

FCC CFR47 PART 18 SUBPART C ISM EQUIPMENT CERTIFICATION TEST REPORT

MICROWAVE OVEN

MODEL NUMBER: OTR7

MAGNETRON MODEL: 2M254E(L)-AK and 2M254E(L)-B

FCC ID: APYDMR0163

REPORT NUMBER: 06U10738-1

ISSUE DATE: DECEMBER 5, 2006

Prepared for SHARP CORPORATION 22-22 NAGAIKE-CHO, ABENO-KU RELIABILITY CONTROL GROUP OSAKA, JAPAN, 545-8522

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

LAB CODE:200065-0

Revision History

	Issue			
Rev.	Date	Revisions	Revised By	
	12/05/06	Initial Issue	T.C.	
	12/05/06	Initial Issue	T.C.	

Page 2 of 57

TABLE OF CONTENTS

1.	$\mathbf{A}\mathbf{I}^{*}$	FESTATION OF TEST RESULTS	4
2.	TES	ST METHODOLOGY	5
3.	FAC	CILITIES AND ACCREDITATION	5
4.	CAI	LIBRATION AND UNCERTAINTY	5
4	4.1.	MEASURING INSTRUMENT CALIBRATION	5
4	4.2.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
	5.1.	DESCRIPTION OF EUT	6
	5.2.	MODE(S) OF OPERATION	6
	5.3.	MODIFICATIONS	6
	5.4.	DETAILS OF TESTED SYSTEM	7
6.	TES		
		ST AND MEASUREMENT EQUIPMENT	9
7.	API	ST AND MEASUREMENT EQUIPMENT PLICABLE LIMITS AND TEST RESULTS	
	API 7. <i>1</i> .		10
	7. <i>1</i> . 7.1.	PLICABLE LIMITS AND TEST RESULTS RADIO NOISE EMISSION MEASUREMENTS 1. RADIATION HAZARD MEASUREMENT	 10 10 10
	7.1. 7.1. 7.1.2	PLICABLE LIMITS AND TEST RESULTS RADIO NOISE EMISSION MEASUREMENTS 1. RADIATION HAZARD MEASUREMENT 2. INPUT POWER	 10 10 10 12
	7.1. 7.1. 7.1.2 7.1.3	PLICABLE LIMITS AND TEST RESULTS RADIO NOISE EMISSION MEASUREMENTS	 10 10 10 12 13
	7.1. 7.1. 7.1.2	PLICABLE LIMITS AND TEST RESULTS RADIO NOISE EMISSION MEASUREMENTS. 1. RADIATION HAZARD MEASUREMENT 2. INPUT POWER. 3. OUTPUT POWER. 4. OPERATING FREQUENCY WITH TIME	10 10 12 13 15
,	7.1. 7.1.1 7.1.2 7.1.2 7.1.4	PLICABLE LIMITS AND TEST RESULTS RADIO NOISE EMISSION MEASUREMENTS. 1. RADIATION HAZARD MEASUREMENT 2. INPUT POWER. 3. OUTPUT POWER 4. OPERATING FREQUENCY WITH TIME	10 10 12 13 15 22
	7.1. 7.1.2 7.1.2 7.1.2 7.1.4 7.1.4	PLICABLE LIMITS AND TEST RESULTS RADIO NOISE EMISSION MEASUREMENTS. 1. RADIATION HAZARD MEASUREMENT 2. INPUT POWER 3. OUTPUT POWER 4. OPERATING FREQUENCY WITH TIME. 5. OPERATING FREQUENCY WITH VOLTAGE	10 10 12 13 15 22 37

Page 3 of 57

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	SHARP ELECTRONIC CORP 22-22 NAGAIKE-CHO, ABENO-KU RELIABILITY CONTROL GROUP OSAKA, JAPAN, 545-8522		
EUT DESCRIPTION:	MICROWAVE OVEN		
MODEL NUMBER:	OTR7		
MAGNETRON MODEL:	2M254E (L)-AK and 2M254E (L)-B		
SERIAL NUMBER:	TCAUAB048MRR0		
DATE TESTED:	NOVEMBER 28-30, 2006		
	APPLICABLE STANDARDS		
STANDARD	TEST RESULTS		
FCC PART 18 SUBF	PART C NO NON-COMPLIANCE NOTED		
&			
FCC METHEROD OF MEAS RADIO NOISE EMISSION FRO SCIENTIFIC, AND MEDICA	OM INDUSTRIAL,		

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

huj

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

FCC / OST MP-5

Tested By:

Mauton quym

THANH NGUYEN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 57

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC Part 18 Subpart C, ANSI C63.4-2003, and FCC / OST MP-5, "FCC Metherod of Measurements of Radio Noise Emission From Industrial, Scientific, and Medical Equipment".

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 57

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Microwave Oven sold for consumer use which has 1000W for both magnetron models.

GENERAL INFORMATION

CHASSIS MATERIAL	METAL		
POWER REQUIREMENTS	115VAC / 60 Hz		
MAGNETRON MODEL	2M254E(L)-AK and 2M254E(L)-B		

5.2. MODE(S) OF OPERATION

Mode	Description
Normal	Boiling water with maximum power

5.3. MODIFICATIONS

No modifications were made during testing.

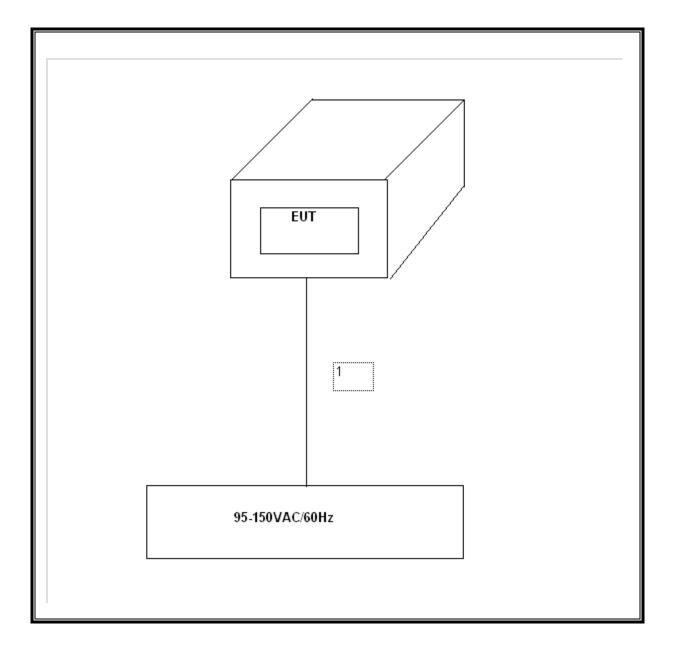
Page 6 of 57

5.4. DETAILS OF TESTED SYSTEM

SUPPORT EQUIPMENT

The EUT is a stand-alone unit.

I/O CABLES


	I/O CABLE LIST							
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks		
1	AC	1	US 115V	UNSHIELDED	1m			

TEST SETUP

The EUT is a stand-alone unit.

Page 7 of 57

SETUP DIAGRAM FOR TESTS

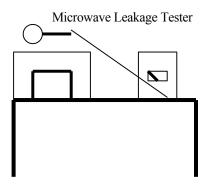
Page 8 of 57

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Serial Number	Cal Due			
EMI Receiver, 9 kHz ~ 2.9							
GHz	Agilent / HP	8542E	3942A00286	2/4/2007			
RF Filter Section	Agilent / HP	85420E	3705A00256	2/4/2007			
Antenna, Bilog 30 MHz ~ 2							
Ghz	Sunol Sciences	JB1	A121003	9/3/2007			
Antenna, Horn 1 ~ 18 GHz	ETS	3117	29301	4/22/2007			
Spectrum Analyzer 3 Hz ~ 44							
GHz	Agilent / HP	E4446A	MY43360112	5/3/2007			
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00561	10/3/2007			
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	9/13/2007			
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	9/13/2007			
EMI Test Receiver	R & S	ESHS 20	827129/006	8/20/2008			
Microwave Leakage Current							
Meter	SIMPSON	380-2	9021	4/26/2008			
Temperature Meter	Tektronix	DTM920	2373	2/27/2007			
Antenna, Horn 18 ~ 26 GHz	ARA	MWH-1826/B	1049	8/6/2007			

Page 9 of 57


7. APPLICABLE LIMITS AND TEST RESULTS

7.1. RADIO NOISE EMISSION MEASUREMENTS

7.1.1. RADIATION HAZARD MEASUREMENT

TEST PROCEDURE

A 700-ml water load was placed in the center of the oven. The power setting was set to10 (100) maximum power. While the oven was operating, the STE probe was moved slowly around the door seams to check for leakage.

