

TEST REPORT				
FCC ID:	2BMR6-CW2503C			
Test Report No::	TCT241230E033			
Date of issue::	Jan. 03, 2025			
Testing laboratory::	SHENZHEN TONGCE TESTING	G LAB		
Testing location/ address:	2101 & 2201, Zhenchang Factor Fuhai Subdistrict, Bao'an District 518103, People's Republic of Ch	, Shenzhen, Guangdong,		
Applicant's name::	Mega Multimedia Al LLC			
Address:	17870 CASTLETON ST, STE 21 CALIFORNIA 91748, United Sta			
Manufacturer's name:	Mega Multimedia Al LLC			
Address::	17870 CASTLETON ST, STE 215 CITY OF INDUSTRY, CALIFORNIA 91748, United States			
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01			
Product Name::	Home Security WiFi Camera			
Trade Mark:	Alaga			
Model/Type reference:	S-CW2503C-H, S-CW2503C, CV	W2503C, P50, P50S		
Rating(s)::	Refer to EUT description of page	93		
Date of receipt of test item ::	Dec. 30, 2024			
Date (s) of performance of test:	Dec. 30, 2024 ~ Jan. 03, 2025			
Tested by (+signature) :	Ronaldo LUO Panalda COURSE			
Check by (+signature):	Beryl ZHAO Bod(2 TCT)			
Approved by (+signature):	Tomsin	forms it's sa		
General disclaimer:		• •		

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. General Product Information		
1.1. EUT description	(0)	3
1.2. Model(s) list		3
1.3. Test Frequency		4
2. Test Result Summary		5
3. General Information		6
3.1. Test environment and mode	(3)	6
3.2. Description of Support Units		7
4. Facilities and Accreditations		8
4.1. Facilities	<u>(5</u>	8
4.2. Location		8
4.3. Measurement Uncertainty		
5. Test Results and Measurement Data	(20.)	9
5.1. Antenna requirement		9
5.2. Conducted Emission		
5.3. Maximum Conducted Output Power		14
5.4. 6dB Emission Bandwidth		
5.5. 26dB Bandwidth and 99% Occupied Bandwidth	(6)	17
5.6. Power Spectral Density		18
5.7. Band edge		
5.8. Unwanted Emissions		
5.9. Frequency Stability Measurement		45
Appendix A: Test Result of Conducted Test		
Appendix B: Photographs of Test Setup		
Appendix C: Photographs of EUT		

1. General Product Information

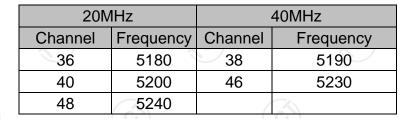
1.1. EUT description

Product Name:	Home Security WiFi Camera		
Model/Type reference:	S-CW2503C-H		
Sample Number:	TCT241230E006-0101		
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 3: 5745 MHz ~ 5825 MHz		
Channel Bandwidth::	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz 802.11ax: 20MHz, 40MHz		
Modulation Technology:	Orthogonal Frequency Division Multiplexing (OFDM)		
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QPSK		
Antenna Type:	FPC Antenna		
Antenna Gain:	2.28dBi		
Rating(s)::	Adapter Information 1: Model: CS-0501000 Input: AC 100-240V, 50/60Hz, 0.5A Max Output: DC 5V, 1.0A Adapter Information 2: MODEL: BS05A-0501000US INPUT: AC 100-240V, 50/60Hz, 0.25A Max OUTPUT: DC 5V, 1000mA Adapter Information 3: Model: TPA-418G050100UU01 Input: AC 100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 1.0A, 5.0W		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	S-CW2503C-H	
Other models	S-CW2503C, CW2503C, P50, P50S	


Note: S-CW2503C-H is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names, image pixel and product appearance color. So the test data of S-CW2503C-H can represent the remaining models.

Page 3 of 146

1.3. Test Frequency

Band 1

Band 3

20MHz		40MHz		
Channel	Frequency	Channel	Frequency	
149	5745	151	5755	
157	5785	159	5795	
165	5825			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 4 of 146

Report No.: TCT241230E033

2. Test Result Summary

esult
ASS
-

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25GHz, EUT meet the requirements of 15.407(a)(ii).

Page 5 of 146

TESTING CENTRE TECHNOLOGY Report No.: TCT241230E033

3. General Information

3.1. Test environment and mode

Operating Environment:			
Condition	Conducted Emission	Radiated Emission	
Temperature:	22.8 °C	21.4 °C	
Humidity:	49 % RH	51 % RH	
Atmospheric Pressure:	1010 mbar	1010 mbar	
Test Software:			
Software Information:	putty		
Power Level:	Band 1: 7 Band 3: 10	(0)	
Test Mode:			
Engineer mode: Keep the EUT in continuous transmitting by select channel and modulations with max duty cycle.			

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate		
802.11a	6 Mbps		
802.11n(HT20)	6.5 Mbps		
802.11n(HT40)	13.5 Mbps		
802.11ac(VHT20)	6.5 Mbps		
802.11ac(VHT40)	13.5 Mbps	(C)	
802.11ax(HE20)	6.5Mbps		
802.11ax(HE40)	13.5Mbps		

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1		

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 146

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic

Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT241230E033

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The WIFI antenna is FPC antenna which permanently attached, and the best case gain of the antenna is 2.28dBi.

Page 9 of 146

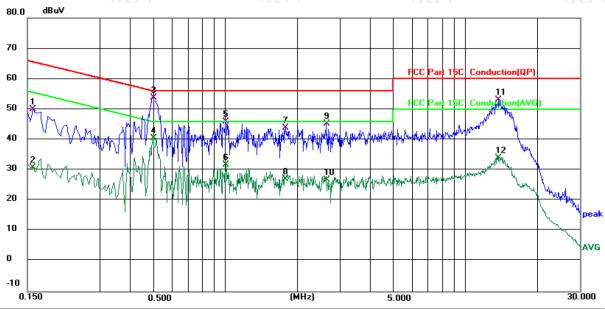
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2020			
Frequency Range:	150 kHz to 30 MHz	C ⁽)	(C ¹)	
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto	
Limits:	Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46 0.5-5 56 46 5-30 60 50			
Test Setup:	Reference Plane 40cm 80cm LISN Filter AC power Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m			
Test Mode:	Transmitting Mode			
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2020 on conducted measurement. 			
Test Result:	PASS			

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)				
Equipment Manufacturer Model Serial Number Calibration D				Calibration Due
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025
Attenuator	N/A	10dB	164080	Jun. 26, 2025
Line-5	тст	CE-05	1 (3)	Jun. 26, 2025
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	/



5.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 22.8 (°C)

Humidity: 49 %

Report No.: TCT241230E033

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1580	40.35	9.67	50.02	65.57	-15.55	QP	
2		0.1580	21.12	9.67	30.79	55.57	-24.78	AVG	
3	*	0.5020	43.62	10.17	53.79	56.00	-2.21	QP	
4		0.5020	30.43	10.17	40.60	46.00	-5.40	AVG	
5		1.0100	35.27	10.75	46.02	56.00	-9.98	QP	
6		1.0100	20.93	10.75	31.68	46.00	-14.32	AVG	
7		1.7900	34.15	9.82	43.97	56.00	-12.03	QP	
8		1.7900	17.16	9.82	26.98	46.00	-19.02	AVG	
9		2.6380	35.32	9.92	45.24	56.00	-10.76	QP	
10		2.6380	16.90	9.92	26.82	46.00	-19.18	AVG	
11		13.7820	42.77	10.27	53.04	60.00	-6.96	QP	
12		13.7820	23.70	10.27	33.97	50.00	-16.03	AVG	

Note:

Freq. = Emission frequency in MHz

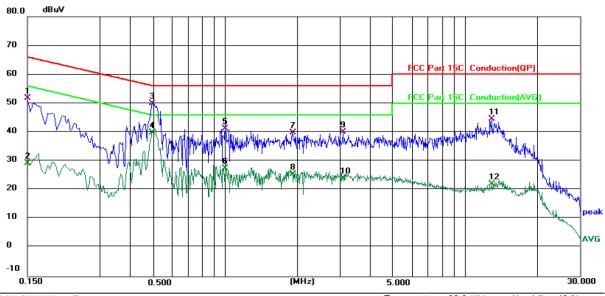
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: N

Temperature: 22.8 (°C)

Humidity: 49 %

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1500	42.10	9.65	51.75	66.00	-14.25	QP	
2		0.1500	19.55	9.65	29.20	56.00	-26.80	AVG	
3	*	0.4979	39.83	10.15	49.98	56.03	-6.05	QP	
4		0.4979	29.73	10.15	39.88	46.03	-6.15	AVG	
5		1.0020	30.49	10.70	41.19	56.00	-14.81	QP	
6		1.0020	16.67	10.70	27.37	46.00	-18.63	AVG	
7		1.8979	30.11	9.78	39.89	56.00	-16.11	QP	
8		1.8979	15.61	9.78	25.39	46.00	-20.61	AVG	
9		3.0979	30.05	9.91	39.96	56.00	-16.04	QP	
10		3.0979	14.12	9.91	24.03	46.00	-21.97	AVG	
11		12.8900	34.19	10.27	44.46	60.00	-15.54	QP	
12		12.8900	11.75	10.27	22.02	50.00	-27.98	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

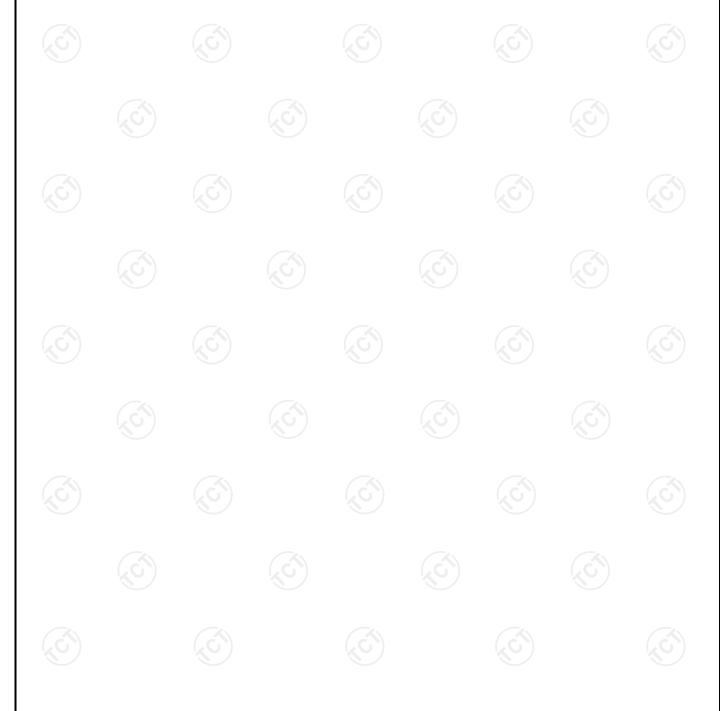
Q.P. =Quasi-Peak

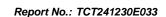
AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(HE20), 802.11ax(HE40) and the worst case Mode (Lowest channel and 802.11n(HT20)) was submitted only. And the test data in this project is powered by adapter 3 which is in the worse case.

5.3. Maximum Conducted Output Power


5.3.1. Test Specification


Test Requirement:	FCC Part15 E Section 2.1046	on 15.407(a)& Part 2 J Section				
Test Method:		Limit 5240 24dBm(250mW) for client device 24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz 24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz 30dBm(1W) 5825 30dBm(1W) itting mode with modulation testing follows the Measurement Procedure of 8789033 D02 General UNII Test Procedures New es v02r01 Section E, 3, a RF output of EUT was connected to the power				
	Frequency Band (MHz)	Limit				
	5180 - 5240	24dBm(250mW) for client device				
Limit:	5260 - 5320 5470 - 5725	log B, B is the 26 dB emission bandwidth in megahertz 24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission				
	5745 - 5825	30dBm(1W)				
Test Setup:	Power meter EUT					
Test Mode:	Transmitting mode v	vith modulation				
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 					
Test Result:	PASS					

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Power Meter	Agilent	E4418B	MY45100357	Jun. 26, 2025
Power Sensor	Agilent	8184A	MY41096530	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section
Test Method:	2.1049 KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS (S)

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	1	1

Page 16 of 146

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D				
Limit:	No restriction limits				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report. 				
Test Result:	PASS				

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

Page 17 of 146

5.6. Power Spectral Density

5.6.1. Test Specification

FCC Part15 E Section 15.407 (a)				
KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F				
≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470- 5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz				
Spectrum Analyzer EUT				
Transmitting mode with modulation				
 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near 				
free-space environment.				

