TEST REPORT FCC ID: 2ACJARLTP60XX **Product: Smartphone** Model No.: RLTP6067 Additional Model No.: RLTP60XX(XX can be changed from 00 to 99), HN-MPX6000, HN-MPX60XX(XX can be changed from 00 to 99) Trade Mark: N/A Report No.: TCT160817E015 Issued Date: Aug. 31, 2016 Issued for: ShenZhen Harmony Technology Co., Ltd Block 2, Jiayuan Industrial Zone, Heping Community high-tech Park, No 2 Fuyuan Road, Fuyong, Bao'an, Shenzhen, China Issued By: **Shenzhen Tongce Testing Lab.** 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China TEL: +86-755-27673339 FAX: +86-755-27673332 **Note:** This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample. Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com # **TABLE OF CONTENTS** | 1. | Test Certification | 3 | |----|--|----| | 2. | Test Result Summary | | | 3. | EUT Description | 5 | | 4. | Genera Information | | | | 4.1. Test environment and mode | 7 | | | 4.2. Description of Support Units | 9 | | 5. | Facilities and Accreditations | 10 | | | 5.1. Facilities | 10 | | | 5.2. Location | 10 | | | 5.3. Measurement Uncertainty | | | 6. | Test Results and Measurement Data | 11 | | | 6.1. Antenna requirement | 11 | | | 6.2. Conducted Emission | 12 | | | 6.3. Emission Bandwidth | | | | 6.4. Power Spectral Density | 28 | | | 6.5. Conducted Band Edge and Spurious Emission Measurement | 34 | | | 6.6. Radiated Spurious Emission Measurement | 44 | | | | | # 1. Test Certification | Product: | Smartphone | |--------------------------|--| | Model No.: | RLTP6067 | | Additional
Model No.: | RLTP60XX(XX can be changed from 00 to 99), HN-MPX6000, HN-MPX60XX(XX can be changed from 00 to 99) | | Applicant: | ShenZhen Harmony Technology Co., Ltd | | Address: | Block 2, Jiayuan Industrial Zone, Heping Community high-tech Park, No 2 Fuyuan Road, Fuyong, Bao'an, Shenzhen, China | | Manufacturer: | ShenZhen Harmony Technology Co., Ltd | | Address: | Block 2, Jiayuan Industrial Zone, Heping Community high-tech Park, No 2 Fuyuan Road, Fuyong, Bao'an, Shenzhen, China | | Date of Test: | Aug. 17 - Aug. 30, 2016 | | Applicable Standards: | FCC CFR Title 47 Part 15 Subpart C Section 15.247
KDB 558074 D01 DTS Meas Guidance v03r05 | | • • | · · | The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. Tested By: Buy Than Date: Aug. 30, 2016 Beryl Zhao Reviewed By: Date: Aug. 31, 2016 Approved By: Tomsin **Tomsin** Joe Zhou Date: Aug. 31, 2016 # 2. Test Result Summary | Requirement | CFR 47 Section | Result | |----------------------------------|---------------------|--------| | Antenna requirement | §15.203/§15.247 (c) | PASS | | AC Power Line Conducted Emission | §15.207 | PASS | | Conducted Peak Output
Power | §15.247 (b)(3) | PASS | | 6dB Emission Bandwidth | §15.247 (a)(2) | PASS | | Power Spectral Density | §15.247 (e) | PASS | | Band Edge | 1§5.247(d) | PASS | | Spurious Emission | §15.205/§15.209 | PASS | #### Note: - 1. PASS: Test item meets the requirement. - 2. Fail: Test item does not meet the requirement. - 3. N/A: Test case does not apply to the test object. - 4. The test result judgment is decided by the limit of test standard. # 3. EUT Description | Product Name: | Smartphone | |---|---| | Model : | RLTP6067 | | Additional Model: | RLTP60XX(XX can be changed from 00 to 99),
HN-MPX6000, HN-MPX60XX(XX can be changed from 00
to 99) | | Trade Mark: | N/A | | Hardware Version: | AL_x5s_MB_V10 | | Software Version: | x5s_a_x60_20160804_0114 | | Operation Frequency: | 2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))
2422MHz~2452MHz (802.11n(HT40)) | | Channel Separation: | 5MHz | | Number of Channel: | 11 for 802.11b/802.11g/802.11n(HT20)
7 for 802.11n(HT40) | | Modulation Technology: (IEEE 802.11b) | Direct Sequence Spread Spectrum (DSSS) | | Modulation Technology: (IEEE 802.11g/802.11n) | Orthogonal Frequency Division Multiplexing(OFDM) | | Data speed (IEEE
