

Test Report

Report No.: MTi240726004-07E2

Date of issue: 2024-10-16

Applicant: ShenZhen ZhiHaiHe Tech Co., Ltd

Product name: Varmilo Mechanical Keyboard

Model(s): APT108, APT109, APT113

FCC ID: 2AF8O-APT108

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gen	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sum	nmary of Test Result	8
3	Test	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List	of test equipment	10
5	Eval	luation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radi	io Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Conducted Emission at AC power line Occupied Bandwidth Maximum Conducted Output Power. Power Spectral Density RF conducted spurious emissions and band edge measurement Band edge emissions (Radiated) Radiated emissions (below 1GHz) Radiated emissions (above 1GHz)	
Ph	otogr	aphs of the test setup	30
Ph	otogr	aphs of the EUT	31
Αp	pendi	ix A: DTS Bandwidth	32
Αp	pendi	ix B: Maximum conducted output power	34
Αp	pendi	ix C: Maximum power spectral density	36
Αp	pendi	ix D: Band edge measurements	38
Αp	pendi	ix E: Conducted Spurious Emission	39
Δn	nendi	ix F. Duty Cycle	42

Test Result Certification				
Applicant:	ShenZhen ZhiHaiHe Tech Co., Ltd			
Address:	5th Floor, Block 2, 10th Industrial Zone, Tian Liao Community, Yu Tang Area, Guang Ming District, Shenzhen, China			
Manufacturer:	ShenZhen ZhiHaiHe Tech Co., Ltd			
Address:	5th Floor, Block 2, 10th Industrial Zone, Tian Liao Community, Yu Tang Area, Guang Ming District, Shenzhen, China			
Product description				
Product name:	Varmilo Mechanical Keyboard			
Trademark:	Varmilo			
Model name:	APT108			
Series Model(s):	APT109, APT113			
Standards:	47 CFR Part 15.247			
Test Method:	ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02			
Date of Test				
Date of test:	2024-07-30 to 2024-08-13			
Test result:	Pass			

Test Engineer	•••	Moderations	
		(Maleah Deng)	
Reviewed By		Dowid. Cee	
		(David Lee)	
Approved By		leon chen	
		(Leon Chen)	

1 General Description

1.1 Description of the EUT

Product name:	Varmilo Mechanical Keyboard				
Model name:	APT108				
Series Model(s):	APT109, APT113				
Model difference:	All the models are the same circuit and module, except the model name and color.				
Electrical rating:	Input: DC 5V 500mA Battery: DC 3.7V 2500mAh				
Accessories:	Cable: USB-A to USB-C cable 180cm*1 Dong*1				
Hardware version:	APT109-V1.1(H)				
Software version:	KB01_APT108_V20240726				
Test sample(s) number:	MTi240726004-04S1001				
RF specification					
Operating frequency range:	2404MHz to 2478MHz				
Channel number:	38				
Modulation type:	GFSK				
Antenna(s) type:	PCB Antenna				
Antenna(s) gain:	2dBi				
4.0	2. Description of test modes				

1.2 Description of test modes

No.	Emission test modes
Mode1	TX-GFSK-1M

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2404	10	2424	20	2444	30	2464
1	2406	11	2426	21	2446	31	2466
2	2408	12	2428	22	2448	32	2468
3	2410	13	2430	23	2450	33	2470
4	2412	14	2432	24	2452	34	2472
5	2414	15	2434	25	2454	35	2474
6	2416	16	2436	26	2456	36	2476
7	2418	17	2438	27	2458	37	2478
8	2420	18	2440	28	2460	/	/
9	2422	19	2442	29	2462	/	/

Test Channel List

Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)
2404	2452	2478

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software:

For power setting, refer to below table.

Test Software:	RF Test Tool			
Mode	2404MHz	2478MHz		
GFSK	01	01	01	

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list							
Description	Model	Serial No.	Manufacturer				
MI CHARGE	MDY-08-EH	YJ2808215006999	MI				
Support cable list							
Description	Length (m)	From	То				
/	/	/	/				

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Power Spectral Density, conducted	±1 dB
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
3	Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
4	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
5	Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
6	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
7	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due			
	Conducted Emission at AC power line								
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19			
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20			
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19			
		Power Emissions in non-	onducted Output Spectral Density -restricted frequencied Bandwidth	1					
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20			
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20			
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20			
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20			
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20			
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20			
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19			
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20			
		Band edge Emissions in frequ	emissions (Radi uency bands (ab						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19			
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16			
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19			
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20			
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20			
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16			
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20			
		Emissions in freq	uency bands (be	elow 1GHz)					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19			
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10			
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22			
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19			

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

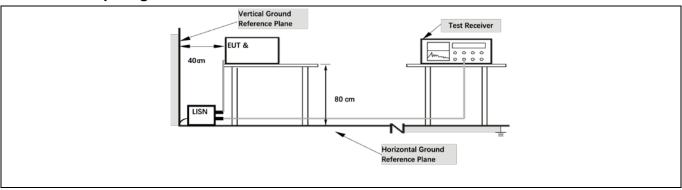
Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

5.1.1 Conclusion:

The antenna of the EUT is permanently attached.