5.6.2. Test Instruments

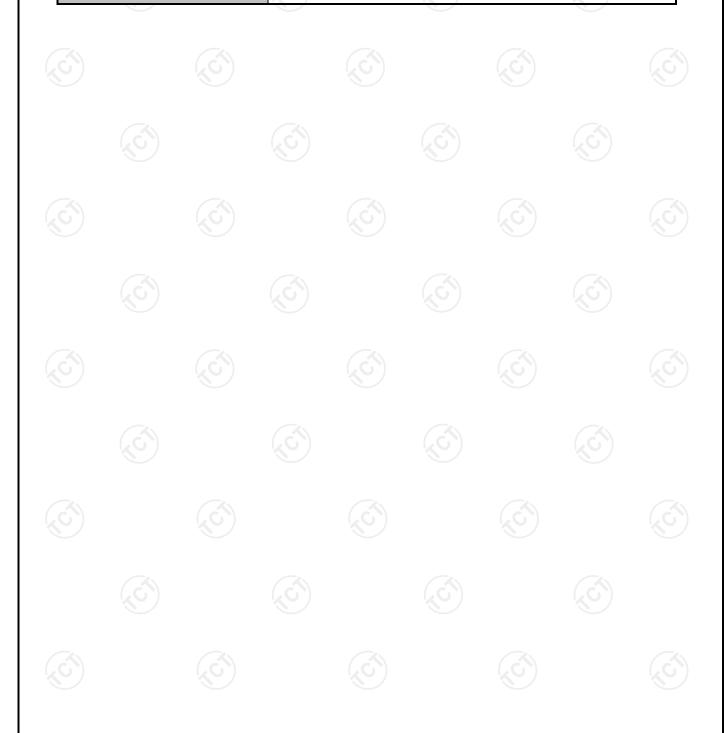
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	1	

Page 18 of 146

5.7. Band edge

5.7.1. Test Specification

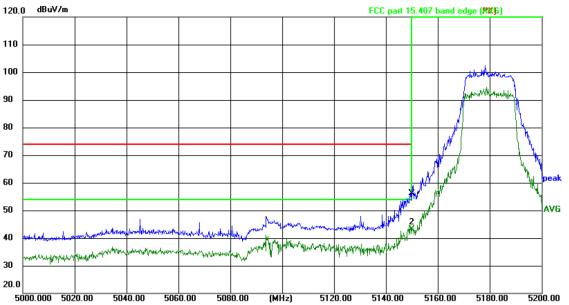
Test Requirement:	FCC CFR47 Pa	rt 15E Sectio	n 15.407	ÇĆ			
Test Method:	ANSI C63.10:2020						
	In un-restricted band: For Band 1&2A&2C: -27dBm/MHz For Band 3:						
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)			
	< 5650	-27	5850~5855	27~15.6			
Limit:	5650~5700	-27~10	5855~5875	15.6~10			
	5700~5720 5720~5725	10~15.6 15.6~27	5875~5925 > 5925	10~-27 -27			
	E[dBµV/m] = EIR In restricted band:	P[dBm] + 95.2	2 @3m				
	Detec		Limit@				
	AVG	Peak 74dBμV/m AVG 54dBμV/m					
Test Setup:	AE L SEL						
Test Mode:	Transmitting mo	de with mod	ulation	No.			
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold						


Report No.: TCT241230E033

Mode.
6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.

Test Result:

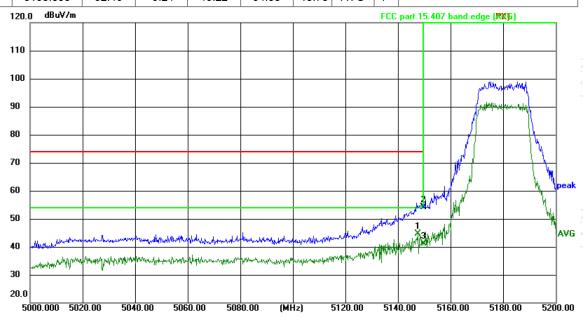
PASS



5.7.2. Test Instruments

Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025			
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025			
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025			
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025			
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025			
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025			
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025			
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025			
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025			
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025			
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025			
Coaxial cable	SKET	RE-03-M	/	Jun. 26, 2025			
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025			
Coaxial cable	SKET	RE-04-D	(0)	Jun. 26, 2025			
Coaxial cable	SKET	RE-04-M	/	Jun. 26, 2025			
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025			
Antenna Mast	Keleto	RE-AM) 1	(C)			
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/			

5.7.3. Test Data AX20-5180



Site: 3m Anechoic Chamber Limit: FCC part 15.407 band edge (PK)

Power:AC 120 V/60 Hz

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5150.000	65.28	-9.24	56.04	74.00	-17.96	peak	Р	
ľ	2 *	5150.000	52.46	-9.24	43.22	54.00	-10.78	AVG	Р	

Polarization: Horizontal

Site: 3m Anechoic Chamber

Polarization: Vertical

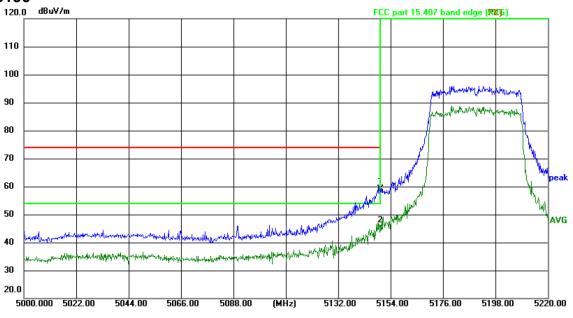
Temperature: 24.1(°C)

Temperature: 24.1(°C)

Humidity: 43 %

Report No.: TCT241230E033

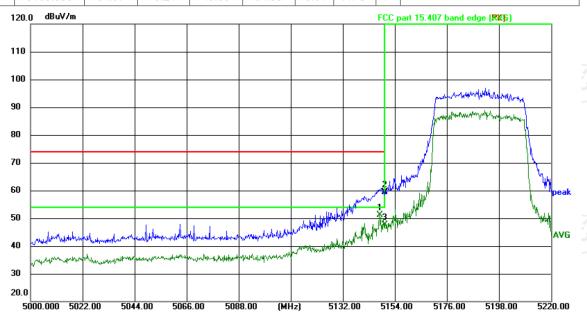
Humidity: 43 %


Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5147.760	53.80	-9.28	44.52	54.00	-9.48	AVG	Р	
2	5150.000	63.31	-9.24	54.07	74.00	-19.93	peak	Р	
3	5150.000	50.28	-9.24	41.04	54.00	-12.96	AVG	Р	

Humidity: 43 %

AX40-5190

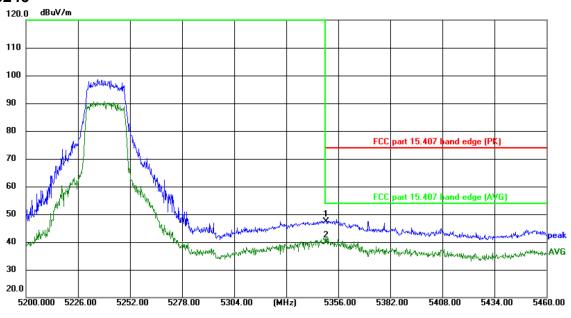


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.1(°C)

Limit: FCC part 15.407 band edge (PK)

Power:AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	68.31	-9.24	59.07	74.00	-14.93	peak	Р	
2 *	5150.000	54.57	-9.24	45.33	54.00	-8.67	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.1(°C) Humidity: 43 %

Limit: FCC part 15.407 band edge (PK)

1	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1 *	5147.708	60.35	-9.28	51.07	54.00	-2.93	AVG	Р	
	2	5150.000	68.72	-9.24	59.48	74.00	-14.52	peak	Р	
	3	5150.000	56.95	-9.24	47.71	54.00	-6.29	AVG	Р	

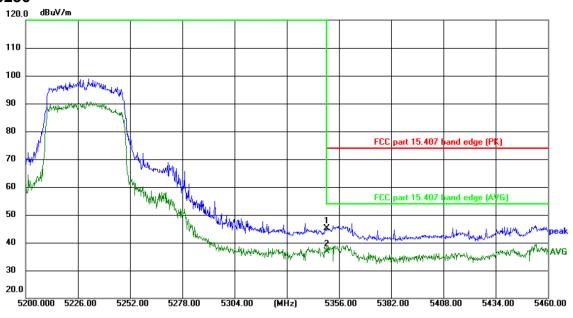
AX20-5240

Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.1(°C) Humidity: 43 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

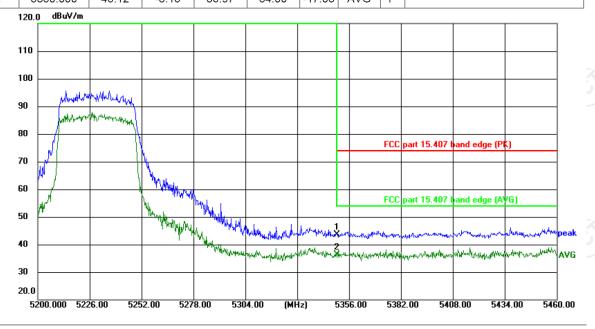
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5350.000	55.42	-8.15	47.27	74.00	-26.73	peak	Р	
Ī	2 *	5350.000	48.08	-8.15	39.93	54.00	-14.07	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.1(°C) Humidity: 43 %

Limit: FCC part 15.407 band edge (PK)

1	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5350.000	51.97	-8.15	43.82	74.00	-30.18	peak	Р	
	2 *	5350.000	44.49	-8.15	36.34	54.00	-17.66	AVG	Р	

AX40-5230

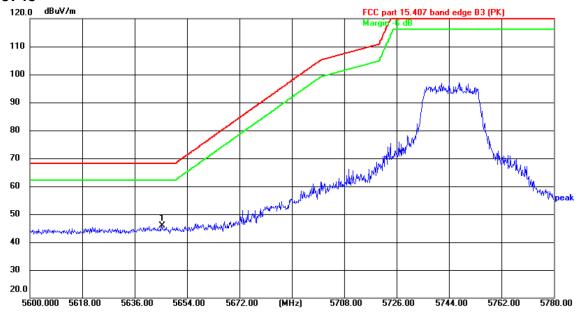


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.1(°C) Humidity: 43 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

			3 ()						
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	53.16	-8.15	45.01	74.00	-28.99	peak	Р	
2 *	5350 000	45 12	-8 15	36 97	54.00	-17 03	AVG	Р	

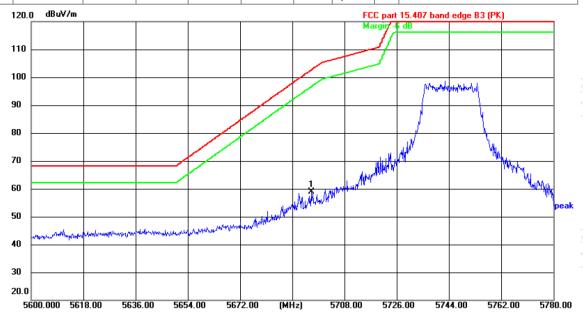

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.1(°C) Humidity: 43 %

Limit: FCC part 15.407 band edge (PK)

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
ſ	1	5350.000	51.90	-8.15	43.75	74.00	-30.25	peak	Р	
	2 *	5350.000	44.51	-8.15	36.36	54.00	-17.64	AVG	Р	