802.11b): | 1Mbps, 2Mbps, 5.5Mbps, 11Mbps | | Data speed (IEEE
802.11g): | 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps | | Data speed (IEEE
802.11n): | Up to 135Mbps | | Antenna Type: | PIFA Antenna | | Antenna Gain: | 0.5dBi | | Power Supply: | Adapter Information: MODEL: XRN-AC01 INPUT: AC100-240V~50/60Hz 0.1A OUTPUT: DC5V±0.5A, 1000mA±50mA | | Remark: | All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement. | Operation Frequency each of channel For 802.11b/g/n(HT20) | Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------|---------|-----------| | 1 | 2412MHz | 4 | 2427MHz | 7)7 | 2442MHz | 10 | 2457MHz | | 2 | 2417MHz | 5 | 2432MHz | 8 | 2447MHz | 11 | 2462MHz | | 3 | 2422MHz | 6 | 2437MHz | 9 | 2452MHz | | | Operation Frequency each of channel For 802.11n (HT40) | | · · · · · · · · · · · · · · · · · · · | | | | | | | |---------|---------------------------------------|---------|-----------|---------|-----------|-----------|-----------| | Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency | | | (% | 4 | 2427MHz | 7 | 2442MHz | | | | | 1/20 | 5 | 2432MHz | 8 | 2447MHz | (G_{-}) | | | 3 | 2422MHz | 6 | 2437MHz | 9 | 2452MHz | | | ## Note: In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below: 802.11b/802.11q/802.11n (HT20) | 110,0021119,0021111111111111111111111111 | | | | | | |--|-----------|--|--|--|--| | Channel | Frequency | | | | | | The lowest channel | 2412MHz | | | | | | The middle channel | 2437MHz | | | | | | The Highest channel | 2462MHz | | | | | 802.11n (HT40) | Channel | Frequency | |---------------------|-----------| | The lowest channel | 2422MHz | | The middle channel | 2437MHz | | The Highest channel | 2452MHz | # 4. Genera Information ## 4.1. Test environment and mode | Operating Environment: | | |------------------------|--| | Temperature: | 25.0 °C | | Humidity: | 56 % RH | | Atmospheric Pressure: | 1010 mbar | | Test Mode: | | | Engineering mode: | Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) | The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state. #### **Test software:** Executed command fixed test channel under DOS. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows: # Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case. | Mode | Data rate | |------------------|---| | 802.11b | 1Mbps | | 802.11g | 6Mbps | | 802.11n(H20) | 6.5Mbps | | 802.11n(H40) | 13.5Mbps | | Final Test Mode: | | | Operation mode: | Keep the EUT in continuous transmitting | 1. For WIFI function, the engineering test program was provided and enabled to make with modulation ## EUT continuous transmit/receive. 2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 98.5% with maximum power setting for all modulations. # 4.2. Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | Equipment | Model No. | Serial No. | FCC ID | Trade Name | |-----------|-----------|------------|--------|------------| | 1 | 1 | 1 | 1 | 1 | #### Note: - 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test. - 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use. - 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments. Page 9 of 56 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com ## 5. Facilities and Accreditations ## 5.1. Facilities The test facility is recognized, certified, or accredited by the following organizations: • FCC - Registration No.: 572331 Shenzhen Tongce Testing Lab The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. • IC - Registration No.: 10668A-1 The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing CNAS - Registration No.: CNAS L6165 Shenzhen TCT Testing Technology Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6165. #### 5.2. Location Shenzhen Tongce Testing Lab Address: 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China Tel: 86-755-36638142 # 5.3. Measurement Uncertainty The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %. | No. | Item | MU | |-----|-------------------------------|---------| | 1 | Conducted Emission | ±2.56dB | | 2 | RF power, conducted | ±0.12dB | | 3 | Spurious emissions, conducted | ±0.11dB | | 4 | All emissions, radiated(<1G) | ±3.92dB | | 5 | All emissions, radiated(>1G) | ±4.28dB | | 6 | Temperature | ±0.1°C | | 7 | Humidity | ±1.0% | ## 6. Test Results and Measurement Data ## 6.1. Antenna requirement **Standard requirement:** FCC Part15 C Section 15.203 /247(c) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. #### E.U.T Antenna: The Bluetooth antenna is an internal antenna which permanently attached, and the best case gain of the antenna is 0.5dBi. Page 11 of 56 # 6.2. Conducted Emission # 6.2.1. Test Specification | Test Requirement: | FCC Part15 C Section 15.207 | | | | | | |-------------------|--|-------------------|------------|--|--|--| | Test Method: | ANSI C63.10:2013 | (0') | (0) | | | | | Frequency Range: | 150 kHz to 30 MHz | | | | | | | Receiver setup: | RBW=9 kHz, VBW=30 kHz, Sweep time=auto | | | | | | | | Frequency range | Limit (c | dBuV) | | | | | | (MHz) | Quasi-peak | Average | | | | | Limits: | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | | | 0.5-5 | 56 | 46 | | | | | | 5-30 | 60 | 50 | | | | | | Reference | e Plane | | | | | | Test Setup: | Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization No. Test table height=0.8m | EMI
Receiver | — AC power | | | | | Test Mode: | Charging + transmitting | g with modulation | | | | | | Test Procedure: | The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. | | | | | | | Test Result: | PASS | | | | | | ## 6.2.2. Test Instruments | Conducted Emission Shielding Room Test Site (843) | | | | | | | |---|-----------------------|-----------------|---------|---------------|--|--| | Equipment | Serial Number | Calibration Due | | | | | | EMI Test Receiver | R&S | ESCS30 | 100139 | Aug. 11, 2017 | | | | LISN | Schwarzbeck | NSLK 8126 | 8126453 | Aug. 16, 2017 | | | | Coax cable | TCT | CE-05 | N/A | Aug. 11, 2017 | | | | EMI Test Software | Shurple
Technology | EZ-EMC | N/A | N/A | | | **Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI). Page 13 of 56 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com #### 6.2.3. Test data # Please refer to following diagram for individual ## Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz) Limit: FCC Part 15B Class B Conduction(QP) Power: AC 120V/60Hz Humidity: 54 % | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |-----|-----|--------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV | dBu∀ | dB | Detector | Comment | | 1 | | 0.4580 | 36.67 | 11.32 | 47.99 | 56.73 | -8.74 | QP | | | 2 | | 0.4580 | 23.40 | 11.32 | 34.72 | 46.73 | -12.01 | AVG | | | 3 | * | 0.5299 | 38.71 | 11.28 | 49.99 | 56.00 | -6.01 | QP | | | 4 | | 0.5299 | 25.93 | 11.28 | 37.21 | 46.00 | -8.79 | AVG | | | 5 | | 0.9740 | 36.20 | 11.20 | 47.40 | 56.00 | -8.60 | QP | | | 6 | | 0.9740 | 25.24 | 11.20 | 36.44 | 46.00 | -9.56 | AVG | | | 7 | | 1.6340 | 29.71 | 11.51 | 41.22 | 56.00 | -14.78 | QP | | | 8 | | 1.6340 | 19.58 | 11.51 | 31.09 | 46.00 | -14.91 | AVG | | | 9 | | 2.3179 | 35.99 | 11.57 | 47.56 | 56.00 | -8.44 | QP | | | 10 | | 2.3179 | 24.68 | 11.57 | 36.25 | 46.00 | -9.75 | AVG | | | 11 | | 4.0180 | 31.02 | 10.96 | 41.98 | 56.00 | -14.02 | QP | | | 12 | | 4.0180 | 19.30 | 10.96 | 30.26 | 46.00 | -15.74 | AVG | | #### Note: Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB) $Limit (dB\mu V) = Limit stated in standard$ $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$ Q.P. =Quasi-Peak AVG =average ^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz. # Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz) Site Chamber #2 Phase: N Temperature: 23 Limit: FCC Part 15B Class B Conduction(QP) Power: AC 120V/60Hz Humidity: 54 % | N | Ο. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | |---|----|-----|--------|------------------|-------------------|------------------|-------|--------|----------|---------| | | | | MHz | dBuV | dB | dBuV | dBu∀ | dB | Detector | Comment | | | 1 | * | 0.4660 | 29.69 | 11.32 | 41.01 | 56.58 | -15.57 | QP | | | | 2 | | 0.4660 | 17.30 | 11.32 | 28.62 | 46.58 | -17.96 | AVG | | | | 3 | | 0.5740 | 28.60 | 11.27 | 39.87 | 56.00 | -16.13 | QP | | | | 4 | | 0.5740 | 14.61 | 11.27 | 25.88 | 46.00 | -20.12 | AVG | | | | 5 | | 0.9780 | 28.91 | 11.20 | 40.11 | 56.00 | -15.89 | QP | | | _ | 6 | | 0.9780 | 16.15 | 11.20 | 27.35 | 46.00 | -18.65 | AVG | | | | 7 | | 1.4060 | 23.06 | 11.40 | 34.46 | 56.00 | -21.54 | QP | | | | 8 | | 1.4060 | 10.40 | 11.40 | 21.80 | 46.00 | -24.20 | AVG | | | | 9 | | 2.1780 | 26.51 | 11.62 | 38.13 | 56.00 | -17.87 | QP | | | 1 | 0 | | 2.1780 | 15.28 | 11.62 | 26.90 | 46.00 | -19.10 | AVG | | | 1 | 1 | | 2.7659 | 25.09 | 11.42 | 36.51 | 56.00 | -19.49 | QP | | | 1 | 2 | | 2.7659 | 12.29 | 11.42 | 23.71 | 46.00 | -22.29 | AVG | | #### Note: Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB) $Limit (dB\mu V) = Limit stated in standard$ $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$ Q.P. =Quasi-Peak AVG =average $^{^{\}star}$ is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz. # 6.3. Maximum Conducted (Peak) Output Power # 6.3.1. Test Specification | Test Requirement: | FCC Part15 C Section 15.247 (b)(3) | | | | | |-------------------|---|--|--|--|--| | Test Method: | KDB 558074 D01 DTS Meas Guidance v03r05 | | | | | | Limit: | 30dBm | | | | | | Test Setup: | Power Meter Attenuator | | | | | | Test Mode: | Transmitting mode with modulation | | | | | | Test Procedure: | The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r05. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. | | | | | | Test Result: | PASS | | | | | ## 6.3.2. Test Instruments | Equipment | Manufacturer | Model | Serial Number | Calibration Due | |----------------------|--------------|---------|---------------|-----------------| | Power Meter | Anritsu | ML2495A | 1005002 | Aug. 12, 2017 | | Pulse Power
Senor | Anritsu | MA2411B | 0917070 | Aug. 12, 2017 | | RF cable | TCT | RE-06 | N/A | Aug. 12, 2017 | | Antenna Connector | ТСТ | RFC-01 | N/A | Aug. 12, 2017 | **Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI). Page 16 of 56 # 6.3.3. Test Data | 802.11b mode | | | | | | |--------------|--------------------------------------|-------------|--------|--|--| | Test channel | Maximum Conducted Output Power (dBm) | Limit (dBm) | Result | | | | Lowest | 21.04 | 30.00 | PASS | | | | Middle | 20.17 | 30.00 | PASS | | | | Highest | 21.02 | 30.00 | PASS | | | | 802.11g mode | | | | | | | |--------------|--------------------------------------|-------------|--------|--|--|--| | Test channel | Maximum Conducted Output Power (dBm) | Limit (dBm) | Result | | | | | Lowest | 19.82 | 30.00 | PASS | | | | | Middle | 18.76 | 30.00 | PASS | | | | | Highest | 19.54 | 30.00 | PASS | | | | | 802.11n(H20) mode | | | | | | |-------------------|--------------------------------------|-------------|--------|--|--| | Test channel | Maximum Conducted Output Power (dBm) | Limit (dBm) | Result | | | | Lowest | 19.63 | 30.00 | PASS | | | | Middle | 18.81 | 30.00 | PASS | | | | Highest | 19.62 | 30.00 | PASS | | | | 802.11n(H40) mode | | | | | | |-------------------|--------------------------------------|-------------|--------|--|--| | Test channel | Maximum Conducted Output Power (dBm) | Limit (dBm) | Result | | | | Lowest | 19.09 | 30.00 | PASS | | | | Middle | 19.02 | 30.00 | PASS | | | | Highest | 19.30 | 30.00 | PASS | | | Test plots as follows: 802.11b Modulation ## Lowest channel ## Middle channel ## Highest channel Report No.: TCT160817E015 #### 802.11g Modulation #### Lowest channel ## Middle channel #### 802.11n (HT20) Modulation #### Lowest channel ## Middle channel #### 802.11n (HT40) Modulation #### Lowest channel ## Middle channel # 6.4. Emission Bandwidth # 6.4.1. Test Specification | Test Requirement: | FCC Part15 C Section 15.247 (a)(2) | | | | | |-------------------|---|--|--|--|--| | Test Method: | KDB 558074 D01 DTS Meas Guidance v03r05 | | | | | | Limit: | >500kHz | | | | | | Test Setup: | | | | | | | | Spectrum Analyzer EUT | | | | | | Test Mode: | Transmitting mode with modulation | | | | | | Test Procedure: | The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r05. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. | | | | | | Test Result: | PASS | | | | | # 6.4.2. Test Instruments | RF Test Room | | | | | | | | |--|---------|--------|------------|---------------|--|--|--| | Equipment Manufacturer Model Serial Number Calibration D | | | | | | | | | Spectrum Analyzer | Agilent | N9020A | MY49100060 | Aug. 12, 2017 | | | | | RF cable | тст | RE-06 | N/A | Aug. 12, 2017 | | | | | Antenna Connector | тст | RFC-01 | N/A | Aug. 12, 2017 | | | | **Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI). Page 22 of 56 # 6.4.3. Test data | Test channel | 6dB Emission Bandwidth (MHz) | | | | |--------------|------------------------------|---------|--------------|--------------| | | 802.11b | 802.11g | 802.11n(H20) | 802.11n(H40) | | Lowest | 9.540 | 16.55 | 17.76 | 31.95 | | Middle | 9.620 | 16.61 | 17.84 | 35.98 | | Highest | 9.596 | 16.51 | 17.69 | 27.55 | | Limit: | >500k | | | | | Test Result: | PASS | | | | Test plots as follows: 802.11b Modulation ## Lowest channel ## Middle channel ## Highest channel Report No.: TCT160817E015 802.11g Modulation ## Lowest channel ## Middle channel ## Highest channel Report No.: TCT160817E015 #### 802.11n (HT20) Modulation #### Lowest channel ## Middle channel #### 802.11n (HT40) Modulation #### Lowest channel ## Middle channel # 6.5. Power Spectral Density # 6.5.1. Test Specification | Test Requirement: | FCC Part15 C Section 15.247 (e) | | | | | |-------------------|--|--|--|--|--| | Test Method: | KDB 558074 D01 DTS Meas Guidance v03r05 | | | | | | Limit: | The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission. | | | | | | Test Setup: | Spectrum Analyzer EUT | | | | | | Test Mode: | Transmitting mode with modulation | | | | | | Test Procedure: | Transmitting mode with modulation The testing follows Measurement Procedure 10.3 Method AVGPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v03r05 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = RMS, Sweep time = auto couple. Employ trace averaging (RMS) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. | | | | | | Test Result: | Measure and record the results in the test report. PASS | | | | | ## 6.5.2. Test Instruments | RF Test Room | | | | | | | | |-------------------|--------------|--------|---------------|-----------------|--|--|--| | Equipment | Manufacturer | Model | Serial Number | Calibration Due | | | | | Spectrum Analyzer | Agilent | N9020A | MY49100060 | Aug. 12, 2017 | | | | | RF cable | TCT | RE-06 | N/A | Aug. 12, 2017 | | | | | Antenna Connector | TCT | RFC-01 | N/A | Aug. 12, 2017 | | | | **Note:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI). # 6.5.3. Test data | Test channel | Power Spectral Density (dBm/kHz) | | | | |--------------|----------------------------------|---------|--------------|--------------| | | 802.11b | 802.11g | 802.11n(H20) | 802.11n(H40) | | Lowest | -12.426 | -13.551 | -13.620 | -15.746 | | Middle | -13.647 | -14.913 | -14.482 | -15.359 | | Highest | -12.366 | -13.646 | -13.502 | -14.689 | | Limit: | 8dBm/3kHz | | | | | Test Result: | PASS | | | | Test plots as follows: #### 802.11b Modulation #### Lowest channel ## Middle channel ## 802.11g Modulation #### Lowest channel ## Middle channel ## 802.11n (HT20) Modulation #### Lowest channel ## Middle channel ## 802.11n (HT40) Modulation ## Lowest channel ## Middle channel