<u>LIMIT</u>

FCC / OST MP-5: SECTION 3.1 (< 1.0mW/cm2)

Page 10 of 57

RESULTS

No non-compliance noted:

Maximum leakage 0.05

2M254E(L)-AK and 2M254E(L)-B

	Maximum Leakage	Limit
	(mW/cm2)	(mW/cm2)
Figure shown above for the location of maximum leakage	0.05	1.00
All Others	0.02	1.00

Page 11 of 57

7.1.2. INPUT POWER

TEST PROCEDURE

Input power and current were measured using a watt-meter and an amp-meter. A 700 ml water load was placed in the center of the oven and the oven was set to10 (100) maximum power. A 700-ml water load was chosen for its compatibility. Manufacturers to determine their input ratings commonly use this procedure.

<u>LIMIT</u>

FCC / OST MP-5: SECTION 4.3

RESULTS

No non-compliance noted:

2M254(L)-AK Magnetron:

Input Power

Input Voltage	Input Current	Input Power	
(Vac)	(Amps)	(Watts)	
117.36	13.6	1501.00	

2M254(L)-B Magnetron:

Input Power

Input Voltage	Input Current	Input Power	
(Vac)	(Amps)	(Watts)	
115.8	13.1	1464.00	

Page 12 of 57

7.1.3. OUTPUT POWER

TEST PROCEDURE

The Caloric Method was used to determine maximum output power. The initial temperature of a 1000-ml water load was measured for ovens rated at 1000 watts or less power output. For ovens more than 1000 watts output, additional beakers by fraction thereof are used if necessary.

The water load was placed in the center of the oven. The oven was operated at maximum output power for 120 seconds. Then the temperature of the water was re-measured.

<u>LIMIT</u>

FCC / OST MP-5: SECTION 4.3

Reporting: Output power should be applied to the out-of-band emissions limit with the formula of $25\sqrt{Power}/500$ @ 300m.

RESULTS

No non-compliance noted:

2M254(L)-AK Magnetron:

Output Power

Start	Final	Elapsed	Water	RF
Temperature	Temperature	Time	Volume	Power
(°C)	(°C)	(120 Sec)	(ml)	(Watts)
20.2	42.50	120.00	1000.00	780.50
19.5	41.30	120.00	1000.00	763.00
19.5	41.60	120.00	1000.00	773.50

Avrage of 3 Trials: 772.34 Watts

Output Power = ((4.2 Joules/Cal) x (Volume in ml) x (Temp. Rise)) / Time in Seconds

Page 13 of 57

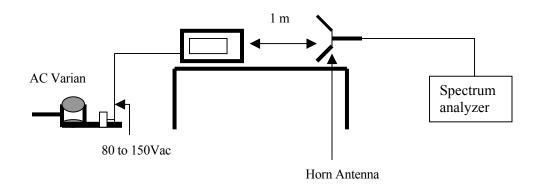
2M254(L)-B Magnetron:

Output Power

Start	Final	Elapsed	Water	RF
Temperature	Temperature	Time	Volume	Power
(°C)	(°C)	(120 Sec)	(ml)	(Watts)
17.6	39.60	120.00	1000.00	770.00
18.7	40.00	120.00	1000.00	745.50
18.3	39.10	120.00	1000.00	728.00

Avrage of 3 Trials: 747.8 Watts

Output Power = ((4.2 Joules/Cal) x (Volume in ml) x (Temp. Rise)) / Time in Seconds


Page 14 of 57

7.1.4. OPERATING FREQUENCY WITH TIME

TEST PROCEDURE

The Caloric Method was used to determine maximum output power. The initial temperature of a 1000-ml water load was measured for ovens rated at 1000 watts or less power output. For ovens more than 1000 watts output, additional beakers by fraction thereof are used if necessary.

The fundamental operating frequency was monitor until the water load was reduced to 20% of the original load.

<u>LIMIT</u>

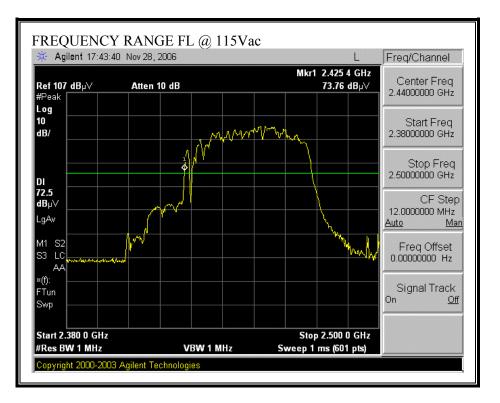
FCC / OST MP-5: SECTION 4.3

The frequency range shall lie within the band 2.4 GHz to 2.5 GHz of -20dBc from the peak ($f_L > 2.4$ GHz and $f_H < 2.5$ GHz) over Normal condition.

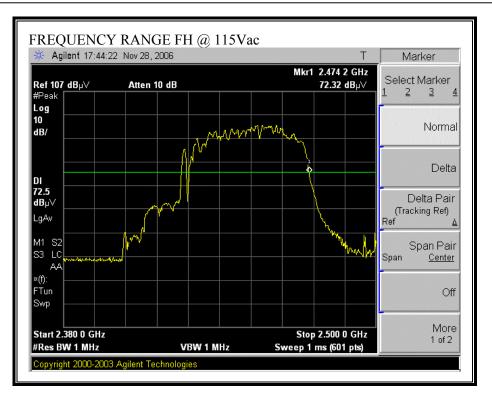
Page 15 of 57

RESULTS

No non-compliance noted:


2M254(L)-AK Magnetron:

Operating Frequency With Time

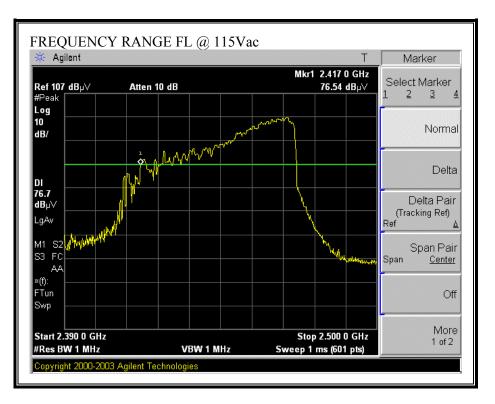

Condition	F low	Margin	F high (MHz)	Margin
Normal	(MHz) 2425.4	(MHz) 25.40	2474	(MHz) -25.80

Page 16 of 57

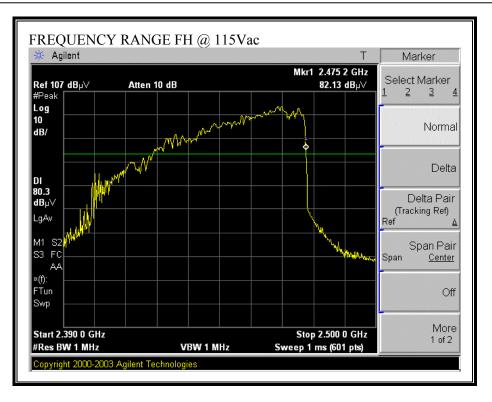
VARIATION IN OPERATING FREQUENCY WITH TIME

Page 17 of 57

Page 18 of 57


2M254(L)-B Magnetron:

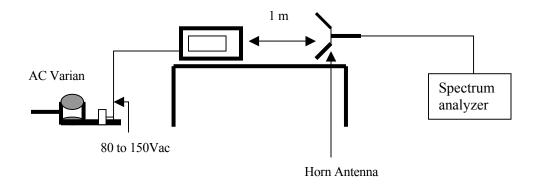
Operating Frequency With Time


Condition	F low	Margin	F high	Margin
	(MHz)	(MHz)	(MHz)	(MHz)
Normal	2417	17.00	2475	-25.00

Page 19 of 57

VARIATION IN OPERATING FREQUENCY WITH TIME

Page 20 of 57


Page 21 of 57

7.1.5. OPERATING FREQUENCY WITH VOLTAGE

TEST PROCEDURE

The Caloric Method was used to determine maximum output power. The initial temperature of a 1000-ml water load was measured for ovens rated at 1000 watts or less power output. For ovens more than 1000 watts output, additional beakers by fraction thereof are used if necessary.

The fundamental operating frequency was monitor until the water load was reduced to 20% of the original load, and the operating frequency was monitored as the input voltage was varied between 80 to 125 percent of the nominal rating.

<u>LIMIT</u>

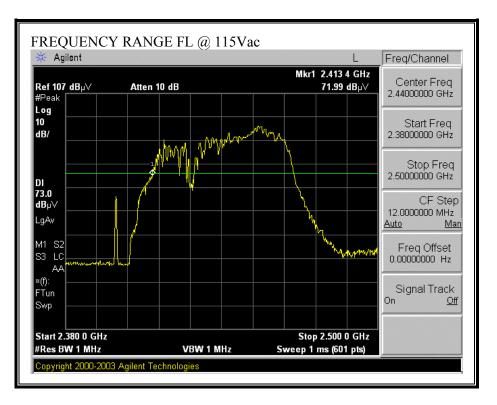
FCC / OST MP-5: SECTION 4.3

The frequency range shall lie within the band 2.4 GHz to 2.5 GHz of -20dBc from the peak ($f_L > 2.4$ GHz and $f_H < 2.5$ GHz) over Normal and Extreme voltages condition.

