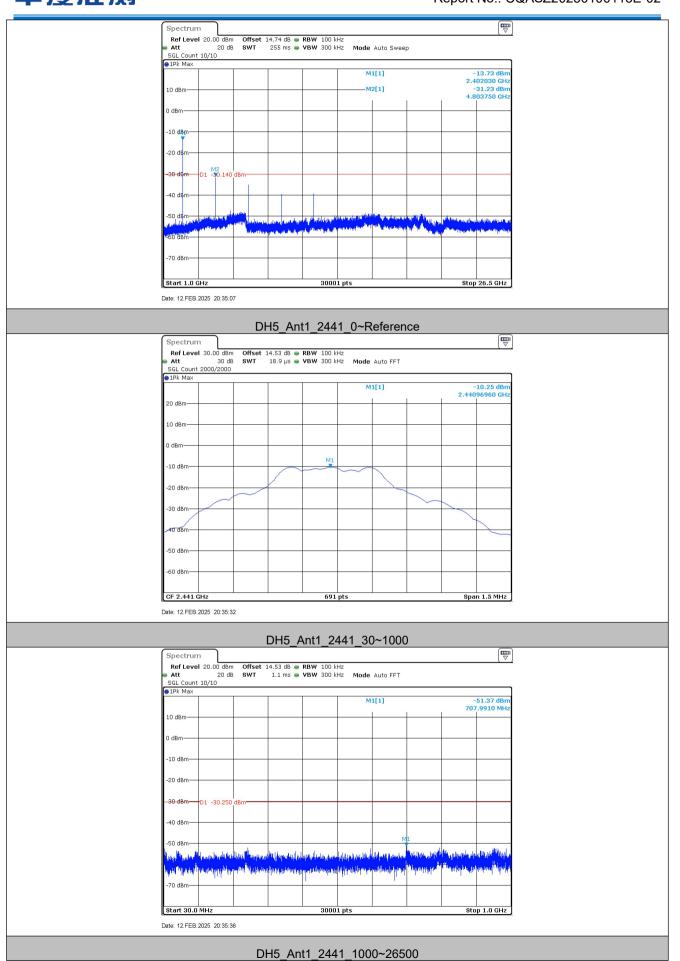
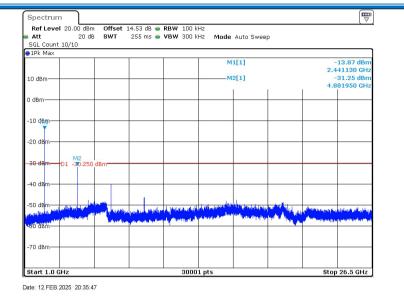
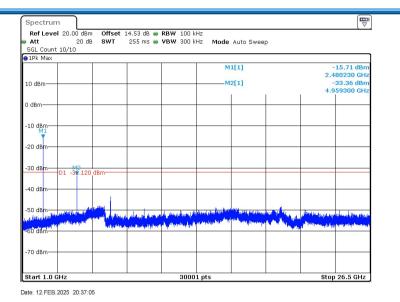


5.9 Spurious RF Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
	Remark: Offset=cable loss+ attenuation factor.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Pass