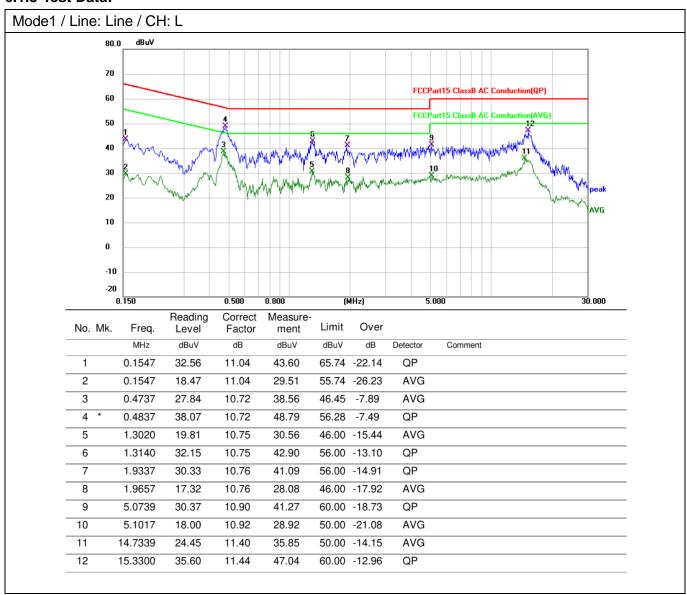
The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)


6.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)	on (MHz) Conducted limit (dBµV)					
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:		Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					

6.1.1 E.U.T. Operation:


Operating Environment:							
Temperature:	rature: 25.9 °C Humidity: 44 % Atmospheric Pressure: 101 kPa						
Pre test mode: Mod			e1				
Final test mode: Mode1							

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

1.3740

2.8540

2.9539

15.2019

15.2019

8

9 10

11

12

15.90

25.34

13.39

31.75

21.05

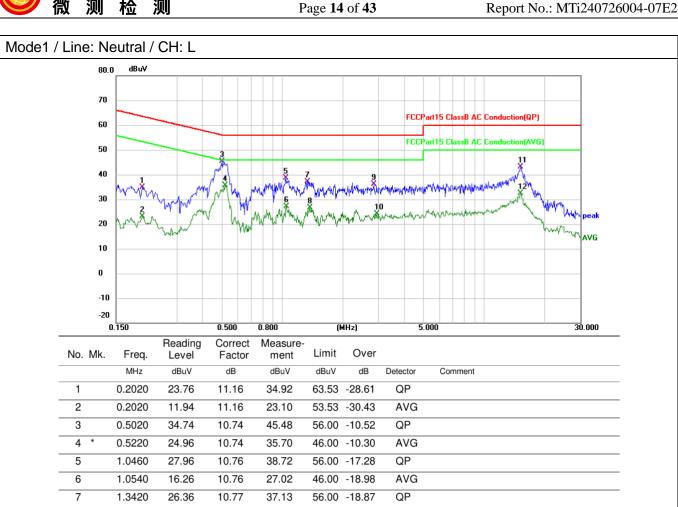
10.78

10.81

10.82

11.41

11.41


26.68

36.15

24.21

43.16

32.46

46.00 -19.32

56.00 -19.85

46.00 -21.79

60.00 -16.84

50.00 -17.54

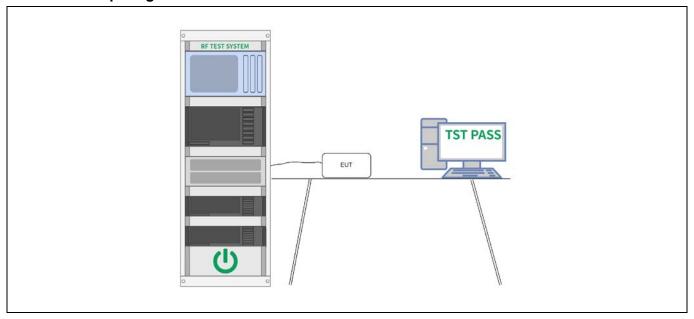
AVG

QP

AVG

QP

AVG


6.2 Occupied Bandwidth

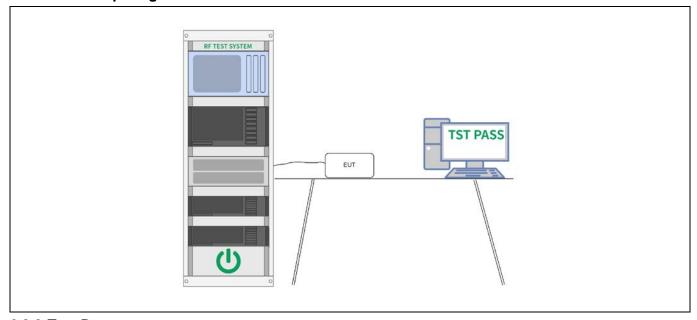
Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW >= [3 x RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.2.1 E.U.T. Operation:

Operating Environment:						
Temperature:	24 °C	24 °C Humidity: 54 % Atmospheric Pressure: 101 kPa				
Pre test mode: Mo		Mode	e1			
Final test mode: Mod		e1				

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Maximum Conducted Output Power

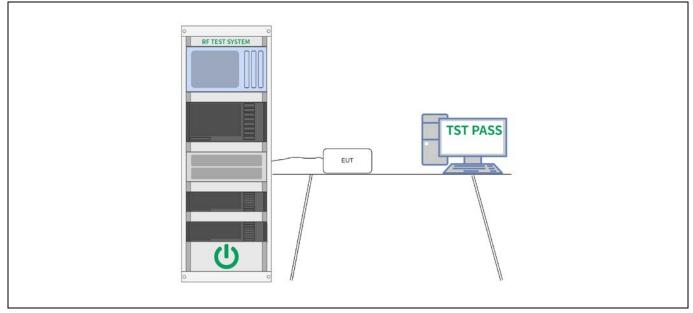
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power

6.3.1 E.U.T. Operation:

Operating Environment:							
Temperature:	24 °C	24 °C Humidity: 54 % Atmospheric Pressure: 101 kPa					
Pre test mode: Mod		Mode	e1				
Final test mode: Mod			e1				

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Power Spectral Density

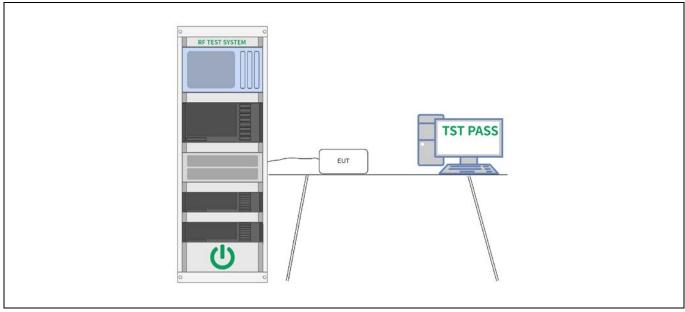
Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

6.4.1 E.U.T. Operation:

Operating Environment:							
Temperature:	24 °C	24 °C Humidity: 54 % Atmospheric Pressure: 101 kPa					
Pre test mode:	Mode	e1					
Final test mode:		Mode	e1				

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


6.5 RF conducted spurious emissions and band edge measurement

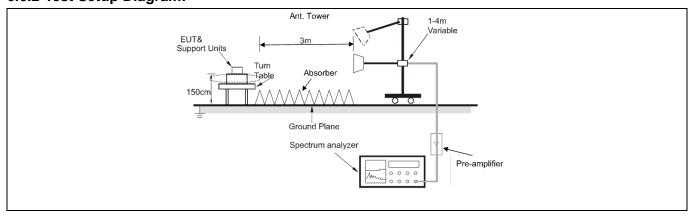
	-
Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

6.5.1 E.U.T. Operation:

Operating Envi	ironment:	1				
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1			
Final test mode	e:	Mode	e1			

6.5.2 Test Setup Diagram:

6.5.3 Test Data:


6.6 Band edge emissions (Radiated)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated emfined in § 15.205(a), must als specified in § 15.209(a)(se	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation with sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	In paragraph (g), fundamental perating under this section show that, 76-88 MHz, 174-216 within these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are basi-peak detector except for above 1000 MHz. Radiated on measurements employing	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.10 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sed	ction 6.10.5.2	

6.6.1 E.U.T. Operation:

Operating Envi	ronment:					
Temperature:	20.3 °C		Humidity:	42.2 %	Atmospheric Pressure:	99 kPa
Pre test mode:		Mode	e1			
Final test mode) :	Mode	e1			
Note:						
The amplitude reported.	of spurio	us em	issions whic	ch are attenuate	ed more than 20 dB belov	v the limits are not

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Mode1 /	Polariza	ation:	Horizonta	al / CH: L					
	No. N	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	23	310.000	48.13	-4.83	43.30	74.00	-30.70	peak
	2	23	310.000	38.36	-4.83	33.53	54.00	-20.47	AVG
	3	23	390.000	48.16	-4.31	43.85	74.00	-30.15	peak
	4 '	* 23	390.000	38.36	-4.31	34.05	54.00	-19.95	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	48.92	-4.83	44.09	74.00	-29.91	peak
2		2310.000	38.16	-4.83	33.33	54.00	-20.67	AVG
3		2390.000	48.26	-4.31	43.95	74.00	-30.05	peak
4	*	2390.000	38.42	-4.31	34.11	54.00	-19.89	AVG

