

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2202209

FCC RF Test Report

Applicant: Hangzhou Roombanker Technology Co., Ltd.

Address of Applicant: A#801 Wantong center, Hangzhou, China

Equipment Under Test (EUT)

Product Name: Waterproof Industrial Gateway

Model No.: DSGW-010

FCC ID: 2AUXBDSGW-010

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 16 Nov., 2022

Date of Test: 17 Nov., to 28 Dec., 2020

Date of Report Issued: 30 Dec., 2022

Test Result: PASS

Tested by: ______ Date: _____ 30 Dec., 2022

Reviewed by: Date: 30 Dec., 2022

Approved by: ______ Date: _____ 30 Dec., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	30 Dec., 2022	Original

2 Contents

			Page
С	over Pa	ge	1
1	Vers	sion	2
2	Con	tents	3
3	Gen	eral Information	4
	3.1	Client Information	4
	3.2	General Description of E.U.T.	
	3.3	Test Mode and Test Environment	
	3.4	Description of Test Auxiliary Equipment	5
	3.5	Measurement Uncertainty	
	3.6	Additions to, Deviations, or Exclusions from the Method	5
	3.7	Laboratory Facility	
	3.8	Laboratory Location	5
	3.9	Test Instruments List	6
4	Mea	surement Setup and Procedure	8
	4.1	Test Channel	8
	4.2	Test Setup	8
	4.3	Test Procedure	10
5	Test	Results	11
	5.1	Summary	11
	5.1.1		
	5.1.2	Part Limit	12
	5.2	Antenna requirement	13
	5.3	AC Power Line Conducted Emission	14
	5.4	Emissions in Restricted Frequency Bands	16
	5.5	Emissions in Non-restricted Frequency Bands	32

3 General Information

3.1 Client Information

Applicant:	Hangzhou Roombanker Technology Co., Ltd.	
Address:	A#801 Wantong center, Hangzhou, China	
Manufacturer: Zhejiang Dusun Electron Co., Ltd.		
Address: NO.640 FengQing str., DeQing, ZheJiang, China		

3.2 General Description of E.U.T.

O.Z Ochiciai Descrip	
Product Name:	Waterproof Industrial Gateway
Model No.:	DSGW-010
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY), 2 Mbps (LE 2M PHY), 125 kbps (LE Coded PHY, S=8), 500 kbps (LE Coded PHY, S=2)
Antenna Type:	External Antenna
Antenna Gain:	0.98dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	DC 12V
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Report No.: JYTSZ-R12-2202209

3.3 Test Mode and Test Environment

Test Mode:					
Transmitting mode	Keep the EUT in continuous transmitting with modulation				
Remark: For AC power line cond	ducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed,				
found 1 Mbps (LE 1M PHY) was	worse case mode. The report only reflects the test data of worst mode.				
Operating Environment:					
Temperature: 15° C ~ 35° C					
Humidity: 20 % ~ 75 % RH					
Atmospheric Pressure:	1008 mbar				

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 10MHz)	1.9 dB
Conducted Emission for LISN (10MHz ~ 30MHz)	2.6 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	3.8 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	3.6 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

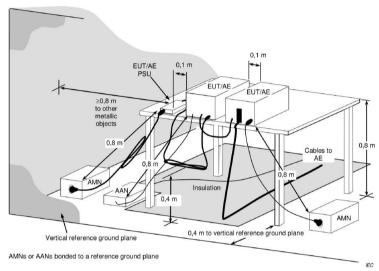
3.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Equipment Manufacturer		Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024	
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	03-07-2022	03-06-2023	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	04-07-2022	04-06-2023	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-20-2022	01-19-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-20-2022	01-19-2023	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	03-30-2022	03-29-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-20-2022	01-19-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-17-2022	10-16-2023	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-20-2022	01-19-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-20-2022	01-19-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-20-2022	01-19-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A		
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	07-12-2022	07-11-2023	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-24-2022	02-23-2023	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	03-30-2022	03-29-2023	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-24-2022	02-23-2023	
RF Switch	TOP PRECISION	RSU0301	WXG003	1	N/A	
Test Software	AUDIX	E3	\	Version: 6.110919b		

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-17-2022	10-16-2023	
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-17-2022	10-16-2023	
DC Power Supply	Keysight	E3642A	WXJ025-2	N	I/A	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N	I/A	
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0		

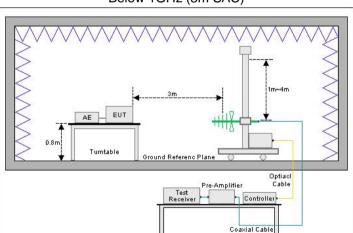
4 Measurement Setup and Procedure

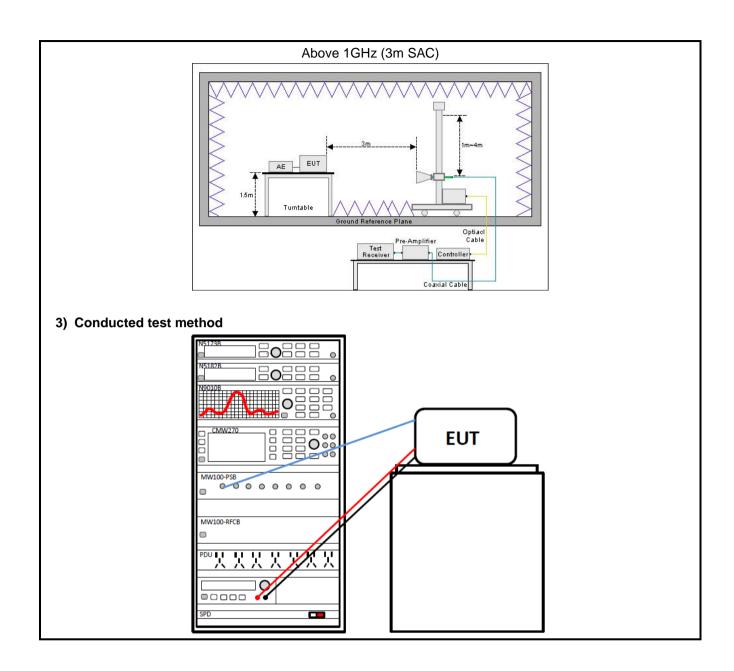

4.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Midd	le channel	Highe	st channel
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	20	2442	39	2480