DH5_Ant1_2480_0~Reference

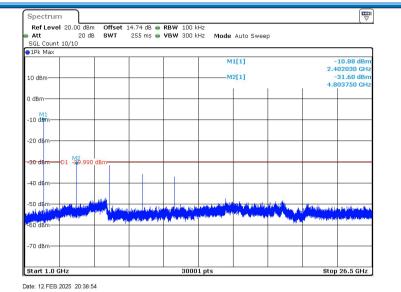

DH5_Ant1_2480_30~1000

Spectrur	n				_				E ▼
Ref Leve Att SGL Coun	el 20.00 dBm 20 dB t 10/10			RBW 100 k VBW 300 k		Auto FFT			
1Pk Max									
					м	1[1]			50.73 dBm .0650 MHz
10 dBm									
0 dBm									
-10 dBm—									
-20 dBm—									
-30 dBm	-D1 -32.120	dBm							
-40 dBm—									
-50 dBm-						D.	11		
W. dy Margari	ll Royald Hard Hard Hard Hard Hard Hard Hard Har	apt History	phone they	mulanall		History Huo	an alah hadi	hap haloppe	ylandd ^{ll} dyna
a san shi na ka sa	the of the parage	part product	Million and point	allogation	h ⁱ ring hubby	distinguis	^{he} ldelle ofte	C.P. M. Manager (1)	whell only
-70 dBm									
Start 30.0	MHz		1	3000	1 pts			Sto	p 1.0 GHz
Date: 12.FEB	.2025 20:36:5	3							
		_					~~		

DH5_Ant1_2480_1000~26500

2DH5_Ant1_2402_0~Reference

Att SGL Count 200	30 dB 0/2000	SWT	18.9 µs 👄	VBW 300 kH	Iz Mode	Auto FFT		
●1Pk Max								
					M	1[1]		-9.99 di 96960 G
20 dBm							2.101	505000
10 dBm								
0 dBm								
-10 dBm				M1				
-20 dBm	$ \rightarrow $	~~~			<u> </u>		 ~	
-30 dBm								
-30 UBIII								
-40 dBm								
-50 dBm								
-60 dBm								
CF 2.402 GHz				691	nts		Sna	n 1.5 Mł

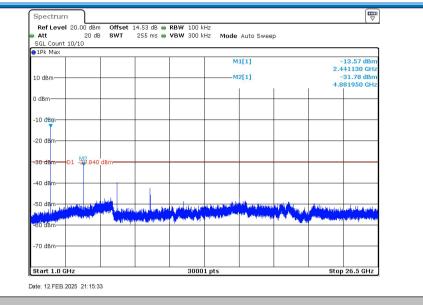

2DH5 Ant1 2402 30~1000

Spectrum	ī			_		0.00	-		
Ref Level Att SGL Count	20.00 dBm 20 dB 10/10			RBW 100 k VBW 300 k		Auto FFT			
1Pk Max									
10 dBm-					м	1[1]	I		51.03 dBm 4.3510 MHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm-	D1 -29.990	dBm							
-40 dBm									
-50 dBm		- المتعر ا	an e Des			a. Incode	M1		an dina an
466 10 10	alleeve and her	and a sub-	(U.S. Herby, Hildshi	and a bring the	hipatadiatic	of the poly of the			NAME ANALY
topia (^{bal} abala) ¹	problem and the	al a ^{tra} lquinni	and non-reality	hillinissiaila	handerhade	ahder på en ple	and the second	and Report of	A CONTRACTOR
-70 dBm									
Start 30.0	MHz			3000	1 pts			Sto	p 1.0 GHz
Date: 12.FEB.2	2025 20:38:4:	3							
		0.0		14 04	~				

2DH5_Ant1_2402_1000~26500

2DH5_Ant1_2441_0~Reference

	fset 14.53 dB 👄 RBW 100 ki		
Att 30 dB SV SGL Count 2000/2000	VT 18.9 µs 👄 VBW 300 ki	Hz Mode Auto FFT	
91Pk Max			
		M1[1]	-9.84 d 2.44096960 0
20 dBm-			
10 dBm			
0 dBm			
-10 dBm	M1		
-20 dBm			
-20 dBm			
See abin			
-40 dBm			
-50 dBm			
-60 dBm			
CF 2.441 GHz	691	nte	Span 1.5 MH