Page 22 of 57

RESULTS

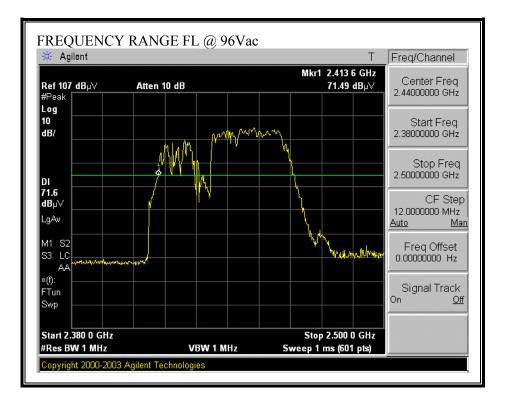
No non-compliance noted:

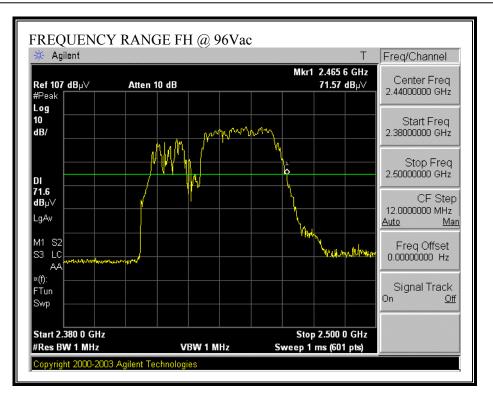

2M254(L)-AK Magnetron:

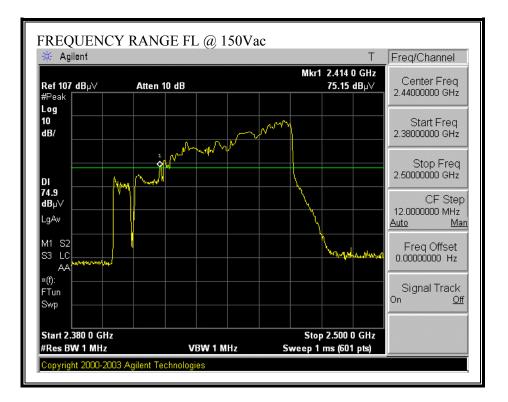
Operating Frequency With Voltage

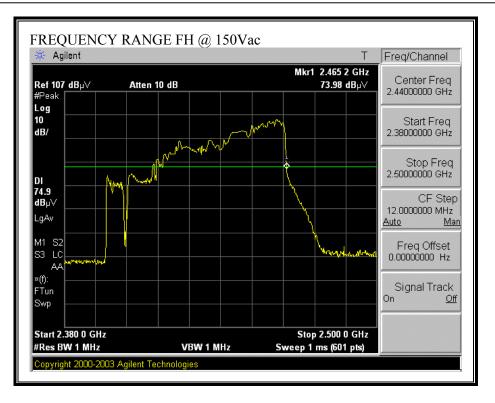
Condition	F low	Margin	F high	Margin
	(MHz)	(MHz)	(MHz)	(MHz)
Normal	2413.4	13.40	2467.6	-32.40
Extreme V low (96Vac)	2413.6	13.60	2465.6	-34.40
Extreme V high (150Vac)	2414.0	14.00	2465.2	-34.80

Page 23 of 57


VARIATION IN OPERATING FREQUENCY WITH VOLTAGE


Page 24 of 57

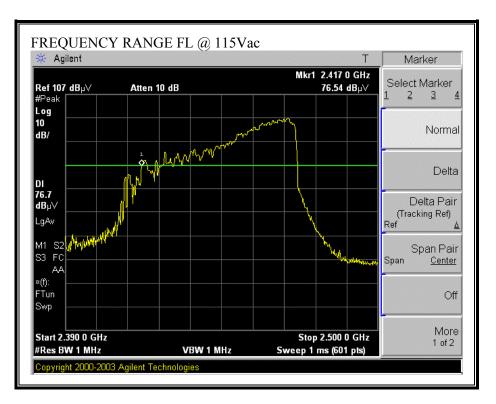

Page 25 of 57


Page 26 of 57

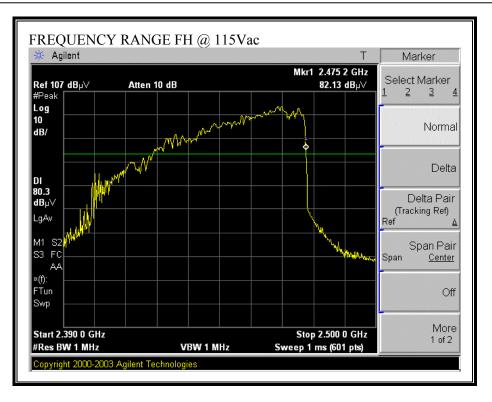
Page 27 of 57

Page 28 of 57

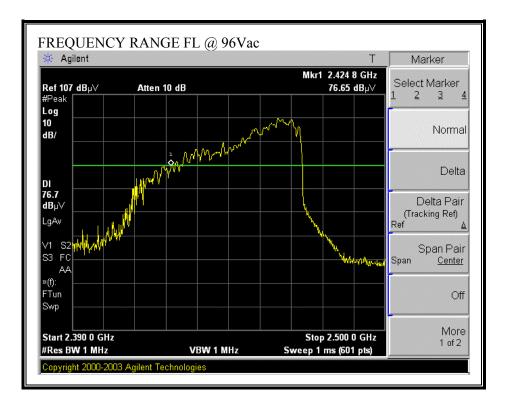
Page 29 of 57

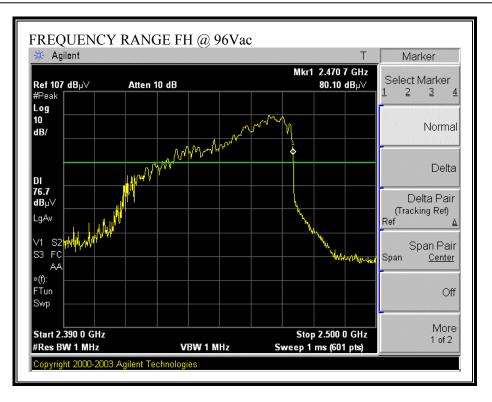

2M254(L)-B Magnetron:

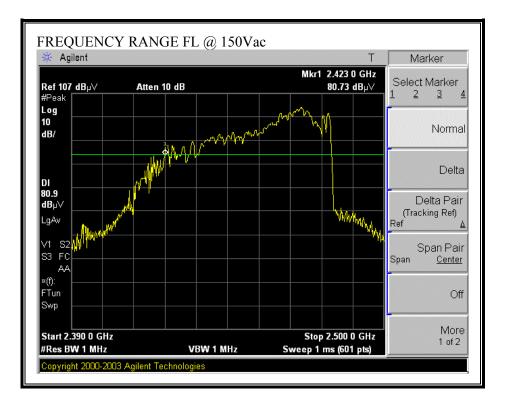
Operating Frequency With Voltage

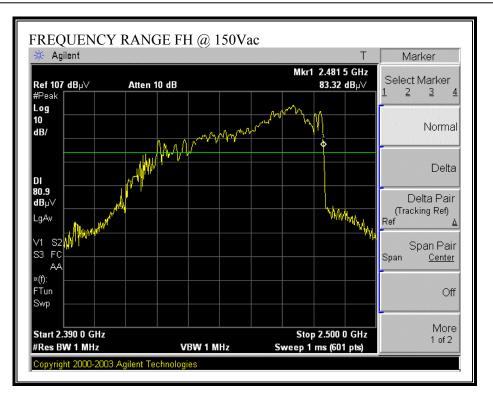

Condition	F low	Margin	F high	Margin
	(MHz)	(MHz)	(MHz)	(MHz)
Normal	2417.0	17.00	2475.0	-25.00
Extreme V low (96Vac)	2424.8	24.80	2470.7	-29.30
Extreme V high (150Vac)	2423.0	23.00	2481.5	-18.50

Page 30 of 57


VARIATION IN OPERATING FREQUENCY WITH VOLTAGE


Page 31 of 57


Page 32 of 57


Page 33 of 57

Page 34 of 57

Page 35 of 57

Page 36 of 57

7.2. RADIATED EMISSIONS

TEST PROCEDURE

FCC / OST MP-5

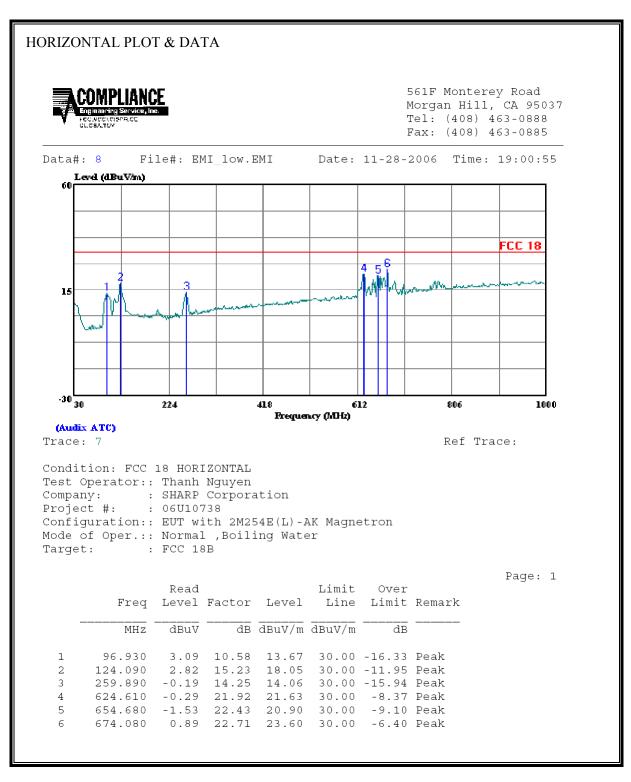
The fundamental clock frequency generated or used in the EUT is 2,450 MHz; therefore the frequency range was investigated from 30 MHz to 10th harmonic.