AX20-5745

Site: 3m Anechoic Chamber Polarization: *Horizontal*


Temperature: 24.1(℃)

Humidity: 43 %

Limit: FCC part 15.407 band edge B3 (PK)

Power: AC 120 V/60 Hz

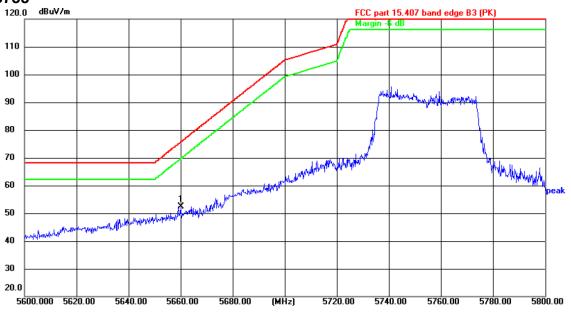
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5645.306	53.12	-7.34	45.78	68.20	-22.42	peak	Р	

Site: 3m Anechoic Chamber

Polarization: Vertical

Temperature: 24.1(℃)

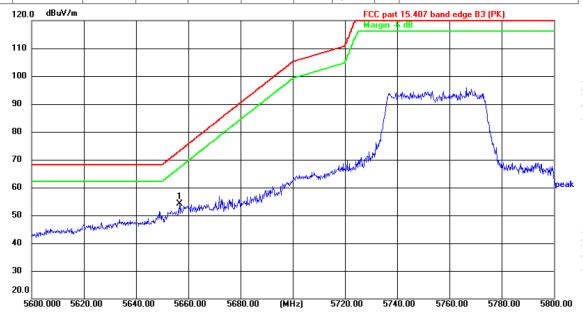
Humidity: 43 %


Limit: FCC part 15.407 band edge B3 (PK)

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
E	1 *	5696.480	66.54	-7.75	58.79	102.60	-43.81	peak	Р	

Humidity: 43 %

AX40-5755



Site: 3m Anechoic Chamber Polarization: Horizontal Limit: FCC part 15.407 band edge B3 (PK)

Power:AC 120 V/60 Hz

Temperature: 24.1(℃)

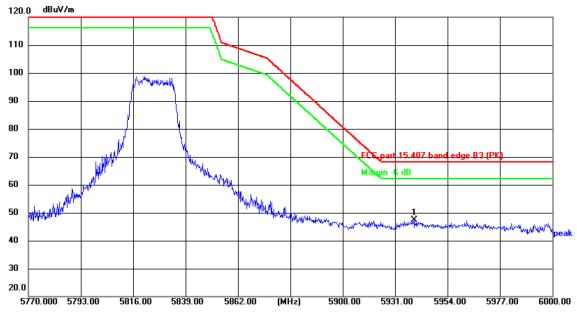
No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5660.080	59.83	-7.38	52.45	75.66	-23.21	peak	Р	

Site: 3m Anechoic Chamber

Polarization: Vertical

Temperature: 24.1(°C)

Humidity: 43 %


Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5656.780	61.38	-7.34	54.04	73.22	-19.18	peak	Р	

Humidity: 43 %

AX20-5825



Site: 3m Anechoic Chamber Pol Limit: FCC part 15.407 band edge B3 (PK)

Polarization: *Horizontal* Temperature: 24.1(°C)

Power: AC 120 V/60 Hz

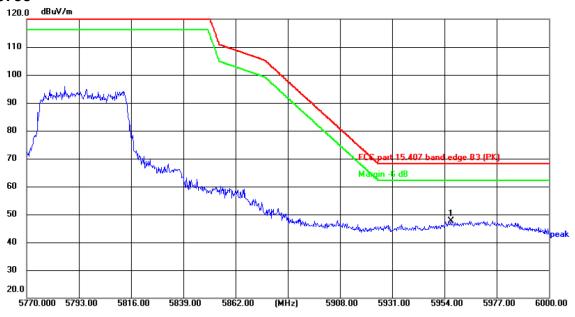
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5939.441	54.30	-6.84	47.46	68.20	-20.74	peak	Р	

Site: 3m Anechoic Chamber

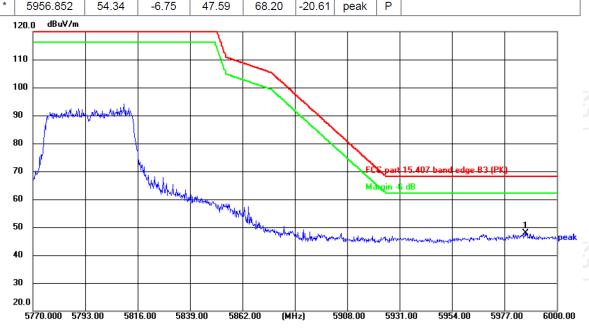
Polarization: Vertical

Temperature: 24.1(°C)

Humidity: 43 %


Limit: FCC part 15.407 band edge B3 (PK)

i		· ·		· `						
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1 *	5968.467	53.08	-6.69	46.39	68.20	-21.81	peak	Р	


Humidity: 43 %

AX40-5795

Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 24.1(°C)

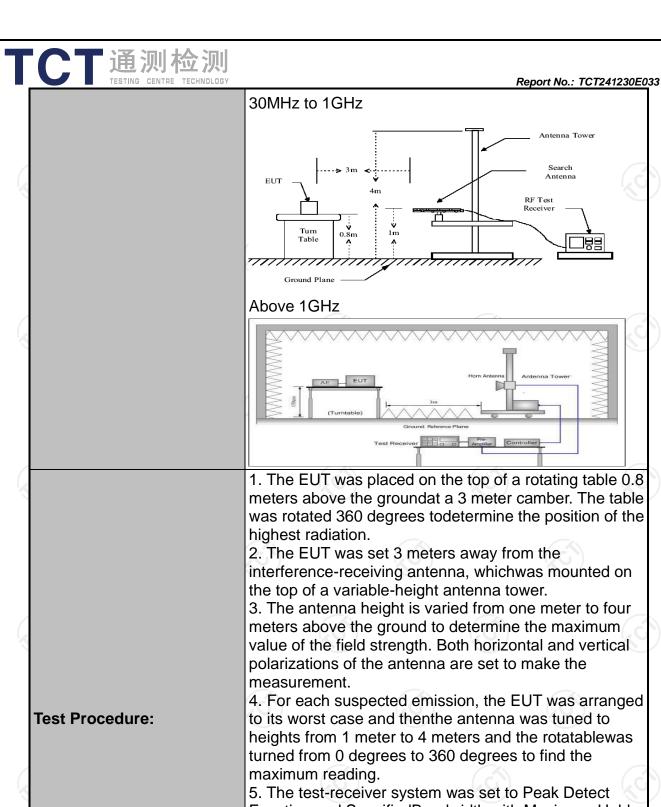
Power:AC 120 V/60 Hz Limit: FCC part 15.407 band edge B3 (PK) Frequency Reading Factor Level Limit Margin Detector P/F No. Remark (dB/m) (MHz) (dBuV) (dBuV/m) (dBuV/m) (dB) 1 * 54.34 5956.852 -6.75 47.59 68.20 -20.61 Ρ

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.1(°C) Humidity: 43 %

Limit: FCC part 15.407 band edge B3 (PK) Power:AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5986.292	54.35	-6.58	47.77	68.20	-20.43	peak	Р	

Note: All modulation (802.11a, 802.11a, 802.11ac, 802.11ax) have been tested, only the worst case in 802.11ax be reported.



5.8. Unwanted Emissions

5.8.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 S	ection 15	.407 & 1	5.209 & 15.205			
Test Method:	KDB 789033	D02 v02r	01		100			
Frequency Range:	9kHz to 40G	Hz						
Measurement Distance:	FCC CFR47 Part 15 Section 15.407 & 15.209 & 15.205 KDB 789033 D02 v02r01 9kHz to 40GHz 3 m Horizontal & Vertical Transmitting mode with modulation Frequency Detector RBW VBW Remark 9kHz-150kHz Quasi-peak 200Hz 1kHz Quasi-peak Value 150kHz-Quasi-peak 9kHz 30kHz Quasi-peak Value 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value Above 1GHz Peak 1MHz 3MHz Peak Value Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table, In restricted bands: Frequency Detector Limit@3m Above 1G AVG 54dBµV/m Above 1G Peak 74dBµV/m Frequency Peak 74dBµV/m Above 1G Reak 74dBµV/m Above 1G AVG 54dBµV/m Frequency Field Strength Measurement Distance (meters) 0.009-0.490 2400/F(KHz) 300 0.49 -1.705 24000/F(KHz) 3 1.705-30 30 30 30-88 100 3 38-81 100 3 38-81 150 3 30-88 100 3 30-88 100 3 30-88 100 3 30-88 100 3 30-88 100 3 30-88 100 3 30-80 30 30-80							
Antenna Polarization:	KDB 789033 D02 v02r01							
Operation mode:	Transmitting	mode witl	tical de with modulation etector RBW VBW Remark asi-peak 200Hz 1kHz Quasi-peak Value asi-peak 9kHz 30kHz Quasi-peak Value esi-peak 120KHz 300KHz Quasi-peak Value Peak 1MHz 3MHz Peak Value Peak 1MHz 10Hz Average Value asi-peak 1MHz 10Hz Average Value asi-peak 1MHz 10Hz Average Value bus emissions fallen in restricted ban 205 shall comply with the ength limits set forth in § 15.209 ds: Detector Limit@3m					
	Frequency	Detector	RBW	VBW	Remark			
		7 /	-	1kHz	Quasi-peak			
Receiver Setup:		Quasi-peak	9kHz	30kHz	· ·			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	7			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGHZ	Peak	1MHz	10Hz	Average Value			
Limit:	Frequency 0.009-0.490 0.49 -1.705 1.705-30 30-88 88-216 216-960 Above 960	IG -	Pea AVC Field Strengtl microvolts/m 24000/F(KHz) 24000/F(KHz) 30 100 150 200	h heter)	74dBµV/m 54dBµV/m Measurement Distance (meters) 300 3 30 3 3			
Test setup:	For radiated	emissions	s below 30	Pre-	Amplifier			

Report No.: TCT241230E033

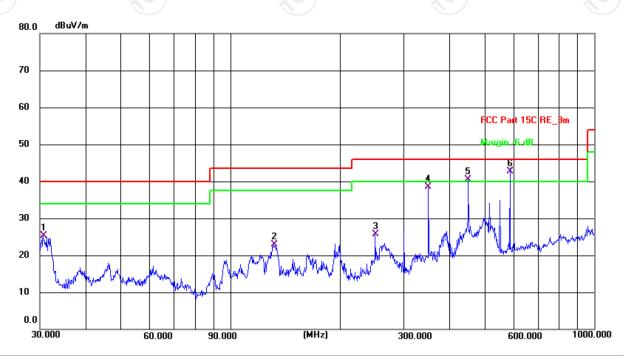
- Function and SpecifiedBandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified andthen reported in a data sheet.