4.2 Test Setup


1) Conducted emission measurement:


Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:

Below 1GHz (3m SAC)

4.3 Test Procedure

Test method	Test step
Conducted emission	The E.U.T and simulators are connected to the main power through a line
Conducted emission	impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH
	coupling impedance for the measuring equipment.
	The peripheral devices are also connected to the main power through a LISN
	that provides a 50ohm/50uH coupling impedance with 50ohm termination.
	(Please refer to the block diagram of the test setup and photographs).
	3. Both sides of A.C. line are checked for maximum conducted interference. In
	order to find the maximum emission, the relative positions of equipment and
	all of the interface cables must be changed according to ANSI C63.10 on
	conducted measurement.
Radiated emission	For below 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a
	3 m semi anechoic chamber. The measurement distance from the EUT to the
	receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and
	considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to
	360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
	For above 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a
	3 m fully anechoic room. The measurement distance from the EUT to the
	receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and
	considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to
	360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
Conducted test method	The BLE antenna port of EUT was connected to the test port of the test and the supplier of the test port of the test po
	system through an RF cable.
	· · · · · · · · · · · · · · · · · · ·
	 The EUT is keeping in continuous transmission mode and tested in all modulation modes. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 5.2	Pass
AC Power Line Conducted Emission	15.207	See Section 5.3	Pass
Conducted Output Power	Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8		Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8	Pass
Power Spectral Density	15.247 (e)	Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY Appendix C – BLE Coded PHY, S=2 Appendix D – BLE Coded PHY, S=8	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 5.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 5.5	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

5.1.2 Test Limit

Test items			Lin	nit			
	Frequency Limit (dBµV)						
!		(MHz)	Quas	si-Peak	Average		
AC Power Line Conducted		0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1		
Emission		0.5 – 5		56	46		
		5 – 30		60	50		
		The limit level in dB _L The more stringent li		-	of frequency.		
Conducted Output Power		ns using digital i 5850 MHz band		the 902-928 M	MHz, 2400-2483.5 MHz	Ζ,	
6dB Emission Bandwidth	The minim	um 6 dB bandw	idth shall be a	at least 500 kH	lz.		
99% Occupied Bandwidth	N/A						
Power Spectral Density	intentional		antenna shall	not be greater	ensity conducted from than 8 dBm in any 3 k ion.		
Band-edge Emission Conduction Spurious Emission	spectrum of frequency places the peak of power limit permitted ut this paragral limits specially specially and the peak of power limit permitted ut this paragral limits specially specially and the peak of power limit permitted ut this paragral limits specially speci	or digitally modu power that is pot hat in the 100 kell of the desire easurement, pronducted powers s based on the under paragraph aph shall be 30 ified in §15.209 on the restricted	alated intention roduced by the characteristic and width display power, base rovided the train r limits. If the trains of RMS and (b)(3) of this delated of (a) is not required bands, as defield.	nal radiator is a intentional radiator is a within the bar d on either an ansmitter demonstrate of the radiator, the a 20 dB. Attenuired. In additioned in §15.20	I in which the spread operating, the radio diator shall be at least and that contains the RF conducted or a constrates compliance with the conducted a time interval, as ttenuation required unuation below the generon, radiated emissions (5(a), must also comply a) (see §15.205(c)).	vith eted der ral	
	F	requency (MHz)	Limit (d		Detector		
		30 – 88	@ 3m 40.0	@ 10m 30.0	Quasi-peak	1	
Emissions in Restricted		88 – 216	43.5	33.5	Quasi-peak Quasi-peak	1	
Frequency Bands		216 – 960	46.0	36.0	Quasi-peak Quasi-peak	1	
1 Toquotioy Barias		60 – 1000	54.0	44.0	Quasi-peak Quasi-peak	1	
Emigaiona in Non vestriata d	Notes The second of the second						
Emissions in Non-restricted	110101 1110			Limit (dBµV/m) @ 3m	1	
Frequency Bands	F	requency	Ave		Peake	1	
1	Ab	ove 1 GHz					
	Note: The measurement bandwidth shall be 1 MHz or greater.						