Load for measurement of radiation on second and third harmonic: Two loads of water, one of 700 and another of 300 milliliters, were used.

<u>LIMIT</u>

\$18.305 (b) The field strength levels of emissions which lie outside the bands specified in \$18.301, unless otherwise indicated, shall not exceed the following:

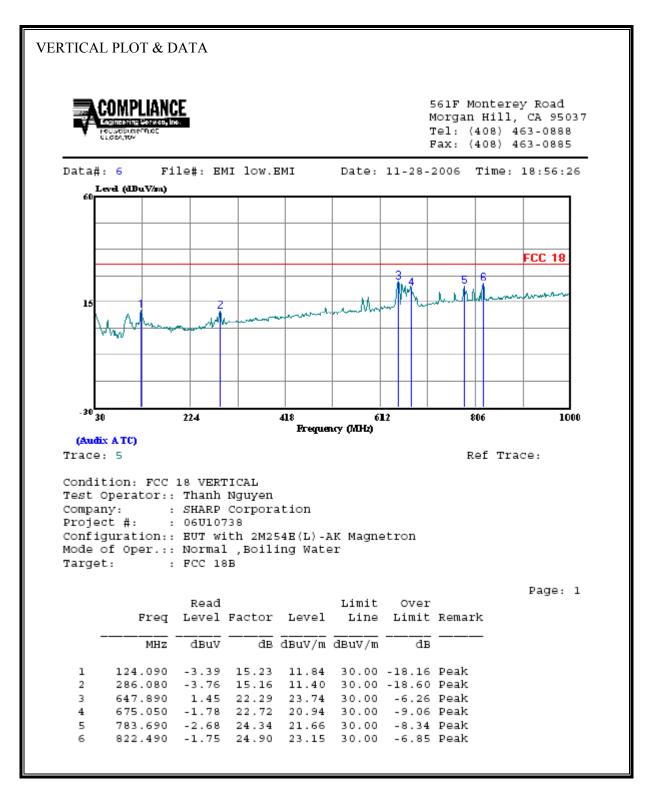
Equipment	Operating	RF Power	Field strength	Distance
	frequency	generated	limit (uV/m)	(meters)
	Distance	by equipment (watts)		
Any type unless	Any ISM	Below 500	25	300
otherwise specified	frequency			
(miscellaneous)	Any non-ISM	500 or more	25×SQRT(power	300
	frequency		/500)	


RESULTS

No non-compliance noted:

Page 37 of 57

2M254(L)-AK Magnetron:


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

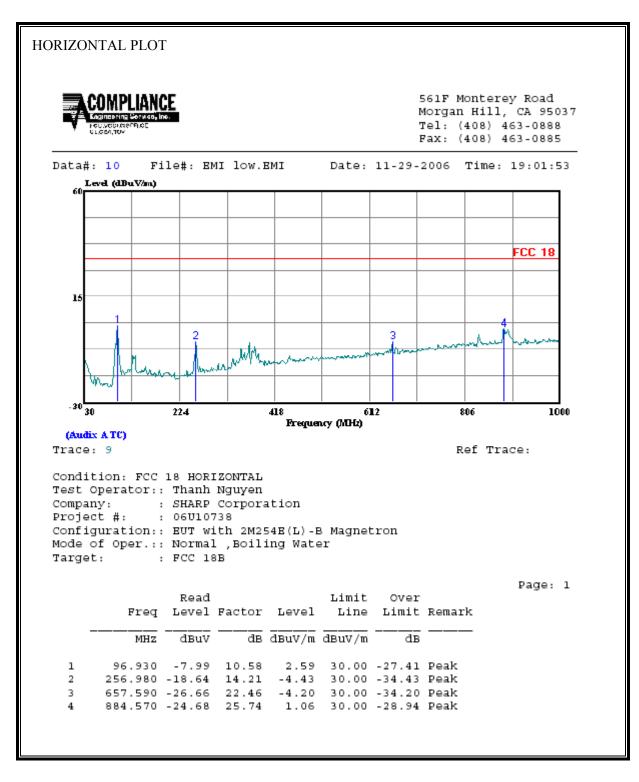
Page 38 of 57

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A561F MONTEREY ROAD, MORGAN HILL, CA 95037 USATEL: (408) 463-0885 FAX: (408) 463-0888This report shall not be reproduced except in full, without the written approval of CCS.CCSUP4031A

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 39 of 57

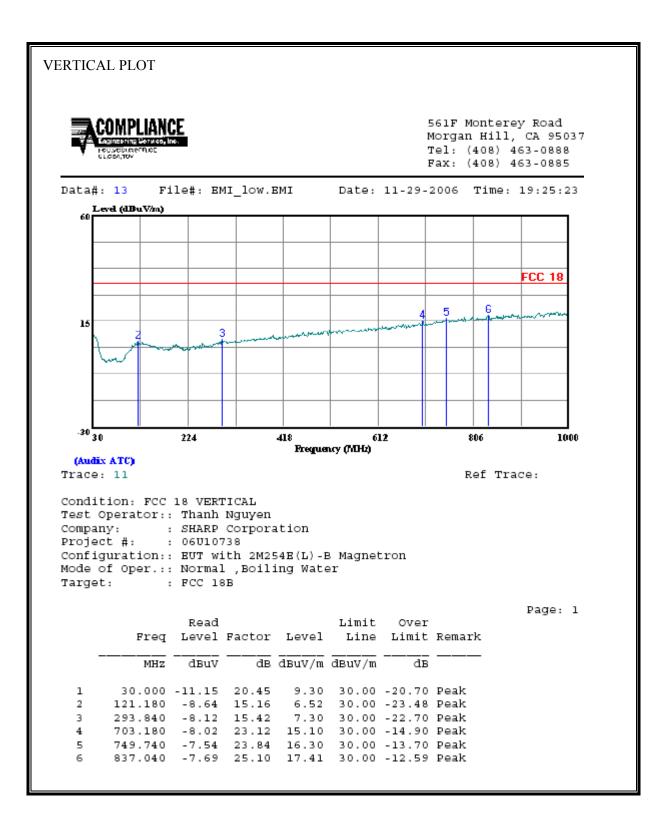
COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A561F MONTEREY ROAD, MORGAN HILL, CA 95037 USATEL: (408) 463-0885 FAX: (408) 463-0888This report shall not be reproduced except in full, without the written approval of CCS.CCSUP4031A


SPURIOUS EMISSIONS ABOVE 1GHz (WORST-CASE CONFIGURATION)