Test results:

PASS

5.8.2. Test Instruments

	Radiated Er	nission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D	(0)	Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	/	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	() /	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM) 1	(C)
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/



5.8.3. Test Data

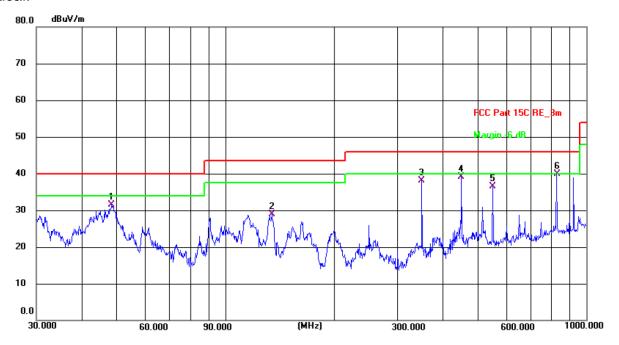
Please refer to following diagram for individual

Below 1GHz

Horizontal:

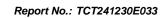
Site 3m Anechoic Chamber2 Polarization: Horizontal Temperature: 21.4(C) Humidity: 51 %

Power: AC 120 V/60 Hz


Limit: FCC Part 15C RE_3m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	30.6377	44.87	-19.55	25.32	40.00	-14.68	QP	Р	
2	131.7576	41.35	-18.38	22.97	43.50	-20.53	QP	Р	
3	250.3010	44.88	-19.23	25.65	46.00	-20.35	QP	Р	
4	350.4766	55.16	-16.71	38.45	46.00	-7.55	QP	Р	
5 !	451.1349	53.92	-13.50	40.42	46.00	-5.58	QP	Р	
6 *	586.8436	53.22	-10.42	42.80	46.00	-3.20	QP	Р	

Vertical:



Site 3m Anechoic Chamber2 Temperature: 21.4(C) Humidity: 51 % Polarization: Vertical

Limit:	FCC Part 15C F	RE_3m				Power:	AC 120 V	/60 Hz	:
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	48.5015	50.15	-18.68	31.47	40.00	-8.53	QP	Р	
2	134.5591	47.04	-18.23	28.81	43.50	-14.69	QP	Р	
3	350.4766	54.83	-16.71	38.12	46.00	-7.88	QP	Р	
4	451.1349	52.53	-13.50	39.03	46.00	-6.97	QP	Р	
5	550.9479	47.88	-11.40	36.48	46.00	-9.52	QP	Р	
6 *	827.4933	46.41	-6.52	39.89	46.00	-6.11	QP	Р	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(HE20), 802.11ax(HE40) and the worst case Mode (Lowest channel and 802.11n(HT20)) was submitted only. And the test data in this project is powered by adapter 3 which is in the worse case.
- 3.Measurement (dBµV) = Reading level + Correction Factor, correction Factor= Antenna Factor + Cable loss -Pre-amplifier.

			N	Modulation Ty	/pe: Band 1				
				11a CH36:	•				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissi	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	38.12		1.78	39.9		68.2		-28.3
15540	Н	39.35		5.21	44.56		74	54	-9.44
	(,CH)		(- -C)		(, ((C-1)	
10360	V	38.47		1.78	40.25		68.2		-27.95
15540	V	40.62		5.21	45.83		74	54	-8.17
(3-)	V	(7.6		(<u> </u>		(
				11a CH40: \$	5200MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	Emission Level		AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	Н	39.04		1.83	40.87		68.2		-27.33
15600	Н	40.85		5.23	46.08		74	54	-7.92
(A -	Н	(K)		(K					<i></i>
(O)		((O))		KO			(0)	I.	(0)
10400	V	40.21		1.83	42.04		68.2		-26.16
15600	V	41.69		5.23	46.92		74	54	-7.08
	V					Z		-	
				11a CH48:	5240MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissic	n Level	Peak limit	AV limit	Margin (dB)
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	
10480	Н	38.42		1.85	40.27		68.2		-27.93
15720	Н	39.69		5.25	44.94		74	54	-9.06
	Н								
		•				-(1)			
10480	V	38.84	-4	1.85	40.69	<i>)</i>	68.2	(<u></u>)	-27.51
15720	V	40.16		5.25	45.41		74	54	-8.59
	V								
	_		111	n(HT20) CH3	36: 5180MH	z			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	(H)	41.78	-4,0	1.78	43.56	3)	68.2	(, G-`)	-24.64
15540	Н	40.15		5.21	45.36	<i></i>	74	54	-8.64
	Н								
10360	V	42.44		1.78	44.22	(68.2		-23.98
15540	V	41.27		5.21	46.48		74	54	-7.52

			11	n(HT20) CH	40: 5200MH				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emissio		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(IVII IZ)	1 I/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(αΒμ ۷/111)	(αΒμ ۷/ΙΙΙ)	(ub)
10400	Н	40.63		1.83	42.46		68.2		-25.74
15600	Н	41.48		5.23	46.71		74	54	-7.29
	Н								
	(.c)		(.6)		(,((.c)	
10400	V	40.12		1.83	41.95	<i></i>	68.2		-26.25
15600	V	39.56		5.23	44.79		74	54	-9.21
	V	-							
			11	n(HT20) CH	48: 5240MH	Ηz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	(H)	41.39	760	1.85	43.24	U)	68.2	(C_)	-24.96
15720	H	41.41		5.25	46.66		74	54	-7.34
	Н								
10480	V	40.26		1.85	42.11		68.2		-26.09
15720	V	40.78		5.25	46.03		74	54	-7.97
	V								
			11	n(HT40) CH	38: 5190MH	- Iz			
Frequency	Ant. Pol.	Peak AV reading reading			Emissi	Emission Level		AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	Н	42.89		1.80	44.69	/	68.2		-23.51
15570	Н	41.31		5.22	46.53		74	54	-7.47
	Н								
				ı	<u> </u>				
10380	V	40.57	(^	1.80	42.37		68.2	-4	-25.83
15570	V	39.03	-70	5.22	44.25	9)	74	54	-9.75
	V								
			11	n(HT40) CH	46: 5230MF	Ιz	_		
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10460	-Н.	41.71		1.85	43.56		68.2		-24.64
15690	(H)	39.45	C	5.08	44.53	(1)	74	54	-9.47
	H					9			-3.41
ļ		ļ			!	!		<u>, </u>	
10460	V	41.68		1.85	43.53		68.2		-24.67
15690	V	40.14		5.08	45.22		74	54	-8.78

			11a	c(VHT20) CH	136: 5180M	lHz			
Fraguenav	Ant Dol	Peak	AV	Correction		on Level	Dook limit	AV limit	Morgin
Frequency (MHz)	Ant. Pol. H/V	reading	reading	Factor			Peak limit (dBµV/m)	(dBµV/m)	Margin (dB)
(1711 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(αΒμ ۷/ΙΙΙ)	(αΒμ ۷/111)	(ub)
10000		40.07		4.70	(dBµV/m)	, ,	20.0		-00/
10360	H	40.37		1.78	42.15		68.2		-26.05
15540	H	39.42		5.21	44.63		74	54	-9.37
	Н								
10360	V	38.85		1.78	40.63) <u></u>	68.2	(6.)	-27.57
15540	V	39.14		5.21	44.35		74	54	-27.57 -9.65
	V			5.21	44.33				-9.05
	V		11a	c(VHT20) CH	140: 5200M	Hz			
		Peak	AV	Correction					
Frequency	Ant. Pol.	reading	reading	Factor	Emissic	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	H	40.58	1/0	1.83	42.41)	68.2	(//	-25.79
15600	Н	40.63		5.23	45.86		74	54	-8.14
	Н								
	1								
10400	V	39.91		1.83	41.74		68.2		-26.46
15600	V	39.22		5.23	44.45		74	54	-9.55
	V								
				1ac(VHT20)	CH48:5240				
Frequency	Ant. Pol.	Peak	AV	Correction	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(αΣμν)	(αΣμν)	(aD/III)	(dBµV/m)				
10480	Н	37.71		1.85	39.56	/	68.2		-28.64
15720	Н	38.03		5.25	43.28		74	54	-10.72
	Н								
10480	V	38.44		1.85	40.29		68.2		-27.91
15720	V	39.28		5.25	44.53)	74	54	-9.47
	V								
				1ac(VHT40)	CH38:5190				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	Н	40.67		1.80	42.47		68.2		-25.73
15570	(LCH)	39.15	40	5.22	44.37	5)	74	54	-9.63
	H					J			
10380	V	38.23		1.80	40.03		68.2		-28.17
15570	V	39.91		5.22	45.13		74	54	-8.87

Report No.: TCT241230E033 11ac(VHT40) CH46:5230 Peak Correction Ant. Pol. AV reading **Emission Level** Frequency Peak limit **AV limit** Margin **Factor** reading (MHz) H/V (dBµV) $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dB/m) (dBµV/m) (dBuV/m) 10460 Η 38.84 1.85 68.2 40.69 -27.51 15690 Η 39.13 5.08 44.21 74 54 -9.79 Н ---------------10460 ٧ 39.96 4-5 1.85 41.81 68.2 -2 -26.39 15690 V 40.07 5.08 45.15 74 54 -8.85 ٧ 11ax(HE20) CH36: 5180MHz ΑV Peak Correction Ant. Pol. **Emission Level** Peak limit **AV** limit Frequency Margin reading reading Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) AV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10360 39.53 1.78 Н 68.2 41.31 --/--------26.89 15540 H 5.21 40.24 45.45 74 54 -8.55 Η 1.78 10360 ٧ 38.17 68.2 -28.25 39.95 5.21 15540 40.03 45.24 ------74 54 -8.76 ٧ 11ax(HE20) CH40: 5200MHz Peak ΑV Correction **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10400 Η 39.98 1.83 41.81 68.2 -26.39 15600 Н 40.41 5.23 45.64 ---74 54 -8.36 Η ---٧ 10400 39.56 ---1.83 41.39 68.2 -------26.81 ٧ 15600 39.23 5.23 -4-44.46 74 54 -9.54 V -------------11ax(HE20) CH48:5240 Peak A۷ Correction **Emission Level** Ant. Pol. Frequency Peak limit **AV limit** Margin reading reading **Factor** (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) ΑV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10480 Η 38.21 1.85 40.06 ---68.2 -28.14 15720 Н 39.47 5.25 44.72 74 54 -9.28 Н 4. ---٧ 10480 38.66 1.85 68.2 40.51 -27.69V 15720 39.82 ---5.25 45.07 ---74 54 -8.93 V

	TESTING C	ENTRE TECHNOL	OGY				Repo	ort No.: TCT24	41230E033
			1	1ax(HE40) (CH38:5190				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	Н	40.25		1.80	42.05	()	68.2		-26.15
15570	Н	39.71		5.22	44.93		74	54	-9.07
	Н								
						Z.			
10380	V	38.66	45G)	1.80	40.46		68.2	(, G)	-27.74
15570	V	38.94		5.22	44.16	/	74	54	-9.84
	V								
			•	11ax(HE40) (CH46:5230				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissi	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10460	Ĥ	38.12	(_^	1.85	39.97	\ \\\	68.2	4	-28.23
15690	H	39.36		5.08	44.44	/	74	54	-9.56
	Н								
10460	V	39.74		1.85	41.59	/	68.2		-26.61
15690	V	40.58		5.08	45.66	/	74	54	-8.34
	V								

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

TCT通测检测
TESTING CENTRE TECHNOLOGY

			N	/lodulation Ty	ype: Band 3	3			
				11a CH149:	5745MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	44.78		2.48	47.26		74	54	-6.74
17235	H	37.26		6.50	43.76		68.2		-24.44
	(cH)		+0		(, ((. c)	
11490	V	45.51		2.48	47.99		74	54	-6.01
17235	V	38.34		6.50	44.84		68.2		-23.36
	V	((.c)		((
				11a CH157:	5785MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11570	H	43.41		2.42	45.83		74	54	-8.17
17355	H	38.65		7.03	45.68		68.2		-22.52
17333	Н	30.03		7.00	45.00		00.2		-22.52
.0	11	(.G)		(, Ć			<u> </u>		(,0)
11570	V	43.79		2.42	46.21		74	54	-7.79
17355	V	39.02		7.03	46.05		68.2		-22.15
	V		,			-,			
				11a CH165:	5825MHz				
_		Peak	AV	Correction			<u> </u>		
Frequency	Ant. Pol.	reading	reading	Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	43.36		2.41	45.77		74	54	-8.23
17475	Н	36.25		7.41	43.66		68.2		-24.54
	Н								
11650	V	43.47		2.41	45.88)	74	54	-8.12
17475	V	38.98		7.41	46.39		68.2		-21.81
	V								
			11r	n(HT20) CH1	49: 5745M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	(, CH)	44.37	-4,0	2.48	46.85	57)	74	54	-7.15
17235		38.51		6.50	45.01	<i></i>	68.2		-23.19
	Н								
11490	V	44.74		2.48	47.22		74	54	-6.78
17235	V	39.28		6.50	45.78		68.2		-22.42
	V								