Report No.: JYTSZ-R12-2202209

5.2 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

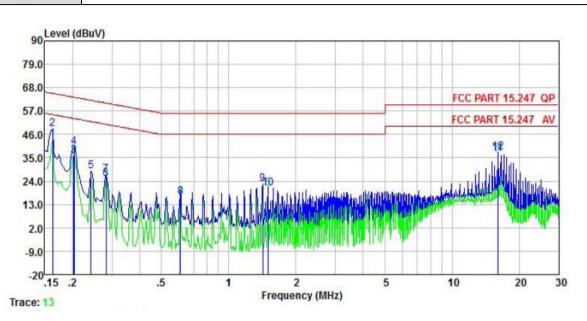
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

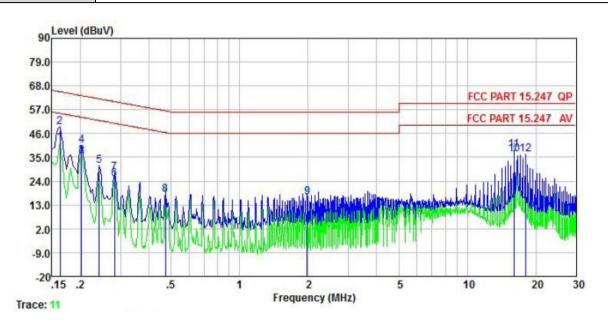
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The BLE antenna is an external antenna which cannot replace by end-user, the best case gain of the antenna is 0.98 dBi. See product internal photos for details.

5.3 AC Power Line Conducted Emission

Product name:	Waterproof Industrial Gateway	Product model:	DSGW-010
Test by:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		

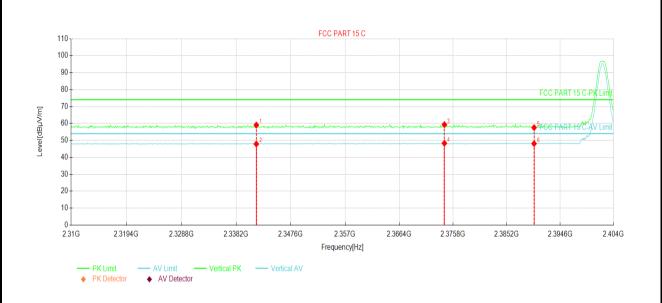

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB	₫B	dBu₹	dBu∀	<u>dB</u>	
1	0.162	33.22	0.04	0.01	43.77	55.34	-11.57	Average
2	0.162	38.18	0.04	0.01	48.73	65.34	-16.61	QP
3	0.202	25.62	0.05	0.04	36.21	53.54	-17.33	Average
4	0.203	29.28	0.05	0.04	39.87	63.49	-23.62	QP
1 2 3 4 5 6 7 8 9	0.242	18.25	0.05	0.01	28.81	62.04	-33.23	QP
6	0.282	14.60	0.06	0.02	25.18	50.76	-25.58	Average
7	0.282	16.50	0.06	0.02	27.08	60.76	-33.68	QP
8	0.608	5.92	0.06	0.02	16.50	46.00	-29.50	Average
9	1.418	12.03	0.08	0.13	22.74	56.00	-33.26	QP
10	1.495	9.79	0.08	0.14	20.51	46.00	-25.49	Average
11	16.055	25.67	0.30	0.16	36.63	50.00	-13.37	Average
12	16.055	26.73	0.30	0.16	37.69		-22.31	

Remark:

1. Level = Read level + LISN Factor + Cable Loss.

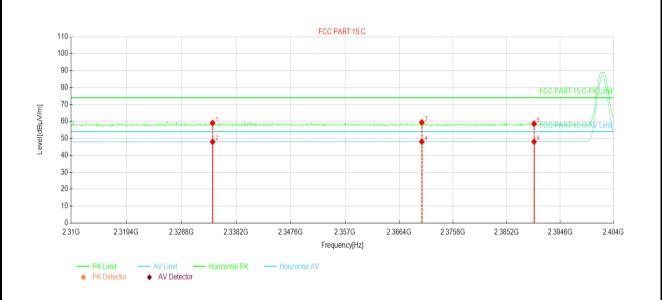
Product name:	Waterproof Industrial Gateway	Product model:	DSGW-010
Test by:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.162	31.26	0.06	0.01	41.83	55.34	-13.51	Average
2	0.162	38.58	0.06	0.01	49.15	65.34	-16.19	QP
3	0.202	25.15	0.05	0.04	35.74	53.54	-17.80	Average
1 2 3 4 5 6 7 8 9	0.202	29.93	0.05	0.04	40.52	63.54	-23.02	QP
5	0.242	20.56	0.05	0.01	31.12	62.04	-30.92	QP
6	0.282	14.38	0.05	0.02	24.95	50.76	-25.81	Average
7	0.282	17.35	0.05	0.02	27.92	60.76	-32.84	QP
8	0.471	7.29	0.04	0.03	17.86	46.49	-28.63	Average
9	1.980	5.93	0.07	0.21	16.71			
10	16.055	25.49	0.28	0.16	36.43		-13.57	
11	16.055	27.42	0.28	0.16	38.36		-21.64	
12	17.944	25.51	0.31	0.15	36.47			QP


1. Level = Read level + LISN Factor + Cable Loss.

5.4 Emissions in Restricted Frequency Bands

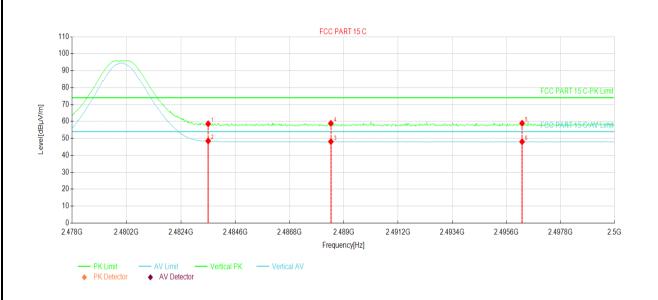
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 12V		