2DH5 Ant1 2441 30~1000

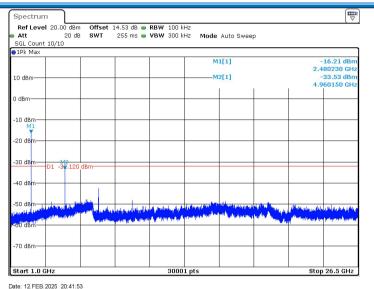
Att	20 dB	SWT	1.1 ms 👄	VBW 300 k	Hz Mode	Auto FFT				
SGL Count	10/10									
THE MON					М	1[1]			50.96 dBm .7440 MHz	
10 dBm-										
0 dBm										
-10 dBm										
-20 dBm										
30 dBm	D1 -29.840	dBm								
-40 dBm		M1								
-50 dBm-		Hale Readingto	nationalization	e haite descer happender	and a distant	in and the state	"Lacham	-	and the state of	
THE COLOR	Alaannadipal	the ^{res} hake	Alteritation	heaten ha ha ha	narolar) (orad)	houp of the state	Weeker (1	an break and	normal glassb	
-70 dBm										
Start 30.0	MHz	1	1	3000	1 pts		1	Sto	p 1.0 GHz	

2DH5_Ant1_2441_1000~26500

2DH5_Ant1_2480_0~Reference

Ref Level 30.00 dB Att 30 of SGL Count 2000/200	ib SWT	RBW 100 kHz VBW 300 kHz		Auto FFT		
IPk Max						
			MI	L[1]		12.12 dl 97400 G
20 dBm					2.479	97400 0
10 dBm						
0 dBm						
-10 dBm		M1	~~~			
-20 dBm				<u> </u>		
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
CF 2.48 GHz		691 pt			Sna	n 1.5 Mi

2DH5 Ant1 2480 30~1000


Spectrum Ref Level 20.00 dBm						
 Att 20 dB SGL Count 10/10 	SWT 1.1 ms 🖷	VBW 300 kHz Mod	e Auto FFT			
1Pk Max						
10 10 -			M1[1]			51.21 dBm .6400 MHz
10 dBm						
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm-01 -32.120	dBm					
-40 dBm						
-50 dBm	1. 14. 14. will be distance of a	Angel States and a second second	land and him	uuun nak ^m	had a lapatical date	M1
	and halpent black and a set	n ng	and spatial and a	tropartity and the	^{inter} tertertertertertertertertertertertertert	these grants
-70 dBm						
Start 30.0 MHz		30001 pts			Sto	0 1.0 GHz
Date: 12.FEB.2025 20:41:4	2					

2DH5_Ant1_2480_1000~26500

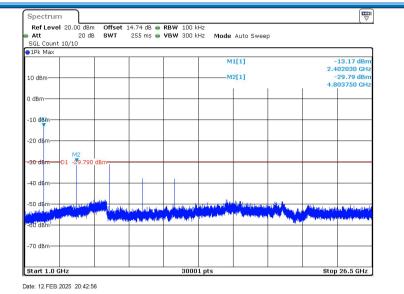
Shenzhen Huaxia Testing Technology Co., Ltd.

Report No.: CQASZ20250100113E-02

ate: 12.FEB.2025 20:41:53

3DH5_Ant1_2402_0~Reference

	Offset 14.74 dB ● RBW 10 SWT 18.9 µs ● VBW 30		
91Pk Max			
		M1[1]	-9.79
20 dBm			2.40196960
10 dBm			
0 dBm			
-10 dBm		M1 Y	
-20 dBm			
30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
CF 2.402 GHz		91 pts	Span 1.5 M