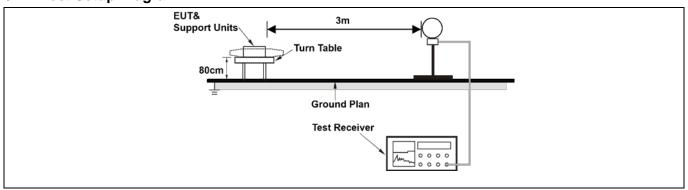
Mode1 /	Polarizati	ion: Horizont	al / CH: H					
	No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	2483.500	49.41	-4.21	45.20	74.00	-28.80	peak
	2	2483.500	38.31	-4.21	34.10	54.00	-19.90	AVG
	3	2500.000	48.98	-4.10	44.88	74.00	-29.12	peak
	4 *	2500.000	38.48	-4.10	34.38	54.00	-19.62	AVG

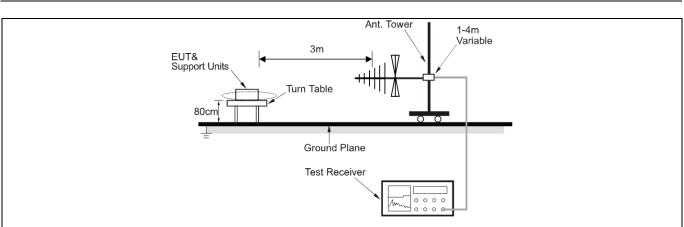
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	49.26	-4.21	45.05	74.00	-28.95	peak
2		2483.500	38.35	-4.21	34.14	54.00	-19.86	AVG
3		2500.000	49.14	-4.10	45.04	74.00	-28.96	peak
4	*	2500.000	38.42	-4.10	34.32	54.00	-19.68	AVG

6.7 Radiated emissions (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated enfined in § 15.205(a), must als specified in § 15.209(a)(se	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	In paragraph (g), fundamental perating under this section shows the perating under this section shows the perating under this section shows the peration of th	hall not be located in the MHz or 470-806 MHz. It is permitted under other at the band edges. It is assed on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sed	ction 6.6.4	

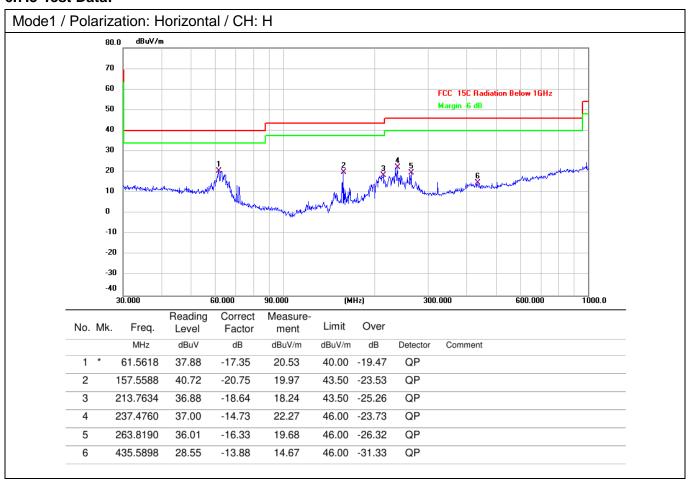
6.7.1 E.U.T. Operation:

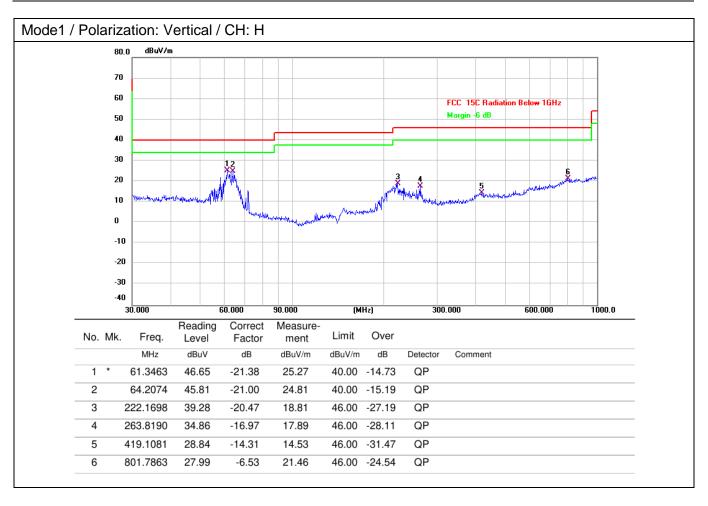

Operating Envi	ironment:							
Temperature: 20.3 °C Humidity: 42.2 % Atmospheric Pressure: 99 kPa								
Pre test mode:		Mode	e1					
Final test mode	Final test mode: Mode1							
A 1 4								


Note:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

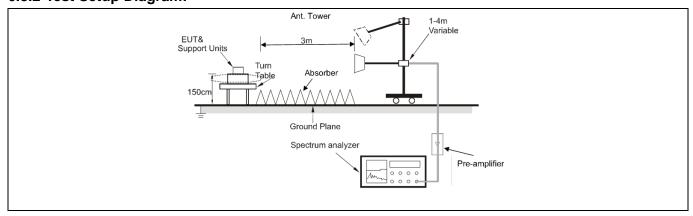
All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.