Iteramplifer 26-40 GHz Horn > 18 GHz Limit FCC Class B Ile foot cable Peak Measurements Thanh 208946003 Peak Measurements Peak Measurements Thanh 208946003 Peak Measurements Peak Mag Pk Lim Peak Measurements Reject Filter Peak Measurements RBW=10Hiz Notes dB Measurements RBW=10Hiz Notes dB dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m </th <th>Image: system is a system is a</th> <th></th> <th>HPF</th> <th>Reject Fil</th> <th>RBW RBW=1</th> <th>FCC Class B</th>	Image: system is a		HPF	Reject Fil	RBW RBW=1	FCC Class B
Iter amplifer 26-40 GHz Horn > 18 GHz Limit FCC Class B Iter Thanh 208946003 Peak Measurements Reject Filter Peak Measurements RBW=10HHz Average Measurements RBW=10HHz Average Measurements RBW=10HHz Average Measurements RBW=10Hz Average Measurements	LOOOml water -amplifer 1-26GHz I5 Agilent 3008A0056 - 3 foot cable Vg. AF CL Amp D Corr Flr dB/m dB dB dB dB dB 27.8 1.3 .36.1 .40.0 0.0 29.5 1.5 .35.8 .40.0 0.0 30.1 1.6 .35.7 .40.0 0.0 30.8 1.7 .35.5 .40.0 0.0 31.5 1.8 .35.4 .40.0 0.0		HPF	Reject Fil	RBW RBW=1	FCC Class B
Iter amplifer 26-40 GHz Horn > 18 GHz Limit FCC Class B Iter Thanh 208946003 Peak Measurements Reject Filter Peak Measurements RBW=10HHz Average Measurements RBW=10HHz Average Measurements RBW=10HHz Average Measurements RBW=10Hz Average Measurements	LOOOml water -amplifer 1-26GHz I5 Agilent 3008A0056 - 3 foot cable Vg. AF CL Amp D Corr Flr dB/m dB dB dB dB dB 27.8 1.3 .36.1 .40.0 0.0 29.5 1.5 .35.8 .40.0 0.0 30.1 1.6 .35.7 .40.0 0.0 30.8 1.7 .35.5 .40.0 0.0 31.5 1.8 .35.4 .40.0 0.0		HPF	Reject Fil	RBW RBW=1	FCC Class B
Iter amplifer 26-40 GHz Horn > 18 GHz Limit FCC Class B Iter Thanh 208946003 Peak Measurements Reject Filter Peak Measurements RBW=10HHz Average Measurements RBW=10HHz Average Measurements RBW=10HHz Average Measurements RBW=10Hz Average Measurements	LOOOml water -amplifer 1-26GHz I5 Agilent 3008A0056 - 3 foot cable Vg. AF CL Amp D Corr Flr dB/m dB dB dB dB dB 27.8 1.3 .36.1 .40.0 0.0 29.5 1.5 .35.8 .40.0 0.0 30.1 1.6 .35.7 .40.0 0.0 30.8 1.7 .35.5 .40.0 0.0 31.5 1.8 .35.4 .40.0 0.0		HPF	Reject Fil	RBW RBW=1	FCC Class B
HPF Reject Filter Peak Measurements RBW=VBW=1MHz Thanh 208946003 •	-amplifer 1-26GHz 15 Agilent 3008A0056 - 3 foot cable - vg. AF CL Amp D Corr Flr. ' dB/m dB dB dB dB 27.8 1.3 -36.1 -40.0 0.0 29.5 1.5 -35.8 -40.0 0.0 30.1 1.6 -35.7 -40.0 0.0 30.8 1.7 -35.5 -40.0 0.0 31.5 1.8 -35.4 -40.0 0.0		HPF	Reject Fil	RBW RBW=1	FCC Class B
FCC Class B FCC Class B FCC Class B Peak Measurements RBW=VBW=1MHz Reject Filter Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz; VBW=10Hz O Corr Fltr Peak Measurements RBW=1MHz; VBW=10Hz 0 0 0 0 30.5 0.0 0.0	3 foot cable 12 foot of the second secon		HPF	Reject Fil	RBW RBW=1	FCC Class B
FCC Class B FCC Class B FCC Class B Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz; VBW=10Hz Corr Flt Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar Notes dB dB dBuV/m dBuV/m dBuV/m dBuV/m dB dB (V/H) 400 0.0 30.5 -0.5 50.0 30.0 -19.5 -30.5 V 400 0.0 31.4 0.2 50.0 30.0 -16.1 -32.4 V 40.0 0.0 32.9 -2.4 50.0 30.0 -16.1 -32.4 V 40.0 0.0 39.7 -0.2 50.0 30.0 -10.3 -30.2 V 40.0 0.0 39.7 -0.2 50.0 30.0 -10.3 -30.2 V 40.0 0.0 19.3 1.5 50.0 30.0 -10.3 -30.2 </td <td>3 foot cable 12 foot of the second secon</td> <td></td> <td>HPF</td> <td>Reject Fil</td> <td>RBW RBW=1</td> <td>FCC Class B</td>	3 foot cable 12 foot of the second secon		HPF	Reject Fil	RBW RBW=1	FCC Class B
I2 foot cable HPF Reject Filter Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz Average Measurements RBW=1MHz O Corr Fltr Peak Measurements RBW=1MHz Average Measurements RBW=10Hz	3 foot cable 12 foot of the foot of th	5003 Peak A dBuV/m dBu 30.5 31.4	Avg Pk Lim	R_001	RBW RBW=1	<u>Measurements</u> W=VBW=1MHz ze Measurements MHz ; VBW=10Hz
Thanh 208946003 Third Park Avg Pk Lim Avg Lim Pk Mar Avg Mar Notes D Corr Fltr Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar Notes dB dB dBuV/m dBu	vg. AF CL Amp D Corr Flr dB/m dB dB dB dB 27.8 1.3 -36.1 -40.0 0.0 29.5 1.5 -35.8 -40.0 0.0 30.1 1.6 -35.7 -40.0 0.0 30.8 1.7 -35.5 -40.0 0.0 31.5 1.8 -35.4 -40.0 0.0	5003 Peak A dBuV/m dBu 30.5 31.4	Avg Pk Lim	R_001	RBW RBW=1	W=VBW=1MHz ge Measurements MHz ; VBW=10Hz
Thanh 208946003 Image: Construction of the second sec	vg. AF CL Amp D Corr Flr dB/m dB dB dB dB 27.8 1.3 -36.1 -40.0 0.0 29.5 1.5 -35.8 -40.0 0.0 30.1 1.6 -35.7 -40.0 0.0 30.8 1.7 -35.5 -40.0 0.0 31.5 1.8 -35.4 -40.0 0.0	5003 Peak A dBuV/m dBu 30.5 31.4	Avg Pk Lim	R_001	RBW RBW=1	W=VBW=1MHz ge Measurements MHz ; VBW=10Hz
Thanh 208946003 Image: Construction of the second sec	vg. AF CL Amp D Corr Flr dB/m dB dB dB dB 27.8 1.3 -36.1 -40.0 0.0 29.5 1.5 -35.8 -40.0 0.0 30.1 1.6 -35.7 -40.0 0.0 30.8 1.7 -35.5 -40.0 0.0 31.5 1.8 -35.4 -40.0 0.0	5003 Peak A dBuV/m dBu 30.5 31.4	Avg Pk Lim	R_001	RBW Averag RBW=1	<u>ge Measurements</u> MHz ; VBW=10Hz
P Corr Fltr Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar Notes dB dB dBuV/m dB	vg. AF CL Amp D Corr Fltr dB/m dB dB dB dB dB dB 27.8 1.3 -36.1 -40.0 0.0 29.5 1.5 -35.8 -40.0 0.0 30.1 1.6 -35.7 -40.0 0.0 30.8 1.7 -35.5 -40.0 0.0 31.5 1.8 -35.4 -40.0 0.0	Peak A dBuV/m dBu 30.5 -4 31.4 0	·		RBW=1	MHz; VBW=10Hz
dB dB dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dB dB (V/H) 40.0 0.0 30.5 -0.5 50.0 30.0 -19.5 -30.5 V 40.0 0.0 31.4 0.2 50.0 30.0 -18.6 -29.8 V 40.0 0.0 31.4 0.2 50.0 30.0 -18.6 -29.8 V 40.0 0.0 32.9 -2.4 50.0 30.0 -16.1 -32.4 V 40.0 0.0 32.9 4.6 50.0 30.0 -17.1 -25.4 V 40.0 0.0 39.7 -0.2 50.0 30.0 -10.3 -30.2 V 40.0 0.0 19.3 1.5 50.0 30.0 -30.7 -28.5 V 40.0 0.0 24.8 1.7 50.0 30.0 -13.4 -17.0 V	dB/m dB dB dB dB dB 27.8 1.3 -36.1 -40.0 0.0 29.5 1.5 -35.8 -40.0 0.0 30.1 1.6 -35.7 -40.0 0.0 30.8 1.7 -355.5 -40.0 0.0 31.5 1.8 -35.4 -40.0 0.0	dBuV/m dBu 30.5 -0 31.4 0	·	Avg Lim Pk M:	ar Avg Mar	Neter
40.0 0.0 30.5 -0.5 50.0 30.0 -19.5 -30.5 V 40.0 0.0 31.4 0.2 50.0 30.0 -18.6 -29.8 V 40.0 0.0 31.4 0.2 50.0 30.0 -18.6 -29.8 V 40.0 0.0 33.9 -2.4 50.0 30.0 -16.1 -32.4 V 40.0 0.0 32.9 4.6 50.0 30.0 -17.1 -25.4 V 40.0 0.0 39.7 -0.2 50.0 30.0 -10.3 -30.2 V 40.0 0.0 19.3 1.5 50.0 30.0 -30.7 -28.5 V -40.0 0.0 24.8 1.7 50.0 30.0 -25.2 -28.3 V -40.0 0.0 36.6 13.0 50.0 30.0 -13.4 -17.0 V	27.8 1.3 -36.1 -40.0 0.0 29.5 1.5 -35.8 -40.0 0.0 30.1 1.6 -35.7 -40.0 0.0 30.8 1.7 -35.5 -40.0 0.0 31.5 1.8 -35.4 -40.0 0.0	30 <i>5</i> -1 31 <i>.</i> 4 (When Do When		-	