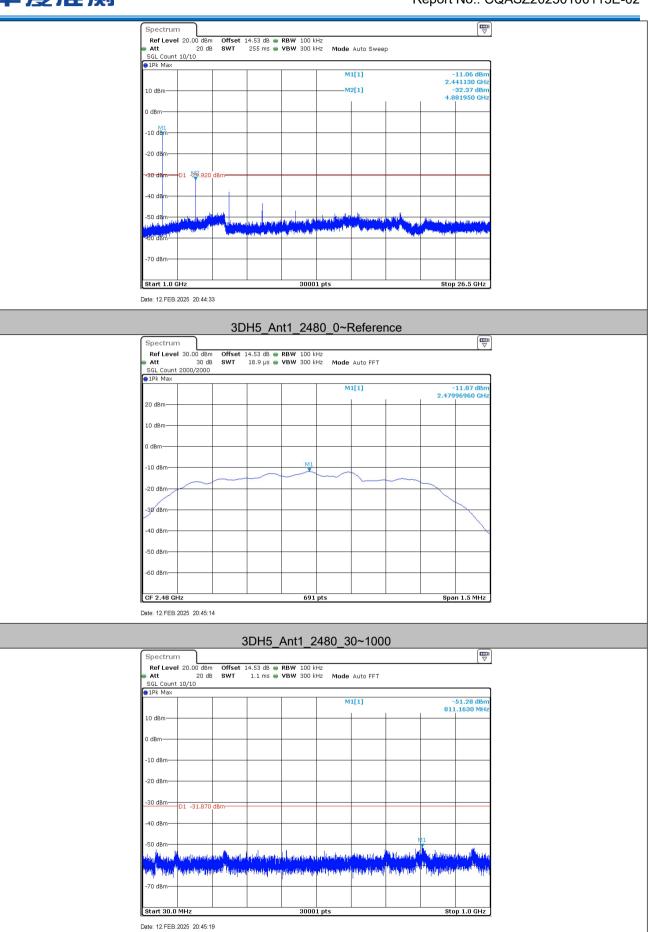

3DH5 Ant1 2402 30~1000

Att	20.00 dBm 20 dB			RBW 100 k VBW 300 k		Auto FFT				
SGL Count		0	112 115		ne mode	Autonni				
⊖1Pk Max										
					м	1[1]			51.37 dBm 3.3150 MHz	
10 dBm								-		
0 dBm										
-10 dBm										
10 000										
-20 dBm										
-30 dBm	D1 -29.790	dBm								
-40 dBm										
-50 dBm		of a				M		la l i	22.0	
WashMenner	Harsharthfl	a half the share that	Andeputite	and mathering being		h-opening a		l ballylapad	and the second	
Disconst Turnstop ¹¹	Nicel Area allo	ppetr Parkalite	ana da anto	hanglaborated and	and the second second	and topological days	(pplored post)	"hu tripped	de actione	
-70 dBm	0		1							
Start 30.0	MHz		1	3000	l pts	1	1	Sto	p 1.0 GHz	
Date: 12.FEB.:										

3DH5_Ant1_2402_1000~26500

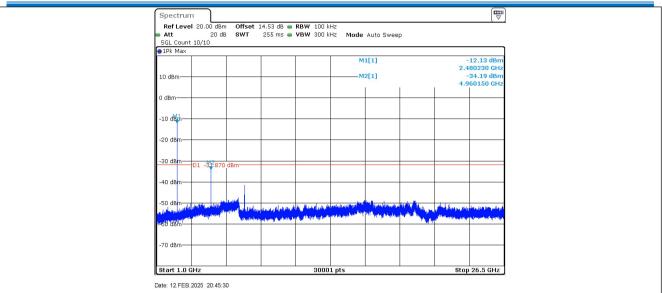
3DH5_Ant1_2441_0~Reference

RefLevel 30.00 dBm Offset Att 30 dB SWT	14.53 dB e RBW 100 k 18.9 μs e VBW 300 k			
SGL Count 2000/2000				
●1Pk Max				
		M1[1]		-9.92 dE 96960 G
20 dBm-			2.770	90900 G
10 dBm				
0 dBm				
	M1			
-10 dBm				
-20 dBm				
-20 dBm-2				_
-30 dBm				~~
				1
-40 dBm				
-50 dBm				
-60 dBm				
CF 2.441 GHz	601	pts	Snar	1 1.5 MH