6.7.2 Test Setup Diagram:



6.7.3 Test Data:

Page 25 of 43 Report No.: MTi240726004-07E2


6.8 Radiated emissions (above 1GHz)

Test Requirement:	•	nissions which fall in the rest comply with the radiated em 5(c)).`	•
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation with sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	In paragraph (g), fundamental perating under this section shows the perating under this section shows that the perating under this section shows the perating that the perating the perating that the perating tha	hall not be located in the MHz or 470-806 MHz. It is permitted under other at the band edges. It is assed on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sed	ction 6.6.4	

6.8.1 E.U.T. Operation:

Operating Envi	ronment:						
Temperature:	20.3 °C		Humidity:	42.2 %	Atmospheric Pressure:	99 kPa	
Pre test mode: Mode1							
Final test mode	nal test mode: Mode1						
attenuated mo	re than 20	dB b	elow the lim	its are not repo	itude of spurious emission orted. d only the worst-case resu		

6.8.2 Test Setup Diagram:

6.8.3 Test Data:

Mode1 /	Polarizati	on: Horizonta	al / CH: L					
	No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	4808.000	42.91	0.53	43.44	74.00	-30.56	peak
	2	4808.000	38.75	0.53	39.28	54.00	-14.72	AVG
	3	7212.000	45.33	7.84	53.17	74.00	-20.83	peak
	4	7212.000	40.43	7.84	48.27	54.00	-5.73	AVG
	5	9616.000	45.55	8.88	54.43	74.00	-19.57	peak
	6 *	9616.000	39.79	8.88	48.67	54.00	-5.33	AVG

Mode1 / Polarization: Vertical / CH: L

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	48	08.000	44.70	0.53	45.23	74.00	-28.77	peak
2	48	08.000	39.62	0.53	40.15	54.00	-13.85	AVG
3	72	12.000	43.18	7.84	51.02	74.00	-22.98	peak
4	72	12.000	40.45	7.84	48.29	54.00	-5.71	AVG
5	96	16.000	44.76	8.88	53.64	74.00	-20.36	peak
6	* 96	16.000	39.76	8.88	48.64	54.00	-5.36	AVG

No. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4904.000	43.77	0.60	44.37	74.00	-29.63	peak
2	4904.000	39.67	0.60	40.27	54.00	-13.73	AVG
3	7356.000	46.31	7.83	54.14	74.00	-19.86	peak
4	7356.000	41.54	7.83	49.37	54.00	-4.63	AVG
5	9808.000	44.42	9.26	53.68	74.00	-20.32	peak
6 *	9808.000	40.91	9.26	50.17	54.00	-3.83	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4904.000	43.37	0.60	43.97	74.00	-30.03	peak
2		4904.000	38.65	0.60	39.25	54.00	-14.75	AVG
3		7356.000	44.96	7.83	52.79	74.00	-21.21	peak
4		7356.000	40.44	7.83	48.27	54.00	-5.73	AVG
5		9808.000	45.18	9.26	54.44	74.00	-19.56	peak
6	*	9808.000	40.93	9.26	50.19	54.00	-3.81	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4956.000	44.59	0.63	45.22	74.00	-28.78	peak
2		4956.000	39.64	0.63	40.27	54.00	-13.73	AVG
3		7434.000	46.26	7.95	54.21	74.00	-19.79	peak
4	*	7434.000	42.34	7.95	50.29	54.00	-3.71	AVG
5		9912.000	44.10	9.67	53.77	74.00	-20.23	peak
6		9912.000	39.70	9.67	49.37	54.00	-4.63	AVG