Susp	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2341.67	23.82	35.23	59.05	74.00	14.95	PK	Vertical
2	2341.67	12.66	35.23	47.89	54.00	6.11	AV	Vertical
3	2374.29	23.84	35.48	59.32	74.00	14.68	PK	Vertical
4	2374.29	12.85	35.48	48.33	54.00	5.67	AV	Vertical
5	2390.00	21.96	35.60	57.56	74.00	16.44	PK	Vertical
6	2390.00	12.49	35.60	48.09	54.00	5.91	AV	Vertical

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

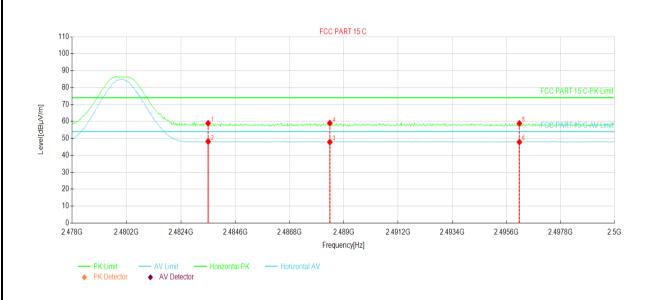
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 12V		



Suspe	Suspected Data List							
NO.	Freq.	Reading	Factor	Level	Limit	Margin	Trace	Polarity
NO.	[MHz]	[<u>dBµV/</u> m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Hace	Folality
1	2334.15	23.87	35.18	59.05	74.00	14.95	PK	Horizontal
2	2334.15	12.81	35.18	47.99	54.00	6.01	AV	Horizontal
3	2370.34	23.95	35.45	59.40	74.00	14.60	PK	Horizontal
4	2370.34	12.63	35.45	48.08	54.00	5.92	AV	Horizontal
5	2390.00	23.05	35.60	58.65	74.00	15.35	PK	Horizontal
6	2390.00	12.42	35.60	48.02	54.00	5.98	AV	Horizontal

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

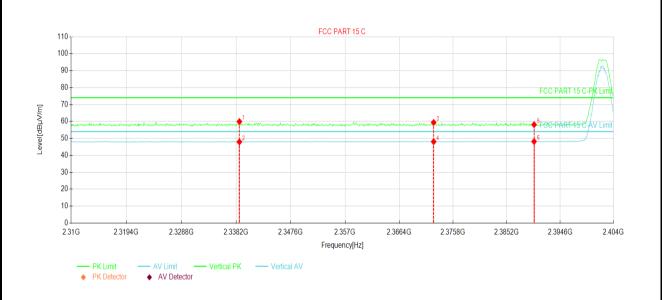
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 12V		



Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	23.08	35.51	58.59	74.00	15.41	PK	Vertical
2	2483.50	12.98	35.51	48.49	54.00	5.51	AV	Vertical
3	2488.47	12.61	35.50	48.11	54.00	5.89	AV	Vertical
4	2488.47	23.37	35.50	58.87	74.00	15.13	PK	Vertical
5	2496.23	23.47	35.49	58.96	74.00	15.04	PK	Vertical
6	2496.23	12.55	35.49	48.04	54.00	5.96	AV	Vertical

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

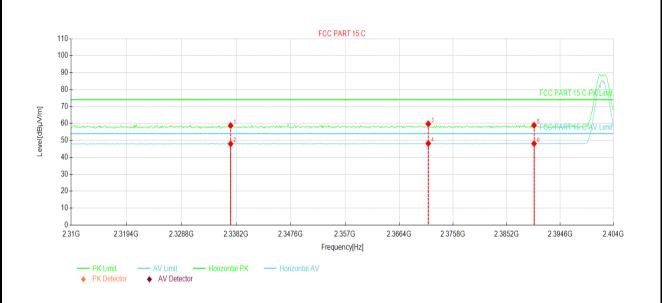
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 12V		



Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	23.39	35.51	58.90	74.00	15.10	PK	Horizontal
2	2483.50	12.69	35.51	48.20	54.00	5.80	AV	Horizontal
3	2488.42	12.36	35.50	47.86	54.00	6.14	AV	Horizontal
4	2488.42	23.53	35.50	59.03	74.00	14.97	PK	Horizontal
5	2496.12	23.34	35.49	58.83	74.00	15.17	PK	Horizontal
6	2496.12	12.36	35.49	47.85	54.00	6.15	AV	Horizontal

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

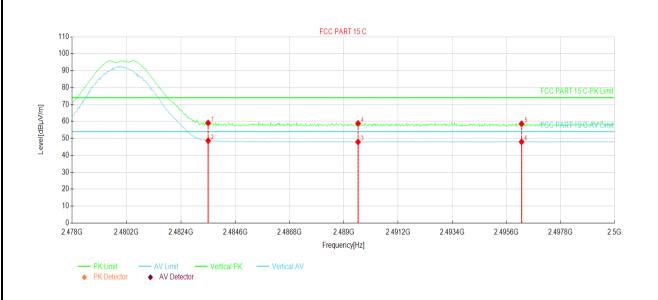
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 12V		



Suspe	Suspected Data List							
NO.	Freq.	Reading	Factor	Level	Limit	Margin	Trace	Polarity
NO.	[MHz]	[<u>dBµV/</u> m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Hace	Polarity
1	2338.76	24.73	35.21	59.94	74.00	14.06	PK	Vertical
2	2338.76	12.72	35.21	47.93	54.00	6.07	AV	Vertical
3	2372.41	23.95	35.46	59.41	74.00	14.59	PK	Vertical
4	2372.41	12.62	35.46	48.08	54.00	5.92	AV	Vertical
5	2390.00	22.53	35.60	58.13	74.00	15.87	PK	Vertical
6	2390.00	12.57	35.60	48.17	54.00	5.83	AV	Vertical