3DH5 Ant1 2441 30~1000

Spectrum						
Ref Level 20.00 Att 20 SGL Count 10/10		.53 dB 🖷 RBW 100 k 1.1 ms 🖶 VBW 300 k		FFT		
●1Pk Max						
10 10			M1[1] -50.60 dBm 951.0650 MH			
10 dBm						
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm - D1 -29.	.920 dBm					
-40 dBm						
-50 dBm	walatin the fate and	e leathilite beint ann the state takes.	وروا المراجع ومنابع المراجع	Samelly Williamster	And the second second second	M1 International
2 12 2.4		to all his postages as	langalagalading polang	n n h h h l h h h n h n h h h h h h h h	httel ^b ahlikun m	ndla Jopens
-70 dBm						
Start 30.0 MHz		3000	1 pts	1	Stop	1.0 GHz
Start 30.0 MHz Date: 12.FEB.2025 20:	:44:22	3000	1 pts		Stop	1.0 GHz

3DH5_Ant1_2441_1000~26500



3DH5_Ant1_2480_1000~26500

Shenzhen Huaxia Testing Technology Co., Ltd.

Report No.: CQASZ20250100113E-02

Remark:

Pre test 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

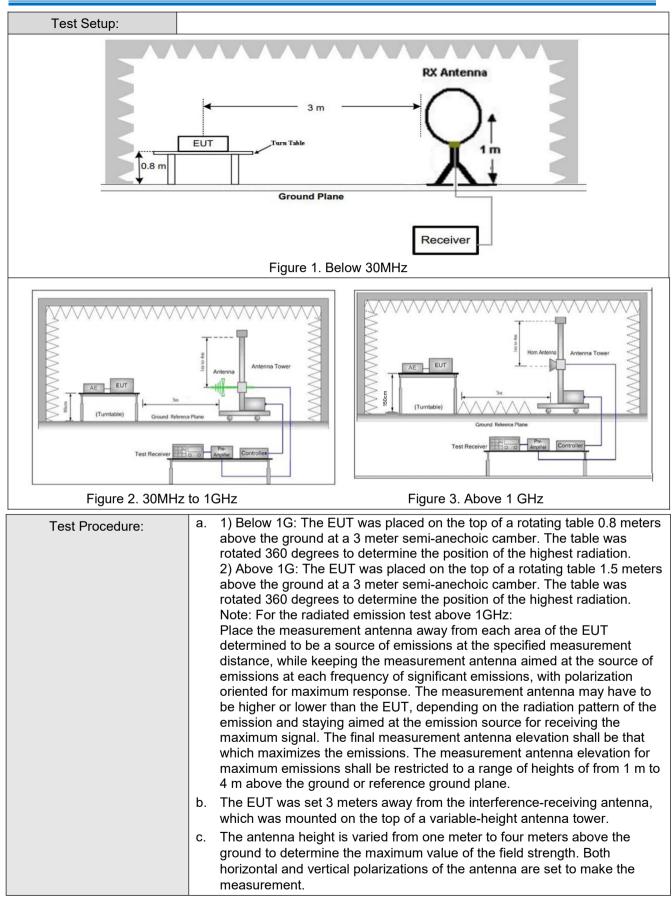
5.10Other requirements Frequency Hopping Spread Spectrum System

•								
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:							
rate from a Pseudorandom of on the average by each trans	nnel frequencies that are selected at the system hopping rdered list of hopping frequencies. Each frequency must be used equally smitter. The system receivers shall have input bandwidths that match the of their corresponding transmitters and shall shift frequencies in smitted signals.							
channels during each transm receiver, must be designed to transmitter be presented with employing short transmission	pectrum systems are not required to employ all available hopping hission. However, the system, consisting of both the transmitter and the o comply with all of the regulations in this section should the n a continuous data (or information) stream. In addition, a system n bursts must comply with the definition of a frequency hopping system nissions over the minimum number of hopping channels specified in							
the system to recognize othe independently chooses and a The coordination of frequenc	The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.							
Compliance for section 15.	247(a)(1)							
	lo-two addition stage. And the result is fed back to the input of the first with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ges: 9 sequence: 2 ⁹ -1 = 511 bits							
Linear Feedback St	hift Register for Generation of the PRBS sequence							
	m Frequency Hopping Sequence as follow: 7 64 8 73 16 75 1							
According to Bluetooth Core bandwidths that match the	on the average by each transmitter. Specification, Bluetooth receivers are designed to have input and IF hopping channel bandwidths of any Bluetooth transmitters and shift on with the transmitted signals.							
Compliance for section 15.	247(g)							
pseudorandom hopping frequence	e Specification, the Bluetooth system transmits the packet with the uency with a continuous data and the short burst transmission from the nsmitted under the frequency hopping system with the pseudorandom							