1 4956.000 44.57 0.63 45.20 74.00 -28.80 pea 2 4956.000 40.74 0.63 41.37 54.00 -12.63 AV 3 7434.000 43.45 7.95 51.40 74.00 -22.60 pea	ctor ment Limit Over	actor	Level	Freq.	. Mk.	No.
2 4956.000 40.74 0.63 41.37 54.00 -12.63 AV 3 7434.000 43.45 7.95 51.40 74.00 -22.60 pea	dB dBuV/m dBuV/m dB Detect	dB	dBuV	MHz		
3 7434.000 43.45 7.95 51.40 74.00 -22.60 pea	.63 45.20 74.00 -28.80 peal	0.63	44.57	4956.000		1
part of the state	.63 41.37 54.00 -12.63 AVG	0.63	40.74	4956.000	2	2
4 7434.000 39.34 7.95 47.29 54.00 -6.71 AV	.95 51.40 74.00 -22.60 peal	7.95	43.45	7434.000	3	3
	.95 47.29 54.00 -6.71 AVG	7.95	39.34	7434.000	ŀ	4
5 9912.000 44.81 9.67 54.48 74.00 -19.52 pea	.67 54.48 74.00 -19.52 peal	9.67	44.81	9912.000	5	5
6 * 9912.000 39.67 9.67 49.34 54.00 -4.66 AV	.67 49.34 54.00 -4.66 AVC	9.67	39.67	9912.000	*	6

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

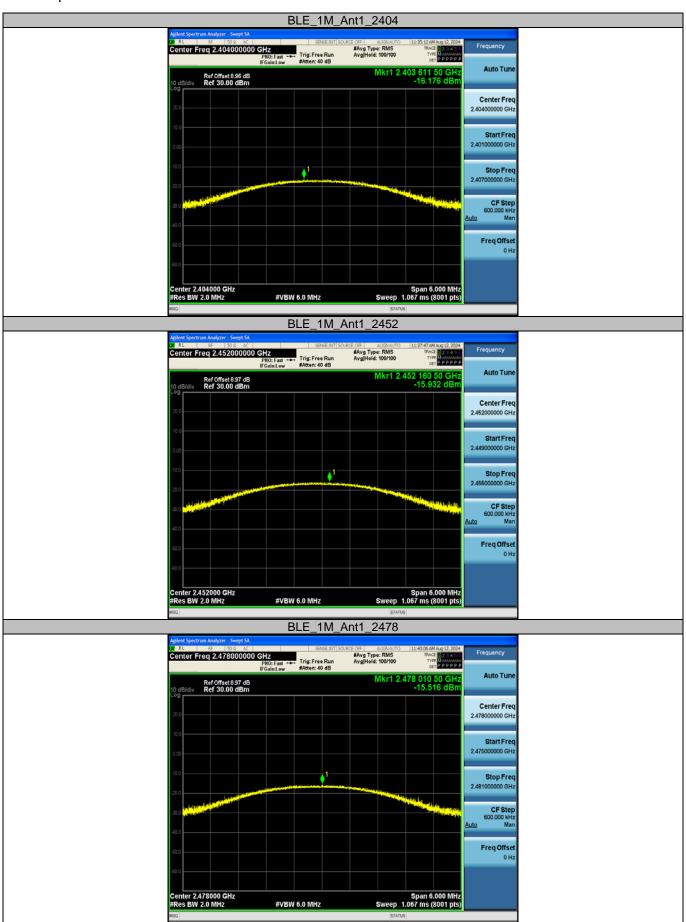
Refer to Appendix - EUT Photos

Appendix

Appendix A: DTS Bandwidth

Test Result

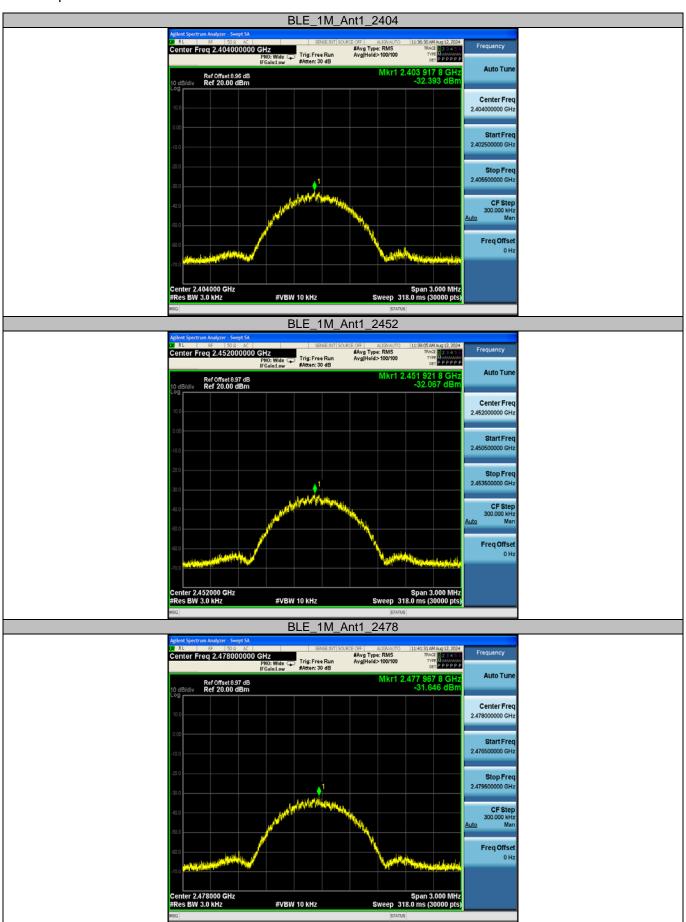
Test Mode	Antenna	Frequency [MHz]	DTS BW [MHz]	Limit [MHz]	Verdict
GFSK		2404	0.676	0.5	PASS
	Ant1	2452	0.676	0.5	PASS
		2478	0.712	0.5	PASS