			11r	n(HT20) CH1	57: 5785M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	Н	44.72		2.42	47.14		74	54	-6.86
17355	Н	39.45		7.03	46.48		68.2		-21.72
	Н					-,			
	(C)		(,C)	•)				(.G)	
11570	V	44.61		2.42	47.03	<i></i>	74	54	-6.97
17355	V	39.05		7.03	46.08		68.2		-22.12
	V								
			11r	n(HT20) CH1	65: 5825M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	H	45.82	1/2	2.41	48.23	7)	74	54	-5.77
17475	Œ	37.15)	7.41	44.56		68.2) !	-23.64
	Н								
11650	V	45.48		2.41	47.89		74	54	-6.11
17475	V	40.26		7.41	47.67		68.2		-20.53
	V								
			11r	n(HT40) CH1	51: 5755M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Н	44.05		2.47	46.52	/	74	54	-7.48
17265	Н	37.31		6.62	43.93		68.2		-24.27
	Н								
				!	ļ				
11510	V	44.95	(X	2.47	47.42	./\\	74	54	-6.58
17265	V	38.14	7/0	6.62	44.76)	68.2	<u> (0.)</u>	-23.44
	V								
			11r	n(HT40) CH1	59: 5795M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	Н	44.75		2.40	47.15	-,	74	54	-6.85
17385	(H)	38.44	-4-, 6	7.15	45.59	5)	68.2	(, C,-)	-22.61
	H)			
11590	V	44.59		2.40	46.99		74	54	-7.01
17385	V	37.22		7.15	44.37		68.2		-23.83
2.	V								777

				(VHT20) CH	1149: 5745N	ИHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	44.37		2.48	46.85		74	54	-7.15
17235	Н	37.02		6.50	43.52		68.2		-24.68
	H								
	(.c)\		(, G)	•)	(,(5)		(.Ġ`)	
11490	V	44.28		2.48	46.76	/	74	54	-7.24
17235	V	38.61		6.50	45.11		68.2		-23.09
	V								
			11ac	(VHT20) CH	1157: 5785 N	ИНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	H	43.55	70	2.42	45.97)	74	54	-8.03
17355	Н	36.28		7.03	43.31		68.2		-24.89
	Н								
11570	V	43.41		2.42	45.83	(74	54	-8.17
17355	V	38.89		7.03	45.92		68.2		-22.28
	V								
			11ac	(VHT20) CH	1165: 5825N	ИНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	44.14		2.41	46.55	/	74	54	-7.45
17475	Н	38.07		7.41	45.48		68.2		-22.72
	Н								
11650	V	44.23		2.41	46.64	<u> </u>	74	54	-7.36
17475	V	40.91		7.41	48.32	٠)	68.2	(0)	-19.88
	V								
			11ac	(VHT40) CH	151: 5755	ИНz	<u> </u>		
Frequency	Ant. Pol.	Peak	AV	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak	AV (dBµV/m)	(dBµV/m)		(dB)
11510	Н	44.34		2.47	, ,	, ,	74	E A	7.10
					46.81		74 69.2	54	-7.19
17265	(H)	37.19	-+20	6.62	43.81) 	68.2	(G -)	-24.39
17265									
17265 	Н			•					
				2 /17	45.02		7/	<i>51</i>	.0 00
	V V	43.45 36.07		2.47	45.92 42.69	/	74 68.2	54 	-8.08 -25.51

11590 17385 11590 17385 Frequency (MHz) Ant (MHz) Ant (MHz) 11490 17235 	nt. Pol. H/V H H H V V V Int. Pol. H/V H H H V	Peak reading (dBµV) 43.48 37.12 42.05 38.26 Peak reading (dBµV) 45.57 37.26	AV reading (dBµV) 11a AV reading (dBµV) 1	Correction Factor (dB/m) 2.40 7.15 2.40 7.15 X(HE20) CH Correction Factor (dB/m) 2.48 6.50	Peak (dBµV/m) 45.88 44.27 44.45 45.41 149: 5745M	AV (dBµV/m) HHz AV (dBµV/m)	Peak limit (dBµV/m) 74 68.2 Peak limit (dBµV/m) 74 68.2	(dBµV/m) 54 54 AV limit	-8.12 -23.93 -9.55 -22.79 Margin (dB)
11590 17385 11590 17385 Frequency (MHz) Ant (MHz) Ant 11490 17235 11490 17235	H H H V V V V V V V V V V V V V V V V V	43.48 37.12 42.05 38.26 Peak reading (dBµV) 45.57 37.26	11a. AV reading (dBµV)	2.40 7.15 2.40 7.15 x(HE20) CH Correction Factor (dB/m) 2.48 6.50	(dBµV/m) 45.88 44.27 44.45 45.41 149: 5745M Emissic Peak (dBµV/m) 48.05	(dBµV/m) IHz AV (dBµV/m)	74 68.2 74 68.2 Peak limit (dBµV/m)	54 54 AV limit (dBµV/m)	-8.12 -23.93 -9.55 -22.79 Margin (dB)
17385 11590 17385 Frequency (MHz) 11490 17235 11490 17235	H H V V V V Int. Pol. H/V H H	37.12 42.05 38.26 Peak reading (dBµV) 45.57 37.26	11a AV reading (dBµV)	7.15 2.40 7.15 x(HE20) CH Correction Factor (dB/m) 2.48 6.50	44.27 44.45 45.41 149: 5745M Emission Peak (dBµV/m) 48.05	IHz on Level AV (dBµV/m)	74 68.2 Peak limit (dBµV/m)	54 AV limit (dBµV/m)	-23.93 -9.55 -22.79 Margin (dB)
11590 17385 Frequency (MHz) Ant (MHz) H	H V V V Ont. Pol. H/V H H	42.05 38.26 Peak reading (dBμV) 45.57 37.26	11a AV reading (dBµV)	2.40 7.15 x(HE20) CH Correction Factor (dB/m) 2.48 6.50	44.45 45.41 149: 5745M Emission Peak (dBµV/m) 48.05	IHz on Level AV (dBµV/m)	74 68.2 Peak limit (dBµV/m)	54 AV limit (dBµV/m)	 -9.55 -22.79 Margin (dB)
11590 17385 Frequency (MHz) Ant Help (MHz) A	V V V V V Int. Pol. H/V H H H	42.05 38.26 Peak reading (dBμV) 45.57 37.26	AV reading (dBµV)	2.40 7.15 x(HE20) CH Correction Factor (dB/m) 2.48 6.50	44.45 45.41 149: 5745M Emission Peak (dBµV/m) 48.05	IHz on Level AV (dBµV/m)	74 68.2 Peak limit (dBµV/m)	54 AV limit (dBµV/m)	-9.55 -22.79 Margir (dB)
17385 Frequency (MHz) Ant H 11490 17235 11490 17235	V V ont. Pol. H/V H H	38.26 Peak reading (dBµV) 45.57 37.26	AV reading (dBµV)	7.15 x(HE20) CH Correction Factor (dB/m) 2.48 6.50	45.41 149: 5745M Emission Peak (dBµV/m) 48.05	IHz on Level AV (dBµV/m)	68.2 Peak limit (dBµV/m)	AV limit (dBµV/m)	-22.79 Margir (dB)
17385 Frequency (MHz) Ant H 11490 17235 11490 17235	V V ont. Pol. H/V H H	38.26 Peak reading (dBµV) 45.57 37.26	AV reading (dBµV)	7.15 x(HE20) CH Correction Factor (dB/m) 2.48 6.50	45.41 149: 5745M Emission Peak (dBµV/m) 48.05	IHz on Level AV (dBµV/m)	68.2 Peak limit (dBµV/m)	AV limit (dBµV/m)	-22.79 Margir (dB)
Frequency (MHz) Ant (1490 17235 11490 17235	v nt. Pol. H/V H H H	Peak reading (dBµV) 45.57 37.26	AV reading (dBµV)	x(HE20) CH Correction Factor (dB/m) 2.48 6.50	 149: 5745M Emissic Peak (dBµV/m) 48.05	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margir (dB)
Frequency (MHz) Ant 11490 17235 11490 17235	H H H	Peak reading (dBµV) 45.57 37.26	AV reading (dBµV)	Correction Factor (dB/m) 2.48 6.50	Emission Peak (dBµV/m) 48.05	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	(dB)
(MHz) F	H/V H H	reading (dBµV) 45.57 37.26	AV reading (dBµV)	Correction Factor (dB/m) 2.48 6.50	Emission Peak (dBµV/m) 48.05	AV (dBµV/m)	(dBμV/m) 74	(dBµV/m)	(dB) -5.95
(MHz) H 11490 17235 11490 17235	H/V H H	reading (dBµV) 45.57 37.26	AV reading (dBµV)	Correction Factor (dB/m) 2.48 6.50	Emission Peak (dBµV/m) 48.05	AV (dBµV/m)	(dBμV/m) 74	(dBµV/m)	(dB) -5.95
11490 17235 11490 17235	H H	(dBµV) 45.57 37.26	(dBµV)	(dB/m) 2.48 6.50	(dBµV/m) 48.05	(dBµV/m)	74	54	-5.95
17235 11490 17235	H H	37.26		6.50					
11490 17235	Н				43.76		68.2		0
11490 17235								1	-24.44
17235	V			•					
17235	V					•			
		45.13		2.48	47.61		74	54	-6.39
i	V	38.04		6.50	44.54		68.2		-23.66
	V								
			11a	x(HE20) CH	157: 5785N	1Hz			
' '	nt. Pol.	Peak reading	AV reading	Correction	Emissio	n Level	Peak limit		Margin
(MHz) H	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	Н	43.11		2.42	45.53	/	74	54	-8.47
	H	36.65		7.03	43.68		68.2		-24.52
	H								
					<u> </u>				
11570	V	44.27	-4.5	2.42	46.69	<u> </u>	74	54	-7.31
1.6	V	38.36	-46	7.03	45.39	5)	68.2	(9)	-22.81
	V								
	V			x(HE20) CH	165: 5825M				
	Т	Peak	AV	Correction	1				
	nt. Pol. H/V	reading	reading	Factor		n Level	Peak limit (dBµV/m)		Margin (dB)
		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	, , ,	, , , ,	
11650	Н	43.64		2.41	46.05		74	54	-7.95
17475	Н	39.28	-(20)	7.41	46.69	5)	68.2	(-G-)	-21.51
	H					<u> </u>			
44050	\/ I	40.00		0.44	1 45 44		-, I	_, 1	0 = 5
	V	43.03		2.41	45.44		74	54	-8.56
	V	39.17		7.41	46.58		68.2		-21.62

	TESTING (CENTRE TECHNOL	.OGY				Rep	ort No.: TCT2	241230E033
			11a	x(HE40) CH	151: 5755N	1Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Н	43.25		2.47	45.72	(74	54	-8.28
17265	Н	37.01		6.62	43.63		68.2		-24.57
	Н								
						7			
11510	V	43.95	+20	2.47	46.42	ر (ز	74	54	-7.58
17265	V	36.16		6.62	42.78	<i>/</i>	68.2		-25.42
	V								
			11a	x(HE40) CH	159: 5795N	1Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
					(dBµV/m)	(dBµV/m)			
11590	H	44.32		2.40	46.72		74	54	-7.28
17385	H	37.78	-1	7.15	44.93)	68.2	()/	-23.27
	Н								
					1	ı		- I	
11590	V	43.15		2.40	45.55		74	54	-8.45
17385	V	38.57		7.15	45.72		68.2		-22.48
	V								

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
Test Method:	ANSI C63.10: 2020
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. but Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. If the test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	Pre-scan was performed at all models(11a,11n,11ac, 11ax), the worst case (11ax) was found and test data was shown in this report.