Compliance for section 15.247(h)

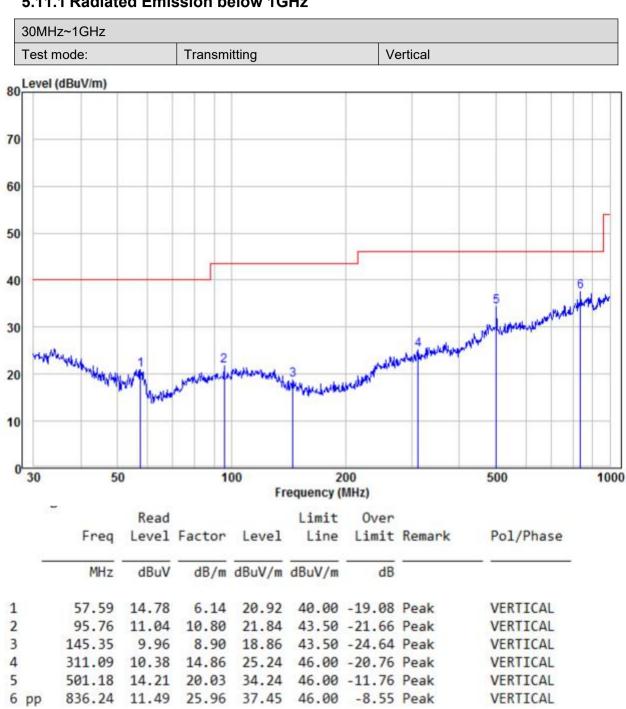
According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



5.11 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013							
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	ioic Cham	ber)			
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark	1	
	0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz	Peak		
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average		
	0.090MHz-0.110MH	Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak		
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak	1	
	30MHz-1GHz		Peak	120 k⊢	lz 300kHz	Peak		
	Above 1GHz		Peak	1MHz	: 3MHz	Peak		
			Peak	1MHz	: 10Hz	Average		
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m		
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24	4000/F(kHz)	-	-	30		
	1.705MHz-30MHz		30	-	-	30		
	30MHz-88MHz		100	40.0	Quasi-peak	3		
	88MHz-216MHz		150	43.5	Quasi-peak	3		
	216MHz-960MHz		200	46.0	Quasi-peak	3		
	960MHz-1GHz		500	54.0	Quasi-peak	3		
	Above 1GHz 500 54.0 Average 3							
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the tota peak emission level radiated by the device.							



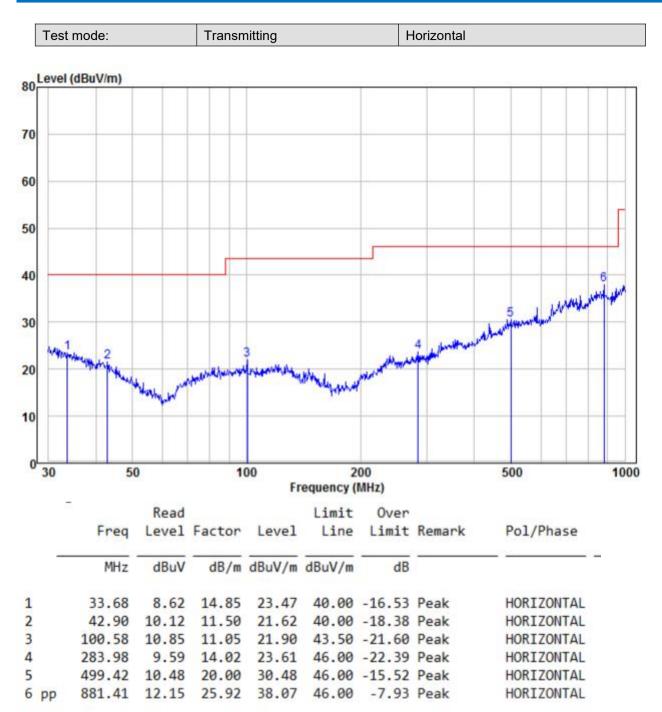
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz)
	 h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode
Final Test Mode:	Only the worst case is recorded in the report.
Test Results:	Pass