Appendix B: Maximum conducted output power

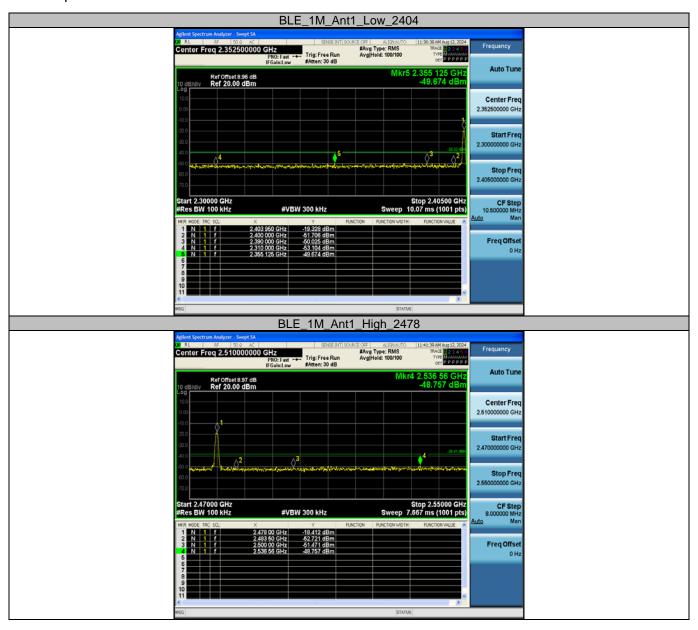
Test Result-Peak

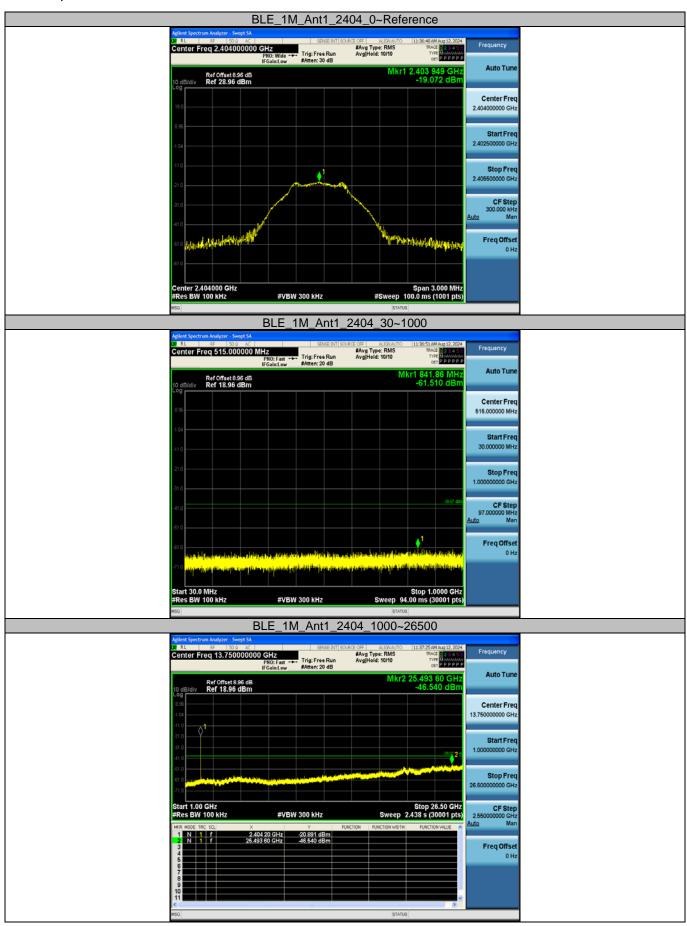
Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
		2404	-16.18	≤30	PASS
BLE_1M	Ant1	2452	-15.93	≤30	PASS
		2478	-15.52	≤30	PASS