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

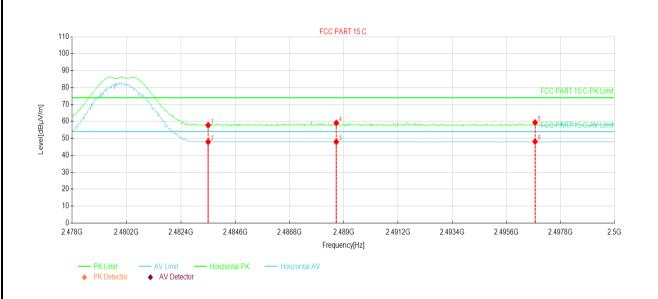
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 12V		



Susp	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2337.26	23.56	35.20	58.76	74.00	15.24	PK	Horizontal
2	2337.26	12.78	35.20	47.98	54.00	6.02	AV	Horizontal
3	2371.47	24.30	35.46	59.76	74.00	14.24	PK	Horizontal
4	2371.47	12.73	35.46	48.19	54.00	5.81	AV	Horizontal
5	2390.00	23.32	35.60	58.92	74.00	15.08	PK	Horizontal
6	2390.00	12.49	35.60	48.09	54.00	5.91	AV	Horizontal

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

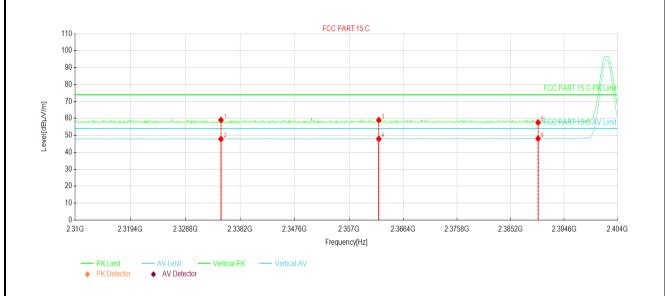
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 12V		



Suspe	Suspected Data List							
NO.	Freq.	Reading	Factor	Level	Limit	Margin	Trace	Dolority
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Trace	Polarity
1	2483.50	23.62	35.51	59.13	74.00	14.87	PK	Vertical
2	2483.50	13.14	35.51	48.65	54.00	5.35	AV	Vertical
3	2489.57	12.39	35.50	47.89	54.00	6.11	AV	Vertical
4	2489.57	23.33	35.50	58.83	74.00	15.17	PK	Vertical
5	2496.21	23.13	35.49	58.62	74.00	15.38	PK	Vertical
6	2496.21	12.51	35.49	48.00	54.00	6.00	AV	Vertical

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

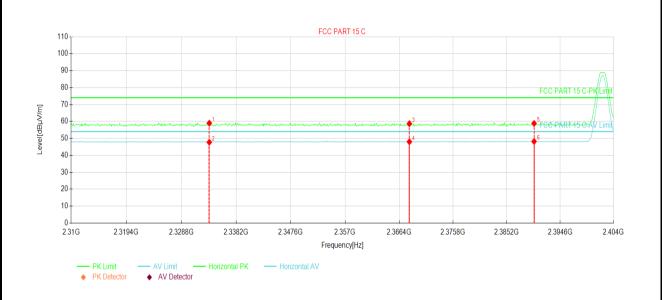
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 12V		



Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBuV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.27	35.51	57.78	74.00	16.22	PK	Horizontal
2	2483.50	12.48	35.51	47.99	54.00	6.01	AV	Horizontal
3	2488.69	12.45	35.50	47.95	54.00	6.05	AV	Horizontal
4	2488.69	23.60	35.50	59.10	74.00	14.90	PK	Horizontal
5	2496.76	23.91	35.49	59.40	74.00	14.60	PK	Horizontal
6	2496.76	12.65	35.49	48.14	54.00	5.86	AV	Horizontal

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

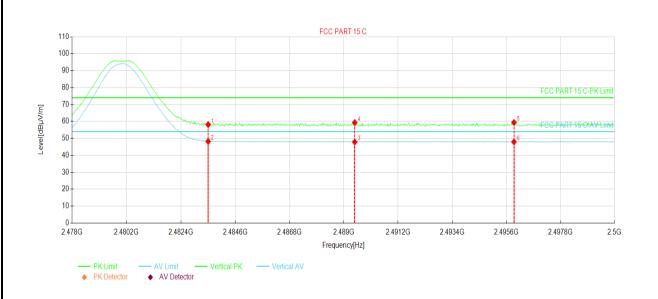
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=2)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	A DC 12V		



Suspe	Suspected Data List							
NO.	Freq.	Reading	Factor	Level	Limit	Margin	Trace	Dolority
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Trace	Polarity
1	2334.91	23.87	35.18	59.05	74.00	14.95	PK	Vertical
2	2334.91	12.69	35.18	47.87	54.00	6.13	AV	Vertical
3	2362.17	23.61	35.39	59.00	74.00	15.00	PK	Vertical
4	2362.17	12.58	35.39	47.97	54.00	6.03	AV	Vertical
5	2390.00	22.01	35.60	57.61	74.00	16.39	PK	Vertical
6	2390.00	12.52	35.60	48.12	54.00	5.88	AV	Vertical

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

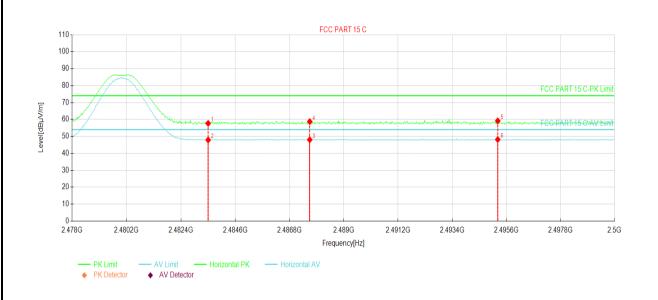
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=2)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 12V		



Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2333.59	23.83	35.17	59.00	74.00	15.00	PK	Horizontal
2	2333.59	12.58	35.17	47.75	54.00	6.25	AV	Horizontal
3	2368.18	23.28	35.43	58.71	74.00	15.29	PK	Horizontal
4	2368.18	12.60	35.43	48.03	54.00	5.97	AV	Horizontal
5	2390.00	23.25	35.60	58.85	74.00	15.15	PK	Horizontal
6	2390.00	12.61	35.60	48.21	54.00	5.79	AV	Horizontal

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

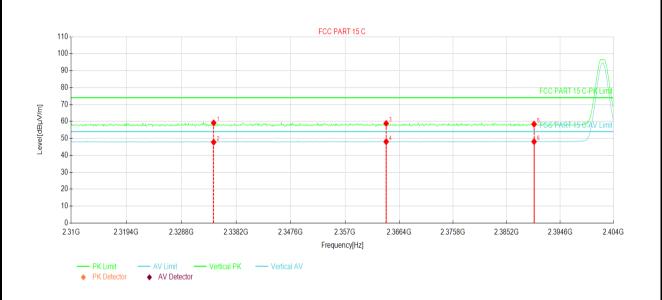
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=2)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 12V		



Susp	Suspected Data List							
NO.	Freq.	Reading	Factor	Level	Limit	Margin	Trace	Polarity
NO.	[MHz]	[<u>dBµV/</u> m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Hace	Polanty
1	2483.50	22.65	35.51	58.16	74.00	15.84	PK	Vertical
2	2483.50	12.75	35.51	48.26	54.00	5.74	AV	Vertical
3	2489.44	12.40	35.50	47.90	54.00	6.10	AV	Vertical
4	2489.44	23.84	35.50	59.34	74.00	14.66	PK	Vertical
5	2495.90	23.88	35.49	59.37	74.00	14.63	PK	Vertical
6	2495.90	12.46	35.49	47.95	54.00	6.05	AV	Vertical

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

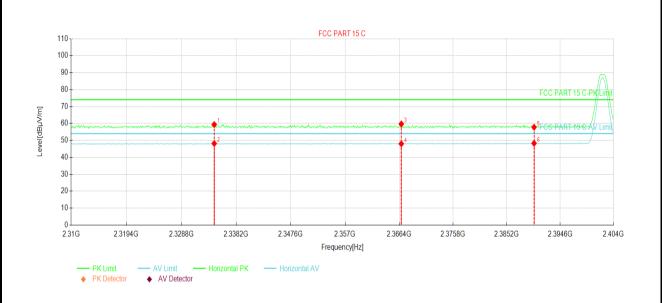
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=2)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 12V		



Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.18	35.51	57.69	74.00	16.31	PK	Horizontal
2	2483.50	12.39	35.51	47.90	54.00	6.10	AV	Horizontal
3	2487.61	12.54	35.50	48.04	54.00	5.96	AV	Horizontal
4	2487.61	23.23	35.50	58.73	74.00	15.27	PK	Horizontal
5	2495.24	23.68	35.49	59.17	74.00	14.83	PK	Horizontal
6	2495.24	12.68	35.49	48.17	54.00	5.83	AV	Horizontal

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

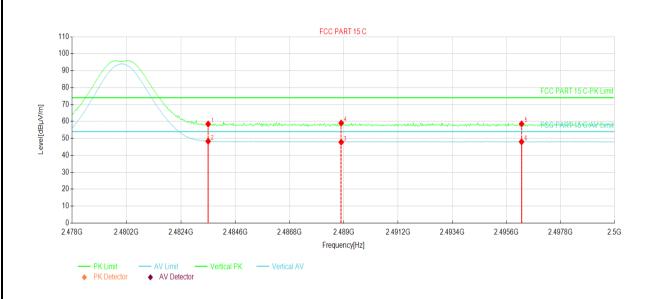
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=8)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 12V		



Suspe	Suspected Data List							
NO.	Freq.	Reading	Factor	Level	Limit	Margin	Trace	Dolority
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Trace	Polarity
1	2334.34	23.97	35.18	59.15	74.00	14.85	PK	Vertical
2	2334.34	12.61	35.18	47.79	54.00	6.21	AV	Vertical
3	2364.14	23.42	35.40	58.82	74.00	15.18	PK	Vertical
4	2364.14	12.67	35.40	48.07	54.00	5.93	AV	Vertical
5	2390.00	22.80	35.60	58.40	74.00	15.60	PK	Vertical
6	2390.00	12.50	35.60	48.10	54.00	5.90	AV	Vertical

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

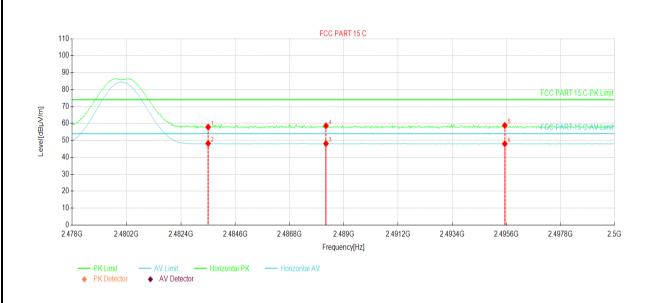
Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=8)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 12V		