5.11.1 Radiated Emission below 1GHz

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,


Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Shenzhen Huaxia Testing Technology Co., Ltd.

Report No.: CQASZ20250100113E-02

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

5.11.2 Transmitter Emission above 1GHz

Worse case	Worse case mode:		GFSK(DH5)		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V	
2390	55.46	-9.2	46.26	74	-27.74	Peak	Н	
2400	55.52	-9.39	46.13	74	-27.87	Peak	Н	
4804	51.69	-4.33	47.36	74	-26.64	Peak	Н	
7206	49.52	1.01	50.53	74	-23.47	Peak	Н	
2390	54.39	-9.2	45.19	74	-28.81	Peak	V	
2400	52.07	-9.39	42.68	74	-31.32	Peak	V	
4804	52.71	-4.33	48.38	74	-25.62	Peak	V	
7206	50.05	1.01	51.06	74	-22.94	Peak	V	

Worse case mode:		GFSK(DH5)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4882	52.62	-4.11	48.51	74	-25.49	peak	Н
7323	49.61	1.51	51.12	74	-22.88	peak	Н
4882	52.47	-4.11	48.36	74	-25.64	peak	V
7323	48.93	1.51	50.44	74	-23.56	peak	V

Worse case mode:		GFSK(DH5)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	56.97	-9.29	47.68	74	-26.32	Peak	Н
4960	51.04	-4.04	47.00	74	-27.00	Peak	Н
7440	50.60	1.57	52.17	74	-21.83	Peak	Н
2483.5	56.70	-9.29	47.41	74	-26.59	Peak	V
4960	51.24	-4.04	47.20	74	-26.80	Peak	V
7440	48.43	1.57	50.00	74	-24.00	Peak	V

Worse case mode:		π /4DQPSK (2DH5)		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	53.97	-9.2	44.77	74	-29.23	Peak	Н
2400	55.40	-9.39	46.01	74	-27.99	Peak	Н
4804	53.26	-4.33	48.93	74	-25.07	Peak	Н
7206	49.18	1.01	50.19	74	-23.81	Peak	Н
2390	53.68	-9.2	44.48	74	-29.52	Peak	V
2400	51.07	-9.39	41.68	74	-32.32	Peak	V
4804	54.20	-4.33	49.87	74	-24.13	Peak	V
7206	50.32	1.01	51.33	74	-22.67	Peak	V

Worse case mode:		π /4DQPSK (2DH5)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4882	52.25	-4.11	48.14	74	-25.86	peak	Н
7323	50.74	1.51	52.25	74	-21.75	peak	Н
4882	53.32	-4.11	49.21	74	-24.79	peak	V
7323	48.41	1.51	49.92	74	-24.08	peak	V

Worse case mode:		π /4DQPSK (2DH5)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	55.94	-9.29	46.65	74	-27.35	56.28	Н
4960	52.51	-4.04	48.47	74	-25.53	52.10	Н
7440	49.63	1.57	51.20	74	-22.80	50.78	Н
2483.5	57.97	-9.29	48.68	74	-25.32	56.42	V
4960	49.66	-4.04	45.62	74	-28.38	52.03	V
7440	49.46	1.57	51.03	74	-22.97	50.69	V