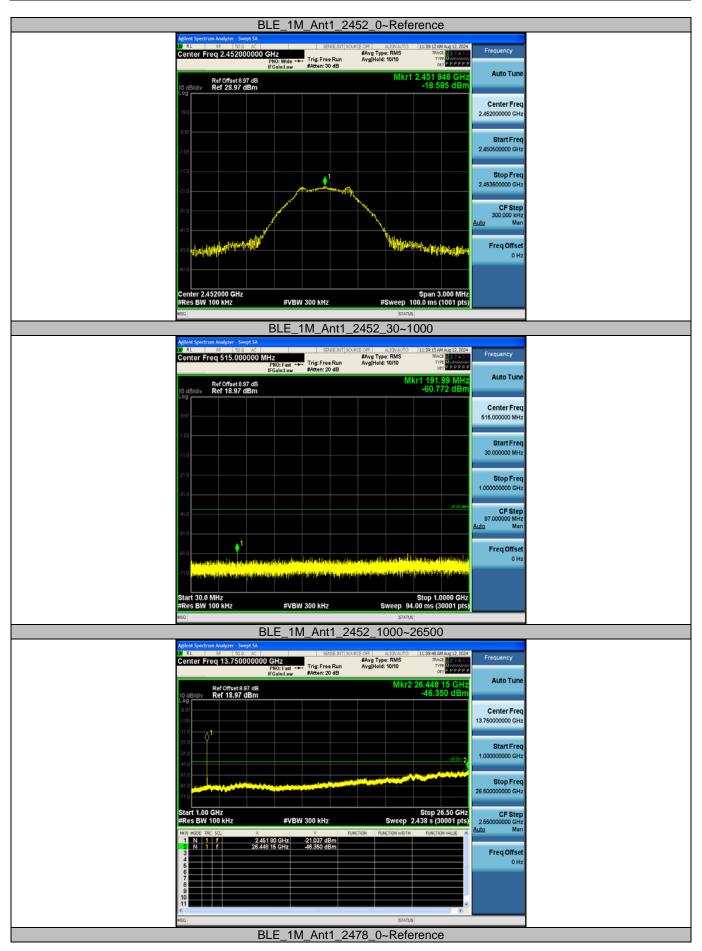
Appendix C: Maximum power spectral density

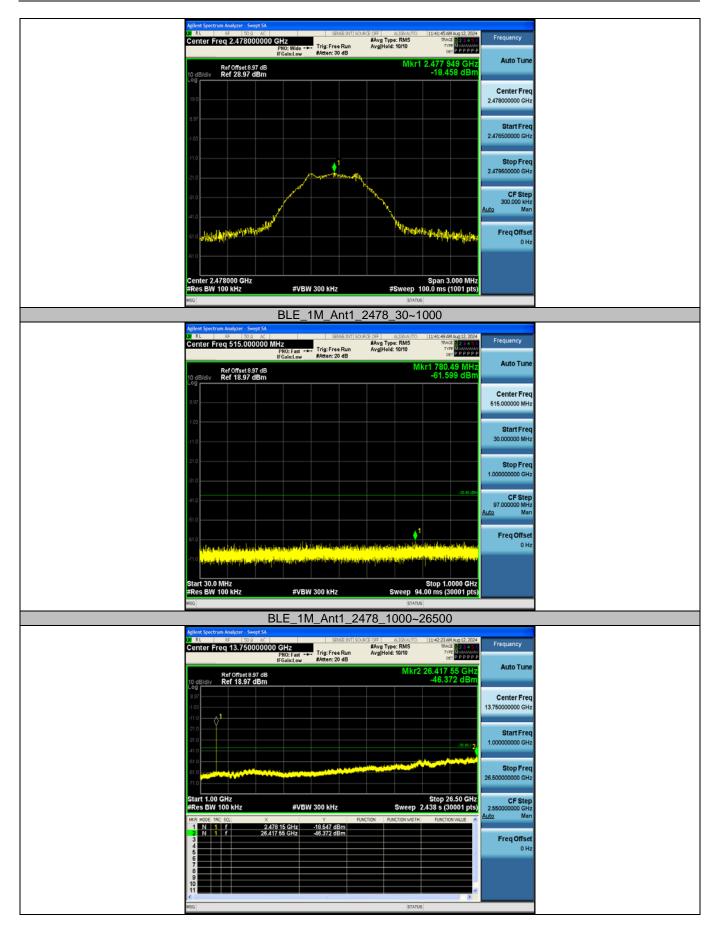
Test Result


Test Mode	Antenna	Frequency [MHz]	Result [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
		2404	-32.39	≤8.00	PASS
BLE_1M	Ant1	2452	-32.07	≤8.00	PASS
		2478	-31.65	≤8.00	PASS


Page 38 of 43 Report No.: MTi240726004-07E2


Appendix D: Band edge measurements





Appendix E: Conducted Spurious Emission



Appendix F: Duty Cycle

Test Result

Test Mode	Antenna	Frequency [MHz]	ON Time [ms]	Period [ms]	Duty Cycle [%]	Duty Cycle Factor[dB]
GFSK	Ant1	2404	0.40	1.03	38.83	4.11
		2452	0.40	1.04	38.46	4.15
		2478	0.39	1.03	37.86	4.22