400 0.0 31.4 0.2 50.0 30.0 -18.6 -29.8 V 400 0.0 33.9 -2.4 50.0 30.0 -16.1 -32.4 V 40.0 0.0 32.9 -2.4 50.0 30.0 -16.1 -32.4 V 40.0 0.0 32.9 4.6 50.0 30.0 -17.1 -25.4 V 40.0 0.0 39.7 -0.2 50.0 30.0 -10.3 -30.2 V 40.0 0.0 19.3 1.5 50.0 30.0 -30.7 -28.5 V 40.0 0.0 24.8 1.7 50.0 30.0 -25.2 -28.3 V -40.0 0.0 36.6 13.0 50.0 30.0 -13.4 -17.0 V	29.5 1.5 -35.8 -40.0 0.0 30.1 1.6 -35.7 -40.0 0.0 30.8 1.7 -35.5 -40.0 0.0 31.5 1.8 -35.4 -40.0 0.0	31.4 (/
400 0.0 33.9 -2.4 50.0 30.0 -16.1 -32.4 V 400 0.0 32.9 4.6 50.0 30.0 -17.1 -25.4 V 400 0.0 32.9 4.6 50.0 30.0 -17.1 -25.4 V 400 0.0 39.7 -0.2 50.0 30.0 -10.3 -30.2 V 40.0 0.0 19.3 1.5 50.0 30.0 -30.7 -28.5 V 40.0 0.0 24.8 1.7 50.0 30.0 -25.2 -28.3 V 40.0 0.0 36.6 13.0 50.0 30.0 -13.4 -17.0 V	30.1 1.6 -35.7 -40.0 0.0 30.8 1.7 -35.5 -40.0 0.0 31.5 1.8 -35.4 -40.0 0.0					
40.0 0.0 39.7 -0.2 50.0 30.0 -10.3 -30.2 V 40.0 0.0 19.3 1.5 50.0 30.0 -30.7 -28.5 V 40.0 0.0 24.8 1.7 50.0 30.0 -25.2 -28.3 V 40.0 0.0 36.6 13.0 50.0 30.0 -13.4 -17.0 V	31.5 1.8 -35.4 -40.0 0.0		-2.4 50.0	30.0 - <u>16.1</u>	-32.4	v
40.0 0.0 19.3 1.5 50.0 30.0 -30.7 -28.5 V 40.0 0.0 24.8 1.7 50.0 30.0 -25.2 -28.3 V -40.0 0.0 36.6 13.0 50.0 30.0 -13.4 -17.0 V						
40.0 0.0 24.8 1.7 50.0 30.0 -25.2 -28.3 V -40.0 0.0 36.6 13.0 50.0 30.0 -13.4 -17.0 V						
-40.0 0.0 36.6 13.0 50.0 30.0 -13.4 -17.0 V						
-400 00 491 236 500 300 -09 -64 V						
	35.2 3.3 -34.6 -40.0 0.0		23.6 50.0	30.0 - <mark>0.9</mark>	-6.4	v
-40,0 0,0 40,7 5,1 50,0 30,0 -9,3 -24,9 Y						
-40.0 0.0 38.4 10.8 50.0 30.0 -11.6 -19.2 V	29.1 1.5 -35.9 -40.0 0.0		-3.7 50.0	30.0 -22.7	-33.7	H
400 0.0 38.4 10.8 50.0 30.0 -11.6 -19.2 V -400 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H	31.1 1.7 -35.5 -40.0 0.0		-1.4 50.0			Н
400 00 38.4 10.8 50.0 30.0 -11.6 -19.2 V 400 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H -40.0 0.0 27.3 -3.7 50.0 30.0 -22.7 -33.7 H -40.0 0.0 29.4 -1.4 50.0 30.0 -20.6 -31.4 H		···				
400 00 38.4 10.8 50.0 30.0 -11.6 -19.2 V 400 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H 40.0 0.0 27.3 -3.7 50.0 30.0 -22.7 -33.7 H -40.0 0.0 29.4 -1.4 50.0 30.0 -22.6 -31.4 H -40.0 0.0 36.9 14.2 50.0 30.0 -13.1 -15.8 H						
400 0.0 38.4 10.8 50.0 30.0 -11.6 -19.2 V 400 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H 400 0.0 27.3 -3.7 50.0 30.0 -22.7 -33.7 H 40.0 0.0 29.4 -1.4 50.0 30.0 -22.6 -31.4 H 40.0 0.0 36.9 14.2 50.0 30.0 -13.1 -15.8 H 40.0 0.0 48.2 22.1 50.0 30.0 -1.8 -7.9 H						
400 00 38.4 10.8 50.0 30.0 -11.6 -19.2 V 400 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H 40.0 0.0 27.3 50.0 30.0 -22.7 -33.7 H 40.0 0.0 29.4 -1.4 50.0 30.0 -20.6 -31.4 H 40.0 0.0 36.9 14.2 50.0 30.0 -13.1 -15.8 H 40.0 0.0 48.2 22.1 50.0 30.0 -14.8 .79 H 40.0 0.0 43.7 9.2 50.0 30.0 -6.3 -20.8 H						
400 0.0 38.4 10.8 50.0 30.0 -11.6 -19.2 V 400 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H 40.0 0.0 27.3 -3.7 50.0 30.0 -22.7 -33.7 H 40.0 0.0 29.4 -1.4 50.0 30.0 -20.6 -31.4 H 40.0 0.0 36.9 14.2 50.0 30.0 -13.1 -15.8 H 40.0 0.0 48.2 22.1 50.0 30.0 -1.8 7.9 H -40.0 0.0 43.7 9.2 50.0 30.0 -1.8 -7.9 H -40.0 0.0 43.7 9.2 50.0 30.0 -6.3 -20.8 H -40.0 0.0 33.71 5.4 50.0 30.0 -12.9 -24.6 H						
40.0 0.0 37.7 10.6 50.0 30.0 -12.3 -19.4 40.0 0.0 35.9 4.9 50.0 30.0 -14.1 -25.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37.7 11 35.9 4 40.7 2 38.4 11 28.0 4 27.3 4 29.4 4 36.9 1 48.2 2 43.7 5	10.6 50.0 4.9 50.0 5.1 50.0 10.8 50.0 -6.1 50.0 -3.7 50.0 -1.4 50.0 14.2 50.0 9.2 50.0	30.0 -12.3 30.0 -14.1 30.0 -9.3 30.0 -11.6 30.0 -22.0 30.0 -22.7 30.0 -20.6 30.0 -20.7 30.0 -20.6 30.0 -21.7 30.0 -20.7 30.0 -20.6 30.0 -10.4 30.0 -13.8 30.0 -18 30.0 -6.3	-19.4 -25.1 -24.9 -19.2 -36.1 -31.4 -15.8 -7.9 -20.8	
-40.0 0.0 38.4 10.8 50.0 30.0 -11.6 -19.2 V						
400 0.0 38.4 10.8 50.0 30.0 -11.6 -19.2 V 400 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H	29.1 1.5 -35.9 -40.0 0.0	27.3 -	-3.7 50.0	30.0 -22.7	-33.7	Н
400 0.0 38.4 10.8 50.0 30.0 -11.6 -19.2 V -400 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H	31.1 1.7 -35.5 -40.0 0.0	29.4 -	-1.4 50.0	30.0 -20.6	-31.4	Н
400 0.0 38.4 10.8 50.0 30.0 -11.6 -19.2 V 400 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H 400 0.0 27.3 -3.7 50.0 30.0 -22.7 -33.7 H	33.7 2.8 -34.9 -40.0 0.0	36.9 1	14.2 50.0	30.0 -13.1	-15.8	Н
400 00 38.4 10.8 50.0 30.0 -11.6 -19.2 V 400 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H -40.0 0.0 27.3 -3.7 50.0 30.0 -22.7 -33.7 H -40.0 0.0 29.4 -1.4 50.0 30.0 -20.6 -31.4 H		···				
400 0.0 38.4 10.8 50.0 30.0 -11.6 -19.2 V 40.0 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H 40.0 0.0 27.3 -3.7 50.0 30.0 -22.7 -33.7 H 40.0 0.0 27.4 -1.4 50.0 30.0 -22.7 -33.7 H 40.0 0.0 29.4 -1.4 50.0 30.0 -20.6 -31.4 H 40.0 0.0 36.9 14.2 50.0 30.0 -13.1 -15.8 H						
400 0.0 38.4 10.8 50.0 30.0 -11.6 -19.2 V 400 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H 400 0.0 27.3 -3.7 50.0 30.0 -22.7 -33.7 H 40.0 0.0 29.4 -1.4 50.0 30.0 -22.6 -31.4 H 40.0 0.0 36.9 14.2 50.0 30.0 -13.1 -15.8 H 40.0 0.0 48.2 22.1 50.0 30.0 -1.8 -7.9 H						
400 00 38.4 10.8 50.0 30.0 -11.6 -19.2 V 400 00 28.0 -6.1 50.0 30.0 -22.0 -36.1 H 40.0 0.0 27.3 3.7 50.0 30.0 -22.7 -33.7 H 40.0 0.0 29.4 -1.4 50.0 30.0 -20.6 -31.4 H 40.0 0.0 36.9 14.2 50.0 30.0 -13.1 15.8 H 40.0 0.0 48.2 22.1 50.0 30.0 -1.8 .7.9 H 40.0 0.0 43.7 9.2 50.0 30.0 -6.3 -20.8 H	37.8 4.5 -32.4 -40.0 0.0	37.1 5	5.4 50.0	30.0 -12.9	-24.6	Н
400 00 38.4 10.8 50.0 30.0 -11.6 -19.2 V 400 00 28.0 -6.1 50.0 30.0 -22.0 -36.1 H 40.0 0.0 27.3 3.7 50.0 30.0 -22.7 -33.7 H 40.0 0.0 29.4 -1.4 50.0 30.0 -20.6 -31.4 H 40.0 0.0 36.9 14.2 50.0 30.0 -13.1 15.8 H 40.0 0.0 48.2 22.1 50.0 30.0 -1.8 .7.9 H 40.0 0.0 43.7 9.2 50.0 30.0 -6.3 -20.8 H	40.2 5.1 -32.0 -40.0 0.0	36.9 9	9.9 50.0	30.0 -13.1	-20.1	Н
400 00 38.4 10.8 50.0 30.0 -11.6 -19.2 V 400 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H 40.0 0.0 27.3 -3.7 50.0 30.0 -22.7 -33.7 H 40.0 0.0 29.4 -1.4 50.0 30.0 -20.6 -31.4 H 40.0 0.0 36.9 14.2 50.0 30.0 -13.1 -15.8 H 40.0 0.0 48.2 22.1 50.0 30.0 -1.8 -7.9 H 40.0 0.0 43.7 9.2 50.0 30.0 -1.8 -7.9 H -40.0 0.0 43.7 9.2 50.0 30.0 -6.3 -20.8 H -40.0 0.0 33.71 5.4 50.0 30.0 -12.9 -24.6 H						
400 0.0 38.4 10.8 50.0 30.0 -11.6 -19.2 V 400 0.0 28.0 -6.1 50.0 30.0 -22.0 -36.1 H 40.0 0.0 27.3 -3.7 50.0 30.0 -22.7 -33.7 H 40.0 0.0 27.3 -3.7 50.0 30.0 -20.6 -31.4 H 40.0 0.0 29.4 -1.4 50.0 30.0 -10.6 -31.4 H 40.0 0.0 36.9 14.2 50.0 30.0 -13.1 -15.8 H 40.0 0.0 48.2 22.1 50.0 30.0 -1.8 -7.9 H -40.0 0.0 43.7 9.2 50.0 30.0 -6.3 -20.8 H -40.0 0.0 33.71 5.4 50.0 30.0 -12.9 -24.6 H				·····		
-40.0 -40.0 -40.0 -40.0 -40.0	36.2 3.7 -35.0 -40.0 37.8 4.5 -32.4 -40.0	۵0 (۵0 (0.0 43.7 0.0 37.1	0.0 43.7 9.2 50.0 0.0 37.1 5.4 50.0	0.0 43.7 9.2 50.0 30.0 -6.3 0 0.0 37.1 5.4 50.0 30.0 -12.9	0.0 43.7 9.2 50.0 30.0 -6.3 -20.8 0 0.0 37.1 5.4 50.0 30.0 -12.9 -24.6