Suspected Data List								
NO.	Freq.	Reading	Factor	Level	Limit	Margin	Trace	Polarity
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Trace	Polanty
1	2334.44	24.18	35.18	59.36	74.00	14.64	PK	Horizontal
2	2334.44	12.98	35.18	48.16	54.00	5.84	AV	Horizontal
3	2366.77	24.28	35.42	59.70	74.00	14.30	PK	Horizontal
4	2366.77	12.61	35.42	48.03	54.00	5.97	AV	Horizontal
5	2390.00	22.21	35.60	57.81	74.00	16.19	PK	Horizontal
6	2390.00	12.69	35.60	48.29	54.00	5.71	AV	Horizontal

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=8)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 12V		

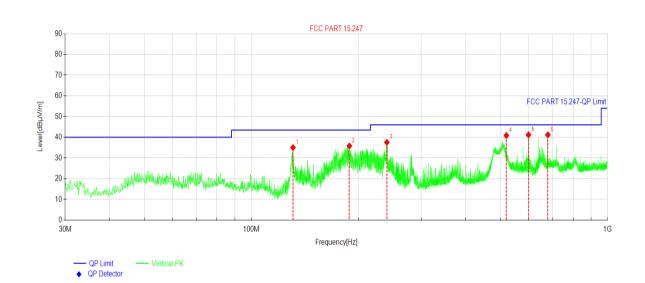


Susp	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.94	35.51	58.45	74.00	15.55	PK	Vertical
2	2483.50	12.83	35.51	48.34	54.00	5.66	AV	Vertical
3	2488.89	12.29	35.50	47.79	54.00	6.21	AV	Vertical
4	2488.89	23.59	35.50	59.09	74.00	14.91	PK	Vertical
5	2496.21	23.07	35.49	58.56	74.00	15.44	PK	Vertical
6	2496.21	12.51	35.49	48.00	54.00	6.00	AV	Vertical

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE Coded PHY, S=8)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 12V		

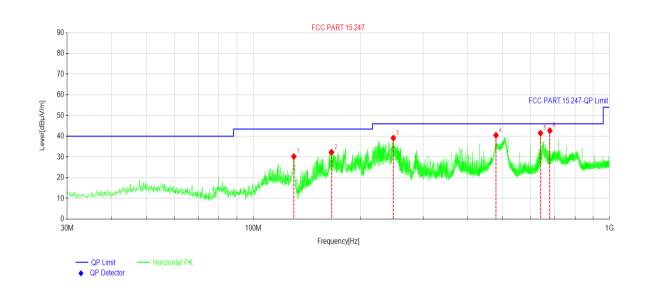
Suspe	Suspected Data List										
NO.	Freq.	q. Reading Factor		Level	Limit	Margin	Trace	Polarity			
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Hace	Polanty			
1	2483.50	22.36	35.51	57.87	74.00	16.13	PK	Horizontal			
2	2483.50	12.68	35.51	48.19	54.00	5.81	AV	Horizontal			
3	2488.27	12.63	35.50	48.13	54.00	5.87	AV	Horizontal			
4	2488.27	23.13	35.50	58.63	74.00	15.37	PK	Horizontal			
5	2495.53	23.33	35.49	58.82	74.00	15.18	PK	Horizontal			
6	2495.53	12.52	35.49	48.01	54.00	5.99	AV	Horizontal			


1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

5.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	DC 12V		


Susp	Suspected Data List									
NO.	Freq. [MHz]	Reading[d BuV/m]	Level [dBuV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	130.890	53.04	35.08	-17.96	43.50	8.42	РK	Vertical		
2	188.416	51.93	35.80	-16.13	43.50	7.70	РK	Vertical		
3	240.123	51.77	37.56	-14.21	46.00	8.44	РK	Vertical		
4	519.996	49.45	40.86	-8.59	46.00	5.14	PK	Vertical		
5	600.029	47.84	41.20	-6.64	46.00	4.80	PK	Vertical		
6	680.062	46.89	41.18	-5.71	46.00	4.82	PK	Vertical		

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Waterproof Industrial Gateway	Product Model:	DSGW-010
Test By:	Mike	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	DC 12V		

Susp	Suspected Data List									
NO.	Freq. [MHz]	Reading[d BuV/m]	Level [dBuV/m]	Factor [dB]	Limit [dBuV/m]	Margin [dB]	Trace	Polarity		
1	129.920	48.12	30.23	-17.89	43.50	13.27	PK	Horizontal		
2	165.716	49.96	32.30	-17.66	43.50	11.20	РK	Horizontal		
3	247.204	53.21	39.15	-14.06	46.00	6.85	PK	Horizontal		
4	480.028	49.83	40.49	-9.34	46.00	5.51	PK	Horizontal		
5	639.997	47.70	41.50	-6.20	46.00	4.50	PK	Horizontal		
6	680.062	48.43	42.72	-5.71	46.00	3.28	PK	Horizontal		

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Above 1GHz:

		В	LE Tx (LE 1M PH	Y)				
Test channel: Lowest channel								
		D	etector: Peak Valu	ue				
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4804.00	55.67	-9.60	46.07	74.00	27.93	Vertical		
4804.00	54.38	-9.60	44.78	74.00	29.22	Horizontal		
		Det	ector: Average Va	alue				
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4804.00	48.71	-9.60	39.11	54.00	14.89	Vertical		
4804.00	47.31	-9.60	37.71	54.00	16.29	Horizontal		

Test channel: Middle channel									
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4884.00	55.37	-9.04	46.33	74.00	27.67	Vertical			
4884.00	53.99	-9.04	44.95	74.00	29.05	Horizontal			
		Det	ector: Average Va	alue					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4884.00	49.20	-9.04	40.16	54.00	13.84	Vertical			
4884.00	47.12	-9.04	38.08	54.00	15.92	Horizontal			

	Test channel: Highest channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4960.00	56.03	-8.45	47.58	74.00	26.42	Vertical			
4960.00	54.54	-8.45	46.09	74.00	27.91	Horizontal			
		Det	ector: Average Va	alue					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4960.00	49.00	-8.45	40.55	54.00	13.45	Vertical			
4960.00	46.97	-8.45	38.52	54.00	15.48	Horizontal			

Remark:

^{1.} Level = Reading + Factor.