Test plots as follows:

,		TESTING CENTRE TECHNOLOGY	Report No.: TCT241230E033

Test mode:	802.11ax	(HE20)	Freque	ency(MHz):		5180	
Temperature (°C)	Voltage(V _{AC})	Measu	Measurement			Result	
remperature (C)	voltage(vac)	Frequen	cy(MHz)	Frequency(Hz)		Kesuit	
45		51	80	0		PASS	
35		51	80	0		PASS	
25	120V	51	80	0		PASS	
15	1200	51	80			PASS	
5		51	80			PASS	
0		51	80	0		PASS	
	102V	51	80	0		PASS	
25	120V	51	80	0.0		PASS	
	138V	5179	9.98	-20000		PASS	

Test mode:	802.11ax(HE20)	Frequency(MHz):			5200	
Temperature (°C)	Voltage(VAC)	Measur Frequence		Delta Frequency(Hz)		Result	
45		520	00	0		PASS	
35		520	00	0		PASS	
25	120V	520	00	0		PASS	
15	1200	5200		0		PASS	
5		520	00	0		PASS	
0	(c)	520	00	0		PASS	
	102V	520	00	0		PASS	
25	120V	520	00	0		PASS	
	138V	520	00	0		PASS	

Test mode:		802.11ax(HE20)		Frequency(MHz):				5240	
Temperature (°C)	Vo	oltage(V _{AC})		Measurement Frequency(MHz)		elta ency(H	lz)	Result	
45		(_C C	52		(0,)	0	,	PASS	
35			52	40		0		PASS	
25	120V		52	40		0		PASS	
15		1200	5240		0			PASS	
5			52	5240		0		PASS	
0			52	40		0		PASS	
		102V	52	40		0		PASS	
25		120V	52	40		0		PASS	
		138V	52	40		0		PASS	

Test mode:		802.11ax(HE20)		Frequency(MHz):		5745			
Temperature (°C)	\/olta	ge(V _{AC})	Measurement		Delta			Result	
Temperature (C)	volla	ge(VAC)	Frequency(MHz)		Frequency(Hz)		<u>z</u>)		
45			5744	4.98	-20	0000		PASS	
35			574	4.98	-20	0000		PASS	
25	1	120V		4.98	-20	0000		PASS	
15	I.	20 V	574	4.98	20	0000		PASS	
5		(, C)	5744	4.98	-20	0000		PASS	
0			574	4.98	-20	0000		PASS	
	1	02V	574	4.98	-20	0000		PASS	
25	1	20V	57	45		0		PASS	
$(C_{\mathcal{O}})$	<u>k</u> G	38V	574	4.98	-20	0000		PASS	(0,)

Test mode:	802.11ax(HE20) Freque	ency(MHz):	5785
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5784.98	-20000	PASS
35		5784.98	-20000	PASS
25	1201/	5784.98	-20000	PASS
15	120V	5784.98	-20000	PASS
5		5784.98	-20000	PASS
0		5784.98	-20000	PASS
	102V		0	PASS
25	120V	5784.98	-20000	PASS
	138V	5784.98	-20000	PASS

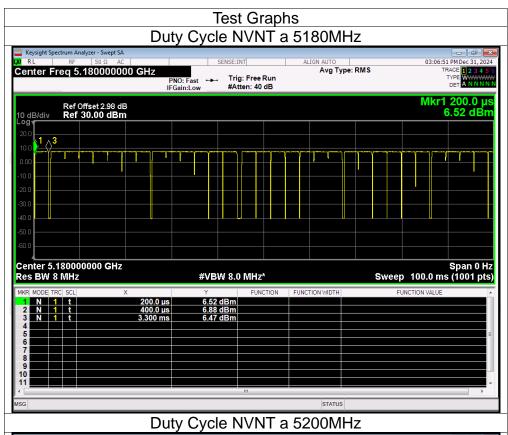
Test mode:	802.11ax(HE20) Frequ	ency(MHz):	5825
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5824.98	-20000	PASS
35		5824.98	-20000	PASS
25	120V	5824.98	-20000	PASS
15	1200	5824.98	-20000	PASS
5		5824.98	-20000	PASS
0		5824.98	-20000	PASS
	102V	5824.98	-20000	PASS
25	120V	5824.98	-20000	PASS
	138V	5824.98	-20000	PASS

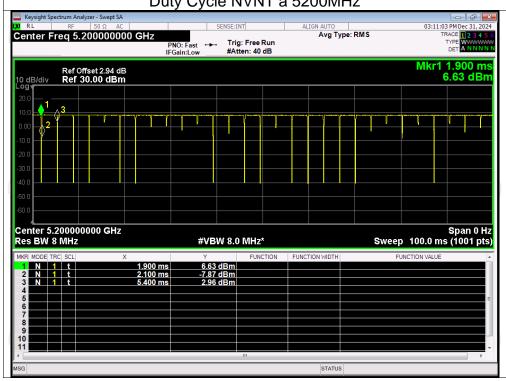
Test mode: 8		802.11ax(I	(HE40) Freque		ency(MHz):			5190	
Temperature (°C)	Volta	age(V _{AC})	Measurement		Delta		Result		
remperature (C)	VOILE	age(VAC)	Frequency(MHz)		Frequency(Hz)		Hz)	Result	
45			51	90		0		PASS	
35			51	90		0		PASS	
25	4	120V	51	90	0			PASS	3
15	ı	1200	51	90		0		PASS	3
5			51	90	Ç,)	0		PASS	3
0				90		0		PASS	3
	1	102V	5190	0.04		40000		PASS	3
25	1	120V	51	90		0		PASS	
$(C_{\mathcal{O}})$	\ <u>C</u> 1	138V	5190	0.04		40000		PASS	$(C_{\mathcal{O}})$

Test mode:	802.11ax(HE40) Freque	ency(MHz):	5230	
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result	
45		5230	0	PASS	
35		5230 0		PASS	
25	120V	5230.04	40000	PASS	
15	1200	5230	0	PASS	
5		5230	0	PASS	
0		5230	0	PASS	
	102V	5230	0	PASS	
25	120V	5229.96	-40000	PASS	
	138V	5230	0	PASS	

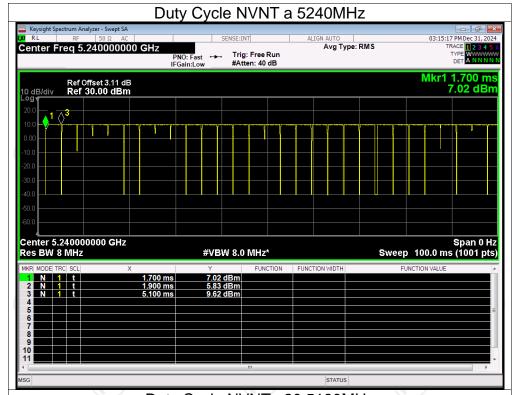
Test mode:	802.11ax(HE40) Freque	ency(MHz):	5755		
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result		
45		5755	0	PASS		
35		5755	0	PASS		
25	120V	5755	0	PASS		
15	1200	5755	0	PASS		
5		5754.96	-40000	PASS		
0		5755	0	PASS		
	102V	5754.96	-40000	PASS		
25	120V	5755	0	PASS		
	138V	5754.96	-40000	PASS		

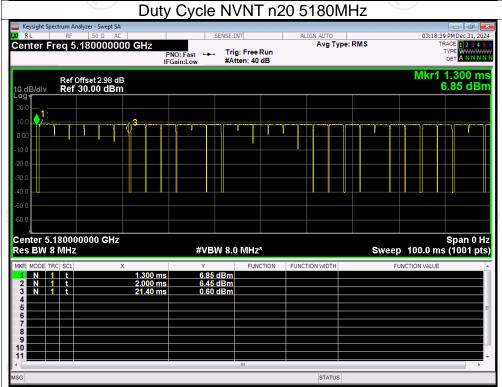
Test mode:	802.11ax(802.11ax(HE40) Freque		ency(MHz):		5795	
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)		Delta Frequency(Hz)		Result	
45	(.ci)	5795		0		PASS	
35		579	5	0		PASS	
25	120V	5795		0		PASS	
15	1207	579	5	0		PASS	
5 (0)		579	5	0		PASS	
0			5	0		PASS	
	102V	5794.	96	-40000		PASS	
25	120V	579	5	0		PASS	
(C)	138V	5794.	96	-40000)	PASS	$\langle O_{i} \rangle$

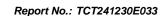

Appendix A: Test Result of Conducted Test

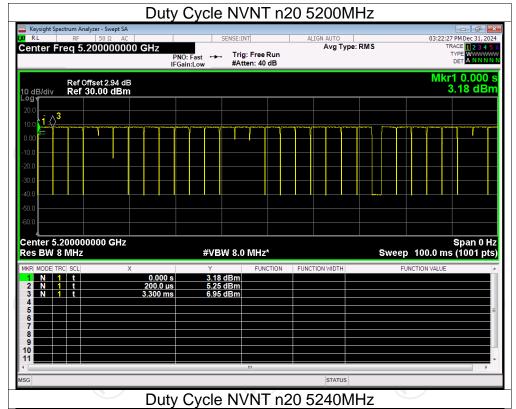

Duty Cycle

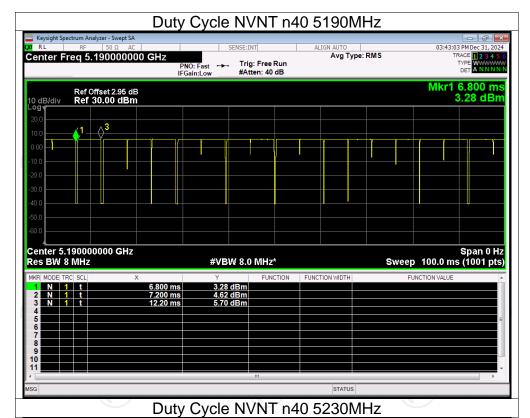
	Duty Cycle Frequency Duty Cycle Correction Factor								
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	(dB)					
NVNT	а	5180	96.4	0.16					
NVNT	a	5200	98.4	0.10					
NVNT	a	5240	97.3	0.12					
NVNT	n20	5180	95.8	0.19					
NVNT	n20	5200	95.3	0.21					
NVNT	n20	5240	97.8	0.10					
NVNT	n40	5190	97.3	0.12					
NVNT	n40	5230	98.9	0					
NVNT	ac20	5180	95.7	0.19					
NVNT	ac20	5200	98.4	0					
NVNT	ac20	5240	98.6	0					
NVNT	ac40	5190	95.7	0.19					
NVNT	ac40	5230	99.3	0					
NVNT	ax20	5180	97.0	0.13					
NVNT	ax20	5200	97.1	0.13					
NVNT	ax20	5240	97.7	0.10					
NVNT	ax40	5190	96.8	0.14					
NVNT	ax40	5230	98.6	0					
NVNT	а	5745	98.6	0					
NVNT	а	5785	97.9	0.09					
NVNT	а	5825	98.0	0					
NVNT	n20	5745	97.4	0.11					
NVNT	n20	5785	98.2	0					
NVNT	n20	5825	97.6	0.11					
NVNT	n40	5755	99.2	0					
NVNT	n40	5795	98.3	0					
NVNT	ac20	5745	97.4	0.11					
NVNT	ac20	5785	97.7	0.10					
NVNT	ac20	5825	98.3	0					
NVNT	ac40	5755	98.5	0					
NVNT	ac40	5795	94.11	0.26					
NVNT	ax20	5745	98.0	0					
NVNT	ax20	5785	98.3	0					
NVNT	ax20	5825	98.2	0					
NVNT	ax40	5755	98.0	0					
NVNT	ax40	5795	99.0	0					