Page 40 of 57

2M254(L)-B Magnetron:


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 41 of 57

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A561F MONTEREY ROAD, MORGAN HILL, CA 95037 USATEL: (408) 463-0885 FAX: (408) 463-0888This report shall not be reproduced except in full, without the written approval of CCS.CCSUP4031A

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 42 of 57

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO: CCSUP4031A561F MONTEREY ROAD, MORGAN HILL, CA 95037 USATEL: (408) 463-0885 FAX: (408) 463-0888This report shall not be reproduced except in full, without the written approval of CCS.CCSUP4031A

SPURIOUS EMISSIONS ABOVE 1GHz (WORST-CASE CONFIGURATION)

			Services, M	organ l	ншO	pen Fiel	a Site								
est En	#: 06U1 L/29/200 gineer:)6 Thanh Ngu		2M254	E(L)-H	3 Magn	etron.								
/lode: I		Operation,	Boiling 100												
		-					-						~		1 Junit
		18GHz		nplifer			Pre-am	plifer	26-40GH	-	H	orn > 18	GHZ		Limit FCC Class B
		301 @3m	- 1145 F	agnentia	00040	- ⁰⁰⁰				-				-	
	uency Cal 2 foot		3	foot c	able		12	foot c	able		HPF	R	eject Filte		<u>x Measurements</u> W=VBW=1MHz
Tha	nh 1770	79008	-			•	Thanh	208946	⁶⁰⁰³ -			• R	_001	• Avera	ge Measurements 1MHz ; VBW=10Hz
f GHz	Dist (m)	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	Fltr dB	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	1	Avg Mar dB	Notes (V/H)
288 787	3.0 3.0	74.33 70.61	36.34 44.93	28.8 32.2	1.4 2.2	-35.9 -35.2	-40.0 -40.0	0.0 0.0	28.6 29.8	-9.4 4.1	50.0 50.0	30.0 30.0	-21.4 -20.2	-39.4 -25.9	v v
920	3.0	87.39	53.74	33.8	2.8	-34.9	-40.0	0.0	49.1	15.5	50.0 50.0	30.0	-0.9	-14.5	v
0.880	3.0	55.09	37.56	36.9	4.0	-33.9	-40.0	0.0	22.1	4.6	50.0	30.0	-27.9	-25.4	V
2.320 7.070	3.0 3.0	56.87 59.76	33.37 36.75	37.4 40.2	4.4 5.1	-32.4	-40.0 -40.0	0.0 0.0	26.2 33.1	2.7 10.1	50.0 50.0	30.0 30.0	-23.8 -16.9	-27.3 -19.9	v
265	3.0	65.19	42.35	28.7	1.4	-35.9	-40.0	0.0	19.3	-3.5	50.0	30.0	-30.7	-33.5	H
920	3.0	86.00	52.36	33.8	2.8	-34.9	-40.0	0.0	47.7	14.1	50.0	30.0	-2.3	-15.9	H
.360 .813	3.0 3.0	73.50 72.66	58.44 45.49	35.2 36.4	3.3 3.7	-34.6 -35.0	-40.0 -40.0	0.0 0.0	37.4 37.7	22.3 10.6	50.0 50.0	30.0 30.0	-12.6 -12.3	-7.7 -19.4	<u>н</u> н
0.870	3.0	62.15	44.35	36.9	4 <i>.</i> 0	-33.9	-40.0	0.0	29.2	11.4	50.0	30.0	-20.8	-18.6	Н
6.630	3.0	56.27 s above 17GH	35.37	39.7	5.0	-32.1	-40.0	0.0	28.9	0.8	50.0	30.0	-21.1	-22.0	Н
ev. 5.1.6				<u></u>			<u></u>	<u> </u>							
	f Dist	Measureme Distance to	ent Frequency	у		Amp D.C.m	Preamp (ct to 3 mete			Avg Lim Pk Lim	-	Field Strengtl d Strength Li	
		Analyzer R				Avg			Strength @					s. Average Li	
	10040	Antenna Fa	-			Peak	-		k Field Stre			-	-	s. Peak Limit	
	AF	Cable Loss				HPF	High Pas			-			-		

Page 43 of 57

7.3. AC MAINS LINE CONDUCTED EMISSIONS

TEST PROCEDURE

FCC / OST MP-5

LIMIT

§ FCC 18.307 (a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Emit	s (dBµV)
Quasi-peak	Average
66 to 56	56 to 46
56	46
60	50
	Quasi-peak 66 to 56 56

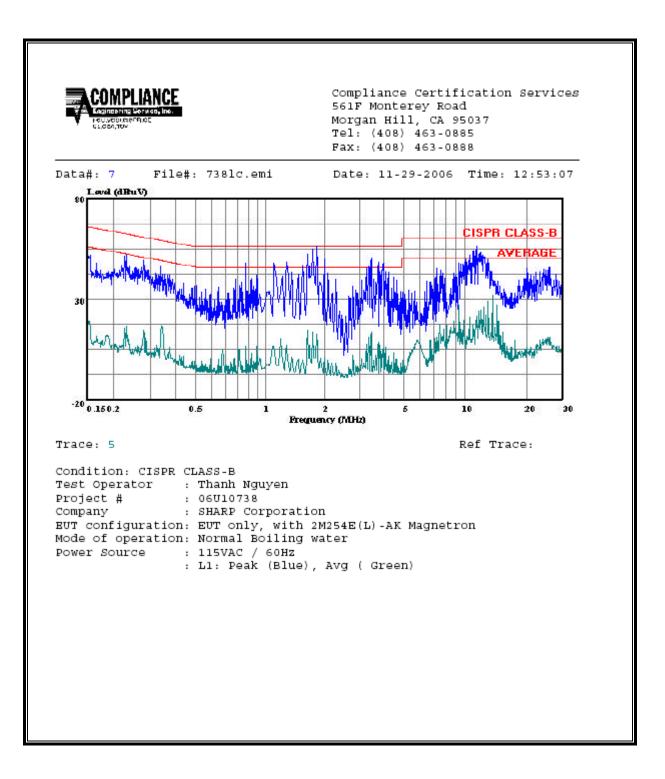
1. The lower limit shall apply at the transition frequencies