^{2.} Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

	BLE Tx (LE 2M PHY)									
	Test channel: Lowest channel									
		D	etector: Peak Val	ue						
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	1 Glarization				
4804.00	55.19	-9.60	45.59	74.00	28.41	Vertical				
4804.00	4804.00 53.88 -9.60 44.28 74.00 29.72 Horizontal									
		Det	ector: Average Va	alue						
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization				
4804.00	48.33	-9.60	38.73	54.00	15.27	Vertical				
4804.00	47.80	-9.60	38.20	54.00	15.80	Horizontal				
		Test o	channel: Middle ch	nannel						
		D	etector: Peak Val	ue						
Frequency	Read Level	Factor	Level	Limit	Margin	Delevization				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization				
4884.00	55.40	-9.04	46.36	74.00	27.64	Vertical				
4884.00	54.39	-9.04	45.35	74.00	28.65	Horizontal				
		Det	ector: Average Va	alue						
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization				
4884.00	49.20	-9.04	40.16	54.00	13.84	Vertical				
4884.00	47.26	-9.04	38.22	54.00	15.78	Horizontal				
		Test c	hannel: Highest c	hannel						
		D	etector: Peak Val	ue						
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization				
4960.00	56.43	-8.45	47.98	74.00	26.02	Vertical				
4960.00	54.21	-8.45	45.76	74.00	28.24	Horizontal				
		Det	ector: Average Va	alue						
					1	1				

Frequency

(MHz)

4960.00

4960.00

Read Level

(dBµV)

48.55

47.26

Level

(dBµV/m)

40.10

38.81

Limit

 $(dB\mu V/m)$

54.00

54.00

Margin

(dB)

13.90

15.19

Factor

(dB)

-8.45

-8.45

Project No.: JYTSZR2211055

Polarization

Vertical

Horizontal

^{1.} Level = Reading + Factor.

^{2.} Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

		BEL T	x (LE Coded PH	Y, S=2)					
			channel: Lowest cl						
		D	etector: Peak Val	ue					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4804.00	54.73	-9.60	45.13	74.00	28.87	Vertical			
4804.00 53.52 -9.60 43.92 74.00 30.08 Horizontal									
		Det	tector: Average Va	alue					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4804.00	47.86	-9.60	38.26	54.00	15.74	Vertical			
4804.00	47.65	-9.60	38.05	54.00	15.95	Horizontal			
			channel: Middle ch						
	5		etector: Peak Val	1	1				
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4884.00	55.68	-9.04	46.64	74.00	27.36	Vertical			
4884.00	54.73	-9.04	45.69	74.00	28.31	Horizontal			
		Det	tector: Average Va	alue	1				
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4884.00	49.48	-9.04	40.44	54.00	13.56	Vertical			
4884.00	47.37	-9.04	38.33	54.00	15.67	Horizontal			
			hannel: Highest c						
Frequency	Read Level	Factor	Level	Limit	Margin				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization			
4960.00	56.65	-8.45	48.20	74.00	25.80	Vertical			
4960.00	54.36	-8.45	45.91	74.00	28.09	Horizontal			
			tector: Average Va						
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4960.00	48.06	-8.45	39.61	54.00	14.39	Vertical			
4960.00	47.18	-8.45	38.73	54.00	15.27	Horizontal			
-	•			1		•			

^{1.} Level = Reading + Factor.

^{2.} Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

		BEL T	x (LE Coded PH)	Y, S=8)					
	Test channel: Lowest channel								
		D	etector: Peak Val	ue					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4804.00	54.49	-9.60	44.89	74.00	29.11	Vertical			
4804.00	53.18	-9.60	43.58	74.00	30.42	Horizontal			
		Det	ector: Average Va	alue					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4804.00	47.42	-9.60	37.82	54.00	16.18	Vertical			
4804.00	47.59	-9.60	37.99	54.00	16.01	Horizontal			
		_							
			channel: Middle ch						
			etector: Peak Val			1			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4884.00	55.75	-9.04	46.71	74.00	27.29	Vertical			
4884.00	54.60	-9.04	45.56	74.00	28.44	Horizontal			
		Det	ector: Average Va	alue					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4884.00	49.42	-9.04	40.38	54.00	13.62	Vertical			
4884.00	47.21	-9.04	38.17	54.00	15.83	Horizontal			
		Test c	hannel: Highest c	hannel					
		D	etector: Peak Val	ue					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
4960.00	57.06	-8.45	48.61	74.00	25.39	Vertical			
4960.00	54.60	-8.45	46.15	74.00	27.85	Horizontal			
		Det	ector: Average Va	alue					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization			
	1		ı	i	1	1			

4960.00

4960.00

47.65

46.94

39.20

38.49

54.00

54.00

14.80

15.51

-----End of report-----

-8.45

-8.45

Project No.: JYTSZR2211055

Vertical

Horizontal

^{1.} Level = Reading + Factor.

Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.