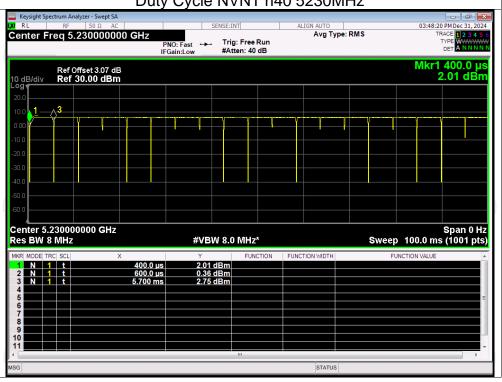


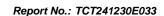


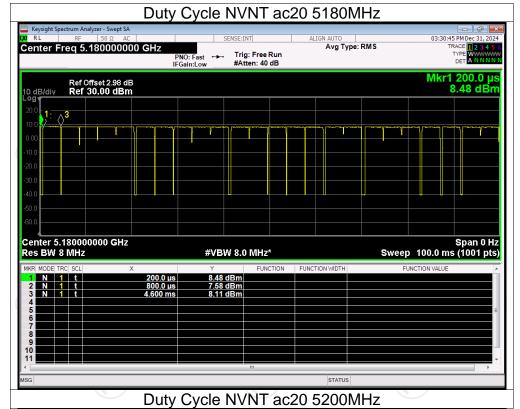


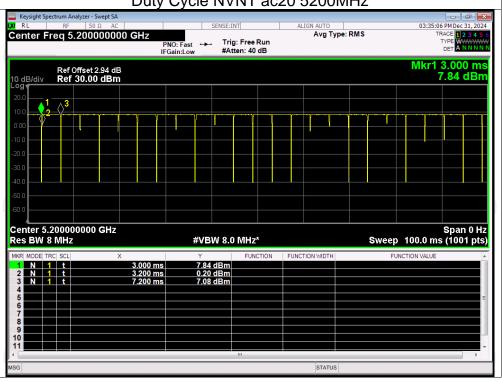


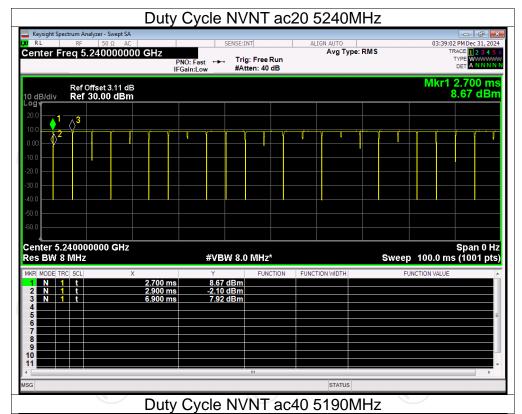


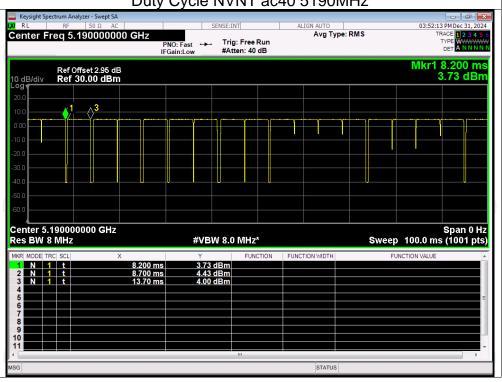


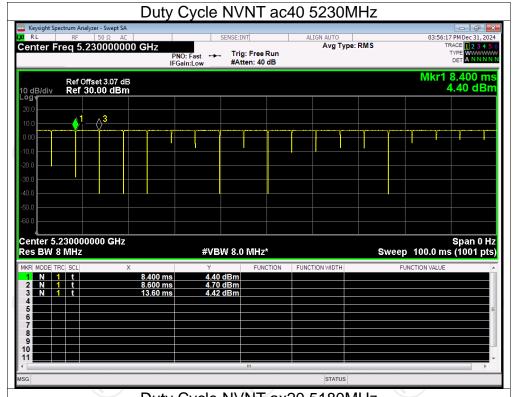


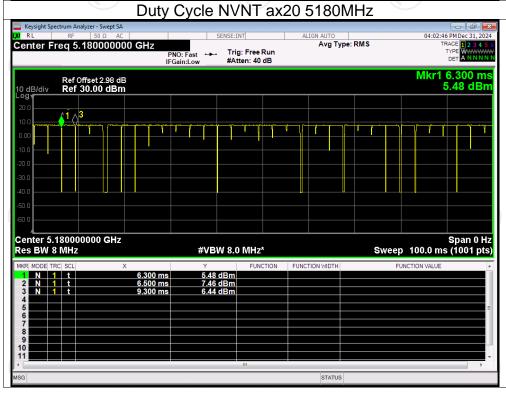


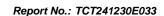


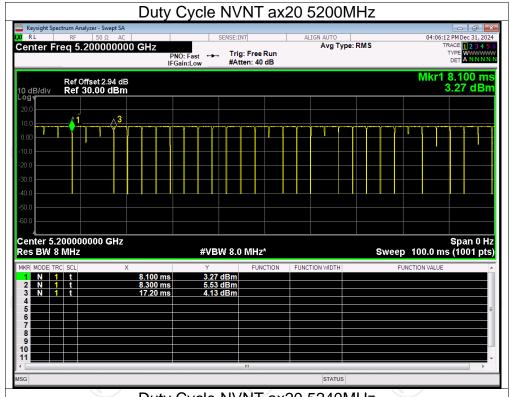


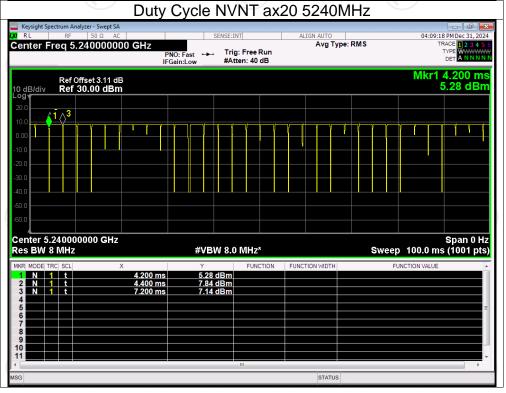


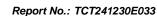


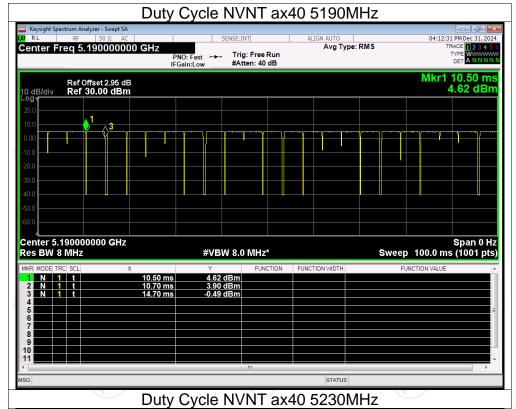


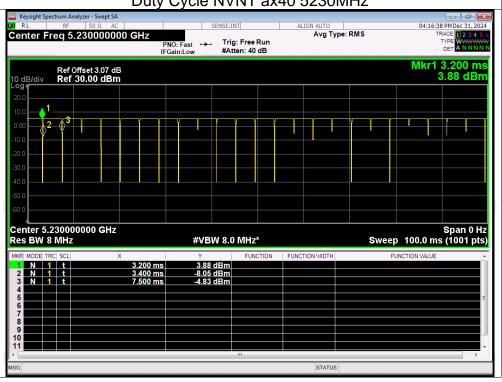


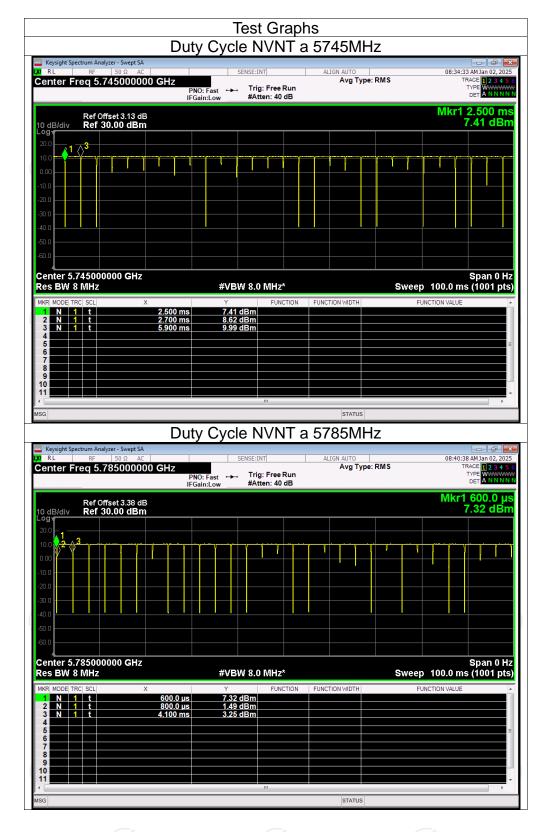


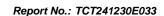


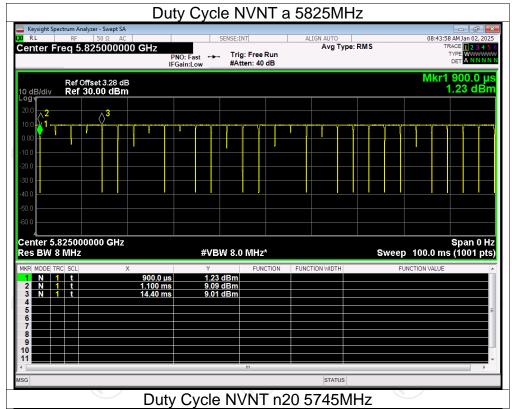


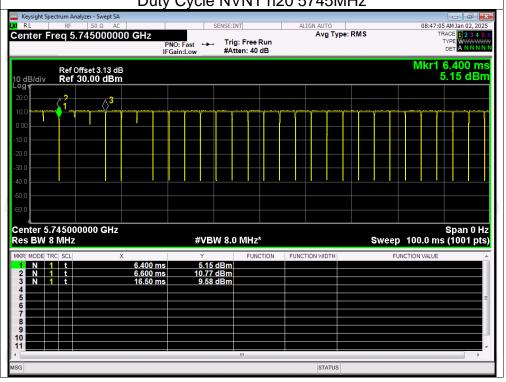


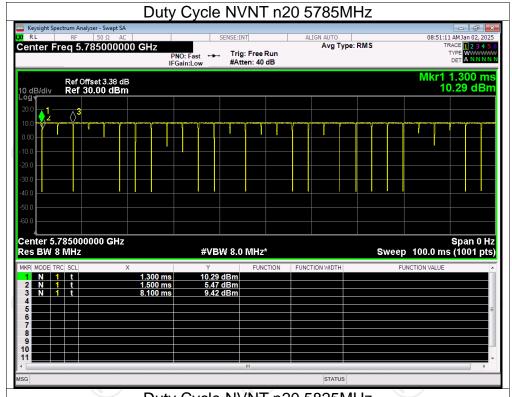


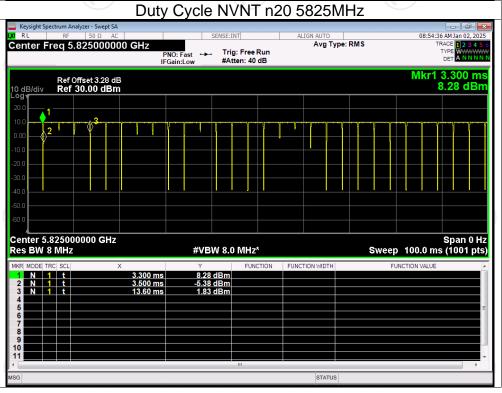


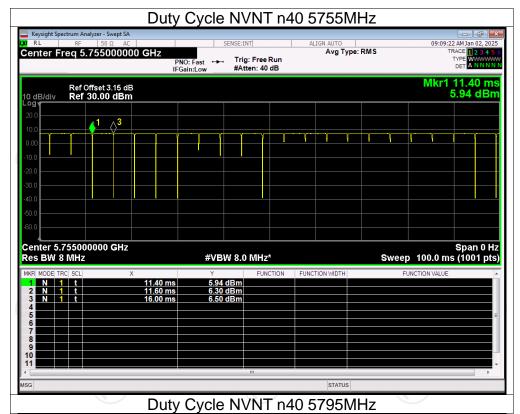


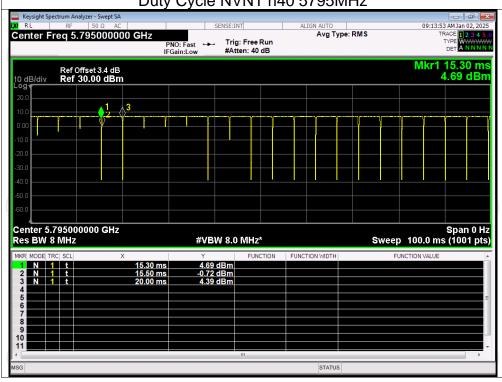


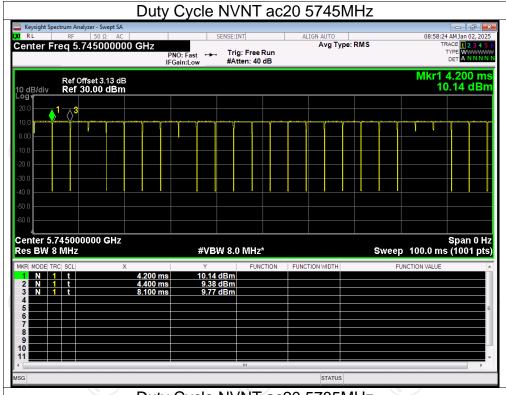


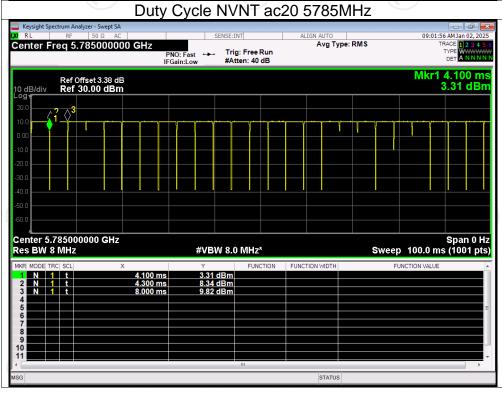


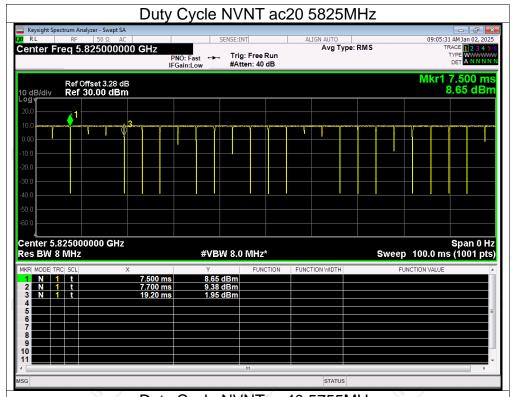


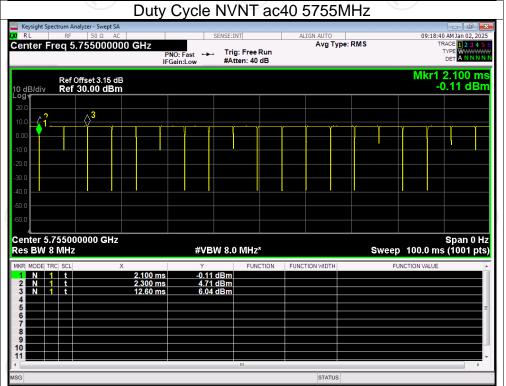


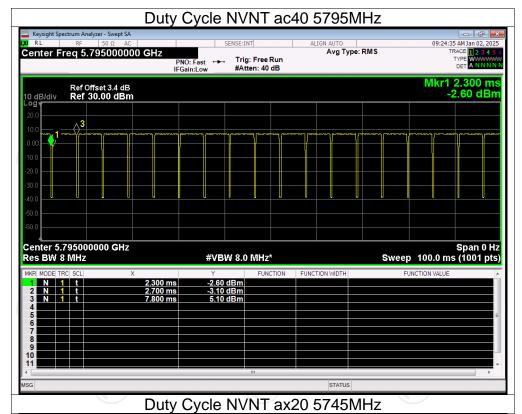


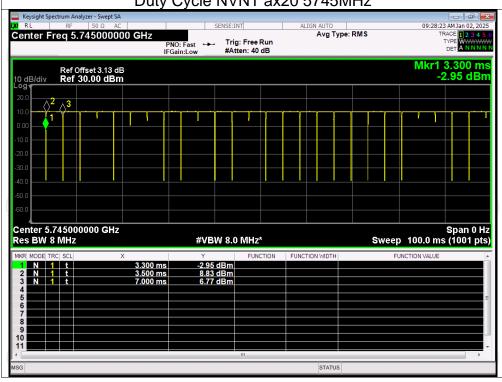


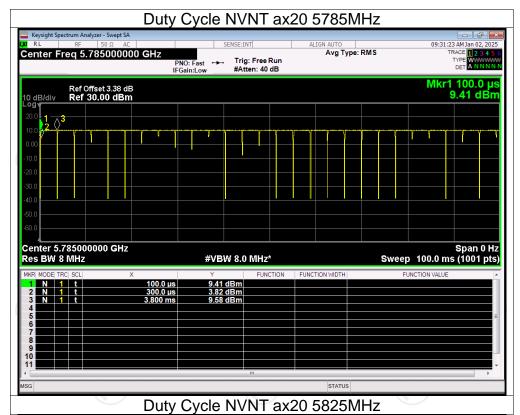


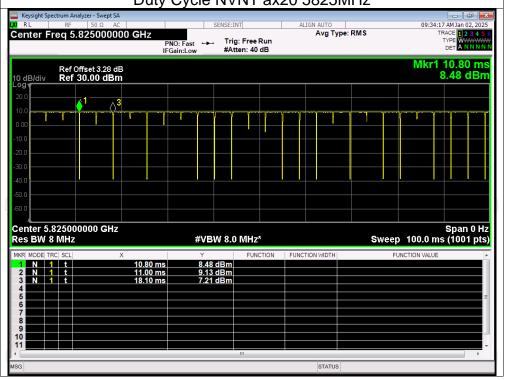


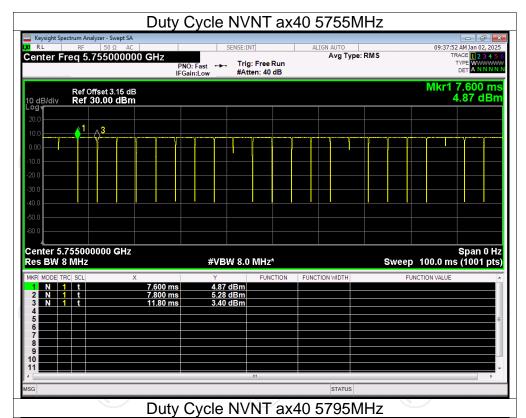


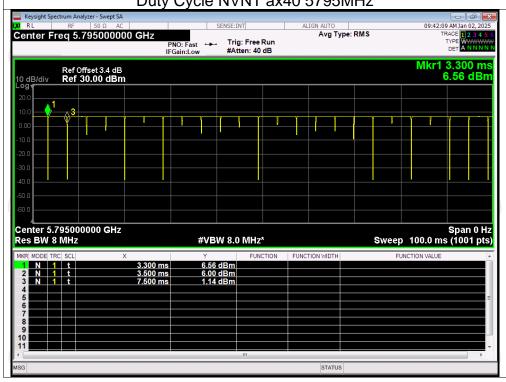


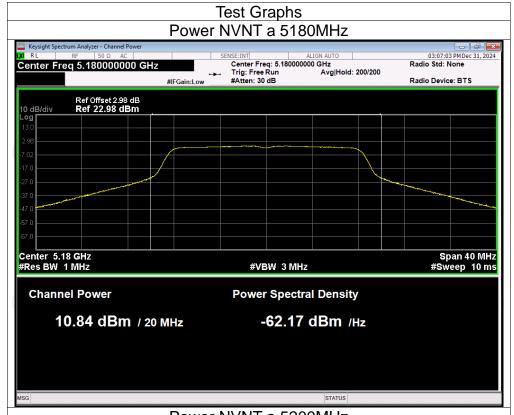


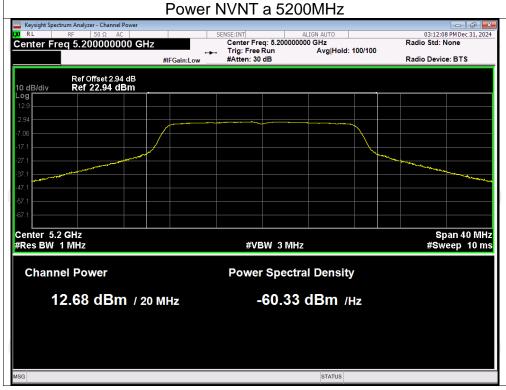




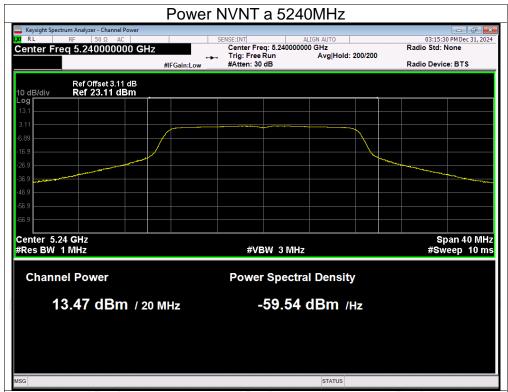





Maximum Conducted Output Power