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

RESULTS

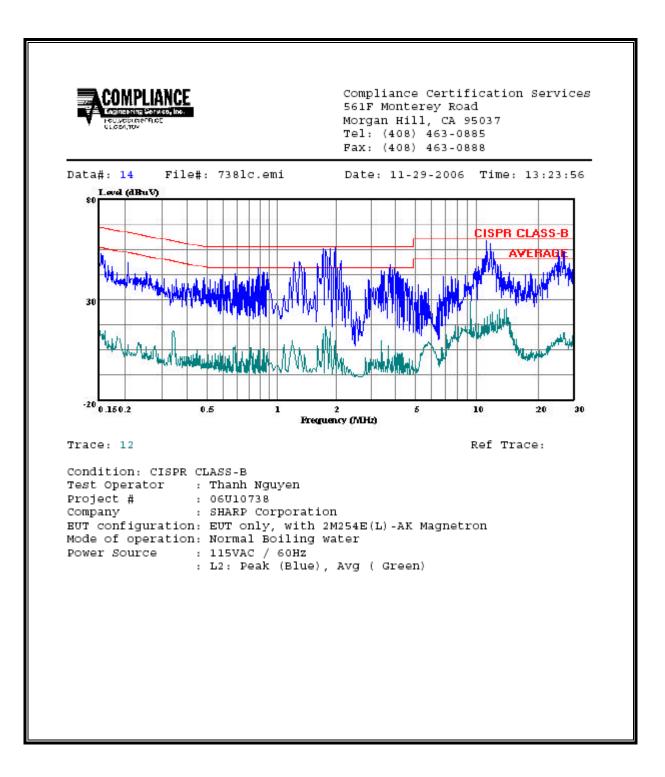
No non-compliance noted:

Page 44 of 57


2M254(L)-AK Magnetron:

6 WORST EMISSIONS:

	CONDUCTED EMISSIONS DATA (115 VAC 60Hz)											
Freq.		Reading		Closs Limit EN_B Margin				Remark				
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2			
0.23	51.91		16.22	0.00	62.38	52.38	-10.47	-36.16	L1			
1.93	56.37	52.80	12.42	0.00	56.00	46.00	-3.20	-33.58	L1			
11.50	56.20		21.46	0.00	60.00	50.00	-3.80	-28.54	L1			
0.88	45.90		5.66	0.00	56.00	46.00	-10.10	-40.34	L2			
2.08	55.78		9.34	0.00	56.00	46.00	-0.22	-36.66	L2			
11.20	59.37		21.73	0.00	60.00	50.00	-0.63	-28.27	L2			
6 Worst I	Data											

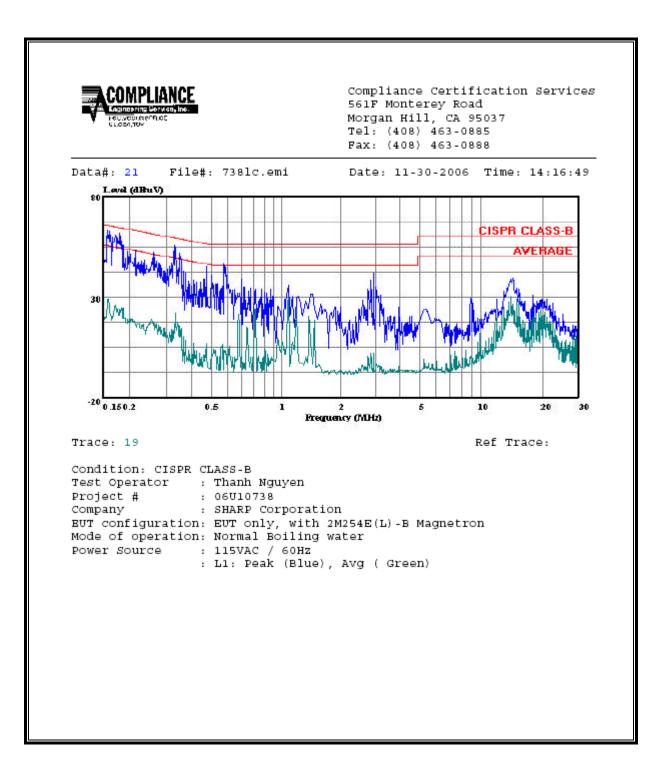

Page 45 of 57

LINE 1 RESULTS

Page 46 of 57

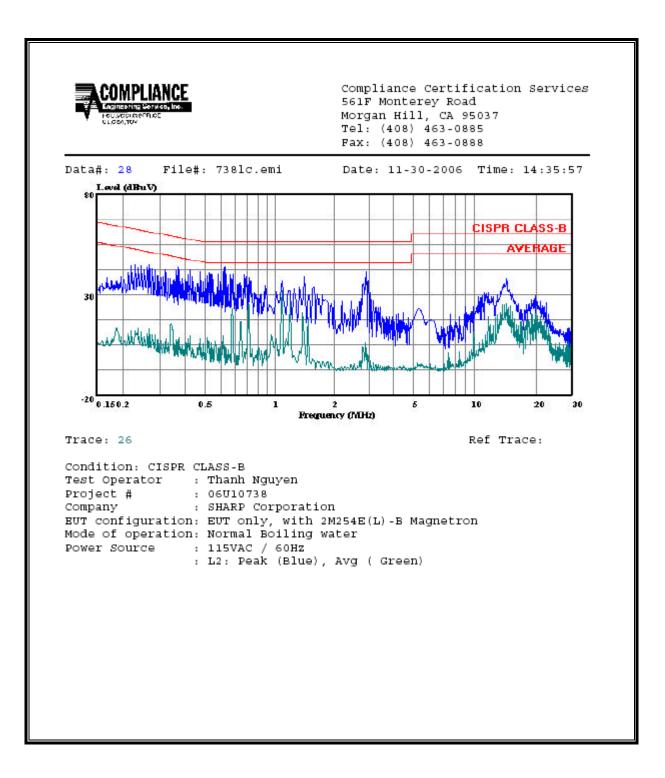
LINE 2 RESULTS

Page 47 of 57


2M254(L)-B Magnetron:

6 WORST EMISSIONS:

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)												
Freq.		Reading		Closs	Limit	EN_B	Marg	Remark					
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2				
0.16	63.05		28.90	0.00	65.67	55.67	-2.62	-26.77	L1				
0.33	55.73		21.80	0.00	59.40	49.40	-3.67	-27.60	L1				
0.57	46.72		3.89	0.00	56.00	46.00	-9.28	-42.11	L1				
0.27	44.83		15.50	0.00	61.12	51.12	-16.29	-35.62	L2				
0.63	44.01		22.43	0.00	56.00	46.00	-11.99	-23.57	L2				
3.01	41.35		5.94	0.00	56.00	46.00	-14.65	-40.06	L2				
6 Worst I	 Data 												

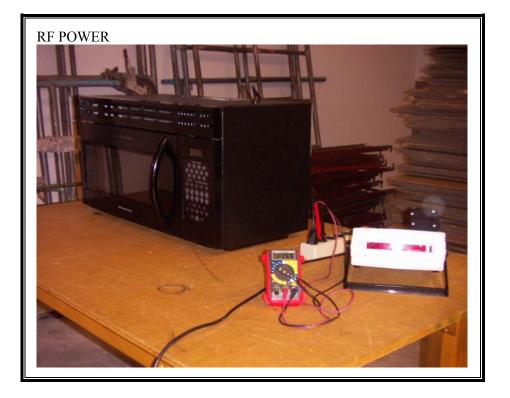

Page 48 of 57

LINE 1 RESULTS

Page 49 of 57

LINE 2 RESULTS

Page 50 of 57


8. SETUP PHOTOS

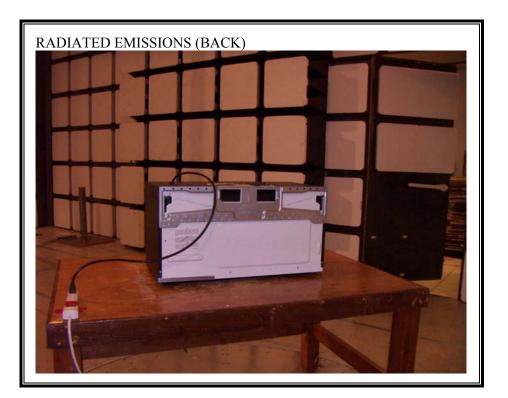
RADIATED HAZARD EMISSIONS

Page 51 of 57

POWER TESTING

Page 52 of 57

OPERATING FREQUENCY WITH TIME / VOLTAGE



Page 53 of 57

RADIATED EMISSION

Page 54 of 57

Page 55 of 57

AC MAINS LINE CONDUCTED EMISSION

Page 56 of 57

END OF REPORT

Page 57 of 57