Condition	Mode	Frequency	Conducted	Duty	Total	Limit	Verdict
Condition	WIOGE	(MHz)	Power (dBm)	Factor	Power	(dBm)	Verdict
		(i outor (a.z.iii)	(dB)	(dBm)	(42)	
NVNT	а	5180	10.84	0.16	11.00	24	Pass
NVNT	а	5200	12.68	0	12.68	24	Pass
NVNT	а	5240	13.47	0.12	13.59	24	Pass
NVNT	n20	5180	11.92	0.19	12.11	24	Pass
NVNT	n20	5200	11.91	0.21	12.12	24	Pass
NVNT	n20	5240	12.33	0.10	12.43	24	Pass
NVNT	n40	5190	13.05	0.12	13.17	24	Pass
NVNT	n40	5230	13.30	0	13.30	24	Pass
NVNT	ac20	5180	11.96	0.19	12.15	24	Pass
NVNT	ac20	5200	12.03	0	12.03	24	Pass
NVNT	ac20	5240	12.47	0	12.47	24	Pass
NVNT	ac40	5190	11.88	0.19	12.07	24	Pass
NVNT	ac40	5230	12.23	0	12.23	24	Pass
NVNT	ax20	5180	11.78	0.13	11.91	24	Pass
NVNT	ax20	5200	12.01	0.13	12.14	24	Pass
NVNT	ax20	5240	12.32	0.10	12.42	24	Pass
NVNT	ax40	5190	11.86	0.14	12.00	24	Pass
NVNT	ax40	5230	12.12	0	12.12	24	Pass
NVNT	а	5745	14.77	0	14.77	30	Pass
NVNT	а	5785	14.29	0.09	14.38	30	Pass
NVNT	а	5825	13.37	0	13.37	30	Pass
NVNT	n20	5745	14.75	0.11	14.86	30	Pass
NVNT	n20	5785	14.62	0	14.62	30	Pass
NVNT	n20	5825	13.79	0.11	13.90	30	Pass
NVNT	n40	5755	14.37	0	14.37	30	Pass
NVNT	n40	5795	14.53	0	14.53	30	Pass
NVNT	ac20	5745	14.73	0.11	14.84	30	Pass
NVNT	ac20	5785	14.57	0.10	14.67	30	Pass
NVNT	ac20	5825	13.76	0	13.76	30	Pass
NVNT	ac40	5755	14.43	0	14.43	30	Pass
NVNT	ac40	5795	14.47	0.26	14.73	30	Pass
NVNT	ax20	5745	14.70	0	14.70	30	Pass
NVNT	ax20	5785	14.52	0	14.52	30	Pass
NVNT	ax20	5825	13.79	0	13.79	30	Pass
NVNT	ax40	5755	14.49	0	14.49	30	Pass
NVNT	ax40	5795	14.51	0	14.51	30	Pass

Page 69 of 146


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

